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Preface

The System Design Languages Forum (SDL Forum), held every two years, is
an international conference that provides an open arena for participants from
academia and industry to present and discuss recent innovations, trends, ex-
periences, and concerns in the field of system design languages and modeling
technologies. Originally focusing on the Specification and Description Language
— standardized and further developed by the International Telecommunications
Union (ITU) over a period of more than 30 years — the SDL Forum has broad-
ened its topics in the course of time.

The SDL Forum conference series is run by the SDL Forum Society, a non-
profit organization founded in 1995 by language users and tool providers to
promote the ITU Specification and Description Language and related system de-
sign languages, including, for instance, Message Sequence Charts (MSC), ASN.1,
TTCN, URN, UML, and SysML.

The local coorganizers of the 16th edition of the SDL Forum (SDL 2013) were
Concordia University, Ericsson, and École de Technologie Supérieure. A special
focus of SDL 2013 was on model-driven dependability engineering, which aims at
developing dependable systems following the model-driven paradigm. The reason
for setting this focus is that we have come to depend heavily on software sys-
tems in virtually every sector of human activity, including telecommunications,
aerospace, automotive, process automation, and this trend is further increas-
ing. These software systems are increasingly complex because of ever-growing
demands for functionalities, features and improved user experience. The speci-
fication, design, validation, configuration, deployment and maintenance of such
systems are accordingly complex tasks, to which the dependability requirements
add yet another dimension. The dependability of software systems, which is a
multi-attribute quality that includes reliability, availability and security, needs
to be taken into account in the development process so that they meet the target
requirements.

This volume contains the papers presented at SDL 2013. Sixteen high-quality
papers were selected from 30 submissions. Each paper was peer reviewed by
at least three Program Committee members and discussed during the online
Program Committee meeting. The selected papers cover a wide spectrum of
topics related to system design languages, ranging from the System Design Lan-
guage usage and evolution to model transformations, and were grouped into
six technical sessions as reflected in this volume. The first session is devoted
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to verification and testing using ITU-T languages. The papers in the second ses-
sion tackle different issues related to dependability engineering, while papers in
the third session propose model driven analysis approaches for safety properties
or dependability. Domain-Specific Languages are proposed in the fourth session
papers, followed by a set of papers on model transformation, before concluding
with contributions on the ITU-T Specification and Description Language and
its evolution.

The SDL Forum has been made possible by the dedicated work and contri-
butions of many people and organizations. We thank the authors of submitted
papers, the 48 members of the Program Committee, and the members of the
SDL Forum Society Board. We thank the Communications Services, Conference
Services and Instructional and Information Technology Services of Concordia
University for their support. The submission and review process was run with
easychair.org, we therefore thank the people behind the EasyChair conference
system. We thank the sponsors of the SDL 2013: Concordia University, Ericsson,
École Technologie Supérieure, SYTACOM, and the University of Kaiserslautern.

April 2013 Ferhat Khendek
Maria Toeroe

Abdelouahed Gherbi
Rick Reed
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We dedicate these proceedings to Rick Reed, to acknowledge his long-standing
and continued contributions to the Specification and Description Language and
related ITU languages, the SDL Forum Society, and the SDL Forum and SAM
Workshop series. Thank you Rick!

Ferhat Khendek
Maria Toeroe
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Reinhard Gotzhein (Chairman of SDL Forum Society)

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that, in addition to
running the System Design Languages Forum (SDL Forum) conference series of
events (once every two years), also:

– Runs the System Analysis and Modelling (SAM) workshop series, every two
years between SDL Forum years

– Is a body recognized by ITU-T as co-developing System Design Languages
in the Z.100 series (Specification and Description Language), Z.120 series
(Message Sequence Chart), Z.150 series (User Requirements Notation) and
other language standards

– Promotes the ITU-T System Design Languages

For more information on the SDL Forum Society, see http://www.sdl-forum.org.
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John Fryer SAForum and OpenSAF, USA
Emmanuel Gaudin PragmaDev, France
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Data Flow Testing in TTCN-3 with a Relational

Database Schema

Gusztáv Adamis1, Antal Wu-Hen-Chang1, Gábor Árpád Németh1,
Levente Erős2, and Gábor Kovács2

1 Ericsson Hungary
Irinyi J. u. 4-20, H-1117, Budapest, Hungary

{gusztav.adamis,antal.wu-hen-chang,gabor.arpad.nemeth}@ericsson.com
2 Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
Magyar tudósok körútja 2, H-1117, Budapest, Hungary

{eros,kovacsg}@tmit.bme.hu

Abstract. In script based testing traditionally test data and test en-
vironment parameters are stored either in the test script document or
in a separate file. In some test execution systems, test data items are
loaded to a database during the initialization, however that set of data
remains static during the execution. In this paper, we propose a TTCN-3
based approach that stores all test case related data, even constants, local
variables and parameterized message templates of a test case in a rela-
tional database. Data types and data type instances are all mapped into
SQL schemas. When executing a test case, appropriate test templates
are fetched or even generated on-the-fly for the subsequent test step,
which results in a higher data flow coverage. The course of test events
are logged in the database that makes reproduction possible.

Keywords: TTCN-3, test data, data flow, relational database.

1 Introduction

Web portal development frameworks such as Django [1], Ruby on Rails [2] and
many others have an incorporated script based test environment. As web portals
usually have a database back-end as data source in their production environment,
test data to be used in the scripts defined in plain text files must be loaded into
the test database before the test execution. Test data definition files contain
finite sets of records of the data types used within the portal, and it is possible
to execute the same test case with different test data records. Once loaded, these
records can be accessed, fetched and modified during the execution of a test case,
however the changes made to them cannot be traced back, as they are restored to
their initial values upon the initialization of the next test case. Other limitations
of these frameworks are that: the test data items must be given manually and
therefore have fixed initial values; and there is no obvious way to assign a random
value to a field of a record, which is transparent for the current test case.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 G. Adamis et al.

The UML and the UML Testing Profile are proposed in [3] for the data-driven
testing of object-oriented models. These together provide the means for defining
values in the test specification resulting in reusable and maintainable tests. Sev-
eral testing frameworks exist already with the ability to separate data. SoapUI
[4] is a general purpose testing framework that allows the user to use data sources
with many formats, such as XML, Excel configuration files or databases. Dur-
ing test execution, test data items are read from the data source independently
from the test steps defined in a separate document. MBUnit [5] is a .NET unit
testing framework that also supports the separation of the data flow. Beyond
being able to use hard-coded test data values, it is capable of getting test data
from external sources such as XML spreadsheets or CSV files. EasyTest [6] is
another new open source testing framework that allows for writing data-driven
tests in JUnit. The Fitnesse framework [7] is primarily for testing requirements,
and it already supports data-driven testing.

In TTCN-3, test data is not separated from the control flow of test cases as
much as in the case of web development frameworks. Test data items appear
within the TTCN-3 test cases themselves. Implementation and environment pa-
rameters are loaded from configuration files, record type and template definitions
are vital parts of the TTCN-3 module, and the values used by local variables
and constants are hardcoded into the test case part of the module.

In this paper, we introduce a framework for testing telecommunication pro-
tocols on the pattern of web development test environments, we put all the test
data into a relational database that we access from test case bodies during the
test execution. The rationale behind this approach is that many higher layer pro-
tocols are stateless or have only a very few control states, but at the same time
they use complex protocol data units. When conformance testing such protocols,
the very same message sequences are used over and over again, but with different
test data. This paper investigates how the test data can be stored in a database,
and if values for complex data structures can be generated on-the-fly based on
user defined records of that database. The record type definitions available for
the TTCN-3 test case are mapped to an SQL metamodel, and parameterized
templates are records in those tables. We consider that all interactions of the
test case take place by means of using parameterized templates, and fetch the
parameters before the send and receive operations with an external function. Pa-
rameterized templates allow a higher level of flexibility compared to templates
with hardcoded values, because parameters not yet accessed can be chosen at
random at each execution providing a better data flow coverage than the single
hardcoded value.

The cost of this flexibility with the parameterized templates is that we must
provide a way to trace back the template value used in a test step and loose the
portability of test cases. Therefore to enable persistent logging, we define the
formal graph model of a test case including alt statements, branches, loops and
local variables and constants that we map to an SQL metamodel as well. This
allows the on-the-fly tracking of changes of values of local variables, so that in
subsequent test steps the proper value can be used in templates.
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The paper is organized as follows. Section 2 defines the architecture of the
framework presented. In Sect. 3, we show the graph model of the test case we
use in the database to represent the control flow of test cases. Section 4 gives
the SQL metamodel for storing record types and parameterized templates, and
describes the SQL metamodel we store this test case representation in. How a
test case is transformed and executed within this framework is shown in Sect. 5,
where we show an example where our method can be useful: a flow control
counter overflow check. Finally, Sect. 6 summarizes the paper.

2 A Framework for Storing TTCN-3 Test Data in a
Relational Database

The fundamental idea behind this framework is to completely separate test data
from the test cases, so that each test case rewritten according to the concepts
presented in this paper can be executed with arbitrary number of possibly ran-
dom test data items without a change. Therefore, we remove all occurrences of
values, variable and template accesses from original test case and replace them
with external TTCN-3 function calls that implement the fetching and storing of
these data items in a database.

When storing test data separately, a database has several benefits over using
a simple configuration file. Meta-information such as the type of a field or of a
variable can be encoded in the database schema. The complex data structures,
or even protocol data units (PDUs), are constructed based on the user defined
data, are used in an interaction. These structures or PDUs can be stored in the
database and reused when repeating the test. In a long sequence of interactions,
the user defined initial values may change, the database helps with tracking
these changes, thus the database can store snapshots of the variable vector and
associate that with a state of the interaction. Another advantage is that the
database manager understands the natural ordering of primitive types such as
integer, and for instance boundary values with regard to a table constraint can
be very easily fetched.

Our method consists of two phases. First, the input TTCN-3 documents are
parsed, and graph models are extracted from them: one that represents the data
types available for the test cases, and for each test case a graph that represent
the control flow. These pieces of information are then loaded into the database.
The second phase is the test execution itself, where the evaluation of expressions
and the parameterization of templates are performed within the database.

Figure 1 shows the process of the initialization phase. The input of the process
is a set of TTCN-3 documents. These documents are parsed with a customized
TTCN-3 parser, and a test data model and test case models are extracted, which
are later on loaded into the metadata tables of the database. If data constraints
have been defined on the datatypes and the database server supports constraint
specification, the schema is updated. We use a custom mapping for that, not a
nowadays standard way of object relational mapping (ORM). Transformations
are performed on the input TTCN-3 documents that preserve the test case be-
havior, for each data type definition a set of parameterized template definitions
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Fig. 1. The initialization of test execution

are generated that are used in send and receive operations. All variable ac-
cesses are replaced with calls to external functions. The outputs of this phase
are the transformed TTCN-3 documents and the information stored about the
test data and test cases in the database.

transformation

access layer

Test execution environment

Database

Test case
metadata

Data

Log
Test data
metadata

evaluation
Expression Template

generation

Relational

Fig. 2. The layered architecture of the framework, and the main function groups used
in test execution

Figure 2 shows the architecture of our framework. When executing a test case,
the test execution environment [8] accesses the database by calling the functions
of the relational access layer implemented with external TTCN-3 functions. The
relational access layer has three main function groups. In the transformed test
case, a value can be accessed in three different ways. Data transformation that
implements the relational mapping transparently maps database records to na-
tive TTCN-3 values and vice versa. When a value is given as an expression with
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several variable identifiers, the expression evaluation module resolves the vari-
ables, transforms the operator in the expression to SQL syntax, and retrieves
the value by executing an SQL query built on the pattern of the expression. The
third method of value generation is the use of parameterized templates, which
are built on-the-fly with Gecse’s [9] method. If a field of a template has not yet
been defined in previous interactions of the test case, a value is generated possi-
bly at random and stored in the database for future re-use. The database layer
is responsible for storing the data type, template and test case models, and logs
the current and previous snapshots of test states of the execution. This latter
logging allows the identification of freely definable variables and template fields.
The database layer is completely hidden from the test engineers, who write the
TTCN-3 test cases. They have to follow a well-defined set of conventions, but
are not required to have specific database or SQL knowledge.

In the following, we introduce the data type and test case metamodels we cre-
ate and map to the database after the parsing of the original TTCN-3
documents.

3 TTCN-3 Data and Test Case Representation

In this section, we define two graphs we use to represent TTCN-3 type and
template definitions and TTCN-3 test case definitions. These models can au-
tomatically be generated from a TTCN-3 document with a parser and a code
generator.

3.1 TTCN-3 Data Representation

In this paper, we use the concept of the type structure graph defined by Gecse’s
[9]. We model data types with a forest of directed graphs, however our focus is
limited to TTCN-3 primitive and record types and TTCN-3 record of, set of,
set and union types are left out of consideration. We denote the collection of
data types with D = (N,E,L) such that E : N × L ×N , where a node n ∈ N
represents a data type, and an outgoing edge e = (ni, l, nj), e ∈ E, ni, nj ∈ N,
l ∈ N denotes that the data type ni has field of the type represented by the target
node nj , and the l ∈ L label defines the field name and an ordering constraint
on the edges. Note that D is not necessarily a tree, the data type definitions
may include recursive associations that result in strongly connected cliques.

The set of walks returned by the function walk : N → W called subgraph tem-
plates in Gecse’s work is an unbounded set of finite trees generated by traversing
recursively all outgoing edges at each visited node starting from a node n ∈ N
until any node ni ∈ N, Nprimitive ⊆ N representing a primitive type is reached.
A walk w ∈ W, W = walk(n), n ∈ N corresponds to a TTCN-3 parameterized
template of type N . A data type instance or a template for walk w ∈ W is
generated by recursively applying the function val : W → D to all subtrees of
W , where D is the domain of W rooted in type N . The function type : W → N
returns the type of a template, and the function type : V → N gives the type of
a variable.
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1 type record M {
2 A a ,
3 C c ,
4 octetstring d
5 }
6
7 type record A{
8 octetstring a
9 }

10
11 type record C{
12 integer t ,
13 integer s ,
14 integer r
15 }
16
17 template C t c ( integer v t

, integer v s , integer
v r ) {

18 t := v t ,
19 s := v s ,
20 r := v r
21 }

s

string

A

a

M

a

d

c

C

integer

t r

octet

Fig. 3. Graph model of the data types. On the left a TTCN-3 code snippet with some
type definitions can be seen, on the right the relationship graph between those types
and a sub-template graph with bold lines are shown

Figure 3 shows a sample TTCN-3 type definition code snippet on the left and
its graph representation after parsing on the right. In this example, five data
types are used, three of them are defined here and two of them are primitive
types, soN = {M,A,C, integer, octetstring}. The edge e = (A, a, octetstring) ∈ E
for instance shows that type A has a field named a of type octetstring. Bold lines
represent a walk tc ∈ W , which is the only available walk from node C, this
corresponds to the parameterized template named tc. This tc has a subgraph
template rooted in node C. Note that the graph model is not necessarily acyclic.

3.2 TTCN-3 Test Case Representation

Mathematically, TTCN-3 test cases can be unfolded into a tree structure that
is not necessarily finite. A common model in the literature for representing
such trees is a rooted, edge labelled, directed graph, or more specifically a test
transition system as defined in [10].

We, in this paper, use a different approach to represent the control flow of
test cases. Our model of a test case TC = (S, P, V, I, O, T ) is a rooted edge and
node labelled directed graph with two types of nodes, which is closely related
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to the EFSM model used in [11]. The not necessarily finite set S represents the
set of end nodes (test states) of a test step. The other type of node set is the
set P that represents the set of branching nodes between test step nodes that
correspond to TTCN-3 if..else if..else and select..case constructs. The
set T represents the set of edges of the graph. The sets V , I and O represent the
sets of variable identifiers, input template names and output template names re-
spectively. Each v ∈ V is associated with a type n ∈ N and a value val(walk(n)).

Labeling functions assign labels to the nodes and edges of the graph. Each
sl ∈ S node with the out-degree degout(sl) = 0 is labelled with the function
Ls : S → {pass, fail, inconc}, which corresponds to the TTCN-3 setverdict

statement. Each p ∈ P is labelled with the function Lp : P → expr(V ), where
function expr is a variable expression on a subset of V ; this corresponds to an if

condition. Input labels make it possible to assign values to elements of V : Li :
I → V , which is mapped from a receive statement. By means of output labels
it is possible to assign values represented by the vi ∈ V, 0 ≤ i ≤ |V | to an o ∈ O:
Lo : O → ×kVk on the analogy of a send statement. Action labels represent
a transformation of values of V : La : expr(V ) → V , these can be generated
based on the assignments in the TTCN-3 test case source. Four mutually disjoint
subsets of edges that correspond to TTCN-3 statement blocks are distinguished
based on the types of nodes they connect: T = Tss ∪ Tsp ∪ Tpp ∪ Tps. Each of
these edges is labelled with a set of labeling functions defined in this section.
The labeling function for an edge connecting two test states is defined as follows:
Lss : Tss → (S × V ) × Lo × P(Li ∪ La) × (S × V ), where P is the set of all
possible ordered subsets operator. The labeling function for an edge connecting
a test state node and a predicate node is Lsp : Tsp → (S × V ) × Lo × P(Li ∪
La) × (P × V ). The labeling function for and edge connecting two predicate
nodes is Lpp : Tpp → (P × V ) × expr(V ) × P(Li ∪ La) × (P × V ) The labeling
function for an edge that connect a predicate node and a test state node is
Lps : Tps → (P × V )× expr(V )× P(Li ∪ La)× (S × V ).

Figure 4 shows a TTCN-3 code snippet with a part of a test case definition on
the left, and its graph representation after parsing on the right. Timeout events
are represented with the name of the timer, which is T , and the parameterless
Q.receive is denoted with an * input label. The test purpose of this test case is
to check the overflow of a counter. It counts to the maximum value of a domain,
for instance the size of a sliding window in the flow control mechanism of a
protocol, then it checks if the overflow is handled correctly. The graph model
has five nodes in the set S represented with circles in the figure, and three of
them are labelled with the possible verdicts. There is one node p ∈ P represented
with a rectangle in the figure, and its label is the if condition: s < ws. Edges are
assigned with a set of labels. For instance the edge e3 ∈ Tss from the unlabeled
top node to the inconc ∈ S node is labelled with the name of the template sent
(t req ∈ O) together with its parameters (s ∈ V ), a timer action, and an input
event (T ∈ I). Edge e4 ∈ Tps from the p ∈ P node to the unlabeled node at the
top is labelled with a valid value for expr(p) that is in this example the boolean
value true.
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1 testcase t c t ( integer w s )
runs on C CT{

2 map(mtc :Q, system :Q) ;
3 /∗ . . . ∗/
4 Q. send ( t r e q ( s ) ) ;T. start ;
5 alt {
6 [ ]Q. receive ( t r e s p ( s , s+1) ) {
7 s := s+1;
8 i f ( s < w s ) {
9 Q. send ( t r e q ( s ) ) ;T. start ;

10 r epeat ;
11 }
12 }
13 [ ]Q. receive {
14 setverdict ( f a i l ) }
15 [ ] T. timeout {
16 setverdict ( inconc )}
17 }
18 Q. send ( t r e q ( w s ) ) ;T. start ;
19 alt {
20 [ ]Q. receive ( t r e s p (w s , 0 ) ) {
21 setverdict (pass ) }
22 [ ]Q. receive {
23 setverdict ( f a i l ) }
24 [ ] T. timeout {
25 setverdict ( inconc )}
26 }
27 }

true

INCONCFAIL

t_req(s),
T.start,
T

t_req(w_s),
T.start,
T

t_req(w_s),
T.start,
*

PASS

s:=s+1

t_req(s),
T.start,
t_resp(s,s+1),

t_req(s),
T.start,
*

T.start,
t_req(w_s),

t_resp(w_s,0)

s < w_s

false

Fig. 4. Graph model of the test case. On the left a TTCN-3 code snippet with a part
of a test case definition is shown, on the right its graph representation is shown

4 Mapping TTCN-3 Documents to a Relational Schema

Mapping data structures of different programming languages to database tables
has been studied for more than two decades. Several frameworks have been
proposed and developed, and some of these have made their way to the everyday
practice. A widely used framework that implements the persistence of Java and
.NET objects is for instance Hibernate [12][13], while Django [1] provides a
framework for Python, and Ruby on Rails [2] gives a programming interface
for Ruby.

The main idea of these solutions is that with a little piece of meta-information
it is possible to make a one-to-one correspondence between the data types
and database tables, data type attributes and database table attributes, and
data type instances and database records. Association and aggregation relations
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between data types and collection types are mapped by means of foreign keys
in tables.

Former frameworks such as [14] intended just to hide the database back-end
from the application. Our approach follows this track, because of the metadata
necessary to enable the efficient tracking of changes of variable values and to
support logging.

4.1 Mapping TTCN-3 Type Definitions to a Relational Schema

Several approaches can be defined to map a TTCN-3 type definition to a re-
lational schema. Though TTCN-3 is not an object-oriented language, object-
relational mapping should be considered: mapping record types to tables, record
fields to table attributes, and values to the records of that table. In this case, the
mapping from TTCN-3 to the database is very easy, however the reverse direc-
tion is far less straightforward as type definitions are available at runtime, and
the meta information encoded in the schema may not be enough to reconstruct
the value.

We use a mapping that preserves all meta-information. It maps data flow
elements of a TTCN-3 document to a relational schema of six tables derived
from the test data graph model. Figure 5 shows the entity-relationship diagram
of the database schema we use for storing a TTCN-3 type definitions, and below
we list these tables and their attributes within parentheses, where the attributes
that define the primary key of the table are underlined.

– Datatype(name, type)
– Compositefield(parent, fieldname, typeof)
– Template(name, typeof)
– Templatevalue(template, field, value)
– Typeinstance(name, typeof)
– Typeinstancevalue(variable, field, simplevalue, parent)

The Datatype table stores each data type declared in the testcase. Its name
attribute is the name of the data type, and the type attribute can take the
following values: primitive, record. These values correspond to the primitive data
types and the record type, respectively.

Each node of the data type graph of Fig. 3 is stored as a record in the Datatype
table. The attributes of the record are the name of the data type, and primitive if
the given data type has no child nodes in the type graph, otherwise the attributes
are the type name and record.

The Compositefield table is responsible for storing the type hierarchy, more
precisely, the types and field names of record type fields. Each record of this table
corresponds to a field of a record type, that is, an edge in the graph of Fig. 3.
The parent attribute stores the name of the type of the given field is declared in.
The name attribute stores the name of the field, and the typeof attribute stores
the type of the field.

The Template table holds information about the parameterized templates de-
fined in the test source. Each of its records corresponds to a template, a bold
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Fig. 5. Entity-relationship diagram for the metamodel of test data and test case used
in the database

node in Fig. 3 with with no incoming bold edges. The name attribute stores the
name of the parameterized template, and the typeof attribute, which is a foreign
key to the Datatype table, stores the data type of the template.

The Templatevalue table stores parameterized templates as defined in the test
code. Each of its records corresponds to a template field, to a bold edge in Fig. 3.
The template attribute, which is a foreign key to the Template table, stores the
name of the template containing the given field. The field attribute stores the
name of the field, and the value attribute stores the value of that field.

The Typeinstance table is similar to the Template table. It stores the names
and types of data type instances including variables and generated data type
instances in its name and typeof fields, respectively.

The Typeinstancevalue table stores the field values of record type instances
or the value of primitive type instances. Its attribute named parent stores the
name of the parent data type instance of the given field. The field attribute
stores the name of the field. If the parent instance is of a primitive type, the
simplevalue attribute stores the value of the parent instance, and in that case the
field attribute is an empty string, and the variable attribute is null. On the other
hand, if the parent type is a record type, then the simplevalue attribute is null,
and the variable attribute stores a reference to the data type instance storing
the value of the field. The parent relationship is used in the next section when
assigning this value to a variable.

As an example of the mapping described in this section, type C and tem-
plate t_c are mapped to the following records of tables Datatype, Compositefield,
Template and Templatevalue. In the example below, the Datatype table has two
records that correspond to two of the types used, C and integer.

name type

C record

integer primitive
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The Compositefield table details the record type C, which has three fields, all
of the type integer, named t, s and r that appear as records of the table.

parent field typeof

C t integer

C s integer

C r integer

As a template represents a value of a type available in the Datatype table, the
Template table associates the template name and the type name, in this example
C and t_c.

name typeof

t_c C

Template t_c is an instance of type C, hence it has tree fields. The Templat-
evalue table assigns the value of the variable identified with v_t to field t of
template t_c, and similarly initializes the two other fields as well.

template field value

t_c t v_t

t_c s v_s

t_c r v_r

4.2 Random Template Generation with SQL

Gecse’s method assumes that the relational logic should make it possible to
generate random values of a type to be used when generating a template. We
use the data structure shown in Fig. 3, that is used as the basis for the template
generation. In the following, we show how these random values can be obtained
using SQL queries. The generator algorithm is implemented in the Template
Generator component of the relational access layer.

In the following queries, there are references to vector elements. These
elements are not included in the queries in their presented forms, but are
substituted with the values stored in the referenced vector element.

1. The first step of the random template or value generation is the collection of
available data types, which can be obtained using the following SQL query:

SELECT name, type FROM datatype

The result of the query is stored in vector types in the memory.
2. Next, we iterate through types, and generate a number of random names for

each type later to be used as identifiers. The names generated for the ith

element of types are stored in the vector at the ith position of the vector
names. Each type-name pair, in this case the ith type and its jth name, is
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stored in the database using the following pseudo-SQL statement:

INSERT INTO typeinstance (name, typeof)

VALUES (names[i][j],types[i])

3. Then, all these newly generated type instances are queried:

SELECT d.name typename, t.name instance, d.type

FROM datatype d, typeinstance t

WHERE d.name=t.typeof AND

t.name NOT IN (SELECT parent FROM typeinstancevalue)

The result of the above query is the set of all newly generated instance names.
Since the Typeinstancevalue table can store some variable values before start-
ing the generation, in order to get the list of newly generated instances, the
records belonging to values have to be filtered from the list of all type in-
stances. This is done by not including those instance names in the list, which
are already included in the Typeinstancevalue table (the newly generated in-
stances are not yet included in the Typeinstancevalue table so this selection
condition is appropriate). The result of this query as a list of type name,
instance name, type triplets is stored in vector typesnames in the memory.

4. The next step is to generate the values of each newly generated template
name. This is done by iterating through typesnames and generating random
values for each instance.
If the current element of vector typesnames is of a primitive type, then a
random value rand is generated according to the type of the instance, and
inserted into the database by the following statement:

INSERT INTO typeinstancevalue

(parent, field, simplevalue, variable)

VALUES (typesnames[i].instance,’’,rand,null)

If the current element of this vector is of a record type, then its fields are
queried by the following pseudo-SQL query in the ith cycle:

SELECT field, typeof FROM compositefield

WHERE parent=typesnames[i].typename

The result of this query is a list of all the fields that the current type instance
has according to its type, and it is stored in vector in the ith position of the
vector fields.

5. In the next step, we iterate through this vector, that is, the elements of ith

element of fields, and one randomly chosen, previously generated instance
name is assigned to each field of the current instance. This is done by the
pseudo-SQL query below, and the jth random value is stored at the jth

position of the value candidate vector of the ith field, which is an element at



Data Flow Testing in TTCN-3 with a Relational Database Schema 13

the ith position in the vector value:

SELECT name FROM typeinstance

WHERE typeof=fields[i][j].typeof ORDER BY RANDOM() LIMIT 1

The above query selects the list of all instances generated for the type of the
current field, which are then ordered randomly (ORDER BY RANDOM()), and
only the first element of the so-created result is selected (LIMIT 1).

6. Finally, the result of this query is stored in the Typeinstancevalue table using
the following pseudo-SQL statement:

INSERT INTO typeinstancevalue

(parent, field, simplevalue, variable) VALUES

(typesnames[i].instance,fields[i][j].field,null,value[i][j])

Thus, according to the semantics of the Typeinstancevalue table, the parent
attribute gets the name of the instance the field value whose has just been
selected. The field attribute gets the name of the current field. The simple-
value attribute is null, since the parent instance is a record. Finally, the name
attribute gets the newly selected value.
According to the earlier described semantics of the Typeinstancevalue table,
in the case of a type instance of a primitive type, the parent attribute gets
the name of the parent type instance, the field attribute is an empty string,
the simplevalue attribute is the value generated randomly according to the
type of the instance and the variable attribute is null.

4.3 Mapping a TTCN-3 Test Case to a Relational Schema

The model of each test case is stored in a relational schema as well to enable
the tracking and logging of test case execution, to be able to track the changes
of variable values made by assignment, receipt of messages, and tackle the effect
of predicates to the control flow.

Figure 6 shows the entity-relationship diagram of the database schema we use
for storing a TTCN-3 test cases. The listing below shows the entities and their
attributes within parentheses, and the primary key attributes are underlined,
multiple underlined attributes denote a composite primary key.

– State(id, verdict)
– Transition(id, from, next, output, parameterlist, expression)
– Action(transition, serial, type, expression, input, value)

The State table stores information about states of the test case. For each state
of the test case, one record is inserted into this table. The id attribute is the
artificially generated identifier of the state as test states are unlabeled. The
verdict is the verdict value that labels leaf states. For non-leaf states, the verdict
attribute is null.
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Fig. 6. Entity-relationship diagram for the metamodel of test data and test case used
in the database

For each transition one record is inserted into the Transition table. The id
attribute of a transition is its artificially generated identifier. The from and next
attributes store the current and next test states of the corresponding transi-
tion, respectively, and these two attributes are foreign keys to the State table.
The output attribute stores a reference to the template sent as output, and the
parameterlist attribute stores the list of those variables, which are the parameters
of that template. These two attributes are null in case of a predicate transition,
i.e., a transition starting from a predicate denoted with a rectangular node in
Fig. 4. For such transitions, the expression attribute stores the triggering expres-
sion, which is null for output triggered transitions originating in test states.

The Action table stores the input events and value assignments performed
during state transitions, whose ordering is determined by the serial attribute. Its
transition attribute refers to the transition, during which the action is performed,
thus, it is a foreign key to the Transition table. The type attribute of the action
can take two values: assignment and input. The former represents a value
assignment, where an internal variable of the test case gets the value of an
evaluated expression, while the latter represents a message input action. The
expression attribute stores the expression that updates a variable in case of an
assignment, while the value attribute, a foreign key to the Typeinstance table,
stores the variable, to which the input value or the expression value is assigned
in case of an input or assignment action, respectively. The input attribute that is
a foreign key to the templatevalue table stores a reference to the input template.
The following two functions define the mappings of action and input labels of
the test case model to this relational schema.

Logging and making snapshots of test states are vital parts of our framework.
For logging the test execution, two additional tables are defined that together
can be used for tracing any test execution (see top of Fig. 6).
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– Variablevaluelog(execution, time, variablename, instancename)
– Parametervaluelog(execution, time, transition, parametername, instancename)

The Variablevaluelog table stores the data type instances used as values of vari-
ables during test execution. Each record of this table belongs to one variable
value assignment, where variable value assignment means selecting a value from
the database and assigning it to a variable. The execution attribute of the
Variablevaluelog table stores the identifier of the test execution, while the time
attribute stores the timestamp of the assignment. The variablename attribute
stores the name of the variable and the instancename stores the identifier of that
randomly generated data type instance the value whose is assigned to the vari-
able. The instancename and variablename attributes are both foreign keys to the
Typeinstance table.

The Parametervaluelog table stores the values assigned to template parame-
ters during test execution, each record of this table belongs to a parameter value
assignment. The execution attribute of the table is the identifier of the test ex-
ecution, during which the value assignment is performed. The time attribute is
the timestamp of the assignment. The transition attribute stores that transition,
during which the message with the value assigned parameter is sent. The param-
etername attribute stores the name of the parameter, while instancename stores
the identifier of the data type instance assigned to the parameter.

5 TTCN-3 Test Case Transformation and Execution

The role of test case transformation is to remove all data from the test case
definitions, and to access all those pieces of data from the database through
external functions:

– For each data type, a parameterized template definition is generated unless
it already exists such that it has a parameter for each field of the type of the
template. For type M in Fig. 3 the following template is constructed:

1 template M t m (A v a , C v c , octetstring v d ) {
2 a := v a ,
3 c := v c ,
4 d := v d
5 }

– Original template references are replaced with these parameterized template
definitions. In the example we use in this paper, there is one parameterized
template for each data type. Any template with a different parameter list is
replaced with this most general template. For instance, if before the trans-
formation a template definition for type M existed with a single parameter,
it is replaced with the definition above.

– All variables, templates and formal parameters are redeclared as TTCN-3
anytype, however in the database these are still represented with their real
type. The anytype is the only type in TTCN-3 that is able to represent all
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possible types, therefore it can be used in the native layer to dynamically
generate a value of the proper type. Note that this is removed from the
examples for the sake of better readability. In the example of Fig. 4, the
formal parameter variable integer w_s is transformed into anytype w_s,
and its value is referred with w_s.integer.

– For each literal, a local constant is introduced in the test case body, that
constant is initialized with that literal, and the value is saved by an exter-
nal function to the database. In the example shown in Fig. 4, there is one
literal: 1. The local constant is introduced in const integer c_ONE=1, and
it is stored with var(’c_ONE’,’integer’,’1’).

– For each constant within the test case body, the value is loaded to the
database, and the constant is initialized with an external function.

– For each expression, the expression is passed to the relational access layer as a
charstring that returns with the evaluated value. For instance, expr(’i+1’)
resolves the expression, replaces the + operator with its SQL correspondent,
which is in this case +, and executes an SQL query that reads the value of
the resolved variables and evaluates the expression. The expression in this
case is translated to the following query:

SELECT simplevalue+1 FROM typeinstancevalue WHERE parent=’i’

– An assignment is replaced with an external function call that pairs the name
of the variable with the value of the right hand side expression. For instance,
the i := i + 1 of Fig. 4 is replaced with set(’i’,expr(’i+c_ONE’)).

– A variable access such as in template parameters is replaced with a function
call that returns with the proper value. For instance, template t_c(c_ONE,

r, s) is substituted with t_c(val(’c_ONE’),val(’r’), val(’s’)).

– After every receive operation, the template and its fields are stored in the
database with a set external function call.

During test case execution, when a test case is initialized, the database, the
log and snapshot are reset, variables are set to their initial values. Whenever a
send or receive or timeout statement is activated or a database access layer
function is called, some of the variables are accessed and database statements
are executed. When a variable is accessed for the first time, its value is set for
the rest of the test case. If it has not yet been defined, then we call that variable
free, so it is possible to generate a value for that with Gecse’s method described
in section 4.2 possibly at random. If the variable has already been set, its value
is changed based on the parameters of a set function call and its previous value.

The example in Fig. 4 is a TTCN-3 snippet from simplified version of an
HDLC flow control. The test case checks if the incrementation of the received
sequence number is correct after an overflow. As the value of variable w_s is
removed from the test case, the same test case can be reused even for different
protocol versions of this family.

The parameterization of a frame represented by template t_m to be sent still
works identically to the original test case. However, as the value of the data field
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d of type M is free in the whole test case, our framework makes it possible to gen-
erate its value on-the-fly, instead of using a hardcoded ’O’ value. The same state-
ment holds for the template v_a at any point in the example, but the cycle variable
s that represents the sent sequence number is bound after its first access.

At runtime, the data transformation module saves and fetches the anytype

values from the memory to the database and vice versa. The easier direction,
just like in the case of the object-relational mapping, is the saving of a memory
object to the database. This requires only the parameterization and the execution
of a few well-defined SQL statements. However, the reverse direction is more
challenging. The value fetched from the database must be decoded into a variable
of an arbitrary type known only at runtime, while decoders are available only
for primitive TTCN-3 types at compile time. The name of that type is known
at runtime, so the field of the anytype union to be set is known as well. If that
type is a TTCN-3 record type, its fields are – recursively – initialized one-by-one
in the native module. If that type is a primitive type, the value produced by the
decoder is assigned to that field.

6 Conclusion

The framework presented in this paper increases the reusability of test case def-
initions at the cost of reducing the portability. With test data removed from the
TTCN-3 documents, test parameterization takes place in a relational database
back-end, and it is possible to test the behavior with different set of parame-
ters. Our method makes the identification of template fields transparent for the
executing test case possible, and can generate appropriate values for those fields.

This framework has been implemented as a prototype extension plugin for
the TITAN TTCN-3 Test Executor [8]. The test case and test data models
are extracted from the TTCN-3 code with a specialized parser. The execution
framework that provides the on-the-fly database access consists of a large set
of external functions implemented in C++. To make variable identification by
variable name possible, we use metadata and C++ reflection mechanisms, and
in the TTCN-3 documents all variables and templates are declared as anytype.
This framework has been tested with SQLite 3 as database back-end.

Our experiments we made on Diameter Base Protocol [15] and two sample
protocols show that the overhead of using a database is a little over 1 ms for
each access on average. Though this value is small, this framework should not
be used for performance testing.
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listed in the requirements but some mandatory reactions are described
that can be seen as properties. Later in the development process is a real
system or a representative model of the future system. At that point it
is possible to gather execution traces of the real system. Based on the
work of the European PRESTO project this paper describes the work
that has been done to use the same kind of model in both cases and
match one against the other.

Keywords: MSC, PSC, Sequence Diagram, Property verification,
Trace, Artemis

1 PRESTO Presentation

The PRESTO project started on April the first 2011, and its duration is 36
months. It is co-funded by the European Commission under the ARTEMIS Joint
Undertaking Programme. The ARTEMIS JU aims to achieve effective coordi-
nation and synergy of resources and funding from the industry, the Framework
Programme, national R&D programmes and intergovernmental R&D schemes,
thus contributing to strengthening Europe’s future growth, competitiveness and
sustainable development.

The partners involved in this project are Teletel (Greece), Thales Commu-
nications (France), Rapita Systems (UK), VTT (Finland), Softeam (France),
Thales (Italy), MetaCase (Finland), INRIA (France), University of L’Aquila
(Italy), Miltech Hellas (Greece), PragmaDev (France), Prismtech (UK), Sarokal
Solutions (Finland).

PRESTO stands for imProvement of industrial Real time Embedded SysTems
development prOcess, from a technical point of view the project aims at improv-
ing test-based embedded systems development and validation, while considering
the constraints of industrial development processes. This project is based on the
integration of test traces exploitation along with platform models and design
space exploration techniques

The expected result of the project is to establish functional and performance
analysis and platform optimisation at early stage of the design development.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 19–35, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The approach of PRESTO is to model the software/hardware allocation, by the
use of modelling frameworks, such as the UML profile for model-driven develop-
ment of Real Time and Embedded Systems (MARTE). The analysis tools, among
them timing analysis including Worst Case Execution Time (WCET) analy-
sis, scheduling analysis and possibly more abstract system-level timing analysis
techniques will receive as inputs on the one hand information from the perfor-
mance modelling of the HW/SW-platform, and on the other hand behavioural
information of the software design from tests results of the integration test
execution.

In order to verify the functional and non-functional properties, two approaches
have been taken into consideration:

1. Verification on the model
Model checking was proposed in the 1980s independently by Clarke and
Emerson [1] and by Quielle and Sifakis [2]. It aims at testing the cor-
respondence between a logical formula against a mathematical structure,
i.e., a model. Model checking is an important member of the family of for-
mal methods, together with testing and deductive verification, all aimed at
improving the reliability of systems.
In recent years model checking has gained popularity due to its increasing
use for software system verification even in industrial contexts [3,4]. However
the application of model checking techniques is still prevented by the state
explosion problem. As remarked by Gerald Holzmann in [5] no paper was
published on reachability analysis techniques without a serious discussion of
this problem. State explosion occurs either in systems composed of (not too)
many interacting components, or in systems where data structures assume
many different values. The number of global states easily becomes enormous
and intractable.

2. Verification on the traces
In that approach the system is considered as a black box and a set of typical
and representative execution traces are gathered. The functional proper-
ties and non-functional properties are then verified on theses traces. The
main interest with that approach is that the traces can come from a simu-
lated model or from a real target. This will help to make sure the model is
representative of the target.
Anca Muscholl and Doron Peled have investigated in [6] the automatic veri-
fication (model checking) of MSCs, as well as the expressiveness of MSCs, in
particular the ability to express communication protocols. Jindrich Babica
has discussed Message Sequence Charts properties and checking algorithms
in [7]. In [8] the Live Sequence Chart (LSC) language introduces the dis-
tinction between mandatory and possible on the level of the whole chart
and for the elements messages, locations, and conditions in an MSC. Its pri-
mary objective is the application of LSCs in the context of formal system
verification.
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Of particular novelty in PRESTO is the exploitation of traces for the exclusion
of over-pessimistic assumptions during timing analysis: instead of taking all pos-
sible inputs and states into account for a worst-case analysis, a set of relevant
traces is analysed separately to reduce the set of possible inputs and states for
each trace.

As a result the work presented here aims at using the MSC as a basis for
expressing the properties, tracing, and verifying the properties on the traces.

2 ITU-T Message Sequence Charts

2.1 Scope

The purpose of the MSC (Message Sequence Chart) [9,10] is to provide a lan-
guage for the specification and description of the communication behavior of
system components and their environment by means of message interchange.
Since in MSCs the communication behavior is presented in a very intuitive
and transparent manner, particularly in the graphical representation, the MSC
language is easy to learn, use and interpret. In connection with other lan-
guages it can be used to support methodologies for system specification, design,
simulation, testing, and documentation.

2.2 Basic Concepts

Figure 1 illustrates an MSC.

Agent Instance. An agent instance starts with an agent instance head followed
by an instance axis and ends with an instance tail or an instance stop as shown
in the diagrams below.

Message Exchange. A message symbol is a simple arrow with its name and
optional parameters attached to it. The arrow can be horizontal, or the arrow
can go down to show the message arrived after a certain amount of time or after
another event. A message cannot go up.

When the sender and the receiver are represented on the diagram, the arrow
is connected to their instances. If the sender is missing it is replaced by a white
circle (found message); if the receiver is missing it is replaced by a black circle
(lost message). The name of the sender or the receiver can optionally be written
next to the circle.

Timers. An agent instance can start a timer that will automatically send back
a message when it times out. While the timer hasn’t timed out, the instance
can cancel it. Specific symbols are available for timer start, cancel and time out,
always attached to the instance performing the action. Figure 2 shows timer
elements.
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Fig. 1. Message Exchanges in MSC

Fig. 2. Timers in MSC

Semaphore Extension. The SDL-RT MSC [9] also introduced the support for
semaphore representation. In practice this is rarely used for requirements.

2.3 Inline Expressions

Special semantics can be added to MSC diagrams by the means of inline
expressions. These can enclose one or several parts of the diagram and specify
that:

– they are optional (opt);
– one or the other part can happen (alt);
– the part can be repeated (loop);
– the parts happens in parallel (par);
– the ordering within the part is not significant (seq).

An example of an alternative inline expression is given on the diagram in
Fig. 3:
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Fig. 3. Inline alternative expression in MSC

2.4 Time Constraints

It is possible to express a relative time constraint in the MSC diagram, specifying
a constraint on the time between two events in the diagram. That would define
a typical non-functional property of the system. See Fig. 4.
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Fig. 4. Time constraint in MSC

3 Property Sequence Chart

Property Sequence Chart (PSC) is a simple but expressive formalism that has
been proposed to facilitate the non trivial and error prone task of specifying
temporal properties in a correct way and without expertise in temporal logic.
PSC is a language that extends a subset of UML 2.0 Interaction Sequence Di-
agrams or the ITU-T Message Sequence Chart. Further details might be found
in [9].

Within the PSC language, a property is seen as a relation on a set of exchanged
system messages, with zero or more constraints. PSC may be used to describe
both positive scenarios (i.e., the “desired” ones) and negative scenarios (i.e., the
“unwanted” ones) for specifying interactions among the components of a system.
For positive scenarios, PSC allows to specify both mandatory and provisional
behaviours. In other words, it is possible to specify that the run of the system
must or may continue to complete the described interaction.

Figure 5 shows the available symbols in PSC diagrams.
Instances are represented as in MSC diagrams. The parallel, alternative and

loop operators are represented the same way as the par, alt and loop inline
expressions in MSC diagrams respectively. The relative time constraint has the
same representation and semantics as in MSCs.



Property Verification with MSC 25

F
ig

.5
.
P

SC
G

ra
ph

ic
al

no
ta

ti
on



26 E. Gaudin and E. Brunel

Messages in PSCs have two representations:

– An arrow going from the sender to the receiver, just as in MSC diagrams;
– A textual representation, with the format “<sender instance name>.<message

name>.<receiver instance name>”. This representation is used in constraints,
explained below.

Unlike messages in MSC diagrams, message arrows in PSC diagram can have
three kinds:

– A regular message, identified by the prefix “e:” for the message text, is a
precondition for what follows.

– A required message, identified by the prefix “r:” for the message text, is a
message that must occur if the preconditions are met. Required messages
must always appear after all regular messages.

– A fail message, identified by the prefix “f:” for the message text, is a message
that must not occur if the preconditions are met. Fail messages must also
always appear after all regular messages.

When describing a property, the default ordering is the loose ordering: anything
can happen between a message specified in the PSC and the one following it.
For cases where a strict ordering is necessary, i.e when a message in the PSC
must be directly followed by the one following, the strict operator can be used,
either on a message send or a receive. See Fig. 6.

The PSC diagrams also allows to set constraints on the messages. These con-
straints are shown as symbols at the beginning or end of message arrows with
an associated text. These constraints can have three types:

1. An unwanted message constraint denotes a set of messages where none should
happen before or after the message it is attached too, depending on whether
it appears at the beginning or the end of the arrow.

2. An unwanted chain constraint denotes a sequence of messages that should
not appear as a whole before or after the message it is attached to.

3. A wanted message constraint denotes a sequence of messages that must
appear as a whole before or after the message it is attached to.

A simple example of a PSC diagram is shown in Fig. 7: According to the
semantics described above, the property can be read as follows:

– If a message “login” is sent from UserInterface to ATM (normal message
“e:login”),

– If a message “wReq” is sent from UserInterface to ATM after the login, without
a “logout” message sent from UserInterface to ATM in between (normal mes-
sage “e:wReq” with the unwanted message constraint “UserInterface.
logout.ATM”);

– Then a message “uDB” must be sent from ATM to BankDB, unless a message
“logout” has been sent from UserInterface to ATM before (required message
“r:uDB” with unwanted message constraint “UserInterface.logout.ATM”).
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Fig. 6. PSC strict operator example where m’ must immediately follow m

Fig. 7. Example of a property expressed in PSC

The textual notation of PSC together with denotational and operational
semantics of the language can be found in [11,12].

4 Using the Same Representation

PSC representation is very close to the MSC representation. In the frame of the
PRESTO project the idea is to use the same tool to express both the properties
and view the execution traces.

The following sections describe the PRESTO enhancements to the new MSC
tracer by PragmaDev. MSC tracer can be used by designers and testers of em-
bedded systems to visualise the flow of control of a system. The benefit of the
enhancements is to be able to express a property at the same level as the trace
that will be generated by the execution or the simulation of a system. The new
research enables the user of the software to write non-functional properties and
functional properties at a high level using the well known MSC standard.
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5 Functional Property Verification

5.1 Verification for Consistency between Properties, and Collected
Traces

The goal of these techniques is to verify that the execution traces conforms to
the identified properties. This verification activity checks the consistency be-
tween the running system (represented as the observed traces) and the system
requirements. In this context, three levels of diagrams will be considered:

1. Requirements
2. Properties
3. Traces

Traces are real execution traces or simulated traces on which a set of require-
ments or a set of functional properties must be verified. A requirement is basically
an expected behavior of a system. It may contain alternatives or loops.

In the example in Fig. 8 the expected scenario is either Stimulus1, Reac-
tion1, EndOfScenario sequence, or the Stimulus1, Reaction2, EndOfScenario
sequence.

The traces shown in Fig. 9 will therefore both verify the requirements.
This was a basic approach but the PRESTO project context showed that when

it comes to a property, things are slightly different. A property will basically say
that if a specific set of events occur, then the following event must or must

Fig. 8. A simple requirement
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Fig. 9. Two simple traces

not occur. This is very close to what is already available in an MSC. It is just a
question of marking the events as a condition, a required event, or a failed event.
For that matter the PSC (Property Sequence Chart) complementary notation
to the MSC has been adopted.

Therefore the events in the scenario will look like the ones in Fig. 10.

Fig. 10. A property using the PSC notation
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That scenario means that if the sequence Stimulus1, Reaction1, or Stim-
ulus1, Reaction2 occurs then the EndOfScenario must occur to verify the
property.

This will have very little impact on the look and feel of an MSC but that
changes the semantics of the diagram. Therefore three levels of checking have
been considered:

– “Basic MSC diff” that makes a simple difference between two diagrams. At
this level any logical or graphical difference is considered. A diagram contain-
ing an alternative with m1 at the top and m2 at the bottom, and a diagram
with m2 at the top and m1 at the bottom are considered different.

– “Spec vs trace” that will handle alternatives and loops in the spec. The
two diagrams in the example above would match in that configuration. It is
typically intended to deal with a specification diagram without any property
against a real execution trace.

– “Property match” that will verify a certain set of events will lead to a required
set of events as described in a PSC.

 

Fig. 11. The PragmaDev Tracer diff options

This has been implemented in the free PragmaDev Tracer prototype; the com-
pare window allows to choose among the different options and appears as in
Fig. 11.

Once the property and the trace have been selected, the tool checks the prop-
erties on the trace. As a result both diagrams are opened and a third window
displays the result of the verification as shown in the example in Fig. 12.
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6 Non-functional Properties

The basic idea is to write non-functional properties at a high level using inter-
national standard MSC. One of the main non-functional properties that can be
expressed in an MSC is a time constraint in which a set of events must take place
in a given amount of time. In the example in Fig. 13 the non-functional property
states the exchange of messages between InstanceA and InstanceB must take
place within 5 units of time.

Fig. 13. MSC Message deadline

6.1 Traces

In the trace coming from a real target or from a simulated target, events come
with timing information. In the example in Fig. 14 the IncomingMsg is sent
at 100 and received at 102. The answer OutgoingMsg is sent at 104 and re-
ceived at 106. The overall sequence is therefore done in 6 units of time. The
new PragmaDev Tracer developed in the context of the PRESTO project can
now compare the time constraint in the requirements with a real execution
trace.

6.2 Property Verification

In our example in Fig. 15 the time constraint is not fulfilled in the execution
trace. PragmaDev Tracer will show clearly the time constraint in the property
diagram and the corresponding events in the trace for analysis.
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Fig. 14. Screenshot of a real execution trace
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7 Conclusion

The ITU-T MSC and the PSC are two very close notations that can be used to
trace a system behavior and to express properties. The possibility to use both
notations in the same tool that will eventually match the properties on real or
simulated traces will definitely simplify the verification process.

Thales Italy, one of the partners of the PRESTO project is currently experi-
menting the new tracer on a real industrial use case. Based on this experiment
the tracer that is free to download [13] is constantly evolving.
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Abstract. Dependability aspects, such as availability and security, are
critical in the design and implementation of distributed real-time sys-
tems. As a result, it is becoming crucial to model and analyze dependabil-
ity requirements at the early stages of system development life-cycle. The
Service Availability Forum (SA Forum) has developed a set of standard
API specifications to standardize high-availability platforms. Among
these specifications, the Availability Management Framework (AMF)
is the service responsible for managing the availability of the applica-
tion services by handling application redundant components, dynami-
cally shifting a workload of a faulty component to a healthy component.
To manage service availability, AMF requires a configuration of the ap-
plication it manages. This configuration consists of a logical view of the
organization of the application’s services and components. Recognizing
the need to plan for availability aspects at the early stages of system de-
velopment life-cycle, this paper proposes an approach to map high level
availability requirements into AMF configurations. The early availabil-
ity requirements are expressed in terms of the Use Case Maps (UCM)
language, part of the ITU-T User Requirements Notation (URN) stan-
dard. Our approach allows for the early reasoning about availability as-
pects and promotes the portability and the reusability of the developed
systems across different platforms.

1 Introduction

Several definitions of availability have been proposed [1,2,3,4,5,6]. According to
IEEE [1], the availability of a system may be defined as the degree to which a
system or a component is operational and accessible when required for use. The
ITU-T recommendation E.800 [3] defines availability, as the ability of an item
to be in a state to perform a required function at a given instant of time, or
at any instant of time within a given time interval, assuming that the external
resources, if required, are provided. Wang and Trivedi [4] define the availability

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 36–53, 2013.
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as the probability of service provision upon request, assuming that the time
required for satisfying each service request is short and negligeable.

Availability requirements can be very stringent as in highly available systems
used in telecommunication services (a.k.a. 5 nines (99,999%)). Many propri-
etary approaches have been proposed to achieve high-availability. However, such
solutions hinder the portability of applications from one platform to another.
To address this issue, the Service Availability Forum (SA Forum) [7], a con-
sortium of telecommunications and computing companies was created to define
and standardize high availability solutions for systems and services. SA Forum [7]
supports the delivery of highly available carrier-grade systems through the defi-
nition of standard interfaces for availability management [10], software manage-
ment [8] and several other high availability middleware services [9]. SA Forum
[7] has developed an Application Interface Specification (AIS), which includes
the Availability Management Framework (AMF)[10]. AMF constitutes the core
component of the middleware as it is the service responsible for managing the
high availability of the services.

An AMF configuration describes an application in terms of logical entities rep-
resenting services and service provider resources. The application software, man-
aged by AMF, is described by the vendor in the Entity Types File (ETF) [8] in
terms of entity prototypes that characterize the deployment options,
constraints and limitations of the software. Many attempts to construct AMF
configurations from user and vendor requirements, have been addressed in the lit-
erature [11,12,13,14,15]. Salehi et al.[11] have presented a model based approach
for generating AMF configurations using UML profiles. The authors have defined
a set of transformation rules, expressed in the ATLAS Transformation Language
(ATL), to generate AMF configurations from UML model elements representing
software entities and configuration requirements. Kanso et al. in [12] and [14]
have adopted a code-centric approach. These authors have used a Configura-
tion Requirements (CR) artifact to describe AMF middleware requirements for
a given application (i.e., ETF types and configuration parameters such as the
number of service units (SUs), component service instances (CSIs), etc., pro-
vided by a configuration designer), allowing for automatic generation of AMF
configuration. In a closely related work Colombo et al. [13] have proposed an
approach that aims at producing multiple sets of Configuration Requirements
(CR) (resulting in multiple AMF configurations) from User Requirements (UR)
and based on a selection mechanism of ETF types [8].

The Use Case Maps (UCM) language, part of the ITU-T User Require-
ments Notation (URN) standard [16], is a high-level visual scenario-based mod-
eling language that has gained momentum in recent years within the software
requirements community. Use Case Maps [16] can be used to capture and in-
tegrate functional requirements in terms of causal scenarios representing be-
havioral aspects at a high level of abstraction, and to provide the stakeholders
with guidance and reasoning about the system-wide architecture and behav-
ior. System non-functional aspects such as availability and security are often
overlooked and underestimated during the initial system design. To address this
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issue, the UCM language has been extended with availability information in [17]
and [18]. These extensions cover the well-known availability tactics, introduced
by Bass et al. [19].

Availability requirements modeling and analysis constitute the major moti-
vation of this research. We focus on the need to express system availability as-
pects while assuring portability of applications. This paper serves the following
purposes:

– It extends the UCM-based availability annotations introduced in [17] and [18]
to accommodate Availability Management Framework (AMF) [10] concepts
(e.g., Service group, service unit, etc.).

– It provides a mapping of the newly introduced UCM-based availability re-
quirements to AMF (Availability Management Framework) [10] concrete
APIs.

– It complements the approach introduced in [12]. The configuration require-
ments (CR) model can be extended and automatically derived from UCM
specifications annotated with availability aspects.

– It extends our ongoing research towards the construction of a UCM-based
framework for the description and analysis of availability aspects in the very
early stages of system development life cycle.

The remainder of this paper is organized as follows. The next section introduces
the Availability Management Framework (AMF). Section 3 presents our UCM-
AMF configuration generation approach. Use Case Maps availability modeling
is provided in Section 4 followed by a discussion in Section 5. An illustrative ex-
ample is presented in Section 6 to demonstrate the applicability of our approach.
Finally, conclusions and future work are outlined in Section 7.

2 The Availability Management Framework (AMF)

The role of AMF is to manage the availability of applications in a clustered
environment (note that we use here the term AMF to refer to an implementation
of the AMF standard, since AMF is just a specification). To do so, AMF needs
a configuration of the components (service providers) and the services.

An AMF configuration consists of a number of logical entities, introduced
in the AMF standard [10]. An example is shown in Fig. 1. In this figure, we
can see that each node has two components grouped in a logical AMF entity
called service units (SUs). The services are represented by service instances,
also known as component service instances (CSIs). Multiple CSIs can be as-
signed to the same SU and are grouped in another of AMF entities called service
instance (SI).

There are two additional AMF logical entities used for deployment purpose:
the cluster and the node. The cluster consists of a collection of nodes under the
control of AMF.

AMF supports five different redundancy models, namely, 2N, N+M, N Way,
N Way Active, and No-Redundancy. These redundancy models vary in the level
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Fig. 1. An example of AMF configuration and its services. The left figure shows a
configuration. The right figure shows type of the configuration entity types (taken
from [11]).

of protection they provide. For example, in a 2N model (see Fig. 1) there is only
one SU that is active for an SI and another SU that is used as a standby. In the
N+M model, N SUs share the active assignments and M share the standbys. Like
2N models, N+M models allow at most one active and one standby assignment
for each particular SI.

The set of SUs that follow the same redundancy model are grouped in AMF
logical entities called service groups (SGs). The same configuration can have
many SGs. For example, some components can be protected using a 2N redun-
dancy model, whereas others (in different SUs) can be protected using an N+M
model. Similarly, multiple SGs can be grouped to form an application. A good
reference on AMF redundancy models can be found in [15].

When building a configuration, there are several decisions that need to be
made. For example, it is important to put highly coupled components in the
same SU. In case a failure happens, we can failover the whole SU to recover
the service. In addition, there should be a way for AMF to know which CSIs
to assign to a specific component depending on whether the component can
provide the service or not. Many other similar decisions are needed to produce
valid configurations. AMF types aim to do just that.

In AMF, every entity has a type except the cluster and the node. These AMF
types are derived from AIS standard, known as the Entity Types File (ETF) [8],
which is a file provided by the software vendor to describe the characteristics
of the software system that runs under the control of AMF. ETF types should
be thought of as power types (or meta types), that describe the possible ways
a software system can be deployed on an AMF cluster. Once a configuration
is built, only instances of some ETF types are used to construct AMF types.
Table 1 describes the ETF types. Each row shows an ETF type, a description,
and the AMF entity for which the type derives from that ETF type.
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Table 1. ETF Types

ETF Type Description AMF Entity 
Component Type 
(CT) 

It describes the component version (used more 
particularly during upgrades), the component service 
types that the component of this type can provide, and 
the component capabilities (how many active and 
standby CSIs the component of this type can support).  

Component 

Component Service 
Type (CST)  

It describes the service attributes (e.g., range of IP 
addresses the component that handles this service can 
provide). 

Component Service 
Instance (CSI) 

Service Unit Type 
(SUT) 

It describes the service type that an SU can provide as 
well as the set of component types of the components 
that an SU of this type can contain.  

Service Unit (SU) 

Service Type (SVCT) It describes the set of component service types from 
which its SIs can be built. The service type may limit the 
number of CSIs of a particular CS type that can exist in 
a service instance of the service type. It is also used to 
describe the type of services supported by an SU type. 

Service Instance (SI) 

Service Group Type 
(SGT) 

It describes the service group. Typical attributes of  
SGT is the redundancy model (e.g., 2N, N+M, etc.). It 
also specifies the supported SUTs. In other words, an 
SG can contain and SU only if its SGT supports the 
SU’s SUT. 

Service Group 

Application Type Similar to SGT, an application type defines the SGTs 
types that are supported by the applications of this type. 

Application 

3 Extending the Use Case Maps Language with AMF
Concepts

Figure 2 illustrates our approach for extending Use Case Maps [16] with AMF [10]
concepts. Note that the configuration generation process is outside the scope
of this paper. Many algorithms, including the work of Kanso et al. [12], and
Salehi et al. [11], exist to generate automatically AMF configurations. Our focus
is to model AMF concepts using the Use Case Maps language [16]. By doing
so, an AMF configuration (at the conceptual level) will always be represented
as a UCM map. Note, however, that the AMF standard defines an XML car-
rier to exchange configurations among tools. This XML representation of AMF
configurations can also be generated from UCM (extended with AMF concepts).

The proposed availability extensions are added orthogonally to the UCM
specification (functional model and binding architecture). These extensions are
modeled using Metadata mechanism, which is a mechanism used to support
the profiling of the language to a particular domain. Metadata are described as
name-value pairs that can be used to tag any URN specification or its model
elements, similar to stereotypes in UML. Metadata instances provide modelers
with a way to attach user-defined named values to most elements found in a
URN specification, hence providing an extensible semantics to URN. Metadata
is supported by the jUCMNav tool [20], the most comprehensive URN [16] tool
available to date.
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Fig. 2. AMF Configuration Generation Approach

The resulting UCM availability requirements can then be mapped to a con-
figuration requirements (CR) model that describes the used ETF types and
configuration parameters such as the number of SUs, CSIs, etc. Finally, based in
the AMF requirements model (CR), an AMF configuration model can be gen-
erated by leveraging the AMF configuration generation approach proposed by
Kanso et al. [12].

4 Use Case Maps Availability Modeling

In this section, we introduce the basic Use Case Maps constructs and we present
our proposed UCM-based availability extensions to cover error detection (Sec-
tion 4.3) and recovery (Section 4.4). For a complete description of the Use Case
Maps language, interested readers are referred to [16].

4.1 Use Case Maps Functional and Architectural Features

Use Case Maps (UCM) models are expressed by a simple visual notation allowing
for an abstract description of scenarios in terms of causal relationships between
responsibilities ( ) (e.g., operation, action, task, function, etc.) along paths al-
located to a set of components ( ). These relationships are said to be causal
because they involve concurrency, partial ordering of activities, and they link
causes (e.g., preconditions and triggering events) to effects (e.g., postconditions
and resulting events). UCMs help in structuring and integrating scenarios (in a
map-like diagram) sequentially, as alternatives (with OR-forks/joins; / ),
or concurrently (with AND-forks/joins; / ).

When maps become too complex to be represented as one single UCM, a
mechanism for defining and structuring sub-maps becomes necessary. Path de-
tails can be hidden in sub-diagrams called plug-in maps, contained in stubs ( )
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(a) Feature Configuration Scenario

(b) FeatureConfig Stub Plugin

Fig. 3. UCM Scenario: Configure a Feature on a Router

on a path. A plug-in map is bound (i.e., connected) to its parent map by binding
the in-paths of the stub with start points ( ) of the plug-in map and by binding
the out-paths of the stub to end points ( ) of the plug-in map.

Figure 3(a) illustrates a UCM scenario for configuring a feature on a router
setup. The feature configuration takes place when the router is in configuration
mode (i.e., start point EnterConfigMode). The configuration steps are embedded
within ConfigFeature stub, which has two outgoing paths (OUT1 for successfully
configuring the feature and OUT2 for the rejection of the configuration). Fig-
ure 3(b) illustrates the plugin map of the ConfigFeature stub. AFter entering the
configuration commands of the new feature (i.e., responsibility ConfigureFeature)
and commit the new changes (i.e., responsibility Commit), the new configura-
tion is applied (i.e., responsibility ApplyConfig) in case it is a valid config (i.e.,
condition validConfig part of the OR-Fork is true), otherwise the new changes
are discraded (i.e., responsibility RollbackConfig).

One of the strengths of UCMs resides in their ability to bind responsibilities
to architectural components. The default UCM component notation is generic
and abstract allowing for representing software entities (e.g., objects, processes,
databases, or servers) as well as non-software entities (e.g., actors or hardware).
In the ITU-T standard [16], a UCM component (Figure 4) is characterized
by its kind (Team, object, agent, process, actor) and its optional type (user-
defined type) and may have several including components (i.e., more than one
parent), therefore allowing the capture of several architectural alternatives in
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Fig. 4. UCM Components

one UCM model. A modeler may investigate various allocations of subcompo-
nents to components and reason about trade-offs involving these alternatives.

In this research, we extend the Use Case Maps language with availability an-
notations. The proposed annotations are inspired from AMF concepts allowing
for a smooth mapping of the resulting UCM specifications to AMF configura-
tions. UCM generic components are used extensively to model AMF redundancy
aspects, while functional constructs are used mainly to model component service
instances (CSIs), modeled as UCM scenario paths.

4.2 Use Case Maps Redundancy Modeling

Error recovery focuses mainly on redundancy modeling in order to keep the
system available in case of the occurrence of a failure. To accommodate the
mapping to AMF configurations, we introduce five types (user-defined types) of
UCM components: node, application, serviceGroup, serviceUnit, and component.
The type is coded as a metadata attribute Type.

A UCM component of type node is annotated with the following metadata
attributes:

– NodeID: Used to identify the node.
– ClusterID: Specifies the cluster to which the node belongs.

A UCM component of type application is annotated with the following metadata
attributes:

– ApplicationID: Used to identify the hosted application.
– ClusterID: Specifies the cluster on which the application is hosted.

A UCM component of type serviceGroup is annotated with the following
metadata attributes:

– ServiceGroupID: Used to identify the group to which a component belongs
in a specific redundancy model. That is all components that belong to the
same service group can collaborate to protected the offered services.

– ApplicationID: Used to specify the application the service group is imple-
menting.

– RedundancyModel: Specifies the redundancy type that the service group
implements. This attributes takes the following five values: 2N, N+M, N-
Way, N-Way-Active, and No-Redundancy.
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A UCM component of type serviceUnit is annotated with the following metadata
attributes:

– ServiceUnitID: Used to identify the service unit.
– ServiceGroupID: Used to identify the service group to which the service

unit belongs.
– SuActiveRole: Lists all service instances for which the service unit is in

active role.
– SuStandbyRole: Lists all service instances for which the service unit is in

standby role.
– SuSpareRole: Lists all service instances for which the service unit is in

spare role.

It is worth noting that SuActiveRole, SuStandbyRole, and SuSpareRole represent
the “preferred” roles rather than static roles. At runtime, upon failure, roles may
change.

A UCM component of type component is annotated with the following meta-
data attributes:

– ComponentID: Used to identify the component.
– ETFComponentType: Specifies the ETF component type.
– ServiceUnitID: Used to identify the service unit to which the component

belongs.
– ComponentServiceTypes: Defines the list of service types a component

can handle.

Service Instances (SIs) have no UCM graphical representation. A service instance
is implicitly specified using the set of component service instances (CSIs) as-
signed to it. A component service instance (CSI), expressed using UCM
scenarios (to model the workload), is characterized by a scenario start point
with the following attributes:

– CsiID: Identifies the component service instance (CSI) that the UCM
scenario implements.

– SiID: Identifies the service instance (SI) to which the CSI belongs.
– ComponentActive: Specifies the component for which the CSI is active.
– ComponentStandby: Specifies the component for which the CSI is standby.
– ETFCSType: Specifies the ETF component service type.
– ComponentID: Specifies the potential container of type component.

Figure 5 illustrates a UCM architecture describing two service units ServiceUnit1
and ServiceUnit2, which are composed of components Component1 and Compo-
nent2 respectively. The system implements one workload (CSI1), expressed as
a UCM scenario path that is enclosed with the active component Component1
(Component2 of ServiceUnit2 being in standby mode). The service group and
its redundancy model (i.e., 2N in this case) are not shown. The characteristics
of the component service instance CSI1 are expressed as part of the start point
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CSI1-SP Metadata  Component1 Metadata 

Fig. 5. Example of a Component Service Instance Representation and its corresponding
Metadata

CSI1-SP metadata. The UCM plugin bound to the stub “workload-CSI1” con-
tains the functional behavior of the component workload and it is not shown
here.

AMF [10] uses a rank-based mechanism to determine whether a service unit
is active, standby, or spare. For a detailed description of the ranking system and
how the service instances (SIs) are assigned to in-service service units, interested
readers are referred to [10].

4.3 UCM Error Detection Modeling

The specification of error detection mechanisms is a key factor in implementing
any availability strategy. Error detection modeling involves the specification of
liveness requirements (e.g., process heartbeat) and the description of potential er-
rors. In [17] and [18], we have used theUCMcomment constructor to describe error
detection tactics such as ping and heartbeat. In this paper, we use metadata
attributes and we introduce the concept of component healthcheck; a concept
borrowed from the AMF framework. We introduce two types of component
healthchecks: framework-invoked and component-invoked.

AMF supports the notion of healthcheck type, identified by a healthcheck key,
that can be associated to a component type. A healthcheck can be invoked by the
framework or by the component itself. A healthcheck configuration is composed
of two attributes:

– period : specifies the period at which the corresponding healthcheck should
be initiated. In case the healthcheck is started by the AMF framework
and if a process does not respond to a given healthcheck callback (i.e.,
saAmfHealthcheckCallback()) before the start of the next healthcheck
period, AMF would not trigger another callback.
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(a) Healthcheck metadata associated with the
UCM Specification

 

(b) Healthcheck metadata associated with a
specific UCM component

Fig. 6. UCM-based Healthcheck

– maximum-duration: specifies the time-limit after which the AMF frame-
work will report an error on the component. This attribute applies only
to framework-invoked healthcheck variant.

The mapping between the UCM-based metadata attributes and AMF configu-
rations is as follows:

– period is mapped to either saAmfHealthcheckPeriod (if the healthcheck is
configured specifically for the component) or SaAmfHctDefPeriod (if the
healthcheck is configured for the component type).

– maximum-duration is mapped to either saAmfHealthcheckMaxDuration (if
the healthcheck is configured specifically for the component) or saAmfHct-
DefMaxDuration (if the healthcheck is configured for the component type).

Figure 6 illustrates two healthcheck descriptions, expressed using URN metadata
feature. Both framework-invoked (Figure 6(a)) and component-invoked
(Figure 6(b)) healthchecks use the “HealthchekKey” attribute. The component-
invoked healthcheck (Figure 6(b)) specifies the type of component (e.g., using
the attribute ETFComponentType) that can invoke the check. For the sake of
clarity, only healthcheck related attributed are shown in Fig. 6(b).

Errors are reported to AMF by invoking the saAmfComponentErrorReport 4()
API function that specifies, amongst others, the erronous component, the ab-
solute time of error reporting (i.e., errorDetectionTime), and the recommended
recovery action (i.e., recommendedRecovery). Section 4.4 discusses how recovery
is implemented in Use Case Maps.

4.4 UCM Error Recovery Modeling

Upon failure detection, AMF would perform an automatic recovery by (1) tak-
ing a restart recovery action (restarts the erroneous component or restart all
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components of the service unit), (2) performing a fail-over (e.g., Standby takes
over), (3) restarting the application, or (4) resetting the cluster.

The recovery action can be encoded in component/node/application/cluster
definitions using a metadata attribute RecoveryAction that may take the
following values:

– component-restart and component-failover for UCM components of type
Component. These two values map to SA AMF COMPONENT RESTART and
SA AMF COMPONENT FAILOVER respectively in the AMF enumeration
SaAmfRecommendedRecoveryT. Furthermore, a component fail-over may
trigger a fail-over of the entire service unit. Such an option can be defined
used the boolean attribute SUFailOver (mapped to AMF saAmfSUFailover
with SA TRUE and SA FALSE as possible values).

– node-failover, node-switchover, and failfast for nodes. These three values
map to AMF SA AMF NODE SWITCHOVER, SA AMF NODE FAILOVER,
and SA AMF NODE FAILFAST respectively. A detailed description of these
three recovery mechanisms under different redundancy models can be
found in [10].

– cluster-reset for clusters, which maps to AMF SA AMF CLUSTER RESET

enumeration value.
– app-restart for application components. The application should be com-

pletely terminated first by terminating all its service units. This value maps
to AMF SA AMF APPLICATION RESTART enumeration value.

– No-recommendation: The error report does not make any recommendation
for recovery. It maps to the AMF SA AMF NO RECOMMENDATION.

5 Discussion

Our proposed approach relies on extending the Use Case Maps language with
AMF related concepts, allowing for the generation of AMF configurations at
the early stages of system development process. Most the proposed extensions
(e.g., application, node, service group, service unit attributes) are applied at the
system architectural level and they are coded as metadata attributes (i.e., they
are not represented visually in the UCM specification). Other representation
options include the use of:

– UCM comment option: This option has been used in previous work [17]
to add information about availability architectural tactics to a UCM model
(see Fig. 7(a)). This option is sufficient for visualizing availability attributes
in a model but does not lend itself to further analysis, because the availability
information is captured in a non-formalized way. Another disadvantage of
this approach is that comments cannot be attached to individual UCMmodel
elements but only to UCM maps.

– Construct name overloading option: This option attaches availability
attributes visually to individual UCM model elements (see Fig. 7(b)). How-
ever, similarly to the use of UCM comments, this option is informal and
cannot be used in automated model analysis.
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(a) UCM comments (b) Name overloading

Fig. 7. Other visual UCM-based availability representations

Contrary to the two options listed above, Our metadata approach formalizes
availability attributes, making it easier to use this information in automated
model analysis.

6 Illustrative Example

Figure 8 illustrates an example of a UCM system composed of one cluster of two
nodes (Node1 and Node2 ), implementing an application App that is composed
of one service group SG. The relationship between the two nodes and the cluster
is described using the metadata attribute ClusterID(Figure 9(a)). The service

 

Fig. 8. A UCM Architecture with one SG having two SUs running in 2N redundancy
model
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(a) Node1 and Node2 Metadata Attributes

 
(b) Application Metadata Attributes

 
(c) SG Metadata Attributes

(d) SU1 and SU2 Metadata Attributes

Fig. 9. Metadata Descriptions of the application, the participating nodes and
service units

group identifier SG and its supported redundancy model 2N are described using
two metadata attributes ServiceGroupID and RedundancyModel (Figure 9(c)).

The service group SG is composed of two service units SU1 and SU2. SU1 is
composed of components Comp1 and Comp2, while SU2 is composed of compo-
nents Comp3 and Comp4. The UCM specification defines 4 scenario paths spec-
ifying four workloads (referred to as component service instances (CSIs)). These
CSIs are grouped into two service instances SI1 and SI2 (not shown graphically)
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(a) Comp1 and Comp3 Metadata Attributes

(b) Comp2 and Comp4 Metadata Attributes

       

     

(c) CSI1, CSI2, CSI3, and CSI4 Metadata Attributes

Fig. 10. Metadata Descriptions of the particapting components and their correspond-
ing component service instances
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but described using the metadata attribute SiID (Figure 10(c)). For example,
CSI1 and CSI2 are part of service instance SI1, while CSI3 and CSI4 are part
of service instance SI2

The UCM shows the preferred active assignment of each component service
instance. Since SU1 has an active assignment with respect to service instances
SI1 and SI2, the four CSIs are described within the SU1 components Comp1 and
Comp2. SU2 has a standby assignment with respect to service instances SI1 and
SI2. Hence, Comp3 and Comp4 do not contain any CSI. Figure 10(c) shows the
active (using the ComponentActive metadata attribute) and standby (using the
ComponentStandby metadata attribute) assignments of the participating CSIs.
For example, CSI1 and CSI3 are handled by component Comp1, while CSI2
and CSI4 are handled by component Comp2.

The specification of the healthcheck is exactly the same as in Fig. 6(a) (i.e.,
framework-invoked healthcheck), and is hence not repeated here. Recovery ac-
tions are expressed in terms of the metadata attribute RecoveryAction. In case
of a failure, the application should be completely terminated and then started
again by first terminating all of its service units and then starting them again.
This is depicted in the RecoveryAction attribute, being equal to app-restart.
When an error is identified as being at the node level, all service instances as-
signed to service units contained in the node are failed over to other nodes (i.e.,
RecoveryAction = node-failover). Hence, active components should also fail over
to standby components (i.e., RecoveryAction = component-failover).

The metadata attributes (describing ETF types, SUs, CSIs, recovery actions,
etc.) described in Fig. 9 and Fig. 10 correspond to the AMF requirements
introduced in Fig. 1.

7 Conclusions and Future Work

In this work, we have extended the Use Case Maps language with Availability
Management Framework (AMF) related concepts. The use of UCMs (supported
by a feature-rich tool, jUCMNav) to describe system requirements, extended
with AMF concepts, would empower analysis and validation of availability re-
quirements at the very early stages of system development. Furthermore, we
have provided a mapping between the introduced UCM-based availability re-
quirements and AMF concepts. The resulting extensions would allow for the
generation of AMF configurations from UCM specifications.

As a future work, we plan to investigate the possible integration of the UCM-
based extensions (expressed with a metamodel) with a formal representation of
AMF concepts, such as a UML profile for AMF.
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Abstract. Non-functional requirements such as availability, reliability,
and security are often crucial in designing and implementing distributed
real-time systems. As a result, such non-functional requirements should
be addressed as early as possible in the system development life-cycle.
The widespread interest in dependability modeling and analysis tech-
niques at the requirements elicitation and analysis stage provides the
major motivation for this research. This paper presents a novel approach
to describe high-level availability requirements using the Aspect-oriented
Use Case Maps (AoUCM) language. AoUCM adds aspects-oriented con-
cepts to the Use Case Maps (UCM) language, part of the ITU-T User
Requirements Notation (URN) standard. The proposed approach relies
on a mapping of availability architectural tactics to reusable AoUCM
models, allowing availability tactics to be encapsulated early in the soft-
ware development life-cylce. Initial tool support for the resulting avail-
ability extensions, is provided by the jUCMNav tool. We demonstrate
the applicability of our approach using a case study of Lawful Intercept
(LI), an IP router feature.

1 Introduction

The Use Case Maps (UCM) language, part of the ITU-T User Requirements
Notation (URN) standard [1], is a high-level visual scenario-based modeling
language that has gained momentum in recent years within the software re-
quirements community. Use Case Maps can be used to capture and integrate
functional requirements in terms of causal scenarios representing behavioral as-
pects at a high level of abstraction, and to provide the stakeholders with guidance
and reasoning about the system-wide architecture and behavior.

The Use Case Maps language, extended with aspect-oriented modeling, re-
sulted in the Aspect-oriented Use Case Maps (AoUCM) language. AoUCM,
part of the Aspect-oriented User Requirements Notation (AoURN), supports the

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 54–71, 2013.
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modeling of scenario-based, crosscutting concerns during requirements
activities, i.e., concerns that are difficult to encapsulate with UCM alone.

System non-functional aspects such as availability and fault tolerance are often
overlooked and underestimated during the initial system design. To address this
issue, the UCM language has been extended with availability features in [2]
and [3]. In this research, we use the AoUCM language to model the well-known
availability tactics, introduced by Bass et al. [4].

The widespread interest in dependability modeling, constitutes the major mo-
tivation of this paper. We, in particular, focus on the need to incorporate avail-
ability aspects at the very early stages of system development. This work builds
upon and extends the work of Hassine and Gherbi [3], and serves the following
purposes:

– It describes the availability tactics, introduced by Bass et al. [4], in a well-
encapsulated way using the Aspect-oriented Use Case Maps language.

– It introduces an improved Aspect-oriented Use Case Maps language, capable
of handling more concisely variations in an aspect such as availability.

– It provides a comparison between our approach and the availability modeling
approach introduced in [2] and [3].

– It extends our ongoing research towards the construction of an Aspect-
oriented User Requirements Notation (AoURN) framework for the descrip-
tion and analysis of dependability aspects in the very early stages of system
development life cycle.

The remainder of this paper is organized as follows. Section 2 introduces the con-
cept of availability and provides an overview of the existing availability descrip-
tion approaches. Section 3 describes the proposed AoUCM-based availability
models. A brief discussion of the advantages and shortcomings of the approach
is provided in Section 4. A case study of an IP-based router feature, named LI
(Lawful Intercept) is presented in Section 5 demonstrating the applicability of
our approach. Finally, Section 6 covers conclusions and future work.

2 Availability Requirements

Several definitions of availability have been proposed [5,6,7,8,9]. According to
ISO [5], the availability of a system may be defined as the degree to which a
system or a component is operational and accessible when required for use. The
ITU-T recommendation E.800 [8] defines availability, as the ability of an item
to be in a state to perform a required function at a given instant of time, or
at any instant of time within a given time interval, assuming that the external
resources, if required, are provided. Availability has been treated by the field
of dependability [6,7,9]. Bass et al. [4] have introduced the notion of tactics
as architectural building blocks of architectural patterns. The authors [4] have
provided a comprehensive categorization of availability tactics based on whether
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they address fault detection, recovery, or prevention. Figure 1 illustrates these
four categories:

1. Fault Detection tactics are divided into
(1) Ping/Echo (determines reachability and the round-trip delay through
the associated network path),
(2) Heartbeat (reports to system monitor when a fault is incurred), and
(3) Exception (detects faults such as divide by zero, bus, and address faults).

2. Fault Recovery-Preparation and Repair tactics are divided into
(1) Voting (A voter component decides which value to take in a redundant
environment),
(2) Active Redundancy (called also hot redundancy, refers to a configura-
tion where all redundant spares maintain synchronous state with the active
node(s)),
(3) Passive Redundancy (called also warm redundancy, refers to a config-
uration where redundant spares receive periodic state updates from active
node(s)), and
(4) Spare (called also cold redundancy, refers to a configuration where the re-
dundant spares remain out of service until a switch-over or fail-over occurs).
It is worth noting that the application of one tactic may assume that another
tactic has already been applied. For example, the application of voting may
assume that some form of redundancy exists in the system.

3. Fault Recovery-Reintroduction tactics are divided into
(1) Shadow (refers to operating a previously failed component in a shadow
mode for a predefined duration of time),
(2) Rollback (allows the system state to be reverted to the most recent
consistent state), and
(3) State Resynchronization (ensures that active and standby components
have synchronized states).

4. Fault Prevention tactics include
(1) Removal from Service (refers to placing a system component in an
out-of-service state for the purpose of mitigating potential system failures),
(2) Transactions (typically realized using atomic commit protocols), and
(3) Process Monitor (monitors the health of a system).

In a closely related work, Scott and Kazman [10] have proposed a refined version
of Bass et al. categorization [4]. However, their proposed classification considers
tactics that are specific to inter-networking devices like switches and packet
routers. Examples of such tactics include Non-Stop Forwarding (which maintains
the proper functionning of user data plane in case of a failure) and MPLS ping
(ensures timely ping responses in an MPLS-based network).

In this research, we adopt the more general availability tactics introduced
by Bass et al. [4], as a basis for extending the Aspect-oriented Use Case Maps
language [11] with availability annotations, allowing us to encapsulate the cross-
cutting availability concern in scenario models. These tactics have been proven
in practice for a broad applicability in different industrial domains.
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Fig. 1. Availability Tactics [4]

3 Aspect-Oriented Use Case Maps Availability Modeling

In this section, we introduce the AoUCM features and modeling elements that
are relevant to our proposed availability extensions. For a complete description
of the Aspect-oriented Use Case Maps language, interested readers are referred
to [11,12,13,14]. AoUCM builds on the UCM language.

3.1 Use Case Maps

UCMs expressed by a simple visual notation allow for an abstract description
of scenarios in terms of causal relationships between responsibilities ( , i.e., the
steps within a scenario) along paths allocated to a set of components. These rela-
tionships are said to be causal because they involve concurrency, partial ordering
of activities, and they link causes (e.g., preconditions and triggering events) to
effects (e.g., postconditions and resulting events). UCMs help in structuring and
integrating scenarios (in a map-like diagram) sequentially, as alternatives (with
OR-forks/joins; / ), or concurrently (with AND-forks/joins; / ).

When maps become too complex to be represented as one single UCM, a
mechanism for defining and structuring sub-maps becomes necessary. Path de-
tails can be hidden in sub-diagrams called plug-in maps, contained in stubs ( )
on a path. A plug-in map is bound (i.e., connected) to its parent map by binding
the in-paths of the stub with start points ( ) of the plug-in map and by binding
the out-paths of the stub to end points ( ) of the plug-in map.

The UCM language supports path elements for failure points ( ), which
describe exceptions raised explicitly at a specific point on a path causing the
cancellation of the rest of the path (it does not address other concurrent paths).
In this research, we annotate responsibilities with failure metadata attributes
instead of using failure points (see Section 3.3) to improve the readability of
UCM and AoUCM scenario models.
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One of the strengths of UCMs resides in their ability to bind responsibilities
to architectural components. Several kinds ot UCM components allow system
entities ( ) to be differentiated from entities of the environment ( ). UCM
component relationships depend on scenarios to provide the semantic informa-
tion about their dependencies. Components are considered to be dependent if
they share the same scenario execution path even though no actual/physical
connections are drawn between the components.

3.2 Aspect-Oriented Use Case Maps

Aspect-oriented UCM (AoUCM) [11,12,13,14] adds three core aspect-oriented
concepts concerns, composition rules, and pointcut expressions to UCM. A con-
cern is a new unit of encapsulation that captures everything related to a par-
ticular idea, e.g., availability. AoUCM treats concerns as first-class modeling
elements. If a concern is not crosscutting, it can be described with the standard
UCM notation. However, if it is crosscutting like availability, then it is best de-
scribed using the AoUCM notation. Figure 2 presents a simple example with a
base concern consisting of two responsibilities RespA and RespB.

Fig. 2. AoUCM Example

Pointcut expressions are patterns that are specified by an aspect and matched
in the base model. The pattern of the shown aspect matches against Resp*,
i.e., RespA and RespB in the base concern. If a match is found, the aspect is
applied at the matched location in the base model. The behavior of an aspect
is defined on a standard map. The only difference is that it contains a pointcut
stub ( PP ) that represents the locations matched by the aspect’s pattern. The
causal relationship between the pointcut stub and the rest of the aspect map
defines the composition rule. In the example in Fig. 2, R1 is added before the
matched locations, because R1 occurs before the pointcut stub, while R2 is
added after the matched locations. This results in the composed model shown

in Fig. 2. An AoUCM model may also use a replacement pointcut stub (  )
instead of a regular pointcut stub to remove any matched elements from the
composed model. Furthermore, an element in the pattern may be defined as a
variable ($) which allows the element to be reused in the definition of the aspect
behavior.
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In the following sections, we use AoUCM to describe high-level availability
requirements. We adopt the availability tactics introduced by Bass et al. [4] as a
basis for expressing availability requirements with AoUCM, making it possible to
model availability as a properly encapsulated crosscutting concern. Fault Recov-
ery Preparation and Repair as well as Fault Recovery Reintroduction categories
(see Fig. 1) are merged to obtain what we refer to as Fault Recovery.

3.3 AoUCM Fault Detection Modeling

The specification of fault detection mechanisms is a key factor in implement-
ing any availability strategy. Fault detection modeling involves the descrip-
tion of potential faults (i.e., Exception tactic) and the specification of liveness
requirements using ping/echo and heartbeat [4].

Exceptions. Exceptions are modeled and handled at the scenario path level.
Exceptions may be associated with any responsibility along the UCM execution
path. The availability requirements of a responsibility can be modeled using
three metadata attributes. The metadata approach allows for a more nuanced
description of availability which is not possible with only failure points.

1. AvCat: Specifies the availability category, if any, that the responsibility is
implementing. In the case of exceptions, it is specified as “FaultDetection”.

2. Tactic: Denotes the type of the deployed tactic. In the case of exceptions, it
is specified as “Exception”.

3. Severity denotes the severity of the potential fault that might occur as
a result of the execution of the responsibility. Three severity levels are
considered: “1” (causes the component to stop working), “2” (impacts the
component operations), and “3 or higher” (minor fault, not service
impacting).

The realization of the exception tactic is assured by the definition of metadata at-
tributes and by the existence of a related exception handling scenario. The actual
handling of the exception (through the modeling of a failure scenario) is realized
using the fault recovery tactic (Section 3.4). Figure 3(a) illustrates a simple UCM
map with a main scenario executing in sequence two responsibilities R1 and R2.
Figure 3(c) shows an updated model where both responsibilities implement fault
detection exception tactics specified using AvCat (i.e., AvCat = FaultDetection)
and Tactic (i.e., Tactic = Exception) attributes. The metadata specifications are
shown in Figure 3(d). Responsibility R1 describes an exception with severity 1
(i.e., Severity = 1) while responsibility R2 describes an exception with severity
2. Exceptions in responsibilities R1 and R2 are handled using two failure paths
describing the recovery behavior. A failure path starts with a failure start point
( F ) [1,11] and a guarding condition (e.g., conditions R1-FD-Cond and R2-FD-
Cond in Fig. 3(c)). In this example, the actual handling of the exceptions takes
place within two stubs namedR1-ExceptionHandling andR2-ExceptionHandling.
The corresponding plug-in maps handlingR1 and handlingR2 are not shown at
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this point because the details of the exception handling are irrelevant for this dis-
cussion on failure detection.The plug-inmaps describe fault recovery (Section 3.4).
After handling the R1 and R2 exceptions, the path continues explicitly with
responsibility R2 and the end point EP1, respectively.

As can be clearly seen from Fig. 3(c), the exceptions add significant com-
plexity to the basic scenario in Fig. 3(a). Furthermore, great similarities can be
observed for exceptions of responsibilities R1 as well as R2, e.g., both require
a failure path. These similarities are captured in the aspect-oriented model for
the exception tactic presented in Fig. 3(b). Before explaining the details of the
aspect-oriented model, it must be noted that, despite the similarities, there are
also many small variations from the failure path of one responsibility to the one
of another responsibility (i.e., the guarding condition is different and the actual
exception handling is different; the metadata attributes of the responsibility may
also be different). Nevertheless, the overall structure is the same. With conven-
tional AoUCM, a separate AoUCM model would have to be created for each
combination of variations. However, this does not scale to what is needed for
availability tactics. Therefore, the Aspect-oriented Use Case Maps language has
been extended with the concept of a composition matrix that allows variations
to be specified in a concise manner. With this approach, the AoUCM model in
Fig. 3(b) describes the generic reusable properties of exception handling, while
the composition matrix factors out the adaptation of this generic model to its
application context.

The aspect-oriented model in Fig. 3(b) describes a replacement as indicated

by the replacement pointcut stub (  ), i.e., the model elements matched by the
pattern in Fig. 3(b) are replaced with the model elements that follow the re-
placement pointcut stub. In this case, the pattern describes a single variable,
the responsibility ($R). This single responsibility is replaced by itself ($R is
shown on the path following the replacement pointcut stub which means that
the matched responsibility is reused by the aspect) but with several metadata
attributes added. In addition, the failure path is added which merges with the
path of $R after the responsibility. The metadata attributes and several elements
of the failure path are also specified with variables (e.g., $AvCat and $condition).
However, these variables are not defined in the pattern, contrary to the $R re-
sponsibility. This is where the composition matrix comes into play. Any variable
that is not bound by the pattern must be defined in the composition matrix as
shown in Fig. 3(e).

In this example, the values of these unbound variables depend on the respon-
sibility that is matched by the pattern, i.e., the bound variable. The first column
in the composition matrix allows the composition condition to be specified. In
this case, $R can either be R1 or R2. The second set of columns specify assign-
ments. For example, if $R is matched against R1, then the metadata variable
$AvCat needs to be assigned the value FaultDetection and the condition vari-
able $condition needs to be assigned the value R1-FD-Cond. The last column in
the composition matrix allows for the specification of a specific plug-in map of
the stub defined in the second row of this column (i.e., $handling in our case).
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For example, when R1 is matched, then the plug-in map called handlingR1 must
be used as the plug-in map for the handling stub. Note that, in addition to the
name of the plug-in map, more detailed plug-in bindings can be specified for
more complex stubs with several in-paths and out-paths. This, however, is not
required for availability tactics. Similarly, regular expressions can be used in
the column for the composition conditions, but this is also not required for the
example in Fig. 3(b). In general, the composition matrix collects all metadata
specifications required for availability in one location that are otherwise spread
out over the model as shown in Fig. 3(d), hence allowing all specifications related
to availability to be encapsulated in one aspect.

When the availability aspect is applied to the scenario in Fig. 3(a), the com-
posed result is equivalent to the UCMmap in Fig. 3(c) including the annotations.

Ping/Echo and Heartbeat Tactics. Ping/Echo and Heartbeat tactics can be
used to determine how long it takes to detect a fault. This can be achieved using
the round-trip time and the number of missed pings/heartbeats. In [2] and [3],
we have reused the UCM comment constructor to describe ping and heartbeat
tactics. In this paper, we use metadata attributes instead. While both alterna-
tives allow for a global description of availability requirements (i.e., attached to
the entire UCM model rather than to one specific UCM construct), using meta-
data provides a structural and more intuitive way of representing attributes. In
AoUCM, these global descriptions are attached to the availability aspect instead
of the entire UCM model, but their specification otherwise remains the same.
For example, a ping initiated by component C1 that must result in an echo re-
sponse from C2 received within 2ms is specified as metadata Ping = “C1;C2;2”.
Similarly, a heartbeat, periodic message exchange such as “I’m alive”, that is
sent from component C1 towards component C2 with a polling interval of 2000
ms is defined as metadata Heartbeat = “C1;C2;2000”.

The ping/echo and heartbeat requirements can also be described using meta-
data attached to responsibilities (i.e.,AvCat =“FaultDetection”;Tactic =“Heart-
beat). Violations of ping/echo and heartbeat tactics are handled in scenario paths
similar to the exception tactic. If this is the case, then an aspect similar to the
AoUCM exception handling aspect is used to define the metadata and failure path
for such responsibilities.

3.4 UCM Fault Recovery Modeling

Fault recovery tactics focus mainly on redundancy modeling in order to keep the
system available in case of the occurrence of a failure. To model redundancy, we
annotate UCM components with the following attributes:

– GroupID : A system may have many spatially redundant components of
different types. The GroupID is used to identify the group to which a
component belongs in a specific redundancy model.

– Role: Denotes whether a component is in active or standby role.
– RedundancyType: Specifies the redundancy type as hot, warm, or cold.



Describing Early Availability Requirements Using AoUCM 63

– ProtectionType: The minimal redundancy configuration is to have one active
and one redundant node (commonly referred to as 1+1 redundancy). Other
redundancy configurations are: 1:N (refers to a configuration where one spare
is used to protect multiple active nodes) and M:N (refers to a configuration
where multiple spares are used to protect multiple active nodes).

– Voting: A boolean variable describing whether a component plays a voting
role in a redundancy configuration.

 

(a) AoUCM Redundancy Aspect

Composition
Condition Assignments

$C1 = ;  
$C2 = $GroupID $ProtecType $RedType $Role $Voting 

RP1;
RP2

G1 1+1 Hot Active false 
G1 1+1 Hot Stdby false 

(b) AoUCM Composition Matrix

Fig. 4. AoUCM Redundancy Aspect with Composition Matrix

Since component redundancy has to be described visually and the involved re-
dundant components share the same scenario path, an elegant way to illustrate
such a configuration is to use overlapping components. Note that the current
URN standard [1] does not allow overlapping components (while the jUCMNav
tool [15] does support such a feature).

Figure 4 illustrates an example of a system with two components RP1 and
RP2 participating in a 1+1 hot redundancy configuration. RP1 is in active role
while RP2 is in standby role. None of these two components is taking part in a
voting activity (i.e., Voting: false).

The presented redundancy annotations deal with the static description of
component availability requirements. The operational implications of such avail-
ability requirements, in case of failure for instance, can be described using the
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(a) Feature Configuration Example

Composition
Condition Assignments

$C1 = ;  
$C2 = $GroupID $ProtecType $RedType $Role $Voting 
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RP2
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G1 1+1 Hot Stdby false 

(b) Redundancy AoUCM Composition Matrix
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(c) Exception Handling AoUCM Composition Matrix

 

StateSynchronization Metadata

 

(d) Synchronize State Plug-in Map and Metadata Attributes

Fig. 5. Implementation of the State Resynchronization Tactic with AoUCM

UCM scenario path. Hence, reintroduction tactics such as Shadow, State Resyn-
chronization, and Rollback can be described using the metadata attributes as-
sociated to responsibilities. Typically, these tactics are used in the exception
handling scenario in response to fault detection, i.e., they are used in the stub
in the exception handling aspect as discussed in Section 3.3.

Figure 5 illustrates a feature configuration scenario on a dual route processor
(RP) system. The configuration of a new feature may result in having the active
and the standby route processors (respectively RP1 and RP2 ) in Out-of-Sync
state (e.g., configuration is not applied to the standby RP). The detection of such
a situation would trigger an exception path (i.e., precondition OutOfSych is sat-
isfied) and causes both RPs to synchronize again (using responsibility StateSyn-
chronization). The basic scenario is defined in Fig. 5(a). Figures 5(b) and 5(c)
show the composition matrices for the redundancy aspect and the exception han-
dling aspect, respectively. The former insures that two redundant components,
RP1 and RP2, are defined using the redundancy aspect from Fig. 4. The latter
composition matrix is for the exception handling aspect in Fig. 3(b). As stated
earlier, the composition matrix defines which plug-in map to use. In this case,
it is the Sychronize State plug-in map shown in Fig. 5(d) which may even be
provided as a predefined specification of the state synchronization tactic as part
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of the AoUCM availability aspect. Since this plug-in map and its responsibility
StateSynchronization are part of the availability aspect, the required metadata
attributes for the responsibility are specified directly for the responsibility.

3.5 UCM Fault Prevention Modeling

Annotations presented in Sections 3.3 can be used to accommodate this category.
Indeed, responsibilities can be annotated with availability metadata attributes
specifying a removal from service property, transactions properties, and process
monitoring properties. For example, Fig. 6(a) illustrates a UCM scenario de-
scribing the placement of a component in an out-of-service state by shutting it
down (i.e., responsibility Shutdown) to prevent potential system failures in case
the component is running low on memory, and Fig. 6(b) provides a scenario of
updating a database record using a two-phase-commit type of transaction (a.k.a.
2PC ). Failing to ensure the two phase commit requirement, would trigger an im-
plicit rollback to undo the record update (not shown in the figure). The aspect
in Fig. 6(c) uses the same pattern as specified in Fig. 3(b), but the aspect behav-
ior is simpler as it only replaces the matched responsibility with the same but
annotated responsibility. The composition matrix of the fault prevention aspect
in Fig. 6(c) ensures that the responsibilities are annotated accordingly.

 

(a) Removal From Service Tactic

 

(b) Transactions Tactic
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(c) AoUCM Fault Prevention Aspect with Composition Matrix

Fig. 6. AoUCM Fault Prevention Modeling

4 Discussion

Our proposed approach relies on a mapping of availability architectural tactics
proposed by Bass et al. [4] to generic, reusable AoUCM models, which allows the
tactics to be encapsulated at the early phases of the software development life-
cycle. In previous work [2], the use of comments is suggested to add information
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about the same availability tactics to a UCMmodel [3]. This paper uses metadata
to describe availability tactics with an aspect-oriented approach but the same
metadata could also be added directly to a conventional UCMmodel. These three
options (comments, UCM metadata, AoUCM metadata) share the same goal of
modeling the availability tactics at the early phases of development, which allows
earlier detection of design errors and helps modelers to select between different
design alternatives. We briefly compare the advantages and shortcomings of these
three approaches.

1. Comment-based option: This option is sufficient for visualizing availabil-
ity tactics in a model but does not lend itself to further analysis, because the
availability information is captured in a non-formalized way. Another disad-
vantage of this approach is that comments cannot be attached to individual
UCM model elements but only to UCM maps. The availability tactics, how-
ever, require information to be attached to individual UCM model elements.
This option is hence not further considered.

2. UCM metadata-based option: This option formalizes availability infor-
mation in metadata, making it easier to use this information in automated
model analysis. However, availability information is not encapsulated well in
one location in the model but rather distributed over the whole model, mak-
ing maintenance, reuse, and evolution of the availability information more
difficult.

3. AoUCM metadata-based option: This option also uses metadata but
localizes the availability information in one availability aspect (which may
be sub-divided into smaller availability aspects dealing specifically with ex-
ception handling, fault prevention, etc.). Previous comparisons of UCM and
AoUCM models [13] indicate that AoUCM models exhibits better modular-
ity, reusability, and maintainability than UCM models. Essentially, a larger
vocabulary size (because aspects are introduced) is trade-off against better
separation of concerns, less coupling, and stronger cohesion. These results
also apply to the availability aspect. The effects are less pronounced for sim-
ple metadata assignments which could be maintained through additional tool
management features without the need for aspect-oriented techniques. How-
ever, the availability tactics of exception detection and handling can greatly
benefit from an aspect-oriented approach because of the high number of
model elements affected by these tactics. Hence, the model can be simpli-
fied significantly. The addition of composition matrices further improves the
handling of small variations in an aspect such as availability. The common,
generic, reusable part of an availability tactic can be captured concisely in
a rather simple AoUCM aspect, while the variations are factored out into
the composition matrices. A disadvantage of the AoUCM metadata-based
option is that the AoUCMmodel is more fragmented and an automated com-
position is required to merge the availability aspect into the system model.
However, these disadvantages can be alleviated by available tool support
with the jUCMNav editor [15] which helps modelers with the navigation
through AoUCM models and the composition of AoUCM models.



Describing Early Availability Requirements Using AoUCM 67

5 Case Study: Lawful Intercept (LI) Feature

In this section, we illustrate our proposed approach using a case study of a Law-
ful Intercept (LI) feature, running on a Cisco CRS-1 router1. LI allows service
providers to meet the requirements of law enforcement agencies (e.g., state and
federal police, intelligence agencies, and independent commissions against cor-
ruption) to provide authorized interception of VoIP and data traffic at content
IAP (intercept access point) routers.

A minimal CRS-1 router architecture consists of one or many route processors
(RP) cards (that provide route processing, alarm, fan, and power supply con-
troller function), one or many ingress line cards (that process incoming traffic),
one or many egress line cards (that process outgoing traffic), and a switch fabric
(receives user data from ingress cards and performs the switching necessary to
route the data to the appropriate egress cards). Since LI is an ingress feature
(i.e., applied on ingress line cards), its description is abstracted from the switch
fabric and the egress line cards. LI is described using an AoUCM scenario model
(Figure 7) bound to an architecture composed of two Route Processors (RP) in
a hot redundancy mode (RP1 is active role while RP2 is the standby) and one
ingress line card (LC). The specification of the redundancy is exactly the same
as in Fig. 5, and is hence not repeated here.

In a typical operation, a lawfully authorized intercept request is provisioned by
the MD (Mediation Device) on the content IAP (Intercept Access Point), which
is the device within the network used to intercept the targeted information. The
IAP is responsible for identifying the IP traffic of interest and forwarding it to
the MD, while remaining undetectable by the intercept subject. In a typical
operation, the router (e.g., Cisco CRS-1) is the content IAP.

Figure 7(a) provides a high level description of basic LI scenarios. The Me-
diation Device (MD) crafts an interception request based on the content to be
collected and sends it to the router. Upon reception (start point MDRequest),
the MD request may be rejected (MDReqRejected) in case LI is disabled on the
router, otherwise a check whether TCAM (Ternary content-addressable mem-
ory) resources are available (checkTCAMRes) is performed. Requested MD/Tap
entries are programmed (RPInstallMD-Taps) when TCM resources are available,
and they are rejected (RejectMDRequest) otherwise. Enabling and disabling LI
may cause unexpected configuration inconsistencies. This exception is handled
with the exception handling aspect introduced earlier. The composition ma-
trix entries for enableLI and disableLI state that the Rollback-LIConfiguration
plug-in map handles the exception by reverting back to the last consistent con-
figuration, i.e., a rollback occurs as described by responsibility rollbackLIConfig
and its composition matrix entry in Fig. 8.

The composition matrix also shows that there is a risk of an RP failover
(RPFO), when installing new MD/taps in the TCAM (RPInstallMD-Taps) and
the exception handling is defined on the Resynchronize-Process-RPLI plug-in

1 www.cisco.com/en/US/prod/collateral/routers/ps5763/

prod brochure0900aecd800f8118.eps

www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.eps
www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.eps
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(a) Lawful Intercept High Level Description

  

(b) Rollback-LIConfiguration, Restart-Process-LI, and Resynchronize-Process-RPLI
Plug-in Maps

Fig. 7. Lawful Intercept AoUCM Modeling
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Handle-
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Config-
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CI-Ex-
Handling 

Rollback-
LIConfiguration 

RPInstallMD-
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Ex-
Handling 
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Process-RPLI 

LCInstallMD-
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Detection 1 Exception HandleLI-

ProcCrash LIProcessCrash LIPC-Ex-
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Process-LI 

Composition Condition Assignments
$R = $AvCat $Severity $Tactic 

rollbackLIConfig or ResyncRPLIProcesses or RestartLIProcess FaultRecovery None Rollback 

Fig. 8. Lawful Intercept Exception Handling and Fault Recovery AoUCM Composition
Matrices

map. At any point in time, the MD has the responsibility to detect the loss of
the taps. LI uses a replay timer, an internal timeout that provides enough time
for MD to re-provision tap entries while maintaining existing tap flows. It resets
and starts on the active RP when an RPFO takes place. After replay timeout
(the zigzag path leaving the timer in Fig. 7(b)), interception stops on taps that
are not re-provisioned.

In the ingress LC, we distinguish two scenarios. The first one deals with down-
loading MD and Tap entries from the RP and installing them (LCInstallMD-
Taps) on the LC if resources are available, otherwise the download request is
rejected (LCRejReq). The second scenario deals with the interception of traf-
fic. Packets received while LI is disabled are forwarded to their destination
(stub NoMatchFwdOrigPacket). Packets matching Tap entries are intercepted
(InterceptPacket), then forwarded to their original destinations (stub MatchFw-
dOrigPacket), and replicated (PacketReplication). If there is a valid route to MD
(LookupMD), packets will be encapsulated (AddEncap) and sent to the MD (stub
FwdRepPacket), otherwise the replicated packets are dropped (dropReplicated).

The LI process may crash while installing new MDs/Taps. This is again de-
scribed with the exception handling aspect (Figure 7(b)). The compositionmatrix
entry for LCInstallMD-Taps states that the exception handling is defined on the
Restart-Process-LI plug-in map which restarts the process (RestartLIProcess).

6 Conclusions and Future Work

In this work, we have incorporated availability information at the very early
stages of system development with the help of an aspect-oriented approach.
To this end, we have extended the Aspect-oriented Use Case Maps (AoUCM)
language (which is based on the ITU-T User Requirements Notation (URN)
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standard) with availability metadata covering the well known availability tac-
tics proposed by Bass et al. [4]. AoUCM adds aspect-oriented concepts to UCM
which allow the availability architectural tactics to be encapsulated at the early
phases of system development. Availability tactics typically need to be applied
to numerous locations in a system. A characteristic of availability tactics is that
each time a slightly different availability tactic needs to be applied. Therefore,
we have extended the AoUCM language with the notion of composition matri-
ces which enables these small variations of the availability tactics to be speci-
fied concisely. We envision that the proposed composition matrix is useful for
other concerns in addition to availability. For future work, we plan to investigate
which concerns could benefit from composition matrices. We also aim to study
how to map AoUCM availability concepts into the Service Availability Forum’s
Availability Management Framework configurations. Our goal is to allow for the
early reasoning about availability aspects and promote the portability and the
reusability of the developed systems across different platforms.
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Abstract. Nowadays, many practitioners express their worries about
current software engineering practices. New recommendations should be
considered to ground software engineering on two pillars: solid theory and
proven principles. We took the second pillar towards software engineering
for embedded system applications, focusing on the problem of integrat-
ing Security and Dependability (S&D) by design to foster reuse. The
framework and the methodology we propose associate the model-driven
paradigm and a model-based repository of S&D patterns to support the
design of trusted Resource Constrained Embedded System (RCES) ap-
plications for multiple domains (e.g., railway, metrology, automotive).
The approach has been successfully evaluated by the TERESA project
external reviewers as well as internally by the Ikerlan Research Center
for the railway domain.
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1 Introduction

The software of embedded systems [1] is not conventional software that can be
built using usual paradigms. In particular, the development of resource con-
strained embedded systems (RCES) addresses constraints regarding memory,
computational processing power and/or limited energy. Non-functional require-
ments such as Security and Dependability (S&D) [2] become more important as
well as more difficult to achieve. The integration of S&D features requires the
availability of both application domain specific knowledge and S&D expertise
at the same time. In fact, capturing and providing this expertise by the way of
S&D patterns can support embedded systems development.

In our previous work [3], we studied pattern modeling frameworks [4,5] and
we proposed methods to model security and dependability aspects in patterns

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 72–90, 2013.
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and to validate whether these still hold in RCES (Resource Constrained Em-
bedded Systems) after pattern application. The question remains at which stage
of the development process to integrate S&D patterns. In our work, we pro-
mote a new discipline for system engineering using a pattern as its first class
citizen: Pattern-based System Engineering (PBSE). PBSE addresses challenges
similar to those studied in software engineering. Closely related to our vision
is the Component Based Software Engineering (CBSE) [6]. Therefore, PBSE
focuses on patterns and from this viewpoint addresses two kind of processes:
the process of pattern development and system development with patterns. The
main concern of the first process is designing patterns for reuse and the sec-
ond one is finding the adequate patterns and evaluating them with regard the
system-under-development’s requirements.

In this paper, we propose a methodology based on Model-Driven Engineering
(MDE) and a model-based repository of S&D patterns for security and depend-
ability engineering. At the core of the methodology is a set of Domain Specific
Modeling Languages (DSML) [7] that allow modeling S&D patterns and reposi-
tory structure. Such an approach, relying on an MDE too -suite supporting the
methodology and thus in our context supporting automated model-based repos-
itory building and access in industry1. We discuss the benefits, such as reduced
modeling effort and improved readability, achieved when applying the method-
ology to an industrial case study where we have used the modeling language to
model the repository of S&D patterns for the domain of railway applications.

The rest of this paper is organized as follows. In Sect. 2, we present a review
of the most important related work. In Sect. 3, we present the proposed method-
ology. Section 4 details the specification languages proposed in the context of
the methodology. In Sect. 5, we introduce the tool-chain supporting the method-
ology. Then, in Sect. 6, we illustrate the methodology through the example of a
railway application. Section 7 describes a first feedback on the methodology we
propose. Finally, Sect. 8 concludes the paper with an outlook on future work.

2 Related Work

In developing software applications with security and dependability support, the
use of patterns should lead to well structured applications. In [8] a hybrid set of
patterns is used in the development of fault-tolerant software applications. These
patterns are based on classical fault tolerant strategies such as N -Version pro-
gramming and recovery block, consensus, voting. Extending this framework, [9]
proposed a framework for the development of dependable software systems based
on a pattern approach. They reused proven fault tolerance techniques in the form
of fault tolerance patterns. The pattern specification consists of a service-based
architectural design and deployment restrictions in form of UML deployment
diagrams for the different architectural services.

In [10], a group of seven patterns is presented as a security framework for
building applications. [11] introduced the concept of a security pattern system

1 The approach is evaluated in the context of the TERESA project
(http://www.teresa-project.org/).

http://www.teresa-project.org/
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as a set of patterns with a linkage between them and described how security pat-
terns contribute to the security engineering process. [12] presented an extension
of UML, called UMLsec, that enables to express security relevant information
within diagrams in a system specification. UMLsec is defined in form of a UML
profile using UML extension mechanisms, allowing the specification of security
patterns and the integration of these patterns into system development.

Regarding the analysis aspects, [13] used the concept of security problem
frames as analysis patterns for security problems and associated solution ap-
proaches. These frames are also grouped in a pattern system with a list of their
dependencies. The analysis activities using these patterns are described with a
highlight on how the solution may be set with a focus on the privacy require-
ment anonymity. For the software architecture, [14] presented an evaluation of
security patterns in the context of secure software architectures. The evalua-
tion is based on the existing methods for secure software development, such as
guidelines, and on threat categories.

Another important issue is the identification of security patterns. [15] pro-
posed a new specification template inspired on secure system development needs.
The template is augmented with UML notations for the solution and with formal
artifacts for the requirements properties.

In addition to the above, S&D patterns are studied as precise specifications
of validated S&D mechanisms. [5] explains how this can be achieved by using
a library of precisely described and formally verified security and dependabil-
ity (S&D) solutions as mechanisms, while [16] reports an empirical experience,
about the adopting and eliciting of these S&D patterns in the Air Traffic Man-
agement (ATM) domain. The results are of interest, mainly the use of patterns
as a guidance to structure the analysis of operational aspects when they are used
at the design stage. Recently [17] presented an overview and new directions on
how security patterns are used in the whole aspects of software systems from
domain analysis to the infrastructures.

3 Pattern-Based Security Engineering Methodology

We now present an overview of our modeling building processes as activity di-
agrams. In this description, we will give the main keys to understand why our
process is based on a generic, incremental and a constructive approach. Addi-
tional and detailed information will be provided during the implementation of
the related design environment. Moreover, we provide a set of definitions and
concepts that might prove useful in understanding our approach. Then, we de-
tail the description of the integrated process used for the development of the
Safe4Rail application in Sect. 6.

3.1 Definitions

Adapting the definition of pattern language given by Christopher Alexander [18],
we define the following:
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Definition 1 (Modeling Artifact Language.). A modeling artifact language
is a collection of modeling artifacts forming a vocabulary. Such a collection may
be skillfully woven together into a cohesive ”whole” that reveals the inherent
structures and relationships of its constituent parts toward fulfilling a shared
objective.

Definition 2 (Security Pattern.). A security pattern describes a particu-
lar recurring security problem that arises in specific contexts and presents a
well-proven generic scheme for its solution [11].

Definition 3 (Security Pattern Language.). We define a security pattern
language as a modeling artifact language where its constituent parts are security
patterns and their relationships.

Definition 4 (Instantiation.). An instantiation activity takes a pattern and
its related artifacts from the repository and adds it to the end-developer
environment. This task enables the pattern to be used while modeling.

The Instantiation activity is composed of the following steps:

1. Define needs in terms of properties and/or keywords,
2. Search for patterns in the repository,
3. Select the appropriate pattern from those proposed by the repository,
4. Import the selection into the development environment using model

transformation techniques.

Definition 5 (Integration.). An integration activity happens within the devel-
opment environment when a pattern and its related artifacts are introduced into
an application design. Some development environments may come with native
support for the integration.

3.2 Development of Reusable Artifacts

The pattern development process supports a number of features including pat-
tern design, validation, interaction with a verification framework, deposit to and
retrieval and from the repository.

The process root, as shown in Fig. 1, indicates the start of the creation of a pat-
tern (A1). It contains some initialization actions to define the pattern attributes
(e.g, name, author, date,. . . ). The next activity is the modeling of the pattern ar-
tifacts (A2) collecting data interacting with (1) Domain knowledge and expertise
providing an informal pattern description and (2) the model-based Repository
to refer to existing patterns. During this activity the pattern artifacts were built
conforming to the pattern modeling language. An activity is added at this point
to check the design conformity of the pattern (A3). The next activity (A4) deals
with the pattern validation. It supports the formal validation of a pattern using
an external process [3]. The result is a set of validation artifacts. At this point,
the pattern designer may generate documentation (A6). If the pattern has been
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Fig. 1. Pattern development process

correctly defined (i.e. conforms to the pattern modeling language and is formally
validated) the pattern is ready for the publication to the model-based reposi-
tory (A7). Otherwise, we can find the issues and re-build the pattern (A5) by
correcting or completing its relevant constructs.

3.3 Repository Designer View Point

The goal of this process is to organize the repository content, in our case pat-
terns, to give them a structure of a set of pattern languages for application
domains [19]. As visualized in the top part of Fig. 2, each pattern from a cer-
tain application domain is studied in order to identify its relationships with the
other patterns belonging to the same application domain with respect to the
engineering process’ activity in which it is consumed (see the bottom part of
Fig. 2).
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Fig. 2. Repository Process

3.4 Reuse of Existing Artifacts

Once the repository2 is available, it serves an underlying trust engineering pro-
cess. In the process model visualized in Fig. 3, the developer starts by system

2 The repository system populated with S&D Patterns.



78 B. Hamid et al.

F
ig
.
3
.
T
h
e
S
&
D

P
a
ttern

-b
a
sed

D
ev
elo

p
m
en

t
P
ro
cess



MDE for Trusted Systems Based on Security and Dependability Patterns 79

specification (A1) fulfilling the requirements. In a traditional approach (non
pattern-based approach) the developer would continue with the architecture de-
sign, module design, implementation and test. In our vision, instead of following
this phase and defining new modeling artifacts, that usually are time and effort
consuming, as well as error prone, the system developer merely needs to select
appropriate patterns from the repository and integrate them in the system under
development.

For each phase, the system developer executes the search/select from the
repository to instantiate patterns in its modeling environment (A4 and A9) and
integrates them in its models (A5 and A10) following an incremental process.
The model specified in a certain activity An− 1 is then used in activity An. In
the same way, for a certain development stage n, the patterns identified previ-
ously in stage (phase) n− 1 will help during the selection activity of a current
phase. Moreover, the system developer can use the pattern design process, in-
troduced previously, to develop their own solutions when the repository fails to
deliver appropriate patterns at this stage. It is important to remark that the
software designer does not necessarily need to use one of the artifacts stored
in the repository previously included. He can define custom software architec-
ture for some patterns (components), and avoid using the repository facilities
(A6 and A11).

4 Specification Languages (DSLs)

In this section we present the specification languages to support the PBSE
methodology: repository structure specification language (SARM) and pattern
modeling language (SEPM).

4.1 Repository Structure Specification Language

A repository is a data structure that stores artifacts and that allows the user
to publish and to select them for reuse and to share expertise. The specification
of the structure of the repository is based on the organization of its content
and the way it interacts with other engineering processes. The analysis of these
requirements allows us to identify two main parts: the first one is dedicated to
store and manage data in the form of Compartments, the second one is about
the Interfaces in order to publish and to retrieve patterns and models.

The principal classes of the System and software Artifact Repository Meta-
model (SARM) are described with Ecore notations in Fig. 4. The following part
depicts more detailed the meaning of the principal concepts used to structure
the repository:

– SarmRepository. Is the core element used to define a repository.
– SeArtifact. We define a modeling artifact as a formalized piece of knowl-

edge for understanding and communicating ideas produced and/or consumed
during certain activities of system engineering processes. The modeling ar-
tifact may be classified in accordance with engineering processes levels.



80 B. Hamid et al.

S
a
rm
In
terra

ctio
n
In
terfa

ce
S
a
rm
C
o
m
p
a
rtm

en
t

S
eLifecycleS

ta
g
ea
b
le

F
ig
.
4
.
R
ep

o
sito

ry
S
p
ecifi

ca
tio

n
L
a
n
g
u
a
g
e
-O

v
erv

iew



MDE for Trusted Systems Based on Security and Dependability Patterns 81

An SeLifecycleStage defines an enumeration to the development life-cycle
stage in which the artifact will be used. In our study, we focus on S&D
pattern models. In this context, we use the pattern classification of Riehle
and Buschmann [4,19].

– SarmCompartment. Is used for the categorization of the stored artifacts. We
have identified two main kinds of compartments: (1) SarmSpecLangCom-
partment to store the specification languages (SeSpecLang) of the modeling
artefacts (SEPM), and (2) SarmArtefactCompartment to store the modeling
artefacts (S&D pattern models).

– SeReference. This link will be used to specify the relation between patterns
with regard to domain and software life-cycle stage in the form of a pattern
language. For instance, a pattern at a certain software life-cycle stage uses
another pattern at the same/or at different software life-cycle stage. The
enumeration SeReferenceKind contains examples of these links.

– SarmStorable. Is used to define a set of characteristics of the modeling ar-
tifacts, mainly those related to its storage. We can define: RepositoryID,
StorageDate, SizeByte, etc. . . . In order to keep the structure of pattern lan-
guage as the set of patterns and their links for a certain domain, the concept
SarmStorable includes a list of references (SarmReference).

4.2 Pattern Specification Language (SEPM)

The System and software Pattern Metamodel (SEPM), as depicted in Fig. 5, is
a metamodel defining a new formalism for describing patterns. Note, however,
that our proposition is inspired from GoF [20] specification, which we deeply
refined in order to fit with the non-functional needs. The principal classes of the
metamodel are described with Ecore notations in Fig. 5. In the following, we
detail the meaning of principal concepts used to edit a pattern.

– SepmPattern. This block represents a modular part of a system representing
a solution of a recurrent problem. It specializes the conceptual SeArtifact.
An SepmPattern is defined by its behavior and by its provided and required
interfaces. An SepmPattern may be manifested by one or more artifacts,
and in turn, that artifact may be deployed to its execution environment.
The SepmPattern has attributes [20] to describe the related recurring design
problem that arises in specific design contexts.

– SepmInternalStructure. Constitutes the implementation of the solution pro-
posed by the pattern. Thus the InternalStructure can be considered as a
white box which exposes the details of the pattern.

– SepmInterface. A pattern interacts with its environment with Interfaces which
are composed of Operations. We consider two kinds of interface:
(1) SepmExternalInterface for specifying interactions with regard to the inte-
gration of a pattern into an application model or to compose patterns, and
(2) SepmTechnicalInterface for specifying interactions with the platform.
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Fig. 5. Pattern Specification Language -Overview

– SepmProperty. is a particular characteristic of a pattern related to the con-
cern dealing with and dedicated to capture its intent in a certain way. Each
property of a pattern will be validated at the time of the pattern valida-
tion process and the assumptions used will be compiled as a set of con-
straints which will have to be satisfied by the domain application. Security
attributes [21] such as Confidentiality and Availability are categories of S&D
properties.

5 MDE Tool-Chain

Once these specification languages have been defined, it is possible to develop
a repository in which modeling artifacts specifications and instances are stored.
There are several Domain Specific Modeling Languages (DSML) [7] environments
available. In our context, we use the Eclipse Modeling Framework (EMF) [22]
open-source platform. Note, however, that our vision is not limited to the EMF
platform. Using the proposed metamodels, ongoing experimental work is done
under the hood of semcomdt3 (IRIT’s editors and platform as Eclipse plug-ins),
testing the features of:

(1) Gaya G for the repository structure and API conforming to SARM,
(2) Arabion(A) for specifying patterns and documentation generation conform-
ing to SEPM, and
(3) Deposit and Retrieval for repository access.

3 http://www.semcomdt.org

http://www.semcomdt.org
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Fig. 6. Repository Implementation

5.1 Repository - Gaya

The implementation of Gaya is based on the SARM metamodel and the reposi-
tory of S&D pattern structure presented in Sect. 4 on one hand and on Eclipse
CDO4 on the other hand. Repository management is provided via the Gaya tool.
Gaya offers repository management with facilities such as pattern lookup, re-
moval, sorting, exporting and categorization. We offered these facilities through
a set of dialogs. The main dialog is shown in Fig. 6.

5.2 Pattern Designer - Arabion

The pattern designer called Arabion is an EMF tree-based editor for specifying
S&D patterns. The design environment is presented in Fig. 7. There is a design
palette on the right, a tree view of the project on the left and the main design
view in the middle. The design palette is updated regarding the development
stage to display suitable design entities for building patterns. These entities are
technical interfaces and resource properties.

In our example, the SecurityCommunicationLayer@DetailedDesign uses the
HMAC mechanism. The call of the method send() of the Sender calls internally
generateAH() to prepare an appropriate authentication header for the data.

4 http://www.eclipse.org/cdo/

http://www.eclipse.org/cdo/
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Once this header is appended to the message, it is sent by the communication
channel. On the Receivers side, the call of the method receive() returns the
last received message from the sender. This message is checked by the method
checkAH(). If the message is correct, it is passed to the application, in any other
case it is discarded. The operations generateAH() and checkAH() are provided
through an internal interface called HMAC Computation.

Moreover, Arabion includes conformance validation tool used to guarantee
design validity conforming to the pattern metamodel. In our example, the Se-
cure Communication pattern model can be validated, where a violation of a
metamodel construct will yield an error message.

5.3 Pattern Deposit

Pattern publication is triggered by running the Publication tool. When executed,
the pattern will be stored in the repository following the pattern designer’s
profile (compartment). The tool uses the Gaya4Pattern API, for publishing to
the repository. Note, however that the deposit tool requires the execution of the
validation tool to guarantee design validity.

5.4 Pattern Retrieval

The tool allows the search/selection of patterns which are used during a system
development process. For instance, as shown in the right part of Fig. 8, the tool
provides a set of facilities to help the selection of appropriate patterns. The re-
sults are displayed in search results tree as System, Architecture, Design and
Implementation patterns. For example, the right part of Fig. 8 shows a pattern
at design level targeting the Confidentiality S&D property5, named communi-
cation and has a keyword secure. The tool includes features for exportation
and instantiation. In our case, we select the Secure Communication pattern for
instantiation (see the left part of Fig. 8).

6 Application of the PBSE Methodology to a Case Study

To illustrate our approach we have an industry control application from the
railway domain called Safe4Rail acting as a TERESA case study. Our goal is
also to assess whether the PBSE addresses the practical needs when modeling
the trusted embedded system application of a realistic system and whether it
can provide significant benefits in terms of reducing modeling effort and error-
proneness.

The application is in charge of the emergency brake of a railway system. Its
mission is to check whether the brake needs to be activated. Their implementa-
tion mainly depends on the safety level to meet, but also on the type and the

5 In our case, this means that the pattern has a property with a confidentiality
category type.
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Fig. 8. Pattern Instantiation

number of sensors and actuators involved. These considerations greatly influence
how each product is to be implemented (e.g, the number of channel redundancy,
the diversity of the channels,. . . ). In this case, SIL4 level is targeted. A number of
design techniques from S&D are used, namely redundancies, voting, diagnostics,
secure and safe communications. A very strict engineering process was followed,
where specific activities were performed in order to achieve certification using
the presented approach.

6.1 A Model-Based Repository of S&D Patterns Structure Model

The railway domain analysis led to identification of a set of patterns for the
Safe4Rail application. We used Arabion to design these patterns and then the
Deposit tool to store them in the repository. Figure 9 depicts an overview of
the railway S&D pattern language.
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Fig. 9. Railway Pattern Language - Overview

6.2 System Developer View Point: Reuse of Existing Artifacts

Here, we examine the process flow for the example following the design process
of Sect. 3.4. Once the requirements are properly captured and imported into the
development environment 6, the process can be summarized with the following
steps:

Activity A2: Develop architecture model of a system. The analysis of
the requirements (A3) results in the needs of an architectural pattern for redun-
dancy. Thus, activity A4 is the instantiation of S&D patterns from the repository
using the repository access tools. The running of the Retrieval tool using key-
words Redundancy and SIL4, suggests to use a TMR pattern at architecture
level. In addition, some diagnosis techniques imposed by the railway standard
are suggested, thanks to the repository organization for the railway application
domain (see Fig. 9). Finally, at architecture level, we will integrate (A5) the
following patterns:

(1) TMR (searched by the System Architect),
(2) Diagnosis techniques (suggested by the tool) and
(3) Sensor Diversity (searched by the System Architect).

Activity A7: Develop design model of a system. This activity involves
the development of the design model of the system. The analysis of the require-
ments (A8), the architecture model and the identified architectural patterns will
help during the instantiation activity (A9) of the design phase. Based on the se-
lected patterns, the repository may suggest related or complementary patterns.

6 Rhapsody is used by Ikerlan Center engineers.
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For instance, if the TMR has been integrated, the following patterns may be
proposed for the design model iteration: (1) Data Agreement, (2) Voter, (3)
Black Channel and (4) Clock Synchronization.

7 Assessment

This section provides a preliminary evaluation of the approach along TAM (Tech-
nology Acceptance Model) and concerns the methodology as well as the tools
(Arabion and Gaya). We have identified a set of measures to evaluate the usage
of the models and the user-friendliness of the tools. Eleven TERESA members
participated. The study was divided into three tasks. Before they started, a gen-
eral description of the aim of the study was given (30’). Some running examples
were introduced to them. After these two tasks, achieved during the TERESA
MDE workshop in Toulouse (April 2012), a 6-months evaluation was conducted.
All the subjects were already familiarized with MDE, S&D patterns and Eclipse.
The procedure includes four tasks: SEMCO plug-in installation, pattern devel-
opment, patterns instantiation and patterns integration.

We asked participants to give scores from 1 to 5 (5 is the best). We first
evaluated the perceived usefulness of the solution itself (items 1-4). Next, we
focus on the ease of the solution (items 5-6). We want also to measure the
compatibility of the solution with existing environments. (items 7-9). Finally,
we wanted to measure the willingness to use the approach in the future in the
related activities (items 10-12). These scores indicate the degree of satisfaction
of the users and provides a feedback to us in order to enhance our specification
languages and the tool suite. The following table depicts an overview of the
results of our experiment.

Item Mean St. Deviation

1. Design quality 3.5 0.4
2. Model completeness 4 0.3
3. Documentation and artifact generation readability 4 0.89
4. Effort spent on development 4.5 0.16

5. Model understandability 3.5 0.475
6. Effectiveness 3.5 0.6

7. Integration with other solutions 4 0.86
8. Standards compliance 4 0.2
9. Cost of adoption 3.5 0.48

10. Use the approach in the future 4.10 0.68
11. Exchange the approach in the future 3.60 0.56
12. Customize some of the proposed plug-ins in the future 3.60 0.76

Fig. 10. Satisfaction Results
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8 Conclusion

We proposed a methodology and an MDE tool-chain to support the specifications
and the packaging of a set of S&D patterns, in order to assist the developers of
trusted applications for resource constrained embedded systems.

First evidences indicate that users are satisfied with the notion of ‘model-
based repository of S&D patterns’. The approach paves the way to let users
define their own road-maps upon the PBSE methodology. First evaluations are
encouraging with 85% of the subjects being able to complete the tasks. However,
they also point out one of the main challenges: automatic search for the user to
derive those ‘S&D patterns’ from the requirements analysis. We plan to perform
additional case studies to evaluate both the expressiveness and usability of the
methodology, the DSLs and the tools. Our vision is for ‘S&D patterns’ to be
inferred from the browsing history of users built from a set of already developed
applications.
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Abstract. AVATAR is a real-time extension of SysML supported by
the TTool open-source toolkit. So far, formal verification of AVATAR
models has relied on reachability techniques that face a state explosion
problem. The paper explores a new avenue: applying structural analysis
to AVATAR models, so as to identify mutual exclusion situations. In
practice, TTool translates a subset of an AVATAR model into a Petri
net and solves an equation system built upon the incidence matrix of the
net. TTool implements a push-button approach and displays verification
results at the AVATAR model level. The approach is not restricted to
AVATAR and may be adapted to other UML profiles.

Keywords: Modeling, Model verification, Structural analysis, SysML,
Petri Nets, Invariants, Mutual exclusion.

1 Introduction

UML and SysML tools that implement formal verification of real-time systems
models commonly reuse reachability analysis techniques and therefore face the
state explosion problem [1]. Examples include Artisan Studio [2], SysML Com-
panion [3], OMEGA SysML [4], TOPCASED [5], and TTool [6]. The latest
release of TTool, which is addressed in the paper, contrasts with the afore-
mentioned tools by the static analysis it implements for AVATAR, a real-time
systems modeling language based on SysML. The paper indeed investigates static
analysis of AVATAR models and even focuses discussion on proving mutual
exclusion, for instance of shared resources.

The paper reuses the “invariant search” technique originally developed for Petri
nets. Unlike papers that propose to write invariants and to check themodel against
them, the paper generates invariants from the model. In practice, TTool trans-
lates an AVATAR model into a Petri net and solves an equation system built
upon the incidence matrix of the net. Then, TTool displays verification results at
the AVATAR model level. Also, usual questions regarding states in mutual exclu-
sion are asked at the AVATAR model level, not at the Petri net level, and mutual
exclusions results are directly given at the AVATAR model level.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 91–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The paper is organized as follows. Section 2 introduces the AVATAR model-
ing language and the TTool tool. Section 3 reminds the principles of invariant
search from a Petri net. Section 4 details how mutual exclusion situations can be
detected on AVATAR models. Section 5 presents a case study. Section 6 surveys
related work. Section 7 concludes the paper.

2 Avatar: A SysML Environment

2.1 AVATAR Diagrams and Method

The AVATAR language reuses all SysML diagrams, excepted the package di-
agram. In the early stages of the method associated with AVATAR, a require-
ment diagram organizes captured requirements in a tree-like structure that shows
their attributes, their interrelations and their connections with other elements
of the model.

A text diagram lists the modeling assumptions that apply to the system’s
environment and to the system itself. Incremental modeling starts with strong
assumptions that are progressively lowered.

As far as the AVATAR model is built up following an incremental approach,
part of the limitations associated with the original modeling assumptions will
progressively be removed from the list.

Analysis is use-case driven. A use-case diagram identifies the main functions
or services the system offers in relation with external actors. Scenarios (sequence
diagrams) and flowcharts (activity diagrams) document the use-cases. Sequence
diagrams handle synchronous/asynchronous communications, absolute dates and
time intervals. Activity diagrams depict basic actions, tests and loops.

An AVATAR design captures both architectural and behavioral
matters [7,8,9]. First, a block instance diagram depicts the architecture of the
system as a set of communicating block instances defined by their attributes,
methods, and input/output ports. Each block instance has a behavior defined
in terms of a finite state machine that supports most SysML state machine ele-
ments: input and output signals, variables, timers, time intervals on transitions,
enabling conditions and composite states. Examples of non supported elements
are history in composite states, and fork/join pseudo states.

The block instance diagram and its associated state machine diagrams have
a formal semantics expressed by translation to timed automata for safety proofs,
and to pi-calculus processes for security proofs. Design diagrams may be
simulated and formally verified from TTool.

2.2 TTool

The AVATAR language is wholly supported by the open software tool TTool [6]
developed for Linux, Windows and MacOS. The default installation of TTool
comes with a diagram editor and a simulator. TTool implements gateways to-
wards three tools that are developed by other laboratories : UPPAAL for the



Invariants and SysML Models 93

formal verification of the logical and temporal properties [10], ProVerif for the
formal verification of security properties [8,11], and SocLib for the virtual pro-
totyping of the software and hardware of real-time systems [9]. The simulator
enables step-by-step and random transition firing. All results are given at the
AVATAR level: simulation traces in the form of sequence diagrams and on-the-
model identification of the explored transitions. Similarly, the strong advantage
of TTool as far as formal verification is concerned is the user-friendliness of the
interface to UPPAAL. The user of TTool may indeed check for deadlock free-
dom, as well as for the reachability and liveness of actions and states, by mere
identification of the actions and states on the AVATAR model itself, with no
need for an inspection of the UPPAAL “code”. Further, there is not need for
writing logic formulae.

User friendliness - that is, not needing to know about underlying formal mod-
els and proof techniques - has also been a key concern in implementing the new
verification approach presented in the paper.

3 Petri Nets and Invariants

This section is a short reminder about Petri nets and P-invariants, that is
sufficient to understand our contribution. More information on Petri nets and
invariants may be found for example in [12,13,14].

3.1 Verification Techniques for Petri Nets

A Petri net is a bi-partite graph made up of places and transitions. The transition
firing policy and the way tokens move from place to place enable the representa-
tion of the operation semantics of systems modeled by Petri nets. More formally,
Petri nets have been defined as follows [12]:

Definition 1. Petri net
A Petri net is a 5-uple, PN = (P, T, F,W,M0) where:

– P = {p1, p2, . . . , pm} is a finite set of places,
– T = {t1, t2, . . . , tn} is a finite set of transitions,
– F ⊆ (P × T )

⋃
(T × P ) is a set of arcs (called “flow relation” in [12])

– W : F �→ {1, 2, 3, . . .} is a weight function,
– Mo : P �→ {0, 1, 2, . . .} is the initial marking.

By definition, P
⋂
T = ∅ and P

⋃
T 	= ∅.

In the paper, Petri nets are used to verify AVATAR models that may contain
data and time. Nevertheless, the paper restricts discussion to basic Petri nets,
as defined above: the limitations of our approach are discussed in section 4.
Similarly, the purpose of the paper is not to survey all the verification tech-
niques available for Petri Nets (see for example [12]), and the paper therefore
restricts discussion to structural analysis based on place invariants (also called
“P-invariants”).
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3.2 P-Invariants

P-invariants are defined from the Petri net incidence matrix. An incidence matrix
represents the various transitions of each place. Rows are used for places pi, and
columns for transitions tj . For example, the value vij at (pi, tj) means that vij
tokens are added (or removed if the value is negative) from pi whenever transition
ti is fired. More formally, an incidence matrix can be defined as follows [12]:

Definition 2. Incidence matrix
The incidence matrix of a Petri net PN with n transitions and m places is a

n×m matrix A = [aij ] of integers with aij = a+ij − a−ij where:

– a+ij = w(i, j) represents the weight of the arc from transition i to the output
place j,

– a−ij = w(j, i) represents the weight of the arc from the input place j to tran-
sition i.

Definition 3. P-invariants
P-invariants of a Petri net PN are usually defined as W .A = 0 with W being

a set of m weighted places of PN and A being the incidence matrix of PN .

Finally, a P-invariant models a set of places in which the total number of tokens
is constant in all reachable markings.

3.3 Algorithms for P-Invariants

Again, P-invariants are defined as W .A = 0. This set of equations can be solved
with the Farkas algorithm [15]. The latter allows to compute a set of minimal P-
invariants. The complexity of this algorithm is exponential, but heuristics have
been proposed in order to reduce this complexity [16].

3.4 Example

P-invariants can be used to prove mutual exclusion situations. Indeed, the mutual
exclusion between two subnets s1 and s2 of a Petri net PN can be proved by
showing that at most 1 token is present in the marking of places of s1 and s2.
Let us illustrate mutual exclusion with the following Petri net:

p1

p2

p0 p3

p4

t1

t2

t3

t4
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The transpose incidence matrix At of this Petri net is as follows:

At =

⎛

⎜
⎜
⎜
⎜
⎝

t1 t2 t3 t4

p0 −1 1 −1 1
p1 −1 1 0 0
p2 1 −1 0 0
p3 0 0 −1 1
p4 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎠

To resolve W .A = 0 (see Definition 3), the matrix is made triangular, as for
solving a linear system: lines can be exchanged, multiplied by a given inte-
ger value, or one line can be added to another one. Applying this to the A
matrix gives:

At
triangular =

⎛

⎜
⎜
⎜
⎜
⎝

t1 t2 t3 t4

p0 −1 1 −1 1
p4 0 0 1 −1
p0 + p2 + p4 0 0 0 0
p3 + p4 0 0 0 0
p1 + p2 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

Finally, the P-invariants are p1+p2, p3+p4, p0+p2+p4. Each of them represents
a mutual exclusion situation. For example p1 + p2 models the fact that either
there is a token in p1 or in p2. Similarly, p0 + p2 + p4 proves a mutual exclusion
between, in particular, places p2 and p4.

4 Our Approach

4.1 Overview

The main contribution of the paper is the computations of “SysML model in-
variants”. The latter are a list of SysML state machine elements of a model that
are all executed in mutual exclusion. We propose to compute these invariants
using P-invariants as defined in previous section. Fig. 1 depicts the approach
implemented in TTool. As stated before, there are already two possibilities for
proving properties from AVATAR design models. The first possibility is to gen-
erate a pi-calculus specification, and then using ProVerif for verifying security
properties. The second possibility is to generate timed automata that are taken
as input by UPPAAL to verify safety properties. The contribution based on
P-invariants is displayed at the right side of Fig. 1:

1. AVATAR design models to be studied are first translated to a Petri net.
The translation to a Petri Net could be applied to all Domain Specific Lan-
guages defined to model sets of entities communicating with synchronous or
asynchronous channels, and whose behavior is described with state machines.
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Fig. 1. P-invariants from SysML Models

2. The Petri net is in turn translated to an incidence matrix.
3. The Farkas algorithm [15] is used to compute the set of minimal invariants.
4. The invariants are filtered so as to keep only the relevant ones. Relevant

invariants are the ones that are not concerning only one block.
5. The invariants are finally back-traced to the SysML model under the form

of a SysML model invariant.

4.2 SysML Model Invariant

We have defined SysML model invariants for design diagrams only. A SysML
model invariant is a list of model elements of the state machines: it may refer
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to a message sending, a message reception or a state. Each element is translated
into a set of places and transitions, and so, for back-tracing P-invariants to
the SysML model, it is necessary to keep track of the correspondence between
operators and places/transitions. The translation of an AVATAR design to a
Petri net is now further detailed.

4.3 AVATAR Design Model Translation to Petri Nets

Again, an AVATAR model is made up, on the one hand, of the definition the
architecture in terms of blocks and communication between blocks (synchronous,
asynchronous), and on the other hand, of one state machine per block. AVATAR
security-specific operators [8] in both architecture and behavioral diagrams are
totally ignored in this translation process.

Translation of State Machines. AVATAR states machines are built upon
the following operators: states, transitions (guards, actions on variables, time
constraints), timers (set, wait for expiration, reset), non-deterministic choices,
and communication operators (message sending, message receiving). Let us
investigate the basics of the translation for all of them.

– States. Each state is translated as one place.

– Transitions. Transitions are constrained with time delays and Boolean
guards. Both constraints are ignored by our translation process since the
type of Petri nets we rely on does not support time nor variables. Similarly,
actions on variables inside transitions are ignored. Finally, transitions are
translated into a Petri net transition.

– Timers. Since time constraints cannot be represented in the Petri nets we
rely on, timers are ignored.

– Non-deterministic choices. Each of them is translated to exactly one
place.

– Communication operators. Their translation is of utmost importance
since they model the synchronization between tasks. Their translation is the
most complex one and is further explained in next subsection.

Finally, the translation process ignores time constraints and variables, which
means the translation to Petri nets only takes into account block to block com-
munications and state to state transitions as described by the state machines
of the blocks. We now explain how AVATAR synchronous and asynchronous
communications are translated.

Translation of Synchronous Communications between Blocks. Syn-
chronous channels are declared at SysML block diagram levels. A synchronous
channel can apply to several blocks. The translation of a given synchronous
communication channel ch is a two-step process:
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Fig. 2. Translating synchronous communications: step 1

Fig. 3. Translating synchronous communications: step 2

1. For each communication operator c (sending in ch, receiving from ch) of
all state machines, two places are generated: pcb models the waiting for the
synchronization, (“b” means before) and pca (“a” means after) models the
situation after synchronization occurrence. For example, Fig. 2 represents
three communications involving the same channel msg. Thus, for each op-
erator of a design involving msg (one sending operator and two receiving
operators) two corresponding places are created.

2. For possible synchronization of ch, i.e., for each possible couple csr (sending,
receiving) of ch, we do the following: We create a new transition tcsr with
two incoming edges from the pcb places of sending and receiving, and two
outgoing edges from tcsr to the after-synchronization places pca of the sender
and the receiver. Figure 3 depicts how the places generated in the first step
(see Fig. 2) are linked together through two transitions modeling the two
possible synchronizations.
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TranslationofAsynchronousCommunicationsbetweenBlocks. AVATAR
asynchronous communication is based on a finite FIFO, with two different writing
policies:

1. Writers are blocked when the FIFO is full.
2. Writers are not blocked when the FIFO is full, that is, an element of the

FIFO is considered to be removed whenever a write operation in a full FIFO
is performed.

The two policies are translated as follows. For the first one (writers are blocked),
the main idea is to have a place containing n tokens, with n being the maximum
capacity of the FIFO (see Fig. 4). Then, one token is moved to another place
when a write operation is performed, and one token is moved back to its initial
location whenever a read operation occurs. Thus, write and read operations are
blocked when the FIFO is full or empty, respectively.

The second FIFO policy is translated quite similarly to the previous one
(see Fig. 5): the main difference relies in an additional transition that is used
whenever the FIFO is full so as to “unblock” the writer.

Fig. 4. Translating asynchronous blocking communications

Fig. 5. Translating asynchronous non-blocking communications
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5 Case Study

The objective of this case study is twofold. First, it intends to demonstrate the
effectiveness of P-invariants to identify mutual exclusion situations in SysML
diagrams. Second, it illustrates how P-invariants have been integrated in TTool
to facilitate their usage.

5.1 Description of the System: A Microwave Oven

The microwave can be started using a button, or a remote control. Whenever the
door is opened, the magnetron must be turned off (safety constraint). Also, the
remote control must be secured, that is, a remote control must be attached to
only one specific oven (authenticity constraint), and messages sent from the re-
mote control must not be disclosed (confidentiality constraint). Finally, the oven
model shall satisfy both safety and security constraints. Yet, security matters
are out-of-scope of the paper, but have been explained in [8].

5.2 Design

The design is made upon several types of blocks and elements (see Fig. 6):

– A main block named “RemotelyControlledMicrowave” contains all other
blocks modeling the system: the remote control, and the microwave oven
itself composed of a wireless interface, a magnetron, a door, a bell and a
control panel. Each block declares attributes, methods and signals.

– The declaration of two data types (Key, Message) at the lower left part of
the diagram.

– The declaration of security-related constraints and properties in the note
located at the top of the diagram.

– The declaration of communication channels between blocks. Ports filled in
black represent synchronous communication whereas ports filled in white
represent asynchronous communications. Signals and ports can be used by
the block declaring them, and by the blocks it contains. For example, all
blocks may use the asynchronous channels connecting “RemotelyControlled-
Microwave” to itself.

– The declaration of an observer whose purpose is explained hereafter.

5.3 Formal Verification of Safety Properties

One safety property is at stake in this system: “the magnetron must be off
whenever the door is opened”.

A first way to prove this property in TTool is the usual way to do: adding an
observer in the model (see Fig. 6 “ObserverProp1” block). The latter contains
an “error” state whose reachability can be studied directly from TTool using
UPPAAL. Of course, this technique requires to “execute” the model, and explore
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Fig. 6. AVATAR block diagram of the microwave system

all its branches to be certain that none of them contains that “error” action.
A second way to do relies on P-invariants. TTool computes model invariants.
Once computed, invariants are listed on the left part of the main window of TTool
(see Fig. 7). The user of TTool may select one invariant. Then, all graphical
elements of that invariant are underlined with an “inv” annotation (see the
circle in Fig. 7), making it very easy to parse all elements of each invariant. All
elements of the same invariant are mutually exclusive.

From invariants, TTool offers another nice graphical way to visualize mu-
tual exclusive situations: putting the mouse on a given state displays the list
of all states that are mutually exclusive with the selected one. For example,
the “DoorIsOpened” state in the Door block (see Fig. 8), no state in mutual
exclusion could be identified. Indeed, in a first model, it is possible to have the
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Fig. 7. Invariants as displayed in TTool

door opened while the magnetron is on. We have therefore modified the model
as follows: we added a lock on the door, i.e., when the user wishes to open the
door, the microwave first turns off the magnetron before releasing a lock on the
door. With this model, the “DoorIsOpened” state is mutually exclusive with
the state “Running” of Magnetron, see Fig. 9, which proves that the magnetron
is off whenever the door is opened.

5.4 Discussion

Identifying mutual exclusion situations has now become a piece of cake in TTool
thanks to the invariants. Heuristics we have defined and implemented - that
are not detailed in the paper - make it possible to compute invariants in a few
seconds on the most complex models we have made with AVATAR. This is in
particular the case for an automotive application published in [9], and developed
in the scope of the EVITA European project [17].

Yet, one must be aware of the main current limitation: not all model elements
are taken into account to compute invariants, as explained in section 4. In partic-
ular, time constraints and variables are not considered in the translation process.
In other words, invariants are computed for a reduced model that contains more
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Fig. 8. Mutual exclusions of the
state “DoorIsOpened” of the Door
block (first version)

Fig. 9. Mutual exclusions of the state
“DoorIsOpened” of the Door block (second
version)

traces than the original model. And so, two states identified as mutually exclusive
by invariants are really mutually exclusive ... but two states not identified as
mutually exclusive might still be mutually exclusive. To address that issue, TTool
puts a warning textnote (“Mutual exclusion could not be studied”) next to the
states for which the mutual exclusion could not be proved with invariants.

Last, but not least, the AVATAR-to-Petri Net transformation has been pro-
grammed in an ad-hoc manner. It could be interesting to describe this
transformation with a model transformation language.

6 Related Work

Real-Time Dialects of SysML. The System Modeling Language [18] is a
UML profile [19] that may be tailored in turn to fit in with an application do-
main. Given the concept of “profile of profile” has not been defined by the UML
standard, a tailored version of SysML may be termed as a “SysML dialect”. Ex-
amples of such dialects have been defined for real-time systems. For example, [20]
suggests to simplify SysML and to formalize communication ports.AVATAR,
which is the subject of the paper, ignores continuous flows and merges the block
definition and internal block definition diagrams into one block instance diagram.
AVATAR provides a semantics to most SysML state machine elements.

SysML Tools. A survey of the literature indicates that SysML tools that target
real-time systems have been developed on top of UML tools in the form of SysML
add-ons that reuse the capacity of the UML tool to translate a high level model
into a formal model that may cater a formal verification tool.

– [21] uses Rhapsoldy and timed automata to formally verify the landing gear
of a military aircraft.

– Artisan Studio [2] associates parametric diagrams with solvers such as
Matlab or Excel.
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– SysMLcompanion [3] translates a SysML model into a VHDL-AMS one.
– OMEGA SysML [4] translate a SysML model into a private intermediate

form: IF.
– TOPCASED [5] also translates a SysML model into a private intermediate

form: FIACRE.
– TTool [6], which is the subject of the paper, translates an AVATAR model

into a timed automata, a pi-calculus specification or a Petri for temporal
property verification, security flaw detection, and invariant search, respec-
tively. What makes TTool really user-friendly for people not familiar with
formal verification and formal methods in general, is the way the tool drives
formal verification at the SysML model level and displays results at the
SysML level too. The user of TTool is indeed not obliged to write logic for-
mula to achieve formal verification. Nor he or she is obliged to inspect formal
code to understand verification results.

Petri Nets and Invariants. Invariant search was introduced several decades
ago for basic Petri nets. [22] reports a successful experience in applying invariant
search to demonstrate token unicity on a local area network. The techniques is
still implemented by Petri net tools such as TINA [23]. It has also been extended
to search invariants in colored Petri nets [24] .

7 Conclusion

SysML tools that implement reachability techniques face the state explosion
problem as far as complex real-time systems verification is at stake. So far,
the open-source toolkit TTool has fallen in that category, for it translates a
SysML/AVATAR model into timed automata, and model-check the latter using
UPPAAL.

By contrast, the paper investigates formal verification of SysML/AVATAR
models using a structural approach that does not require generating the state
space of the model. The idea is to translate an AVATAR model into a Petri
net and to search for invariants by solving an equation system derived from the
incidence matrix of the Petri net. TTool implements invariant search algorithms
and displays results at the SysML level. It also enables the designer to look for
mutually exclusive actions or states in the SysML model. The user-friendliness
added to the invariant interpretation phase is a real added value of the tool.

The overall contribution could be adapted to other UML and SysML environ-
ments structuring systems with classes / blocks and state machine diagrams.

An education case study of modeling a microwave oven has shown that in-
variant search usefully complements model checking. Risks of starting the oven
before the door is actually closes have been revealed by invariant search only,
and a handshake procedure has been added to the model.
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Abstract. A plethora of theoretical results are available which make
possible the use of dynamic analysis and model-checking for software
and system models expressed in high-level modeling languages like UML,
SDL or AADL. Their usage is hindered by the complexity of information
processing demanded from the modeler in order to apply them and to
effectively exploit their results. Our thesis is that by improving the vi-
sual presentation of the analysis results, their exploitation can be highly
improved. To support this thesis, we define a trace analysis approach
based on the extraction of high-level semantics events from the low-level
output of a simulation or model-checking tool. This extraction offers
the basis for new types of scenario visualizations, improving scenario
understanding and exploration. This approach was implemented in our
UML/SysML analyzer and was validated in a controlled experiment that
shows a significant increase in the usability of our tool, both in terms of
task performance speed and in terms of user satisfaction.

1 Introduction

A plethora of theoretical results are available which make possible the use of
dynamic analysis and model-checking for software and system models expressed
in high-level modeling languages UML [1], SDL [2] or AADL [3]. These results
have the virtue of allowing reasoning at the level of models instead of code,
making possible early verification and validation, while taking advantage of the
abstract nature of modeling languages. Unfortunately, the use of these advanced
techniques is not as widespread as their capabilities could justify. One reason
for this is that such techniques are often inaccessible to modelers with a basic
software engineer training, as it demands advanced knowledge of these techniques
and a high investment in learning the specificities of tools in order to apply them
and to effectively exploit their results. Our thesis is that by improving the visual
presentation of the analysis results, their exploitation by regular users can be
highly improved. To support this thesis, we defined a trace analysis approach
and we integrated it in Metaviz, a model-driven framework for simulation trace
visualization introduced earlier in [4].

The typical functioning of a model-based formal analysis tool, consists in
mapping the semantics of the high-level modeling language into a simpler lan-
guage, more well-suited for formal analysis. Most of the time this language has

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 107–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



108 E.A. Aboussoror, Il. Ober, and Iu. Ober

a sound formal semantics that allows reasoning on the model and on its prop-
erties, using analysis tools. It is the case of vUML [5] that uses Promela [6], of
IFx-OMEGA [7], that uses IF [8], etc. This change of context is in general not
supported by a bi-directional mapping to and from the formal language, since the
goal is to represent a complex modeling language with a limited set of primitives
available in the formal language. Thus, the structure of a model may be very
different between the two levels, and analysis results such as execution traces
obtained from the lower-level model may be hard to interpret by a user whose
knowledge is limited to the upper-level language and model. The trace analy-
sis method is based on the extraction of high-level semantics events from basic
events of the underlying semantics. It offers the basis for new types of scenario
visualizations, improving the model execution understanding and exploration.

In order to validate these assertions we set up a controlled experiment that
shows a significant increase in our model checking tool usability, both in terms
of task performance speed and in terms of user satisfaction.

The rest of this paper is organized as follows: we start by an overview of
existing methods for executable UML/SysML analysis, and by discussing why
exploiting analysis results is challenging. Then we present the typical analysis
tool integration pattern and finally describe our approach for extending the
verification platform with trace analysis support. The evaluation of the new tool
is detailed and discussed in Section 3.

1.1 Translational Semantics Approaches to Model Analysis

To be useful (not only descriptive) models need to have a well defined semantics.
Among other advantages, formal definition of semantics provides the possibility
to do analysis earlier in the design process. For example non-functional properties
such as performance, schedulability or safety can be analyzed. For this purpose,
mature formalisms and associated analysis techniques and tools already exist
(Petri nets, queuing networks, Markov chains, etc.).

For Model Driven Engineering, the approach usually followed is to:
1. annotate the original models (e.g. UML [9]),
2. generate input artifacts for a formal analysis tool, and finally
3. perform analysis activities on the generated artifacts.

Target analysis formalisms can be process algebra, timed automata, queuing
networks etc. Some examples of tools working in this way are IFx-OMEGA[10],
vUML [5] or OPTIMUM [11].

Even if these model analysis techniques, called translational semantics ap-
proaches, are widely adopted in the industry they still suffer from limitations.
Translational semantics approaches to model analysis bring a new complexity
to the end user. The analysis results (e.g. model checking counterexamples) are
not easily understood by the domain user. This is due to the gap between the
two semantic levels: the original one and the target analysis formalism. Those
results necessitate expertise in the low level analysis semantics. To enable a us-
able approach to model analysis a translation of the low level results to a more
user friendly abstraction should take place in the process.
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Fig. 1. Generic approach for analysis results exploitation. The annotated model is
translated to a formal model for analysis. Results are then showed to the end user in
a visual interpreter.

1.2 General Schema for Analysis Tool Integration

Analyzing models is assessing some properties of them. For example UML offers
an extension mechanism, namely profiles that enable building a language to ex-
press non-functional properties. This approach offers a clear advantages like the
reuse of the tools and techniques available for UML. Two well known examples
are SPT and MARTE profiles. UML Profiles are integrated with analysis tools
using the basic architecture described in Fig. 1. In this architecture model trans-
formations are used to fill the gap between UML modeling technical space and
the analysis technical space. This semantic gap is at the heart of the diagnostic
problem described in the previous section1.1.

2 Extending a Verification Platform with Trace Analysis
Support

IFx-OMEGA1 platform integrates a compiler, a simulator and model-checker for
a rich subset of UML and SysML [7]. The toolset relies on the automatic trans-
lation of models into a lower-level language (named IF) based on asynchronous
communicating extended timed automata, and on the use of the extensive toolset
available for this language [8]. The validation acts on a UML or SysML model,
which is first translated to an IF model, and then compiled2 to an executable
program that will be used for automatic verification and interactive simulation.
1 http://www.irit.fr/ifx
2 In some cases, the model can be first simplified using automatic abstraction tech-

niques.

http://www.irit.fr/ifx
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Fig. 2. Generic architecture for extracting high-level events from analysis results using
a Result Converter. It is composed of an Event Adapter for generating relevant events
from an operational semantics and an Event Processor Agent that translates those
events to user level events.

The IFx validation approach has been applied to several industry-grade mod-
els such as Ariane-5 [12], MARS [13] and SGS [10], and has proven to be very
effective in discovering design issues. As an application to this approach we pro-
pose to extend the IFx-OMEGA platform. The extension transforms low-level
semantics analysis result. Figure 2 shows the architecture of this extension. The
automatic verification and the simulation activities generates execution scenarios
as analysis results. Those scenarios are expressed using the low-level semantics
used by the IF model checker. The extension we propose translates the relevant
information from the scenarios into a high-level like formalism syntax. To ex-
tend the IFx-OMEGA platform with result analysis facility we follow the generic
architecture proposed in [14] and depicted in Fig. 1.

2.1 Extracting Execution Events Using Model Differences

The generic architecture has to be refined to enable a flexible and extensible im-
plementation. We choose to take an event based approach to report the analysis
results. The design rationale behind this choice is the decoupling introduced by
this approach and its adequacy to our context. Indeed an event reports changes
in monitored states [15] and since we are in the context of translating UML
models to an operational semantics we have this notion of state changes within
the execution model. Those state changes are captured using a model difference
mechanism [16] and the difference model is then transformed into a set of events
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by an event generator. Those events report what has occurred in the analy-
sis results (e.g. state changes, message passing, . . . ). An example is shown in
Fig. 3. This figure shows an original trace on the left (an XML file loaded in an
tree-based view) alongside the extracted event. The event showed on the right
correspond to the computed difference between two configurations of the system
in the trace. In the example the difference between the system configurations
(from step 15 to 16) is a state change of the Model_EVC instance from Waiting
status to Started.

Fig. 3. Extracting execution events using model differences. State changes are captured
using a model difference mechanism, the difference model is transformed into a set of
events by an event generator.

2.2 Abstracting Execution Events to High-Level Semantics Events

Once the relevant execution events are extracted we have a clear view on what
has changed in the execution semantics. But still, we needed a translation step to
make the analysis results expressed in the high-level semantics. For this step we
use an Event Processor Agent [15] implemented as a model transformation from
low-level analysis results to a high-level set of events. Those events can be easily
understood by the user and embed relevant concepts from the high-level design
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model. High-level events can constitute a base for reporting the analysis results
directly into the user models or for animating a part of the original specification.
The two transformation rules in Listings 1.1 and 1.2 show an excerpt of the ATL
transformation that abstracts execution events to high level events. The first rule
transforms each IF process state change event into an OMEGA state enter event.
The second rule extracts OMEGA send events from IF enqueue events.

StateChangeEvt2StateEnterEvent extends TraceEvent2OmegaEvent {
from

sEvt : IFTraceEB ! StateChangeEvt
to

tEvt : OmegaTraceEB ! StateEnterEvent (
className <− sEvt . i n s t an c e . type ,
name <− sEvt . i n s t an c e . pid . name ,
stateName <− sEvt . newState . name ,
oldStateName <− sEvt . o ldStat e . name

)
}

Listing 1.1. ATL rule for extracting OMEGA object state entering events

rule EnqueueEvt2SendEvent extends TraceEvent2OmegaEvent {
from

sEvt : IFTraceEB ! EnqueueEvt
us ing {

mes : IFTraceEB ! Message = sEvt . messages −> f i r s t ( ) ;
}
to

tEvt : OmegaTraceEB ! SendEvent (
s i g n a l <− mes . signalType ,
by <− thisModule . p id2Object (mes . " from")
. . .

}

Listing 1.2. ATL rule for extracting OMEGA message sending events

2.3 Interpreting High-Level Semantics Events

After abstracting execution events we get a set of high-level semantics events.
High-level events gather state changes that can be easily understood by the user.
The last step in the proposed process is the visual interpretation of the analysis
results that is now transformed into high-level events. End user visualizations
has to be carefully designed to help the user grasping the event information
without visual effort. More on this point can be found in our previous work [4].
Figure 4 shows graphical rendering of OMEGA state enter event extracted from
IF process state change event.
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Fig. 4. Graphical rendering of high-level events. The Event Visual Interpreter executes
a model transformation to generate the input model for the visual renderer.

3 Evaluation

In order to assess the advantages and limitations of the new visualization, we
need to evaluate its usage. Several techniques can be used for such an evaluation.
Some of these are purely subjective, while others use an objective and quantita-
tive approach [17]. Moreover, evaluation techniques can be categorized accord-
ing to the stakeholders: techniques such as cognitive walk-through or heuristic
evaluation involve human factors experts, while observational or experimental
techniques rely on user participation.

The premier goal in our study is to make our model analysis tool more ac-
cessible to a wider audience. Today, the overwhelming majority of modelers are
not familiar with analysis techniques such as model checking. In order to assess
whether we have achieved our premier goal, we need to evaluate the approach on
a sample of users compliant with this profile. Therefore, due to its objective and
quantitative orientation, we decided to use a controlled experiment that involves
user participation. However, since this technique does not provide a detailed
user impression and satisfaction overview, we complement our validation with a
subjective approach, by means of a questionnaire technique based on the System
Usability Scale [18].
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3.1 Defining Formal Methods Usability

Before defining the hypothesis and designing an experiment, we need to under-
stand the notion of usability in the context of formal analysis techniques. The
ISO standard definition [19] for usability, defines it as:

“the extent to which a system, product or service can be used by
specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.”

To customize the usability definition in our context, we need to set its three
characteristics - effectiveness, efficiency and satisfaction - in the context of formal
methods:

– Effectiveness is the ability of users to understand, find and correct errors
reported by the analysis process.

– Efficiency is the time and cognitive effort needed to perform each of the
three above-mentioned tasks.

– Satisfaction is the subjective impression the users get after using the inte-
grated tool suite that supports the three task.

3.2 Hypotheses Formulation

As mentioned above, our goal is to increase analysis tools usability. To achieve
this goal, we propose to enhance tools with visualization techniques. Thus we
can formulate the following hypothesis:

H. Effectively supporting the user in understanding model analysis results,
will increase the analysis tool usability.

The notion of analysis tool usability was defined in the previous section. Based
on this, our hypothesis H can be further refined:

H1. Participants using the new tool extension will spent less time understand-
ing the trace.

H2. Participants using the new tool extension will have a better understanding
of the trace.

H3. Participants using the new tool extension will spent less time locating the
error in the trace.

H4. Participants using the new tool extension will locate the error in the trace
with more precision.

H5. Participants using the new tool extension will spent less time understand-
ing the error cause(s).

H6. Participants using the new tool extension will have better understanding
of the error cause(s).

These refined hypothesis will allow more insights into the experiment results.

3.3 Experiment Design

In this section we will go further with the experiment design, by defining several
of its characteristics. The terminology used in this section is the one defined
in [20].
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Participants. Participants were chosen from Master and PhD students from
the University of Toulouse. The experiment was conducted with 10 subjects
distributed in two groups, the experimental group (group A in next sections)
and the control group (group B). All the participants were already familiar
with UML, two of them have already used a formal analysis tool, but none of
them has used ours. In order to assess their adequacy with the user population,
participants were asked to fill a questionnaire. The questionnaire has 7 parts and
12 questions such as education level, experience with modeling, and verification
techniques abilities. In the first group technical experience median is 4, mean
is 4,4 and standard deviation is 1.67. In the second group mean is 4.6 with a
median 4, the standard deviation is 1.52.

Experimental Unit. Participants were asked to visualize the execution trace
of a small OMEGA UML model representing an Electronic Valve Controller.
A timed constraint was set on the model. The OMEGA model is then used as
input for the IF Model Checker. Since the model was intentionally violating
the constraint, the model checker generated a counterexample. The model was
built to get a representative counterexample of what a modeler would get from
using the IFx-OMEGA toolbox. Participants will explore this counterexample
and perform some well defined tasks.

Experimental Variable. It corresponds to the software product used by the
participant to explore the analysis results. We consider the Metaviz [4] tool being
the experimental unit. It offers support for IF traces exploration alongside with
elaborate visualizations. Figure 5 presents a screen shot of the trace analysis
support. The right panel contains the error trace browser, which is similar to
what is available in other analysis tools. The middle panel contains the trace
visualization feature that we added.

Factors. Also called independent variables, are those we are going to manipulate
in the participants environment to see how other variables (response variables)
are affected. Our experiment has the goal to analyze how a better support for the
users would affect their understanding of the model analysis results. Thus we run
the experiment with a two-level factor: Metaviz with elaborate trace visualization
support activated and deactivated. Consequently we have the following levels:

level 1: only basic Metaviz views are activated
level 2: advanced visualization is activated

Response Variables. They correspond to the experimental aspects impacted.
To investigate their quantitative values we have designed a set of user tasks dis-
tributed in three categories. Each category corresponding to a response variable.
The categories are related to the following cognitive tasks:
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– understanding the trace;
– locating the error;
– understanding the error’s cause and fixing the model.

For each category we assess two characteristics: the speed and the quality.

Tasks. The set of tasks each participant has to perform was designed to cover the
understanding of the trace, the error and its cause. Each participant was given a
set of 7 tasks to perform using the trace analysis tool. Additionally, the time spent
by each participant performing a task is monitored with an external stopwatch
application. We do not take into account the time spent by the participant
writing down the answers. The table 1 gives an overview of the tasks.

Table 1. Task per each cognitive category. Participants were asked to perform a set
of tasks that spans three cognitive task types.

Cognitive Types Tasks
Trace Understanding 1. What are the instances created during

this execution and at what step
2. What are the exchanged messages,
at what step and between which instances
3. At which step of the trace, the instance
Model_Valve enters the state Closed

Error Locating 4. Find in which step the property is
violated

Cause Understanding 5.Which diagram should be modified to
satisfy the property ?
6. Explain informally (in English) what
modification you want to do
7. Fix the error in the model (syntax is free).

3.4 Results

The goal of our experiment is to see whether extending an analysis tool with
the event-based visualization mechanism described previously would improve
analysis results exploitation. Figures 6 and 7 show the results for each task,
in terms of time and success rate. Participants that use the Metaviz extension
belong to the group A (experimental group) , while group B (control group)
corresponds to participants using the basic version of the tool (i.e. without the
Metaviz extension).

Time Spent in Each Task. Results for tasks T1 and T2 show that partic-
ipants in the group A perform 5 times faster than the group B participants.
For task T3 they perform 8 times faster, while for the last set of tasks T5
to T7 they perform 2 times faster. The overall unbalanced improvement rate is
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Fig. 6. Time (in secondes) to perform each task. Participants that use an elaborate
visualization perform tasks 4 times faster.
A: experimental group, uses an elaborate visualization
B: control group, uses a basic visualization

therefore of 400%. This important increase in task performance speed is due to
the cognitive nature of each task category. For instance, one can notice that the
experimental group group A was 8 times faster in performing the task T3. This
task is the most demanding in cognitive workload for the participants. Indeed, it
asks participants to find the step in the trace where a certain instance enters a
particular state. The participant has to recall the instance and state names while
he goes step by step through the whole trace. This is where we can see the power
of having a visualization that presents only what has changed in the trace. The
Metaviz visualizations focus on the state change of the relevant instance and filter
other irrelevant information. Figure 5 shows the basic visualization alongside the
elaborate one. The visual vocabulary used is highly intuitive and thus enabled
the control group to perform the task T3 8 times faster.

Quality. Concerning success rates, results revealed an increase of the par-
ticipant’s answers quality. Results for understanding the trace (task T1 to T3 )
show that understanding of the instances interactions (i.e. message passing) is
25% better. For locating the error (task T4 ) the improvement is about 9%. For
the last cognitive category, namely understanding the cause the improvement is
of 40%. Figure 7 shows the success rate for each task.
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Fig. 7. Success rate for each task.Participants that use an elaborate visualization pro-
duce task outputs of a better quality.
A: experimental group, uses an elaborate visualization
B: control group, uses a basic visualization

To complement our analysis we have run a questionnaire based evaluation.
This evaluation assessed the user satisfaction. For this purpose we relied on the
System Usability Scale test[18]. We have chosen this analysis method since it is
lightweight and reliable [21]. Results for user satisfaction are slightly higher for

Table 2. Statistical results by cognitive category. Results show means and Student’s
t hypothesis tests for each cognitive category of tasks.

Trace Error Cause
Understanding Understanding Understanding

(T1 to T3) (T4) (T5 to T7)
Success Timing Success Timing Success Timing

Group A 5 44.33 5 18 5 35
5 27.33 5 21 4.33 55.67
5 27 5 59 5 30.67
5 8.33 5 51 3.33 62.67
5 29.67 4 55 3.67 110

Group B 5 103 5 20 3 100
3.17 325 5 540 0 600
5 183.33 5 27 5 90.33
5 120.67 5 32 5 23.33

1.67 238 2 267 2.33 94.33
t 0.16 0.004 0.54 0.22 0.26 0.28
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the experimental group (group A) with 68% versus 61% for the control group
(group B). The results presented in table 2 show an increase of about 11% of
the user satisfaction.

3.5 Hypothesis Tests

The null hypothesis corresponding to each hypothesis formulated previously can
be summarized by there is no difference between participants that use the elabo-
rate visualization and those who use the basic one in performing the tasks from
the category CTx. Were CTx is one of the three cognitive task categories listed
in 1. As mentioned previously task performance is measured with the speed and
quality of three cognitive task types (i.e. understanding a trace, locating an error,
understanding its causes). As we describe in section 3.3 the standard deviation
can be considered equal and we can test the null hypothesis using the Student’s
t test. We applied a two-tailed Student’s t test to the six null hypothesis. The
results are showed in table 2. The experiment was run with five participants in
each group, that gives us 8 degrees of freedom and a value for t0.99 of 3,355.
All the values of t are under the value of t0.99, we can then reject the null hy-
pothesis. For the user satisfaction results showed in table 3 are also statistically
sound (t value of 0,7) and shows that the null hypothesis corresponding to user
satisfaction can also be rejected. Initial hypotheses are thus accepted, meaning
that effectively supporting the user in understanding analysis results increases
analysis tool usability.

Table 3. Usability tests using the System Usability Scale[18]. Results show an increase
of 11% in usability for the experimental group (group A). Results are statistically sound
according to the Student’s t test.

System Usability Scale
Group A 67.7
Group B 61.0

t 0.71

3.6 Threats to Validity

Threats related to the conclusion. We have used statistical test, namely Student’s
t test. Our samples has the same number of individuals and similar variances
which ensure the soundness of the test conclusions. Construct threats. The role
of the trace abstractions is to reduce the amount of data to a relevant set of
information for a specific user task, this avoid the cognitive overload. The vi-
sualization has a different role. It brings to the user these relevant information
in a domain oriented way, that is, in terms of concepts already known by the
user. No additional effort is needed from the user to understand the notations
and semantics of the visualization constructs (perception overload). The visu-
alization alone is not enough, this is why the control group (that uses a basic
visualization of the low-level traces) has the worst results. The huge amount of
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data gathered to the user in a basic view (without abstraction) is cognitively
demanding and time consuming. Internal threats : The statistics shown in the
section 3.3 ensures that there’s is no significant difference in the participants
technical level. External threats : While used with a small model, the technique
is more likely to accelerate user exploring and understanding for bigger models.
We think that for experts, the results may not be as significant as for users with
average technical background. But we should be careful of this generalization,
the expertise reversal effect as coined by Sweller [22] may arise. Thus, further
experiments should be conducted to assess the results for expert users.

4 Related Work

Early work in analyzing UML models like [8,9] set among others the foundations
of model-driven analysis. Recent work on the MARTE profile [11] introduces the
use of user feedback in an integrated MDE approach. Results of MARTE [23]
models analysis is used to annotate back the original user models. The RT-Simex
research project [24] tackles the problem of user feedback with an elaborate
user interface. This is very similar to our approach but the work focuses on
clock reconciliation between independent traces and no controlled experiment is
conducted to assess the effectiveness of the user feedback. In the work of [25] an
emphasis is put on the lack of user friendly interfaces in model checkers. They
effectively address the problem of understanding analysis results but directly at
the low level semantics. A broader view to the issue of designing SE notations
is addressed by Moody [26]. He emphasizes the lack of foundational work on the
syntax of software engineering visual notation. Combemale et al. adressed the
problem of extracting high-level traces from low-level executions in [27]. They
show how to extract high level trace from low level traces. They also assume
an existing execution model for the high-level formalism and editors. Our work
emphasize the importance and the effectiveness of the user feedback but go
further by validating the added value in a controlled experiment.

5 Conclusion and Future Work

Today’s integrated development environments offer many debugging facilities,
that allow the developer to follow closely the code execution, to debug it and
to understand it. While modeling languages aim at raising the level of abstrac-
tion in software development and could support much more powerful analysis
techniques, the tools existing to support them are still difficult to use [28]. Us-
ing languages such as UML, SysML, SDL, to model the software, performing
model-based analysis on these models and understanding the analysis results
is still a challenging task. Improving the existing tools and mechanisms for ex-
ploring and understanding model based analysis results is greatly needed for a
larger adoption of formal methods. This paper presents our contribution in this
direction. Our approach provides a semi-automatic technique to implement a
feedback mechanism in a SysML/UML translational semantics approach. Based
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on an existing SysML/UML tool that offers the possibility to perform verifica-
tion, we develop an advanced and flexible trace analysis support mechanism. As
described in this paper, this mechanism allows the analyst to reason at model
level on the model execution, in terms of easily understandable high-level events.
The pertinence of our approach is assessed through an evaluation, based on well
established evaluation mechanisms (Usability Scale System, ISO notion of us-
ability, etc). In order to perform such an evaluation, we needed to adapt the
notion of usability to the context of formal methods usability, and to adapt
the evaluation process to our setting. The goal of this experiment was to see
whether extending analysis tools with a well designed event-based visualization
would improve analysis results exploitation and the results are meeting our ex-
pectations. Several directions could be taken for future work. Beyond improving
the existing approach/toolset, we intend to add new visualization techniques,
based on specific tasks to be performed during the analysis (variable change
impact, queue size evolution, etc), to identify new kinds of user profile based
visualizations that may assist the user, depending on its level of expertise, to
perform new experiments with different user profiles, etc. We strongly believe
that by facilitating the access to analysis tools by regular users, the interest in
using modeling techniques could significantly increase and the much advertised
advantages of these techniques could finally get accessible to a larger panel of
users.
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Abstract. Modeling erroneous behavior of software components along
with normal behavior tends to be complex and hard to read or
modify. However, ignoring the erroneous behavior and error propagation
in models used for dependability analysis has a negative impact on the
dependability assessment accuracy. In this paper, we propose a frame-
work for automating dependability modeling and analysis that considers
component erroneous behavior. Particularly, the paper focuses on our
Component Erroneous Behavior Aspect Modeling approach (CeBAM),
which captures component erroneous behavior and error propagation.
We apply aspect-oriented modeling techniques to model erroneous be-
haviors separately from the normal behavior. The approach reduces the
model complexity and improves its readability and modifiability. In ad-
dition, we propose a profile to extend the UML protocol state machine
to capture both incoming and outgoing messages on components’ ports.
We automate the composition of normal and erroneous behavior by as-
pect weaving. This enables the next step: conformance verification be-
tween each component’s complete internal behavior and its protocol state
machines, as well as between component interfaces.

Keywords: erroneous behavior model, error propagation,
aspect-oriented modeling, conformance verification.

1 Introduction

Model Driven Development (MDD) is a promising approach for software devel-
opment that changes the focus from code to models. This change of focus facili-
tates also the analysis of different Non-Functional Properties (NFP) using formal
analysis models obtained by model transformations from the software models.
For instance, in this paper we are interested in the analysis of dependability
attributes (such as reliability and availability) using analysis models automati-
cally generated from software models extended with dependability annotations.
In [1] the authors survey the works on dependability modeling and analysis based
on UML and UML extensions for annotations. Another software development
paradigm of interest is Component Based Development (CBD), which applies
the “divide and conquer” principle to manage system complexity. Each com-
ponent is a unit of composition that interacts with other components through

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 124–143, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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predefined interfaces. CBD is a reuse-based approach that has an impact on the
development time and system dependability attributes.

Combining MDD and CBD is an appealing approach for the development of
real-time embedded systems, as it reduces the complexity, time and cost. In ad-
dition, MDD and CBD help to integrate dependability modeling and analysis
during the design phase. The quantitative results of these analyses will sup-
port the developer in taking the right decisions for building dependable systems.
Different approaches were proposed in literature to address reliability and avail-
ability modeling [1,2]. However, many existing approaches do not adequately
consider error propagation in predicting system reliability [3].

The long-term goal of our research is to propose a framework based on stan-
dard modeling languages (such as UML and QVT), which would help developers
to evaluate dependability attributes during a CBD + MDD process, taking into
consideration component erroneous behavior and error propagation. We believe
that including component erroneous behavior in dependability analysis and pre-
diction will help developers to take the right design decisions. For instance,
selecting proper fault tolerance mechanisms, placing error detection and using
suitable recovery approaches are examples of critical decisions taken in the de-
sign phase based on quantitative values. The findings of [4,5] support this belief,
since they show that error propagation may have significant impact on reliability
prediction. Thus, in our approach the evaluation of dependability attributes is
based on component behavior (normal and erroneous).

A software component has two views: internal and external. An internal view
represents component’s private properties realizing the provided services. An
external view shows the public properties of the component in terms of provided
and required interfaces. Modeling erroneous behavior of these views along with
normal behavior in one model tends to be complex and hard to read or modify.
Moreover, it is not easy to capture error propagation between components using
existing behavior models such as UML2 state machines. As a result, developers
often focus on the normal behavior of both views and tend to ignore the erroneous
behavior.

To overcome these difficulties of modeling erroneous behavior and error prop-
agation in CBD, we introduce the Component Erroneous Behavior Aspect Mod-
eling approach (CeBAM). It captures the component erroneous behavior sepa-
rately from the normal behavior. CeBAM uses aspect-oriented modeling [6] to
simplify modeling the erroneous behavior and to automate its composition with
the normal behavior.

CeBAM uses UML state machines to represent the component internal normal
behavior and extended protocol state machine for port and interface behavior.
Normally, UML protocol state machines capture only incoming messages, so we
defined a profile to capture both incoming and outgoing messages. Another UML
extension developed in this paper is an erroneous behavior profile to capture the
chain of dependability threats for the component internal behavior, as well as for
its ports and interfaces. In addition, this profile shows the error propagation from
the component internal behavior to its ports and further to other components.
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One of the CeBAM advantages is that it provides an easy and practical way to
model component erroneous behavior separately from the normal behavior, using
aspect-oriented modeling [6]. Indeed, this reduces the state machine complexity
and makes the model easy to read and maintain. In addition, the automated
composition of erroneous with normal behavior will be further used for: a) con-
formance verification between the internal behavior of each component and its
protocol state machines, and between components interfaces, and b) derivation
of dependability analysis model.

This paper is organized as follows. Section 2 presents our long-term objec-
tive to automate dependability modeling and analysis. In section 3 we explain
briefly the Emergency Monitoring System (EMS) case study used in this paper.
The CeBAM approach is introduced in section 4. Related work is discussed in
section 5. In the last section, we conclude and summarize our ongoing work.

2 Overview of Dependability Analysis Framework

The long-term objective of our research is to provide software developers with
automated techniques for architectural-based software dependability modeling
and prediction. This paper is the first step on the road toward such an objective.
Figure 1 illustrates the overall activities of our proposed framework in order to
provide context for the contribution of this paper and to put it into perspective.
We start with a component-based software architecture model that needs to be
evaluated in terms of reliability and availability. For the most important sce-
narios, we identify the involved components and the interaction between them.
Next, we build component behavioral models using CeBAM that considers er-
roneous behavior of the involved components. This model is also enriched with
dependability annotations using the DAM profile [7]. Note that we do not show
the dependability annotations in our case study because of the limited space.
Aspect oriented modeling (AOM) approach [6] is adopted to allow for more flex-
ibility in modeling erroneous behavior and to provide an automated composition
of the erroneous with the normal behavior.

Reasoning on behavioral compliance of a component-based software architec-
ture is required to validate the software architecture [8]. Thus, in our approach,
after composing the normal and erroneous behavioral models, we validate the
conformance in two stages. The first is conformance validation between com-
ponent internal behavior and its protocol state machines. A mismatch would
impact negatively the component reliability, since the internal behavior would
receive unexpected messages that cannot be handled. So, any detected mismatch
must be corrected. Second, we verify the compatibility between the components’
provided and required interfaces.

In the literature, different approaches are suggested to check for component
conformance by finding deadlocks in the formal model that is transformed from
the main software model [9,10]. Different formalisms may be used, either various
kinds of formal logic or of Petri nets. Since we are planning to use state-based
dependability analysis based on Petri Nets, similar to the approach in [11], we



Modeling Erroneous Behavior and Error Propagation for Dependability 127

Fig. 1. Overview of the proposed framework (Shaded activities are the focus of this
paper)

will also use a class of Petri Nets, namely Stochastic Reward Net (SRN) [12]
for conformance validation instead of a model checker. We chose SRN because
its marking dependency property helps in obtaining more compact models for
complex systems, which helps in limiting the size of the state space during the
analysis. Currently, we are working to automate the transformation of compo-
nent behavioral model to SRN in order to validate conformance and predict
reliability and availability as well.

Adding a fault tolerance mechanism may improve the system reliability, but
the effects are non-trivial and depend on the context [13]. As shown in Fig. 1,
our approach aims to provide developers with automated tools to assess the
reliability (availability) of different fault tolerance mechanisms applied to the
system under evaluation. By comparing the predicted results, a developer can
select the best design alternative.

Automation is one of the key features in our approach. We utilize Query
View Transformation (QVT) [14] to automate the composition of component
erroneous behavior with the normal behavior (based on aspects) and to gener-
ate SRN models for conformance checking. Also, the process of refactoring the
main architectural model by adding a selected fault tolerance mechanism from a
predefined collection of fault tolerance styles (see Fig. 1) can be automated with
the help of QVT model transformations. Moreover, automated model transfor-
mation will generate the SRN model used for state-based dependability analysis
for the architecture without and with fault tolerance mechanisms. Comparing
the results, the developer will be able to evaluate the effects of the selected fault
tolerance style on the overall system reliability and availability.

3 Case Study

Emergency Monitoring System (EMS) is the case study that will be used
throughout this paper. This case study was developed in [15] and our goal is
to improve the design by modeling the normal and erroneous behavior of each
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component. The erroneous behavior will capture any locally activated fault and
show how it propagates to the connected components through its ports.

The EMS is a distributed system. It consists of a central monitoring service,
operator presentation service and several distributed monitoring sensors. In ad-
dition, in some remote areas, a remote monitoring system is installed with its
sensors. All the remote systems and distributed sensors are reporting regularly
the current status of the external environment to the central monitoring service.
The monitoring service stores and updates the recent status and presents it to
the operator. As a result, the operator will have the updated status of each site
and, accordingly, he can take action if the emergency alarm is detected.

COMET methodology [15] was used in this case study. Figure 2(a) shows the
use case model and Fig. 2(b) the distributed component-based software archi-
tecture of EMS. Due to limited space, we select only one scenario called generate
alarm to illustrate our approach for modeling the component behavior. In this
scenario, three components are involved. Figure 2(c) shows the interaction be-
tween these components in case of generating an alarm. In general, component
interaction takes place either via method calls (synchronous) of provided and
required interfaces or via notification signals (asynchronous). According to [16],
if an internal fault is activated but not properly handled inside the component,
then this fault will end up in a failure, which will propagate to other components
that depend on it. For instance, in the selected scenario, if the AlarmService com-
ponent has failed due to an internal exception or hardware failure, the manifested
failure will be propagated to the monitoring sensor (see Fig. 2(d)). Moreover,
the detected emergency alarms cannot be reported to the operator since the core
component AlarmService is down.

4 Component Erroneous Behavioral Aspect Modeling
(CeBAM) Approach

A software component has two views: internal and external. The internal view
represents component’s private properties realizing the provided services. The
normal behavior of this view can be described using UML behavioral state ma-
chine (BSM) [17]. An external view shows the public properties of the component
in terms of provided and required interfaces. Interactions between components
are actually methods calls (synchronous) or exchanging notification messages
(asynchronous). Protocol state machine (PSM) can be attached to each inter-
face to describe the legal sequence of operations calls [17].

A fault may be activated inside a component and then propagated to the in-
terfaces and then to all dependent components if it is not handled internally or at
the component port. Moreover, each fault type may have a different propagation
path. In fact, modeling both the internal and external view of the component
erroneous behavior will help to improve the software design. Unfortunately, BSM
and PSM do not allow for an easy and practical way of modeling normal and
erroneous behavior, due to model complexity and a lack of ability to capture
error propagation.
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Fig. 3. Profiles and artifacts in CeBAM

In CeBAM, component behavior consists of normal and erroneous behavior
that describe both component interfaces, ports and internal behavior. In [1,2]
different approaches are presented for dependability modeling and analysis, and
we noticed that most of these approaches focus only on the normal behavior,
ignoring the erroneous behavior due to its complexity.

Our objective in this paper is to provide a practical solution to model complete
component behavior for the internal and external views, by considering erroneous
behavior and error propagation. The CeBAM approach is developed to realize
this objective. Figure 3 shows the new profiles and artifacts used in CeBAM.
For all defined profiles we followed the approach from [18], which suggests to
start with defining the domain model as a starting point and then mapping the
domain model concepts to the UML2.x meta-model, in order to identify the new
stereotypes and attributes.

In CeBAM the internal component behavior is modeled using BSM according
to the provided and required services. For instance, Fig. 4 shows the internal
normal behavior for a single service of AlarmService component in the case study.
Normal behavior of component ports or interfaces is modeled using extended
PSM (as described in section 4.1).

The ErroneousBehavior profile and AspectBSM are used together to model
the erroneous behavior (both internal and external views) separately from the
normal behavior as aspect models. Then we automate the composition of the
erroneous behavior with the normal behavior of both views (sections 4.2, 4.3
and 4.4). Since we consider also protocol state machines, we validate the confor-
mance between component behavior and its PSMs, as well as between compo-
nents’ interfaces (section 4.6).

In CeBAM we adopt the aspect oriented modeling approach [6] to model
component erroneous aspect. Actually, we consider erroneous behavior as a cross-
cutting concern that can be modeled separately and then we automate the com-
position with the base model (i.e., the normal behavior for both views). Using
this approach, a developer will not have to learn new concepts in order to model
the erroneous behavior with the dependability annotations. Additionally, there is
full flexibility to update or change any behavior separately, since the composition
of the complete behavior is automated.
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Fig. 4. Partial BSM of internal behavior of AlarmeSerivce Component

4.1 Extending Protocol State Machine

According to [17] a PSM is a specialized behavioral state machine defined in
the context of a classifier, that can be used to specify which operations of the
classifier can be called in which state and under which conditions. PSM is used
to describe only the legal usage of any classifier. PSM does not show any specific
behavioral implementation since actions are not allowed on transitions or in the
states. Actually, states in PSM do not have entry, exit, do activities. On the other
hand, composite state and concurrent regions are allowed, but history pseudo-
sates are not. (We are not using composite states or concurrent regions in this
paper).

A protocol transition captures the legal transition of the context classifier. It
has a pre-condition, a trigger, and a post-condition. Protocol transition shows
that the associated operation can be called under a specific condition (pre-
condition) and then after the complete execution the destination state can
be reached if the post condition is satisfied. Moreover, PSM inherits run-to-
completion semantics from BSM, i.e. the action on a transition is uninterrupt-
ible. This implies that no other event can be accepted during the transition. For
instance, if a fault is activated during the execution of the called operation, the
transition will not be completed. Additionally, nested calls cannot be captured.

Due to the restrictions applied to PSM, only unidirectional communications
can be captured [8,17]. For instance, in Fig. 2(d) we can use PSM to model the
communication of the provided interface connected to the AlarmService com-
ponent. In this case PSM can only capture incoming calls to that interface.
Moreover, for each interface we have to create a separate PSM since it can only
capture the communication on a single classifier.

In UML, a port is a property of a classifier [17]. A port can be associated with
a component (i.e., the UML classifier) to specify an interaction point between
the components and its environment and between component and its internal
parts. A combination of required and provided interfaces can be associated with
a port; thus, a port may specify provided services to other components as well
as required services. In the case study, we assume that each component has only
one port for interaction with the environment; thus, the external view of the
component is actually the port behavior.
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We can describe the external view of the component behavior by describing
its protocol state machine. As mentioned before, PSM can be used to precisely
capture that behavior, but it captures only a single direction (incoming) and
it does not allow recursive calls due to the run-to-completion semantics. To
overcome these limitations, we extend the PSM by introducing a new profile as
shown in Fig. 5. This profile will be used to model “extended” protocol state
machines. PortTransition stereotype is extending the ProtocolTransition meta-
class with different attributes.

Fig. 5. ExtendedPSM profile

In PortTransition we can capture the direction of each passed message, either
sent to an associated component or received from the environment. Sometimes
the PSM state changes because of an internal event.

In this profile we respect the run-to-completion semantics and we can show
atomic events. For each event in PortTransition we specify the direction (incom-
ing, outgoing and delegation) and the type of that event (operation call, notify
signals, receive return value from the called operation locally or externally and
complete execution signals). Moreover, we show the source and target component
associated with that event.

The AlarmService component of the EMS case study has two provided inter-
faces and one required interface. These interfaces are associated to a single port
(see Fig. 2(d). To describe the external view of the component, we use UML
and the ExtendedPSM profile to model the protocol state machine (see Fig. 6).
Initially, it receives incoming message from the monitoring sensor to execute one
of its provided services post(alarm). The post method is implemented by the
AlarmService component and therefore, different actions will be done internally,
for instance, storing the reported alarm and then notifying the operator. These
actions will change the state of the PSM, as precisely captured using the Ex-
tendedPSM profile. In Fig. 6, each transition of the alarm service PSM is atomic
and it has run-to-completion semantics. In addition, the direction and the source
of the messages are also captured.
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Fig. 6. Fragment of AlarmService normal behavior protocol state machine

4.2 Aspect Composition

We adopt AOM mechanism [6] to model separately component erroneous behav-
ior and then to compose it with the normal behavior. Figure 7 shows the domain
model for the proposed AspectBSM profile and Fig. 8 shows the actual profile
according to the domain model.

Fig. 7. Aspect domain model in erroneous behavior context

This profile is based on the main concepts of aspect-oriented modeling and
is similar to the approach from [19]. Aspect describes a crosscutting concern; in
our context, the aspect will be the erroneous behavior of both component views.
For each crosscutting behavior we have a pointCut, which is a condition of a
query that identifies the place(s) where the new behavior should be added in the
base model or which model element needs to be refactored. A candidate element
in the base model that corresponds to a pointCut is called joinPoint. In other
word, the pointCut will select one or more joinPoint where the new behavior
can be applied. In our approach, the pointCut will be an OCL query that selects
states or transitions. Note that we will not add any new stereotype in the base
model to identify the joinPoint. Advice is a new behavior introduced to the base
model at the joinPoint and it could be add or refactor advice.

As mentioned before, transitions in behavioral state machines have run-to-
completion semantics according to [17]. In some cases, the action associated
with a transition is an operation call. The operation must be executed success-
fully before entering the new state. However, during its execution, faults maybe
activated that will interrupt the transition. Our objective is to model any fault
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Fig. 8. AspectBSM profile

that may be activated during the transition, but at same time we want to re-
spect the run-to-completion semantics. To achieve that, we introduce a refactor
advice applied to the respective BSM transition. Before adding the erroneous
aspect of that operation we should introduce a new state called intermediate
state and a new transition called done. Figure 9 illustrates an example of the
refactor aspects applied to the internal behavior of Alarm Service component.

Fig. 9. Refactor aspect of processAlarm activity

For instance, processAlarm(alarm) is an operation executed as an effect of
the transition from the state Idle to PreparingAlarm in the base model (see
Fig. 4). First we identify the source and target states of that transition and
then we add a new state (called IntermediateState) reached from the source
state with the original transition, but without the call to the effect operation.
We move the processAlarm(alarm) operation to the newly introduced state as
a do activity. Finally, we add a new transition done from the IntermediateState
to the target state. This new transition represents the successful execution of
the transition action from the base model. In this way, we preserve the run-
to-completion semantics and we can add later an erroneous transition from the
IntermediateState.
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We use the refactor aspect only in BSM describing the internal behavior of
a component, but we do not need refactoring in the protocol state machines
developed with ExtendedPSM because all transitions are already atomic.

4.3 Modeling Component Erroneous Behavior

Different error states and failure modes can be identified for a single component.
Each failure may have a different propagation path. Our objective is to model the
error propagation between components separately as crosscutting concerns in or-
der to study how this propagation impacts the overall reliability and availability
of the system. We develop a new profile to model the component internal and ex-
ternal erroneous behavior, as well as the error propagation between components.
Figure 10 shows the profile stereotype and attributes. This profile captures the
two kinds of states and transitions: error, failure mode states and erroneous,
recovery transitions. For each transition type it depicts the direction, event, and
source operation and target operation. Using this profile we can model different
kinds of failure caused by software exceptions or hardware failures. In CeBAM
we use this profile and AspectBSM profile together to model erroneous internal
component behavior and PSM erroneous behavior as aspects, separately from
the normal behavior. This approach will allow for flexibility in the modeling of
erroneous behavior, creating models easy to read and modify.

Fig. 10. Erroneous Behavior profile

For instance, Fig. 11 (a) shows different errors and failure modes activated
internally in the AlarmService component. A local failure is activated because of
an internal exception occurring in processAlarm(alarm) method and an external
failure is propagated from OperatorPresentation component. The internal failure
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(a)

(b)

Fig. 11. Fragments of AlarmService erroneous behavior: (a) internal (a) external
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will be propagated to the component port and then to the connected component
causing another error and failure types according to [16]. In Fig. 11 (b) we notice
that the external failure is captured as well in the component port behavior and
propagated to the internal component behavior. The profiles in CeBAM were
designed to capture all required details described in [3,11,16] to model component
internal and external erroneous behavior.

4.4 Behavior Composition

We follow AOM [6] approach to compose both behaviors. Composition directives
are describing the sequence and the order in which aspects need to be composed
with the base model. For instance, in behavioral state machine of component
internal behavior refactor aspects will be processed and applied first before any
add aspects. Figure 12 shows fragments from the BSM and PSM for AlarmSer-
vice after composition. The states shaded in gray are erroneous states.

4.5 Guidelines for Using CeBAM

Modeling component behavior using CeBAM can be done in two phases. In
the first phase we just model the normal behavior of both component views
(internal and external). BSM will be used for the component internal normal
behavior (see Fig. 4) and extended PSM for the external view (see Fig. 6). The
second phase is focusing on modeling component erroneous behavior separately
using two profiles: AspectBSM and ErroneousBehavior profile. The outcome of
this phase is represented by two aspect models: one for the erroneous behavior
of the internal view and another for the external view. We may need a few
iterations to build these two models. First we capture the local failures and then
in the next iteration(s) we may have to add propagated failures that originated
in other components. The iterations will end when all errors/failures have been
“propagated”. In some cases we may need to create refactor aspects to preserve
the run-to-completion semantics of BSM transitions.

4.6 Components Behavior Conformance

A system is built from different component interacting with each other to ac-
complish specific scenarios. In UML 2 [17] conformance is considered, but the
definition of the conformance semantics is limited [8]. Several approaches in the
literature propose different solutions for checking conformance. For instance,
in [10] labeled Petri net are used to check the compatibility between component
interfaces. In [9] a model checker is used to automate conformance validation
between components PSM and its internal behavior in the context of UML-RT.
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(a)

(b)

Fig. 12. Fragments of AlarmService complete component behavior after composition:
(a) internal behavior, (b) external behavior

In our case we are working to address the conformance validation in two levels:
between required and provided interfaces and between protocol state machines
and internal component behavior. This conformance validation will be done for
the composed state machines, which capture both the normal and erroneous
behavior. In the first stage, we will automate the conformance validation between
internal component behavior and its ports to fix any incompatible behavior. In
the next stage we will check the conformance between components interfaces.

5 Related Work and Discussion

Different approaches can be found in literature for predicting the reliability and
availability of component based systems. The proposed approaches are classified
in [20] into states-based, path-based and additive models. We are following the
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state-based approach in our work. Our approach considers that erroneous be-
havior is an important part of the dependability assessment. It was inspired by
different works, such as [4,5,11,19,21]. In [19] a methodology for modeling system
robustness behavior using aspect-oriented modeling is proposed. The authors de-
fined an aspect profile for robustness behavior which inspired our definition of the
AspectBSM profile. However, we customized our profile for modeling component
erroneous behavior.

Some limitation of the UML behavioral and protocol state machines for cap-
turing component port behavior are identified in [8]. The author proposes a
Port State Machine (PoSM) to capture the interleaving operation calls on a
port, which is defined by modifying the UML meta-model, specializing some of
the meta-classes. PoSM focuses only on the operation calls between components
and does not capture other type of triggers, i.e. failure propagation and signals.
PoSM is not supported by current UML2 tools since the UML meta-model was
changed, and this is a major limitation for its applicability. Our approach is
addressing the same basic limitations of PSM, but we utilize the UML2 pro-
file mechanism for the required extensions, to make our approach supported by
existing UML tools.

A new development framework for dependability analysis was introduced
in [11] based on a new intermediate dependability-specific modeling language
CHESS ML. A component error model view, represented with a special kind of
state machine in CHESS ML, shows faults that can be activated internally or
propagated from other components. CHESS ML models are transformed into
Petri nets for state-based reliability analysis. Many differences can be identified
between our approach and the CHESS approach. First, in our case we do not
use an intermediate model and we plan to transform to Petri net directly from
the base model. Second, our approach considers the origin of the fault in the
normal behavior and uses composed state machines for conformance verification
and for generating the Petri nets models. Last but not least, we are following
the UML standard for our software models.

The importance of including error propagation in the reliability assessment
was identified in [4,5]. The work in [4] considers an error propagation probability
and proves the significant impact of error propagation in reliability predictions.
The approach in [5] takes into account the error propagation and error propaga-
tion path, but does not consider fault tolerance. In [3] a framework for compo-
sitional reasoning on the error model is proposed; a new error classification and
failure modes are introduced. The execution environment and component usage
profile are considered in [22]. The work in [13] studies the effects of software fault
tolerance mechanisms in varying architectural configurations in models built in
the Palladio Component Model (a non-standard software modeling language for
component-based systems). A framework for predicting component reliability
by studying component internal behavior is developed in [23], but it focuses on
internal components and ignores the error propagation.

The approach in [24] employs application blocks to represent application
functionalities and the internal behavior is described using activity diagrams.
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An application block may include an activity and be a part of another one.
External State Machine (ESM) and its extended version (EESM) are used to
model the UML pins behavior, which model the interaction between activities.
In our CeBAM approach we follow a component-based approach, using standard
UML components with ports and connectors to represent the system architec-
ture. The component internal behavior is modeled using state machines and we
extend the UML protocol state machine to describe the component port be-
havior according to the required and provided interfaces for both incoming and
outgoing messages. Moreover, in [24] External Reliability Contract (ERC) are
introduced to describe the failures during the communication between activities.
The ERCs are modeled separately and they are composed with EESMs using an
aspect-oriented modeling approach to reduce the modeling complexity. In Ce-
BAM we also use AOM for the same reasons. However, in CeBAM the erroneous
behavior will capture the source of failure inside a component and it shows how
it propagates and affects other connected components. In [24] a model checker is
used for formal verification, while in our case we are working on transforming the
UML model to Stochastic Reward Networks (SRN) [12] for both dependability
analysis and conformance checking.

The separation of concerns principle is applied in component-based architec-
tures to reduce the complexity and to improve the quality. This principle is
realized by separate protocol behaviors that describe the provided and required
component functionality. However, the challenge consists in the composition of
these separate protocol behaviors that may be interdependent. Moreover, in the
embedded real-time systems where safety is considered, the composition can be
even more complicated. This problem is addressed in [25], which provides an au-
tomated approach for synthesizing component behavior based on real-time coor-
dination pattern that describe the behavior of connected component interaction.
Each component participating in a coordination pattern has a role described by a
protocol statechart. In order to synthesize the component external behavior the
user needs to define a set of composition rules that explicitly describe the depen-
dencies of components roles. This approach was implemented in the FUJABA
Tool Suite [26]. The focus of this approach is on the external behavior of the
components. However, in our case we will consider the conformance between the
component internal behavior and all its ports, and will also check the compati-
bility between provided and required interfaces of the connected components.

WEAVER [27] is an Aspect-Oriented modeling tool developed by Motorola,
which uses Specification and Description Language (SDL) to model the behavior
due to its unambiguous semantics. WEAVER supports model execution, code
generation and dependencies between aspects.

The CHARMY framework [28] uses model-checking techniques for validat-
ing software architecture conformance. An UML-like notation is used and the
tool automates the validation. Static views show the component and connector
relationships, while dynamic views describe the internal component behavior.
The tool transforms these models into Promela code. To test a specific sce-
nario described by a sequence diagram showing the exchanged messages between
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components, the tool transforms the sequence diagram to Buchi Automata.
Both the Promela code and Buchi Automata will be passed to SPIN to identify
potential deadlocks.

6 Conclusions and Future Work

The paper introduces Component Erroneous Behavior Modeling (CeBAM), an
aspect-oriented approach which provides a practical solution for modeling com-
ponent erroneous behavior and error propagation. We illustrate, with the help
of a case study, how to apply aspect-oriented techniques to model the erroneous
behavior separately and then to compose automatically erroneous and normal
behavior for each component. CeBAM is a part of a larger framework aiming to
provide developers with automated tools for assessing the reliability (availability)
of different fault tolerance mechanisms applied to a system under development.
The composed state machines that are an outcome of CeBAM are used for con-
formance validation and for generating SRN models for dependability analysis.

We are working now on conformance validation of port behavior with internal
behavior. Moreover, we are in the process of developing QVT transformations
to generate automatically SRN analysis models from the software model. This
transformation will be used for conformance validation and dependability at-
tribute assessment. We are also investigating how to limit the state explosion
in the analysis model without affecting too much the reliability and availability
prediction results.
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Abstract. In this paper, we present how we created a Domain Specific
Language (DSL) dedicated to IP Multimedia Subsystem (IMS) at Eric-
sson. First, we introduce IMS and how developers are burdened by its
complexity when integrating it in their application. Then we describe
the principles we followed to create our new IMS DSL from its core in
the Scala language to its syntax. We then present: how we integrated the
IMS DSL into existing projects, how it can save time for developers, and
the readability of the IMS DSL syntax.

Keywords: Domain Specific Language, IP Multimedia System,
application development, industrial experience.

1 Introduction

The IP Multimedia Subsystem (IMS) relies on a complex architecture. The
whole system is made up of different components, each with a very specific
purpose, such as the Call Session Control Function (CSCF), which aggregates
several roles related to sessions (routing, registering, etc.), the Home Subscriber
Server (HSS) for managing user identities, authentication, subscription informa-
tion, etc., the Presence and Group Management (PGM) for handling presence
information about users and groups, and the Media Resource Function (MRF)
for mixing, selecting and converting media sources and playing announcements
and tones. These are essential components, but the IMS architecture contains
many more. Knowing them is important for a developer building an IMS based
application to understand the behavior of an IMS network and how to interact
with it.

The CSCF contains a proxy which serves as an entry point to IMS func-
tionalities. The client communicates with the proxy using the Session Initia-
tion Protocol (SIP). IMS also works with many other communication protocols,
such as the Session Description Protocol (SDP) for negotiating media proper-
ties during a SIP Invite request, the Message Session Relay Protocol (MSRP)
for transferring files as well as instant messaging, HTTP for updating presence
documents through the XML Configuration Access Protocol (XCAP), H.248 for
media mixing, and playing tones and announcements, etc. Thus, IMS application
developers have to learn the different processes to register with IMS, to publish
a presence document, to send an instant message to another user or to handle
media mixing between users, sending tones and announcements.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 144–162, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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All the necessary information about IMS in general, the specifics about the
CSCF, HSS, PGM and MRF nodes and details about the SIP, SDP, MSRP
and XCAP protocols is disseminated in multiple Internet Engineering Task
Force (IETF) Request for Comments (RFC), the standards defining internet
technologies [1]. The information about the HTTP and XML standards can
be found on the World Wide Web Consortium standards pages [2]. Finally the
information about the H.248 standard is published by the International Telecom-
munication Union (ITU) as a Recommendation [3]. Even for basic operations,
such as registering and subscribing, developers have to refer to several docu-
ments. This process is both time-consuming and frustrating for developers who
only want to use simple IMS functionalities in an application without the hassle
of learning IMS in fine detail. Facing a steep learning curve, developers must
immerse themselves in IMS and become experts in order to use it. In an indus-
trial context this situation usually leads to the need to establish large teams of
specialists covering the different areas of knowledge required to develop a given
functionality, hence it is a limiting factor to the spontaneous development of new
services by enthusiasts.

We begin this essay with an introduction to DSLs, and then explain our choice
of Scala for the implementation of our IMS DSL. Following this we discuss our
experience implementing four prototypes using the IMS DSL. Finally we present
the architecture and features of the IMS DSL and conclude our discussion.

2 DSL

A Domain Specific Language (DSL) [4,5,6,7,8] is simple and concise with the
expressive power focused on a particular problem domain. It is custom-built to
be very intuitive and fluent for a domain expert to use. It allows one to efficiently
and quickly build applications for that domain, thus reducing development time
and increasing productivity.

By definition, a good DSL is at a higher level of abstraction than a high-level
General-Purpose programming Language (GPL). The goal of a DSL is to digest
the complexity of the problem domain, de-cluttering it of the implementation
details through a syntax built around familiar terms and concepts from the
domain. This allows domain experts to save time and effort and focus on the tasks
of interest, such as enabling IMS communications without having to worry about
the programming details of traditional libraries or APIs such as initialization
and default handling which must be done explicitly in traditional libraries. This
also enables domain neophytes with minimal knowledge of the domain to create
sound IMS applications without having to learn all the intricacies of IMS first.
Ideally, domain experts could provide the required knowledge to further develop
the IMS DSL. This simplification and clarification of the problem domain allows
IMS application development to be left to the neophyte, making prototyping
and developing proof-of-concept applications much more practical, especially in
cases where the complexity of the problem domain is high, such as the case of
IMS.
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We have decided to build the IMS DSL on top of a GPL, thus following the
embedded approach [9,10] in order to save us the effort required to develop all the
peripheral functionality of a complete language e.g. conditional handling, loops,
etc. and also to enable us to easily use existing libraries covering the protocols
we want to offer functionality for. The host language of the resulting IMS DSL is
Scala. While it is a relatively young language, it will offer much more flexibility
than other GPLs.

3 Scala

Scala [11] is a GPL designed to build software components in a concise and type-
safe way. It integrates features of object-oriented and functional programming
paradigms. The source code sizes of applications written in Scala are typically
smaller by a factor of two or three compared to equivalent Java applications.

Existing Java code and programmer skills are fully re-usable. Scala is compiled
into bytecode to be run on the Java Virtual Machine (JVM), which allows Scala
programs to access functionality defined in Java. Scala code can be called from
Java code and vice versa.

Below we list a few of the interesting properties of Scala with respect to the
development of a DSL:

– Scala provides a lightweight syntax for defining anonymous functions, sup-
ports higher-order functions, allows functions to be nested, and supports
currying. This helped us develop a more readable syntax for the IMS DSL.

– Scala code can run on the Android platform, .Net platform, and anywhere
else Java code can run. This provides us with the potential for deploying our
IMS DSL not only on dedicated network nodes, but eventually also on end
user equipment to facilitate development on a wider range of platforms.

– Scala provides type inference, everything-is-an-object, function passing, and
many other features which cut away unneeded syntactic overhead. Scala is
a pure object-oriented language in the sense that every value is an object;
it is a functional language in the sense that every function is a value; and it
is a statically typed programming language. Types and behaviors of objects
are described by classes and traits. For the IMS DSL these traits mean a
simpler syntax and structure without the need for complex class hierarchies.

– Scala code can be run in an interactive shell where Scala expressions are
interpreted interactively. A Scala program may also be run as a shell script or
as a batch command. Initially this helped us develop and test the IMS DSL.
At the current state we have less need for the interpreter but might look
back at its use in the future.

We take advantage of the fact that in Scala’s syntax dots are optional in most
method calls, and parentheses are not required for method calls with zero or
one parameter, to develop a DSL that is more readable than most GPLs. For in-
stance, the chain of method calls userA.send(“Hello World”).to(userB) can also be
written as userA send “Hello World” to userB. Thus, the syntax of our IMS DSL



An IMS DSL Developed at Ericsson 147

can be given a format which is similar to English and is simpler to understand,
since it is close to natural language as a result of the absence of dots and paren-
theses, which are mandatory in most modern GPLs. Despite its resemblance to
natural language, our DSL syntax is well-defined and unambiguous in terms of
method invocation order. It is worth noting, as we will see later on, that when
the IMS DSL is used within a java program this intuitiveness is limited e.g.: we
need to use the dot notation.

4 IMS DSL Development in Scala

The IMS DSL must be simple to understand and use correct IMS terminology
so that software engineers who have already acquired high-level knowledge of
IMS can learn its syntax quickly and put it in practice immediately. Thus, our
IMS DSL must avoid constructs peculiar to GPLs like variable declaration. It
must get rid of any irrelevant programming details which are a legacy of GPLs,
while remaining extensible and flexible enough for the domain of IMS commu-
nication.

To develop the IMS DSL, we have made use of the relaxed syntax of Scala as
well as its implicit conversion between types. Other useful features of Scala, such
as functional decomposition and identifier names entirely made up of arithmetic
operator characters, have not yet been exploited. However, as more and more
functionalities are added to the IMS DSL in the future, these features will be
indispensable for the conciseness and maintainability of the IMS DSL.

The IMS DSL features have been built following a few principles:

– List the domain concepts to be expressed in the DSL and the relationship
they have with respect to each other’s.

– From that list define the domain notation and syntax.
– Make sure that each syntax element has an intuitive, logical and functional

default behavior, while still enabling more specific behaviors when required.
– Keep the syntax free of anything which does not come from the problem

domain itself, only include host language specific artifacts if absolutely nec-
essary.

Those propositions may sound simple but discipline is required to fulfill them
properly. In order to properly perform these steps, a good understanding of
the domain is required as well as programming competency. However one must
not let his previous experience in programming taint or limit the syntax to be
developed. It is really easy for one to simply dilute the DSL aspect to a point
where it would be indistinguishable from a traditional library.

In the context of the IMS DSL the domain is defined as an application using
the available IMS interfaces. Those interfaces are pre-provisioned and the details
of the provisioning are controlled by the IMS DSL developed application through
configuration files which are application specific. Thus an IMS network must
already be provided and configured and some of the details of that configuration
need to be available to the IMS DSL application.
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5 Development Experiences Using the IMS DSL

The development of the IMS DSL as described here took place over the course
of the last two years. It followed an iterative approach where new functionality
was introduced and refined in the IMS DSL syntax as new requirements in the
prototype projects developed using the IMS DSL arose.

The first three projects listed below were developed as proofs of concept of
how IMS technology can be an enabler for machine-to-machine (M2M) com-
munication in the vision of “More than 50 billion connected devices” [12] that
Ericsson is bringing forward in the industry. The core functionalities of an IMS
network include authentication, security, and quality of service management,
which greatly simplifies the development of M2M applications.

The last project we discuss below, still a proof of concept, was basically chosen
as a vehicle to augment the IMS DSL’s provided functionality.

5.1 Tolmie 2 - Assisted Living Project

The objective of the Tolmie project is to build the basics of the IMS DSL and
demonstrate the advantages of that approach compared to a more traditional
general purpose language approach. The Tolmie project had previously been
implemented in C++. By re-implementing the Tolmie project using the IMS DSL
we can firstly develop a base for the IMS DSL and secondly compare the new
Tolmie 2 implementation to the pre-existing Tolmie C++ prototype for the
same functionality. We can compare how the IMS DSL improves the efficiency
of development by considering the time it takes for both approaches and we can
qualitatively compare how much more expressive the IMS DSL is compared to
the direct library calls used in the initial prototype.

For those reasons the Tolmie project, also known as the Assisted Living
project, was chosen as a basis for comparison. In the Tolmie project we demon-
strate that IMS can be used as a smart bit-pipe for machine-to-machine com-
munication, allowing health professionals to monitor their patients remotely.
The patient wears a life-monitoring sensor that periodically sends health data
to a server. The server contains an agent manager that can interact with IMS.
The caregivers are able to observe the evolution of patient data on an Android
application called eRCS client, which receives data over IMS.

The Tolmie Agent Manager establishes IMS access for six functional
requirements; we use the IMS DSL to implement those six IMS functionalities.

When the agent manager receives sensor data from a new device, it creates a
new agent to act on behalf of the device. The newly created agent then needs
to register with the IMS network. After completing the registration, the agent
manager will publish data about itself to the PGM so that the caregivers will
be notified.

In order for a caregiver to request or stop a live feed through the eRCS
client, each agent must be ready to receive a SIP instant message from the
eRCS client and process its content to determine whether to add or remove
a live feed subscriber. The agent must then be able to send live feed data to
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the eRCS client through SIP instant messaging. Once the maximum live feed
duration has passed, the agent must send a SIP instant message to uncheck the
live feed button on the eRCS client of each live feed subscriber.

In brief, the required IMS functionalities in Tolmie are as follows: SIP Register,
SIP Publish, and sending and receiving SIP Instant Messaging.

After completion of the IMS DSL implementation of the prototype, a compar-
ison can be made between the original code in C++, which uses a C SIP stack
(PJSIP), and the new one in Java, which uses the IMS DSL for accessing IMS
functionalities, to observe how the IMS DSL can lead to more concise code and
much shorter development times.

The original development time (coding and unit testing only) for Tolmie was
12 man-weeks. The re-implementation of Tolmie 2 using the IMS DSL took 3
man-weeks and implementing the IMS DSL itself took 9 man-weeks. It is to be
noted that this figure intentionally excludes the high level design and testing
of the solution in both cases since it is obvious that it was in part re-used for
implementing the IMS DSL version of it, and thus would have made it look
better than it should in reality. Secondly one should also know that some of
the developers were common between the developments of the two versions thus
leading to some non-measureable benefits while developing the IMS DSL version.

Table 1 below presents a comparison between the amounts of code required
to implement various IMS related functions in C++ and in the IMS DSL:

Table 1. Required lines of code in C++ versus using the IMS DSL

Functionality C++ Lines Required IMS DSL Lines Required
Initialization 27 0
SIP Register 23 1
Send Message 11 1
Receive Message 49 1
SIP Publish 131 1

5.2 Tolmie 3 - Automotive Telemetry Project

The objective of the Tolmie 3 project, also known as the Automotive Telemetry
project, is to further our knowledge and expertise in using IMS as a smart
bit-pipe for machine-to-machine communication, by allowing an engineer or a
mechanic to obtain real-time data from an automobile on-board computer. A
device is linked to the automobile CAN Bus, periodically forwarding data to
a server via IMS steams on a mobile network (3G or LTE). The engineers or
mechanics can monitor the automobile data via a web interface linked to the
server.
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The goal of implementing Tolmie 3 using the existing IMS DSL is to observe
how the IMS DSL facilitates re-use of existing functionality and judge the ease
of implementing new features to support the new requirements.

As an improvement over the Tolmie 2 project, where the data was sent over IP
to an IMS gateway where an agent manager was translating the data into an IMS
format, the Tolmie 3 project performs the IMS encapsulation as the first step.
Thus the device linked to the CAN Bus is the IMS User Agent and communicates
directly with the IMS network, providing authentication and security directly
from the device itself.

Comparing the development time of Tolmie 3 with that of Tolmie 2, which had
similar functionality in a different configuration, we can verify that there is a re-
use factor provided by the IMS DSL between the two projects. The development
time (coding and unit testing) for Tolmie 3 took four man-weeks and practically
no re-work was required on the IMS DSL in order to implement the prototype.
This development time is quite close to the three weeks required to develop
Tolmie 2 (excluding the development of the DSL itself), proving the potential
for re-use of the IMS DSL.

5.3 Area 51 - Home Automation Project

The objective of the Area 51 project, also known as the Home Automation
project, is to verify whether the IMS DSL can be used by IMS neophytes to de-
velop an automated house where the IMS DSL is used to develop an IMS smart
bit-pipe for machine-to-machine communication with a server which can be ac-
cessed by the home owner. The project was driven by enthusiasts volunteering
occasionally in their spare time, and two eight hours sessions where the group
gathered to work in a more structured fashion.

A model house is used to represent the home. A number of sensors and actu-
ators are installed in the house: a doorbell and a motor to open and close the
entrance door remotely; lighting and switches to control the main rooms’ light
levels; a light detector to control the exterior lighting based on ambient light lev-
els and a temperature sensor and electric fan to represent the climate control of
the house. These components are connected to an Arduino [13] microcontroller,
which communicates via a USB connection with the Home Gateway we built
using an Odroid-X [14] an ARM based micro-computer platform. The Home
Gateway makes use of the IMS DSL to encapsulate the data from the house into
an IMS pipe going to a server, and to receive commands from the server via the
same IMS pipe. On the server side, the IMS DSL is used for the same purpose
in order to communicate with a web server accessible by the home owner.

We can observe in this development environment if the IMS DSL is simple
enough that enthusiasts can use it in order to implement the required function-
ality within the time constraints imposed by the schedule.

As this project was executed on a voluntary basis, we do not have a strict
accounting of the spent time to develop the prototype. However, based on the
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feedback of the group of volunteers, we can make the qualitative statement that
the IMS DSL is convenient and easy to use for IMS neophytes, enabling them
to quickly create a functioning prototype application.

5.4 A Core IMS DSL (ACID) Telephony Application Server (TAS)
Project

The objective of the ACID-TAS project, also known as the Light Weight Tele-
phony Server, is to further our knowledge and expertise in implementing an
IMS DSL. For this project we are developing the following telephony services:
originating and terminating call handling; incoming and outgoing call barring;
originating and terminating identity presentation and restriction; call diversion
(on busy, on no reply, on not logged-in, deflection and unconditional) and a
conference call service. For this project, the IMS DSL can no longer act merely
as a user agent. It needs to provide back-to-back user agent functionality to
the developers. Moreover, it needs to address new interfaces, such as the H.248
protocol for conference handling with the MRF.

A light weight telephony server had been implemented as a proof of concept
within Ericsson using Java and the JSR-289 SIP Servlet framework a few years
ago. The goal of the ACID TAS project was to test our IMS DSL on an exist-
ing and more demanding IMS based prototype and compare it to the previous
project. A comparison can then be made between the original project’s code
and that of the new prototype which makes use of the IMS DSL. Again, we
can observe how the IMS DSL leads to more concise code and much shorter
development times.

The original development time (coding and unit testing) for the Light Weight
Telephony Server in Java using the JSR-289 framework had been 22 man-months.
The re-implementation through ACID-TAS using the IMS DSL took 4 man-
months and implementing the new required functionality in the IMS DSL itself
took 9 man-months. Again it is to be noted that this figure intentionally ex-
cludes the high level design and testing of the solution in both cases since it is
obvious that it was in part re-used for implementing the IMS DSL version of
it, and thus would have made it look better than it should in reality. In this
trial however, none of the original developers (non-DSL version) participated in
coding of the IMS DSL version of the Telephony Application Server. We also
consider that the general level of proficiency of the developers in both projects
were of equivalent levels. Finally, the objectives and the acceptance criteria were
the same for both proofs of concept which ended with a demonstration to the
financing stake holders. This shows again the advantage of using a DSL on the
development time and the re-use factor in doing so.

From the point of view of readability, we demonstrate later on in this essay
how simple the conference server portion of the ACID-TAS is to understand.
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Fig. 1. IMS DSL architecture layers

6 Architecture

Figure 1 below presents the multiple layers of the architecture of the resulting
DSL design positioned in the IMS architecture. Starting from the bottom to the
top, we rely on the network layer to access the IMS network from our IMS library.
The IMS DSL Library layer is a standalone java-written interface that contains
IMS primitives such as register, subscribe, publish, etc. It uses both SIP and
XCAP protocols for interacting with IMS. HTTP based protocols like XCAP
are implemented using the standard Java HTTP library.

The Session Initiation Protocol is implemented using Jain-SIP, an open-source
Java SIP library. Jain-SIP only provides a low-level API to instantiate, send and
receive basic SIP messages. To get the high level SIP user-agent functionalities
like registering, publishing, subscribing to users etc., we developed a complemen-
tary layer acting as the missing user-agent. One instance of this layer can then be
manipulated as a SIP user would. The IMS library layer uses these sub-libraries
transparently.
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The IMS library interfaces with the DSL in such a way that there is little
coupling between the two layers. Thus, it will be easy to switch the set of libraries
it depends upon in the future to better match general Ericsson architectures.

The IMS DSL layer is the DSL itself, and is the core of our development. It
is the result of the grammar development and the selection of the abstraction
level. The DSL is developed in Scala and relies on the IMS Library for accessing
IMS functionalities. It is composed of objects, classes and methods to support
the DSL syntax and internal operations related to IMS.

The Interpreter is an optional layer that can be used to call the DSL from
another language.

Finally the application can be any program coded in Java using the embedded
IMS DSL to build a service from the provided functionality.

6.1 IMS DSL Features

The current version of the IMS DSL supports a limited number of features,
with each feature’s syntax designed to express concepts from the IMS domain
as simply and naturally as possible. The following is a list of the current IMS
functionalities supported and how they are expressed in the IMS DSL. Thanks
to the interoperability between Scala and Java, it is possible to use the IMS DSL
as an API directly in Java code.

This leads to the obvious question of why we call the IMS DSL a DSL and not
simply an API? Through the development of the IMS DSL, the primary focus
has been to provide a simple and concise syntax to express concepts in the IMS
domain. Once that syntax had been defined, we implement it using Scala. As a
final step we devise a scheme for java applications to access the IMS DSL syn-
tax. This is what makes an embedded DSL different from a traditional library
or API. Libraries and APIs are developed to provide functionality through a
host language, using all the facilities and conventions of the host language. In
an embedded DSL, the first priority is to define a syntax that clearly and con-
cisely expresses ideas in the problem domain. Once this syntax is defined, it is
implemented as completely as possible within the constraints imposed by the
host language. Intuitive and simple expression of domain concepts always takes
precedence over the established conventions and idioms of the host language.

6.2 Registering with IMS

This entails sending a SIP REGISTER Message to the Call Session Control
Function in order to register a SIP user with the Home Subscriber Server. If
successful, the server will reply with a positive response, and the registration
will be valid for a certain duration after which the user must register again.
Such technical details have been abstracted by the IMS DSL, so one can register
by writing the following code:

<USER> hasCredentials (<USERNAME>, <DOMAIN>, <PASSWORD>)
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6.3 Sending a SIP Request or a Status

After a SIP user has been registered, it can send SIP requests to other users via
their SIP URI. A request body and various headers may optionally be added.

<USER> sendRequest <REQUEST TYPE>
[ withHeader(<NAME>,<VALUE>) ]
to <SIP_URI>

The same can also be done to respond with a SIP status. The send response
method is quite powerful in the sense that it uses the supplied request informa-
tion to build the response and send it.

<USER> sendStatus <STATUS_CODE>
inResponseTo <INCOMING_REQUEST>

6.4 Sending a SIP Message (Instant Message)

A registered user can send a message to another user via their SIP URI. A
content type and multiple headers may optionally be added. Sending an instant
message is actually a special case of sending a SIP request.

<USER> send <MESSAGE>
[ withContentType <TYPE> ]
[ withHeader(<NAME>,<VALUE>) ]
to <SIP_URI>

6.5 Publish XCAP

The IMS DSL allows the user to publish its current presence state by using the
XCAP protocol. The XML data within a specific XML tag is published to the
presence document in the PGM.

<USER> publish <XML_DATA> as <TAG_NAME>

6.6 Managing Contact Lists

The user’s contact list can be managed with the following methods:

<USER> [ addContact | removeContact ] <USER_URI>

<USER> [ newContactList | removeContactList ] <LIST_NAME>

<USER> add <USER_URI> to <LIST_NAME>

<USER> remove <USER_URI> from <LIST_NAME>
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6.7 Incoming Message Handling to Perform Actions

An action (user-supplied method) can be bound to the reception of a message
with optional conditions. The action will be executed only if all the conditions
are met. If not, the action is passed to the next configured handler. If none
of the handlers are configured to handle this message, it is simply replied to
with a positive acknowledgement. It is worth noting that the handling of instant
message reception is managed by the IMS DSL, so the developer will not have
to write event handlers to specify what to do.

The MESSAGE TYPE can either be a request type (Any, Bye, Invite...) or a
response type (Any, Ringing, Ok...).

<USER> onReceive <MESSAGE_TYPE>
[ withContentType <TYPE> ]
[ withBody <BODY> ]
[ withHeader(<NAME>,<VALUE>) ]
[ from <SIP_URI> ]
Do <ACTION>

6.8 Incoming Dual Tone Multiple Frequencies (DTMF) Handling

Similarly to the incoming message handling, the IMS DSL allows the user to
execute specific actions when receiving DTMF digits encapsulated in SIP INFO
messages. Handling DTMF digits is actually a special case of the onReceive
method shown above.

<USER> onDtmf Do <ACTION>

6.9 Conferencing

The IMS DSL offers conferencing capabilities.
First, the conferencing engine needs to be initialized. This can be done ei-

ther when the server user is created or later. This must be done once for each
registered server user.

<SERVER> supportingConference

When the conferencing engine is ready, an ad-hoc conference can be established
on that server user. It starts with the participants of a 2-party call inviting a
third party to the call. It is assumed the 2 first participants are already in an
active call. The IMS DSL needs the full URI and call ID of the 2 first participants
and the phone number of the third party.

The complexity of the conferencing feature is hidden from the end user. The
IMS DSL will send the appropriate SIP messages to the initial participants to
move them from a point-to-point call to the conference bridge. The MRFP H.248
signalling is also handled in the process.
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<SERVER> createConf <CONFERENCE_URI>
withInitialParticipant

<PART_A_URI> <PART_A_CALLID>
<PART_B_URI> <PART_B_CALLID>

The following code will add the new participant to the conference. This step can
be repeated for each new participant. Again, the IMS DSL handles all the SIP
and H.248 signalling.

<SERVER> updateConf <CONFERENCE_URI>
withNewParticipant <PART_NUMBER>

When the participants are leaving the conference, their SIP client will send a
SIP BYE message. The following code will remove them from the conference.
<SERVER> removeParticipant <PARTICIPANT_URI>

6.10 A Typical IMS DSL Usage

The previous sections describing the various capabilities were expressed in the
IMS DSL syntax. When used in a Java environment, the IMS DSL syntax is
invoked using the Java API. For instance, the methods that create an ad-hoc
conference:

Server createConf "15141234000@ims.server.ericsson.com"
withInitialParticipants

"15141234567@ims.server.ericsson.com" "12345634567"
"15141234568@ims.server.ericsson.com" "12345634568"

Server updateConf "15141234000@ims.server.ericsson.com"
withNewParticipant "15141234568"

Would look like this:

Server.createConf("15141234000@ims.server.ericsson.com")
.withInitialParticipants(

"15141234567@ims.server.ericsson.com", "12345634567",
"15141234568@ims.server.ericsson.com",
"12345634568");

Server.updateConf("15141234000@ims.server.ericsson.com")
.withNewParticipant("15141234568");

The application code example shows how the IMS DSL conferencing feature is
actually used in a java context. Basically Scala provides a java front end so that
the IMS DSL primitives can be directly used in a java application.

The processData() method was called by the DTMF action method when a
user entered DTMF digits during a call. The request parameter contains the
incoming SIP INFO message with the entered digit in the message body. The
method uses data accessors such as request.getRType() and request.getHeader()
to easily access SIP header information. The incoming data manipulation is
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minimal and the incoming SIP INFO message is used unmodified when passed
to the conferencing methods. The only computation done in the processData
method is to gather the digits entered by the end user and fetch the other
participant’s call ID from the local session info database.

This example uses 7 lines of IMS DSL code. If we were to implement the same
functionality in Java, the code size would grow by at least 300 lines. Bold text
indicates IMS DSL code as accessed via the java API to the IMS DSL.

public void processData (Request request)
{
// Respond right away with OK.
server.sendStatus(StatusCode.OK).inResponseTo(request);
// We only handle SIP Info messages.
if ( request.getRType().equals(RequestType.Info) )
{

// Add the received digit to buffer.
// Expected format that is: "#10-digit-number#".
Buffer += request.getBody().charAt(request.getBody()

.indexOf("=") + 1);

// pattern is ".*#
d{10,}#.*"

if (buffer.matches(pattern))
{

// We have a pattern match. For this sample,
// we only have one conferencing server.
String conferenceURI =
"15148500002@ims.server.ericsson.com";

if ( !request.getReceiverUri()
.contentEquals(conferenceURI) )
{
// The sender is not part of a conference,
// let’s add everyone.
// First, we need to extract the call id of
// both legs. It is in the form of
// "Call-ID: <callerId string>".
String fromCallID = request.getHeader("Call-ID");
// Since the SIP Info message does not contain
// the call ID of the other leg, we get it from
// the database we keep of the various users.
String toCallID = SessionInfo.getSessionInfo()

.getForwardCallID(fromCallID);
server.createConf(conferenceURI)

.withInitialParticipants(
request.getHeader("From"),
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fromCallID,
request.getHeader("To"),
toCallID);

}

// Format the joining number URI.
int start = buffer.indexOf("#");
int end = buffer.indexOf("#", start + 5);
String joiningNumber =
buffer.substring(start + 1, end);

String joiningNumberURI =
SipUri.getShortUri(joiningNumber,
"ims.server.ericsson.com");

server.retrieveConf(conferenceURI).
addNewParticipant(joiningNumberURI);

// We are done with the buffer, clean it.
buffer = "";

}
}

}

6.11 Graphical Representation

In order to help visualize the flow of events generated by the IMS DSL on a
network level, a graphical representation was built to accompany the IMS DSL.
The goal of the graphical representation is to complement the IMS DSL and
enhance its capacity to simplify development, both for IMS domain experts
and for neophyte developers. The graphical representation runs in parallel with
multiple IMS DSL applications, collecting information about the IMS activity
they generate, and displaying that information to the IMS DSL user in a simple
and intuitive way.

Currently the graphical representation shown in fig. 2 below is limited to a
dynamic view of the execution of the IMS DSL code. Our ambition in the future
is to provide a way to model the static structure of the IMS DSL code and its
dynamic execution in a similar way. Then, the current representation would be
used to compare the designed model to the executed behavior.

The graphical representation is integrated in the IMS DSL, and collects all of
the IMS packets that it sends and receives. Multiple IMS DSL applications may
be analyzed simultaneously; each program is synchronized against a common
reference clock, allowing packets from multiple applications to be displayed in
the correct order. The collected packets are analyzed, and logically connected
packets are grouped together. As packets are collected, they are displayed to the
user in a sequence diagram. In the diagram, logical groups of packets are visually
connected, and are color-coded to indicate their status.
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Fig. 2. Graphical Representation

The graphical representation tool is implemented in three parts. The first part
of the graphical representation tool is code which is integrated into the source
of the IMS DSL. This integrated component captures all outgoing and incoming
packets, as well as full Java stack traces for each packet.
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The second part of the graphical representation is a server program which
accepts, synchronizes and analyzes information from running IMS DSL pro-
grammed applications, and makes it available to the graphical client program.

The third part is the graphical client program, which receives information
from the server component and visualizes it in the sequence diagram display.

The features of the graphical representation tool provide advantages for both
experienced software developers and IMS domain experts. For software develop-
ers who are not well versed in IMS communication, the intuitive graphical repre-
sentation provides insight into how their program operates, and where problems
might lie. For domain experts, the graphical representation gives a convenient
high-level view that offers a lot of information at a glance, but also allows the
expert the freedom to examine the details of their program’s operation.

The graphical representation sequence diagram display and color-coded group-
ings make it possible for domain experts and developers to quickly understand
how their applications interact with IMS on a high level of abstraction. The
sequence diagram layout is familiar to domain experts and software developers
alike, and is intended to be simple for both classes of user to understand. Color-
coded packet groups add additional structure to the familiar layout, and reduce
the amount of time required to understand the IMS communication represented
by the diagram. For domain experts, the colored groups highlight patterns which
are already well known, and for software developers without a strong knowledge
of IMS, they are a useful learning tool, hinting at the meaning of the underlying
data.

Like the IMS DSL itself, the graphical representation provides a high level
view, but does not restrict its users. It allows them to view IMS activity in
detail. Each packet can be inspected to reveal its complete contents, enabling
domain experts to understand the behavior of their applications on a much lower
level of abstraction, and debug complex IMS communication problems.

Developers and domain experts both benefit from the ability to link sent IMS
packets back to their IMS DSL source code. For domain experts this facilitates
understanding the DSL, as it allows the familiar area of IMS communications
to be mapped very concretely to DSL commands. For the experienced software
developer, this feature is useful for understanding the DSL, as well as for aiding in
the understanding of IMS. Linking high-level DSL commands to the exchanges
of IMS messages that they produce provides insight into how logical actions,
such as the initiation of a telephone call, are accomplished through exchanges of
multiple packets in IMS.

7 Conclusion

Two of the projects implemented using the IMS DSL, Tolmie 2 and ACID TAS,
were initially created using different languages, paradigms and team members
than the current ones. Comparing the recorded working hours for the coding
and unit testing of the original projects with the recorded hours for the current
IMS DSL incarnations of those projects, we can claim at least four fold increases
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in efficiency for those phases of software design and development. This figure
is not taking into account the time required to produce the actual IMS DSL.
If we factor in this additional time, we arrive at approximately equal costs for
the original and DSL implementations for one of the developed projects. Hence
developing an application and the domain language supporting this application
does not account for a higher cost. However, having at hand a DSL speeds up
any subsequent project making use of it and also facilitates the domain com-
prehension for non-experts as shown from the feedback received from a group of
enthusiast coders on the Area 51 project.

Through the development of the IMS DSL we have gained knowledge and
experience on the process of developing a Scala embedded DSL. Through the
projects developed using the IMS DSL we have been able to measure and observe
the benefits in terms of code simplicity, expressiveness and conciseness. We have
also been able to measure and observe the benefits in terms of an increase by a
factor of three to four in the speed of development times for the coding and unit
testing phases, as well as the ease of and potential for re-use of the IMS DSL in
different projects. Lastly we have received positive feedback regarding the ease
of use, and the simplicity and clarity of the code produced with the IMS DSL.

This positive outlook will be further pursued in the coming year as we will
evaluate the potential of an IMS DSL embedded in the action language of a
UML based Model Driven Development workflow.

At this point in time, the IMS DSL has been developed as a proof of concept
to showcase the potential benefits of the DSL approach. The projects conducted
using the IMS DSL were also proofs of concept. It is obvious to us that produc-
tizing the IMS DSL would involve a great deal of work, especially to integrate it
in the Ericsson software infrastructure. However, the benefits observed at least
warrant the study of the business case of doing so. Based on our experience, the
main hindrance to the development of a DSL is one’s ability to accept the DSL
paradigm and maintain discipline to avoid falling back on developing it as he
would any other software library.
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Abstract. This paper presents an approach which facilitates efficient
development of domain-specific simulation modelling languages and tools
for discrete-event systems. The work is motivated by a set of properties
which in combination are not well supported by established frameworks.
These include the provisioning of object-oriented description means,
means for specifying domain-specific concepts with a distinct notation
and semantics, the possibility of including general-purpose concepts into
domain-specific ones, low cost tool support including an editor, a de-
bugger, and a simulator, simulation primitives with fast execution, and
extensibility means for enabling access to externally implemented
simulation-specific functionality. We present a prototype that partly im-
plements these properties. It combines established techniques derived
from metamodel-based language development and extensible simulation
modelling. The value is demonstrated by applying the approach to an
example language from the domain of reactive systems and by comparing
it to related approaches.

1 Introduction

While simulation modelling is as old as computational machinery, we are still
learning how to best utilise it alongside modelling and experimentation. As the
availability of low-cost computational power increases and the complexity of
systems grows, the importance of simulation rises as well. The investigation of
efficient, robust, explorative and problem area-adapted simulation methodologies
is an important part of this activity.

Research in simulation methodology ranges from the development of efficient
and effective algorithms, tools and programming languages, to the creation of
new software engineering technologies, visualisation, data processing and storage
methods, and even the philosophy and epistemology of simulation modelling [1].

1.1 Objective

In this paper, we argue in favor of an approach that allows to efficiently de-
velop domain-specific simulation modelling languages and tools for discrete-time
event-driven systems which in addition allow for fast simulations. The approach

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 163–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



164 A. Blunk and J. Fischer

complies with two general desirable properties of simulation systems:

1. A system model should be expressed with structural and behavioural equiv-
alence to the original system and

2. simulations should be executed efficiently.

In the next paragraph, we present accepted simulation systems which implement
these two general properties and what we can learn from them.

1.2 Lessons Learned and Challenges

The introduction of model abstraction concepts by Simula [2], which later be-
came known as object-oriented modelling concepts, is a major step towards
achieving structural and behavioural equivalence [3]. With its class concept,
Simula introduces the powerful principles of classification/exemplification and
generalisation/specialisation. In addition, class instances (objects) can be di-
vided into passive and active objects. Active objects are combinations of states
and actions, which cause state changes in dependence of a model time.

However, object-orientation combined with expression means provided by a
universal modelling language are not sufficient to concisely capture domain-
specific concepts. This is because a universal modelling language defines a strict
syntax in which domain-specific concepts have to expressed in. There are cases
in which this preset syntax hinders application and understanding of a concept.
An example is the implementation of state machines by an object-oriented pat-
tern [4]. Applying this pattern results in a behaviour description spread over
several classes which have to be created for each state of a state machine.

One possible solution to having a distinct syntax is to extend the syntax of
a language combined with semantic foundations in the host language. The Sim-
ulation Language with Extensibility (SLX) [5] is a modern simulation language
that has such possibilities, although they are limited.

Above all, we can see that a clear structure in the model alone is not caus-
ing a simulation language to be widely accepted. An assembly level language,
whose many versions enjoyed great popularity since decades, is Gordon’s GPSS
(General Purpose Simulation System) [6]. The reason for its widespread use
is (despite its structural weaknesses) the efficient realisation of the next-event-
scheduling paradigm, which also takes so-called state events into account.

When we look at simulation languages today, we observe that both of these
basic aspects can be incorporated in one language. This is achieved in languages
like SLX, Modelica [7], and ODEMx [8], regardless of whether the modelled
system is continuous or discrete in time.

Another aspect of simulation modelling is experiment design. Current research
suggests that purely declarative ways of describing experiments [9] can already be
sufficient to derive complete scientific experimentation workflows. These work-
flows are models of the experiment processes. They cannot only serve as spec-
ifications for repeated experimental procedures but also as inputs for workflow
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engines that trigger complex series of experiments, and that monitor and au-
tomatically evaluate their results. It is obvious that different descriptions are
necessary:

(i) description of a parameterised simulation model,
(ii) description of the experiments,
(iii) description of the computational platform for execution and evaluation [10].

Equally desirable are programmatic interfaces to existing programming
languages inside a special simulation language. They allow us to reuse
statistical methods, solvers, or optimization methods that have already been
implemented [11].

Self-standing solutions already exist for many of the above mentioned issues.
However, there is no combined approach due to major technological differences.
A recent development promising to facilitate the combination of such different
aspects is object-oriented metamodelling (OOMM) [12]. In OOMM, the central
part that connects all other aspects is an object-oriented metamodel. It defines
the concepts of a language in an abstract way.

Other language aspects are defined with specialised language description lan-
guages, e.g. textual notation, static semantics, and execution semantics. For each
such language aspect, tools can be derived automatically. Thus, OOMM is a key
technology for creating domain-specific modelling languages (DSMLs or DSLs)
and tools at an acceptable cost. In addition, DSLs allow models of dynamic sys-
tems to be expressed in a more concise way and with increased structural and
behavioural equivalence than with object-oriented description means alone.

However, adding domain-specific concepts alone is not enough. One often
needs to include or mix concepts of general-purpose programming languages,
e.g. expressions and statements, with domain-specific ones. Therefore, we believe
that an approach is required that allows to combine general-purpose as well as
domain-specific concepts. These ideas are also described in [13], in which the
authors propose to develop a unified approach that can be applied to combine
different established concepts of modelling and programming. Our work also
explores this direction of a combined approach. However, we believe that the
efficient development of new language concepts and tools is a key requirement
here.

1.3 Properties of Our Approach

Our approach exhibits a number of positive properties regarding the efficient
development of domain-specific simulation modelling languages and tools.

It allows to create models with increased structural and behavioural equiva-
lence by providing means for defining domain-specific concepts with a distinct
notation and semantics. At the same time it allows to efficiently execute simu-
lations, which make use of such concepts. This includes the possibility to attach
already existing and efficiently implemented functionality, e.g. implementations
of random number generators.
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Adding domain-specific concepts to simulation modelling languages requires
a frame in which they can be correctly applied. This frame can be provided
by an object-oriented base simulation language. In addition, modelling concepts
often make use of programming concepts. Therefore, an approach that allows to
combine modelling and programming concepts is desirable.

However, for such an approach to be practical at all, a general requirement has
to be fulfilled. The development of a new domain-specific simulation modelling
language has to pay off, i.e. development effort including customised tools has
to be low. The approach we present fulfills this requirement. It is based on a
general simulation language, which can be dynamically extended by domain-
specific concepts and which provides immediate support by a customised editor
and simulator.

We summarise these positive properties, which our approach partly already
implements, for further reference as follows. The approach exhibits

– (P1) object-oriented description means,
– (P2) means for specifying domain-specific concepts with a distinct notation

and semantics,
– (P3) the possibility of including general-purpose concepts in domain-specific

ones,
– (P4) low cost tool support including an editor, a debugger, and a simulator,
– (P5) simulation primitives with fast execution,
– (P6) and a programming interface enabling access to and from simulation-

specific but externally implemented functionality with high efficiency.

1.4 Objective and Outline

We present a prototypical implementation of our approach by a framework
named DMX (Discrete-Event Simulation Modelling Framework with Extensi-
bility) [14] which implements properties (P1)-(P4) and partially (P5). DMX
combines established techniques of metamodel-based language development and
extensible languages. It consists of an extensible object-oriented base language
and mechanisms for automatically deriving tools at a low cost. Property (P6)
will be discussed as part of our future work. Furthermore, we confine our work
to textual languages.

The paper is structured as follows. Section 2 gives an overview of related work
that implements some of the properties. This motivates the presentation of our
combined approach in Sect. 3. We introduce the concepts of the extensible base
language and present the prototypical implementation of the framework. The
value of the approach is demonstrated by applying it to an example language
from the domain of reactive systems – a first use case on the path to more
complex languages. In Sect. 4, we briefly discuss the fulfillment of each property
and we compare our approach with two related ones in which we define the same
example language. The comparison also takes into account development effort,
which we identify as a general requirement of such approaches. We conclude the
paper in Sect. 5 and discuss future work in Sect 6.
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2 Related Work

In this section, we discuss related work which considers some of the proposed
properties. Most of them have a more general focus and are not specifically
designed for creating simulation languages. We give an overview of these works
and point out their important characteristics.

The related work can be divided into 4 branches: extensible programming
languages, extensible simulation languages, comprehensive DSL development
frameworks, and further approaches for describing the execution semantics of
metamodel-based languages.

Extensible Programming Languages became popular in the 1970s. The tech-
nique keeps being applied to state-of-the-art programming languages [15]. There
is some recent works for the Java and the C++ language. An example is the
Java Syntactic Extender (JSE) [16]. It is a pre-processor for Java allowing to add
extensions of a few syntactic shapes. In addition, extensions may include cer-
tain Java constructs. Despite limitations in the syntax of extensions, customised
modelling tools cannot be derived.

Extensible Simulation Languages are rare. The only such language that we know
about is the Simulation Language with Extensibility (SLX) [5]. SLX is an object-
oriented language that has a small but powerful C-like kernel language, in which
constructs of the C language which are prone to error or primarily intended for
systems programmers are excluded or restricted. On the contrary, discrete event
simulation primitives for expressing concurrency, scheduling, and synchroniza-
tion are added. In addition, the language can be extended by new statements
and expressions with a distinct notation and semantics. The class of languages
that is supported is a subset of regular languages. Semantics is defined as a
mapping to SLX itself, which is the foundation for runtime efficient simulation
execution. SLX has an efficient implementation of time-delays as well as state
events and unconditional blockages with explicit reactivation. This is achieved
by a specially developed compiler that, for simulation, has advantages regarding
execution speed compared to compilers of general-purpose languages.

Comprehensive DSL Development Frameworks with the possibility of includ-
ing general-purpose concepts into DSLs are a more recent trend. Outstanding
representatives are Xtext [17] and the Meta Programming System (MPS) [18].

In Xtext [17], development starts with a concrete syntax from which a meta-
model is derived. Semantics have to be described as a mapping to Java. This is
achieved by writing a transformation which programmatically works on a Java
program represented as an abstract syntax tree.

MPS [18] is more powerful than Xtext because extensions can be used jointly
with DSL concepts. However, the editor is a projectional one that is unusual to
operate. One does not enter the single characters that make up a construct, but
instead has to choose from a set of possible constructs insertable at the current
cursor position. Then the fixed textual parts of a construct are expanded and the
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cursor can be moved from one variable part to the next. For example, for a class
construct, one can move from the name to other variable parts like attributes
and operations and instantiate further constructs there.

Both frameworks automatically provide text editors. However, these are only
available after a manual software generation step. The generation has to be
initiated every time the language is changed. This manual step hinders rapid
development of DSLs. Furthermore, both frameworks do not provide simulation
primitives. These have to be made available manually by a simulation library.

There are Some Alternative Approaches for Describing the Execution Seman-
tics of Metamodel-Based Languages. Some of them are based on operational
semantics, e.g. MAS [12], M3Actions [19], and EProvide [20]. Runtime data and
runtime states are described as a part of the same metamodel that also defines
the abstract syntax of a language. Semantics is described by stepwise transfor-
mations of the runtime state. For such descriptions, programming languages like
Java, but also UML activity diagrams or languages like Prolog and Haskell can
be used. However, these approaches do not consider the necessity of runtime
efficient executions of simulations. Furthermore, simulation primitives are not
available and have to be added manually.

3 Approach

Our approach is based on a framework that combines an extensible object-
oriented language with the immediate provisioning of essential tools at a low
cost. In this section, we describe the basic concepts of the approach and its im-
plementation. In the following, we present a use case that applies the approach
to the definition of a state machine language. These explanations lay the foun-
dation for a discussion of the approach regarding the fulfillment of the proposed
properties in the next chapter.

3.1 Basic Concepts

Object-Oriented Concepts. At its core, the approach consists of a base lan-
guage (BL) that includes object-oriented description means and a small set of
essential simulation primitives. Its object-oriented features are confined to single
inheritance between classes and multiple inheritance between interfaces com-
bined with the well-established concept of type polymorphism. The base lan-
guage and its concepts are similar to those of SLX. However, in contrast to SLX,
the concepts of pointers to an object and an object as a value are not distin-
guished. Variables of type class are always handled as references to objects. This
is a simplification derived from Simula and Java.

Simulation Concepts. The set of provided simulation primitives is short but
sufficient. Concurrent processes are defined by the concept of an active class.
Each such class defines the behaviour of its objects as a sequence of statements in
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an actions part. The behaviour starts when objects of active classes are explicitly
activated. Further statements specify event-based process interactions: advance
of model time, indefinite waiting of a process and reactivation by another one,
interruption of a process and rescheduling it at a certain time, yielding control
to another process, and waiting for a certain condition (defined as an expression
accessing model structures) to become true (wait until). These are simulation
primitives known to be sufficient for modelling all kinds of discrete-event systems.
The provided simulation primitives are inspired by DEMOS [21] and SLX [5].

Domain-Specific Concepts. Domain-specific concepts are defined by speci-
fying extensions to the base language. An extension specification consists of two
parts. First, an extensions syntax is specified and then a mapping to concepts
of the base language is defined.

Syntax Definition. The syntax is defined in an attributed BNF-like grammar
language. A syntax definition consists of a set of grammar rules that extend
the grammar of the BL. The first of these rules refers to the BL grammar rule
that is extended by a new rule. Subsequent rules, consisting of terminals and
non-terminals, define the concrete syntax of an extension. Each rule may refer
to already existing BL rules, e.g. Statement and Expression, and thus reuse
BL constructs. Non-terminals prefixed by a dollar sign designate references to
already existing language constructs.

The class of languages that can be defined is a subset of context-free languages
which can be defined by an LALR1 grammar. Furthermore, semantic additions
for specifying references between language constructs can be made by using the
dollar sign in front of non-terminals.

In the definition of an execution semantics, the syntax parts have to be ac-
cessed. Therefore, syntax parts are prefixed by symbolic names. These names
allow to access and evaluate the elementary or structured value of a part in
semantics definitions. In addition, prefixed syntax parts define an implicit map-
ping to an abstract syntax. This abstract syntax is internally represented as a
metamodel which extends the metamodel of the BL.

extension ForLoop {
Statement -> ForLoop ;

ForLoop -> "for" "(" it:$Variable "in" set:Expression "with"

condition:Expression ")" "{"

ManyStatements

"}";

ManyStatements -> ;

ManyStatements -> statements:list(Statement) ManyStatements;
}

Listing 1. Syntax definition of a for-loop statement as an extension

1 Look-Ahead Left to Right, Rightmost derivation.
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An example is given in Listing 1. The extension defines the syntax of a for-
loop as an additional kind of statement. In contrast, to the BL for-loop that
iterates over all elements of a given set, the for-loop extension can be equipped
with a condition expression which selects specific elements of the set. For the
non-terminal $Variable, an identifier referring to an already existing Variable
construct has to be supplied.

The example also shows syntax parts prefixed by symbolic names. An exam-
ple is the condition expression which is prefixed by the name condition. In the
semantics definition, the concrete condition can be accessed by this name.

In [22], we introduce the parts of the approach that deal with syntax exten-
sions. We also show a prototype that implements this aspect. It allows to syn-
tactically extend the concepts of a general-purpose language by domain-specific
ones.

Semantics Definition. Models created in the BL are used for simulation. There-
fore, domain-specific concepts have to define an execution semantics. The seman-
tics of a concept is defined by a mapping to concepts of the BL. Furthermore,
the semantics of the BL concepts are informally defined by a mapping to an
executable target simulation language, i.e. an existing language for which there
is already a compiler. This can be an exclusive simulation language like SLX but
also a general-purpose language like Java combined with a simulation library.
The sole requirement for the target language is that one can write a mapping
for each of the concepts of the BL.

The semantics of an extension is defined in a semantics part right below the
syntax part. The mapping is defined by a sequence of regular BL statements
combined with a special gen statement. For each concrete use of an extension,
these statements are executed. The target BL code is derived from executions
of the gen statements. In the next step, the resulting target BL code is included
at the exact place where an extension is used. In addition, there is a special
statement for changing the current substitution context to other parts of a BL
model. The concept is very generic in the way that arbitrary constructs of the
BL can be referred to by their abstract syntax definition. As an example, an
extension of type statement could add a class definition in a BL module that is
required in the substitution code of the statement extension itself.

extension ForLoop { } semantics {

gen "for (" it ":" set ") {";
gen "if (" condition ") {";
for (Statement stm: statements) {
gen "" stm ";";

}

gen "} }";
}

Listing 2. Semantics definition of a for-loop statement as an extension
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In Listing 2 we revisit the example of the for-loop statement again and present
the definition of its semantics. Executing this definition results in a regular BL
for-loop in which the conditional selection of elements is simply implemented
by encapsulating the statements of the for-loop body in an if statement. Syntax
parts like it and condition are implicitly replaced by their concrete syntax rep-
resentation when used inside semantics parts. An example use of the for-loop
extension and the corresponding target code is depicted in Listings 3 and 4.

list(int) is; int i; for (i in

is with i > 0) {
print i;

}

Listing 3. Example use of the for-loop
extension

list(int) is; int i; for (i:
is) {

if (i > 0) {
print i;

}

}

Listing 4. Resulting BL target code
for an example use of the for-loop
extension

3.2 Implementation

Editor. The BL editor is implemented by using the Textual Editing Framework
(TEF) [12] and the Eclipse Modeling Framework (EMF) [23]. TEF is used for
deriving a BL editor by defining the concrete syntax of the BL. EMF is used for
the definition of a metamodel for the BL, which is required by TEF, and also
for the extensions, which make additions to the BL metamodel.

The outstanding feature of the editor is its immediate awareness of the syntax
of domain-specific extensions. This feature automatically derives a DSL editor
at runtime. It offers well-established editor features like syntax highlighting and
content assistance. Its implementation is feasible because TEF is based on the
runtime parser generator RunCC [24], which can be supplied with changing
versions of a grammar at runtime. This makes the implementation of a TEF
variant feasible in which extension definitions are instantly recognised by the
BL editor. For each extension, the grammar rules defined by the extension are
added to the grammar of the BL. The extended BL editor and its parser continue
to work with the extended version of the grammar. When an extension definition
is modified, the corresponding rules in the BL grammar are updated as well.

Simulator. The BL simulator is implemented by a mapping to an executable
target simulation language. The simulator is derived by compiling and executing
the target language program.

BL concepts as well as simulation concepts have to be considered in the map-
ping description. In a first prototype, a mapping to Java in combination with
the simulation library DESMO-J is defined. The mapping is described in Ac-
celeo [26], which is a template language implementing the OMG MOF Model
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to Text Standard [27]. This concrete mapping is 513 LOC2 in size, composed of
template statements and target code.

DSL simulators are derived by substituting all the extensions with BL con-
cepts as defined in their semantics parts. At the end of this process, the resulting
model solely consists of BL concepts. In the final step, the model is mapped to
the target simulation language that is used for execution. An overview of the
whole compilation workflow is available online [14].

A major problem in the whole transformation process is the rather static
nature of the used metamodeling framework EMF, as explained in [22]. In sum-
mary, it is hard to have a changing metamodel be supported by EMF at runtime.
Because of this problem, the time for executing a transformation is rather long.
For the simple for-loop example, it takes around 8 seconds to transform, com-
pile, and execute a corresponding model on a high-end computer3. Initiating
the EMF generation process for creating all the Java classes, which have to be
present for metaclasses, takes most of the overall execution time.

3.3 An Example Language – State Machines

We successfully apply the approach to the definition of state machines as an
example language, which we refer to as SML. The simplified use case of this
language is designed as a preliminary study for the development of a language
for industrial workflows in the field of supply chain management.

SML is defined by a set of domain-specific extensions. The language is an
enhanced version of the one presented in [22]. It is a subset of state machines
as defined by the UML [28]. The subset includes simple states, initial and final
states, transitions with signal, completion, and time event triggers, and also
guards and effects. The semantics of event processing is implemented as run-
to-completion as defined by UML. SML state machines can be used to define
behaviour inside an active class of the BL. They can also refer to properties of
their enclosing class.

An example, which defines the structure and the behaviour of a simple counter,
is depicted in Listing 5. After each time step, a count variable is increased un-
til a certain limit is reached. In addition, the counter may be started, paused,
and resumed by external signals. Signals are send to objects by a special send
statement, which is also defined as an extension.

The syntax definition is similar to the one presented in [22]. The new semantics
definition has been added. It is defined by using the core simulation constructs
of the BL. An excerpt of the semantics definition is depicted in Listing 6. The
complete definition of SML is 158 LOC in size. It is available online [14].

The main idea in the semantics definition is to add a variable of type list of
object to the class containing the state machine. This variable serves as an event

2 Description effort is measured in lines of code (LOC), excluding comments and blank
lines.

3 Intel Core i7 2.6 GHz processor, 8 GB main memory, and a Solid State Hard Disk.
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pool into which signal and time events are placed. In the next step, the behaviour
is implemented by waiting for events to arrive in this set. Each event is processed
one after the other, including the evaluation of guards and the execution of
effects. For time events, a special active class Timer is created by using the special
statement setGenContext. It allows to change the current generation context
inside semantics parts. This concept allows to add constructs in other places
of the enclosing model in which an extension is used. In the example, the class
Timer is created in the same module in which the state machine is used. Objects
of class Timer represent time events. When a time event occurs, a Timer object
is placed into the corresponding event pool.

class Start {} class Pause {} class Resume {} class Reset {}

active class Counter {

int count;
int limit = 10;
int step = 1;

stateMachine CounterBehaviour {

initial -> StandBy;
state StandBy (
Start / { count=0; } -> Active,

Resume -> Active

);

state Active (

[count >= limit] / { trace("Finished."); } -> final,
after(step) [count < limit] / {
count=count+1; trace("Tick " + count); } -> Active,

Pause -> StandBy,

Reset / { count=0; } -> Active

);

}

}

void main() {
Counter c = new Counter;
activate c;
send new Start to c;

advance 20;
}

Listing 5. Counter state machine as an example extension use
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semantics {

gen "list(Object) eventPool; string currentState;";
...

gen "actions { ... while (currentState != null) { ";

...

gen " empty eventPool;

wait; ...

while (eventPool.size > 0 and currentState != null) {

Object ev = eventPool.first;

remove ev from eventPool; ";

for (State state: states) {
gen "if (currentState == \"" state.name "\") {";

for (Transition tr: state.outgoing) { ...
if (tr.effect != null) {
for (Statement stm: tr.effect.getStatements()) {

gen "" stm ";";
}

}

...

ClassContentExtension ext = self;

Clazz clazz = ext.eContainer() as Clazz;
Module mod = clazz.eContainer() as Module;

setGenContext after mod.getClassifiers().first;
gen "active class Timer {
" clazz.getName() " sm; ...

actions {

advance delay; ...

place self into sm.eventPool; ...

}

} ";

}

Listing 6. Excerpt of the semantics definition for the state machine extension

4 Discussion

In this section, we discuss to what extent the proposed properties are present in
our approach. We also compare the approach to two related ones, namely SLX [5]
and Xtext [17]. We investigate to what extent each property is present in each
approach. We relate this investigation to the general requirement of having low
development effort for domain-specific concepts including customised tools. We
measure description effort in LOC and point out characteristics of each approach.
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4.1 Object-Orientation (P1)

The base language (BL), which is included in DMX, is object-oriented. Thus,
property (P1) is present. Object-orientation is restricted to single class inheri-
tance. This kind of object-orientation is used in various established modelling
languages like Simula, SLX, and the System Description Language (SDL) [29].
Although single inheritance seems to be sufficient, other languages like Modelica
and UML [28] provide multiple inheritance instead.

However, UML [28] does not define a precise semantics and leaves this part
unresolved as a semantic variation point. Problems arise when multiple imple-
mentations of the same kinds of elements are inherited. Modelica solves this
problem by merging the contents of the base class and the derived class. Thus,
similar elements become one. This is a feasible solution in Modelica because
operations, which can be a source of ambiguities, cannot be defined as parts
of classes but only as functions on a global level. Therefore, ambiguities as a
result of inheriting the same operation multiple times with different implemen-
tations cannot occur. Multiple inheritance can be a helpful feature. However,
further investigation is required of how it should be supported to be a helpful
instrument.

Xtext includes a base language named Xbase, which defines a large set of
expressions and statements. The semantics of Xbase is defined as a mapping to
Java. Therefore, Xbase also takes over Java’s type system, i.e. single class and
multiple interface inheritance. However, object-oriented descriptions means for
defining structures like classes and relations are not present in Xbase directly.
These have to be defined in Java and then referenced from languages defined
with Xtext and Xbase.

Another aspect of the BL is its simplification of the type concept for class
typed variables to object references only. This simplification exempts the mod-
eller of considering runtime efficiency aspects, i.e. whether an object should be
placed on the stack or on the heap. This kind of decision is intentionally left to
an optimizing compiler. In SLX, there is no such simplification. In Xtext, as a
result of its Java-based semantics, the same simplification is present.

4.2 Domain-Specific Additions (P2 and P3)

Modelling with increased structural and behavioural equivalence is achieved by
the extension concept. It allows to define domain-specific concepts with their own
notation and execution semantics (P2). The advantage of an extensions-based
approach is that concepts of the base language can be included into domain-
specific ones (P3). In addition, BL concepts and extensions can be used jointly
within the same model.

In SLX, domain-specific concepts of two kinds can be defined with their own
notation and semantics: statements and expressions. The syntax definition of
such concepts is bound to a subset of regular languages, which is not suitable
for complex DSLs. Therefore, property (P2) is only present in parts.
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In addition, DSL concepts can only include SLX expressions, but they cannot
include other kinds of contructs like SLX statements. This is a major obstacle in
defining effects in the example language SML. In SLX, one has to code them as
strings. Therefore, property (P3) is only present in parts as well. The execution
semantics of an extension is defined by a sequence of SLX statements in com-
bination with a special expand statement. They define a mapping to the SLX
core language. The target code is derived by executing this mapping for each
extension instance and replacing it by its target code. The availability of sim-
ulation primitives make the description of an execution semantics surprisingly
short. The complete definition of SML is 103 LOC in SLX.

In DMX, the set of languages that can be defined is more comprehensive. It
already allows to define such complex languages as state machines. Important
features making this definition feasible is the support of context-free languages in
extensions. In addition, DMX includes a special statement setGenContext which
allows to change the current generation context inside semantics parts. This
concept allows to add constructs in other places of the enclosing model in which
an extension is used. Such constructs can be helpful when defining semantics. As
an example, in the semantics definition of SML, a class Timer is created in the
same module in which a state machine is used. In the semantics definition the
class Timer is used in order to define the semantics of time events. In contrast,
SLX only allows to create constructs at the same place in which an extension is
used, which limits the possibilities of defining certain semantics. The size of the
SML definition is with 158 LOC in DMX compared to 103 LOC in SLX slightly
larger. Yet, language definition as well as editor support are more comprehensive
as well.

In Xtext, DSLs in the set of context free languages can be defined, thus prop-
erty (P2) is present. In addition, general-purpose constructs like expressions and
statements can be added to a language, which is property (P3). However, there
is a major problem with Xtext: domain-specific additions cannot be embedded
into regular Java programs and thus cannot extend the Java language. In the
semantics description, expressions have to be positioned in a suitable place in
the resulting Java code, where they can be correctly evaluated. As Java does
not contain simulation primitives, this part of the mapping has to be defined by
using a Java-based simulation library. In this comparison, DESMO-J [25] is used.
The definition of SML in Xtext consists of 373 LOC (15 LOC for the syntax and
358 LOC for the semantics definition).

In DMX, domain-specific concepts can be directly embedded into a BL model.
In addition, they can be used jointly with the BL. The size of the syntax defi-
nition of SML is with 25 LOC in DMX compared to 15 LOC in Xtext slightly
larger. However, this can be explained by Xtext providing EBNF and our own
approach providing BNF for syntax definition. With the semantics definition it
is different. In Xtext the size is 358 LOC, which is more than double the size of
the definition in DMX (158 LOC). There are multiple reasons for this increase
in description size in Xtext: i) the programmatic construction of target code as
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a Java abstract syntax tree, ii) the missing integral part of simulation primi-
tives, and iii) the need to embed BL elements like statements and expressions
into a suitable evaluation context. In addition, semantics is defined in Xtend,
which in comparison to Java includes many simplifications to Java as well as ad-
ditions of high-level concepts like lambda expressions. This makes descriptions
considerably more concise than comparable Java code.

The use of BNF notation in DMX syntax parts could be reduced by adding
Extended BNF (EBNF) description means. Because EBNF is already defined as
an extension of BNF, it could be made available by the very same principles of
our approach. However, such an extension is of a different kind. In order for the
editor to recognise EBNF-based syntax definitions, it is required to carry out
extension substitution for the semantics part at runtime as well. Currently this
is only implemented for the syntax part.

4.3 Low Cost Tool Support (P4)

In our approach, there is immediate tool support with an editor and a simulator.
This makes the definition and the application of a domain-specific concept with
a distinct notation as simple as writing an ordinary method. Editor features like
syntax highlighting and content assistance, available for methods, are equally
present for domain-specific extensions. All of these tools are provided at a low
cost because the description effort required for defining syntax and semantics is
low in comparison to SLX and Xtext. Thus, property (P4) is present.

In SLX, there is an integrated programming environment including an edi-
tor, a compiler, a launcher, and a debugger. These tools also support defined
extensions. However, the syntax of extensions is not immediately recognised.
Instead, the syntax is highlighted after a complete program has been compiled
successfully. Expressions and statements used in extensions have to be supplied
as unchecked strings.

In Xtext, a textual DSL editor can be generated from a DSL description. It
features syntax highlighting and content assistance. In contrast to SLX, there
is even support for expressions and statements used in extensions. There is a
generic builder, which executes the mapping description and automatically com-
piles the resulting Java code. The Java representations of DSL constructs are
available in regular Java programs. However, the development process is rather
slow because tools have to be generated first before they can be applied. Es-
pecially in an iterative process, this kind of development is time-consuming. In
addition, description effort is rather high.

In comparison to SLX, tool support by an editor is more comprehensive
in DMX. Editor features likes syntax highlighting and content assistances are
equally available as in Xtext. However, in DMX, an editor is immediately avail-
able for domain-specific concepts. In addition, the description effort required is
lower than in Xtext.
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In each approach, a compiler for domain-specific extensions is automatically
derived from semantics descriptions. The compilers differ in compilation time. In
DMX, compiling a BL program which includes extensions is rather slow at the
current stage of implementation. Compiling the example counter state machine
(Listing 5) takes around 10 seconds.

4.4 Simulation Primitives with Fast Execution (P5)

In DMX, runtime efficient executions are preserved by efficient implementations
of the BL simulation primitives. This part is delegated to the selected simula-
tion target language. For some of these languages efficient implementations of
compilers already exist. An impressive example is SLX. By writing a mapping of
the BL to SLX, one can benefit from fast executions combined with an increased
expressive power in defining domain-specific extensions. Also, extensions benefit
from fast executions because their semantics are defined using the very same
concepts of the BL.

The same argument holds for simulation libraries written in Java, although
they may not be as runtime efficient. An example with poor execution speed
is DESMO-J. That is because its coroutine implementation is based on Java
threads. However, there are more efficient libraries. A library which is prominent
in the network simulation community is JiST [30]. It implements coroutines by
Java Byte Code rewriting which makes it faster than DESMO-J. A mapping to
JiST, which would be similar to the one already implemented for DESMO-J,
can result in a viable simulator as well.

Execution time of SLX and Xtext/DESMO-J is measured in an experiment4

with an example model which includes two counters (as presented in Sect. 3.3),
limited to 106 counts. In SLX, the simulation is finished after 0.06 seconds. In
Xtext/DESMO-J, it takes 186 seconds to complete. The corresponding DMX
model executes in 144 seconds when using DESMO-J. There is a slight increase
in execution time in the Xtext-based SML. This might be because the state
machine semantics for processing events are implemented in an object-oriented
way by following a state machine pattern [4]. In contrast, the semantics of the
DMX-based SML is defined by determining the current state with a number of
simple if statements.

Furthermore, the execution time of DMX could easily be increased to the same
time as pure SLX by defining a BL-to-SLX transformation. Thus, DMX could
benefit from the very efficiently implemented SLX simulation core. In addition,
DMX models already created can be used without any changes.

This is only a first measurement with a simple example which focusses on
process switching times. Depending on the concrete model, other aspects might
be more important. Nevertheless, the example can serve as a first indicator of
execution times.

4 Intel Core i7 2.6 GHz processor, 8 GB main memory, and a Solid State Hard Disk.
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4.5 Externally Implemented Functionality (P6)

The possibility of connecting different target simulation languages (mentioned in
Sect. 4.4) is important for several reasons. It is important i) for creating models
which are independent of some current state-of-the-art simulator platform, ii)
for running simulations with the most efficient simulator platform available, and
iii) for integrating external functionality provided by libraries or tools without
too much effort. The last remark can be an implementation of property (P6).

Although we have not yet investigated this aspect in depth, we believe that
the BL to target language mapping already offers a good solution. It should
be feasible to access external functionality implemented by tools written in the
target language with not much effort. One can declare a BL function as native in
which calls to this function are forwarded to their implementation in the target
language. A prerequisite is that an external tool has to offer an interface to its
functions accessible in the chosen target language.

In SLX, external functions implemented in C/C++ can be invoked. This is
achieved in a number of steps. A model has to 1) declare a function as natively
available via a Dynamic Link Library (DLL), 2) generate a C/C++ header and
implementation file, 3) implement the function in C/C++, and 4) compile it as
a DLL so that it can be accessed from a SLX model.

In Xtext, external functions implemented in Java are instantly accessible
because its semantics are already defined as a mapping to Java.

5 Conclusions

We present an approach exhibiting a number of properties which are important in
order to develop domain-specific languages used in simulation in a more efficient
way. This includes the development of the language as well as its tools. We
measure description effort of our approach for defining a state machine language
and present the derivation of tools like an editor at a low cost. In comparison
to related approaches, description effort and the cost for having tools is reduced
while maintaining the expressive power and execution efficiency required for
domain-specific simulation languages. Further research has to show if languages
that are even more complex can be developed analogously.

6 Future Work

The provisioning of debuggers is an area of special interest to us. Currently,
debuggers still have to be implemented by hand, e.g. for simulation languages
like SLX. Furthermore, dedicated debuggers do not even exist for simulation li-
braries written in programming languages. We believe that our approach can be
extended to an immediate provisioning of DSL debuggers (part of P4). In [31],
we already describe the debugging aspect of a DSL, so that a debugger can be
derived automatically. The work is based on EProvide, which is a framework
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for defining the execution semantics in an operational way. However, other ap-
proaches [32] show that such tools could also be derived for execution semantics
described as transformations.

The second area of interest is investigating the integration of externally
available functionality as described in Sect. 4.5.
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Abstract. In this paper, we describe our ongoing work on model trans-
formation chains. Model transformation chains refer to the sequences of
model transformations in Model Driven Engineering (MDE). The trans-
formations represent and formalise typical model/software engineering
activities, and their chaining is the natural composition of such activities.
Model transformation chains found in industrial practice vary widely, de-
pending on the specific domain they are used in. By explicitly modelling
development activities, these activities can be analysed and the MDE
process may be improved. As a step towards such analyses, we propose
an integrated framework to describe all the artifacts involved in model
transformation chains, as well as the means to execute “enact” those
chains. We describe the Formalism Transformation Graph + Process
Model (FTG+PM) which is at the heart of our framework in detail.

1 Introduction

Model Driven Engineering (MDE) is currently the mainstream top-down ap-
proach to software development. The philosophy behind MDE is that software
development should start by building domain specific structural and behavioral
models of the system under development. By domain specific we mean that ini-
tially models of the system should be described in a language close to the domain
being tackled. During the software development process those models are then
improved, augmented and refined by the application of model transformations –
possibly with the automatic or manual injection of additional information.

Model transformations have been called the heart and soul of MDE [1]. Chain-
ing model transformations is a natural step in MDE as such chains allow describ-
ing the composition of activities in software construction and provide explicit
means for MDE automation. However, to the best of our knowledge little work
is devoted to understanding the underlying structure of such chains when they
are used in domain specific software development. This work is crucial for the
following (non-exhaustive) list of reasons:

– Reuse: Model transformation chains are typically devoted to building soft-
ware within certain domains. In this paper, we provide an example of the

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 182–202, 2013.
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usage of model transformation chains for building automotive software. As
in traditional software development, the modularity and possibility of reuse
of such chains is extremely relevant from an engineering viewpoint. It seems
natural that subsets of a transformation chain developed for a given software
engineering purpose can be reused without much changes for a similar engi-
neering purpose. Moreover, by identifying and classifying subsets of transfor-
mation chains responsible for high level activities in domain specific software
development (e.g. requirements development, domain-specific design, verifi-
cation, simulation, analysis, calibration, deployment, code generation, execu-
tion, etc), it is possible to achieve a finer level of understanding and control of
such activities – in a domain specific or in a more general context;

– Traceability: Traceability is increasingly required in software development
at the stakeholder level (e.g. to ensure a given requirement has been im-
plemented in the system), but also at the software development level (e.g.
to ensure traceability as high level models are refined along the develop-
ment process). Because transformation chains explicitly model the rela-
tions between the several steps of an MDE process, traceability is a natural
consequence of using such chains;

– Certification: Finally, and possibly most importantly, by having an explicit
representation of such transformation chains and the models (and metamod-
els) they work on, the certification of such processes becomes possible. In
certain domains such as embedded systems, automotive or aerospace, strict
norms exist to ensure each step in software production is performed cor-
rectly and is properly documented. A large effort has been devoted in the
last two decades to developing verification methods for software. The MDE
community is now missing studies on how and when those techniques should
be applied, but also how they can be composed in a meaningful way. Again,
model transformation chains are the ideal context to study the usage and
utility of such verification methods for software certification in MDE.

Several studies such as [2,3,4,5,6,7,8], among others, have addressed model trans-
formation chains. However, to perform an investigation on the nature and prag-
matic uses of transformation chains we require an environment where all the
artifacts involved in such chains are explicitly formalized, easily accessible and
easily manipulated. The majority of the approaches in the literature dealing with
transformation chains are concerned with automated execution. The explicit and
integrated representation of all artifacts involved in model transformation chains
in a way that makes them amenable to the formal study of those chains’ charac-
teristics is typically less of a concern. In order to address this issue and to have
a solid basis to study the issues mentioned above, we need a framework allow-
ing the modelling of model transformation chains that addresses the following
requirements:

1. An explicit representation of both the languages used in the model transfor-
mation chains and the relations between those languages should be provided;

2. An explicit representation of the individual model transformations should
be available and the means to execute those transformations should exist;
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3. Explicit process modelling of MDE activities should be possible such that
transformation chains can be built;

4. Automatic execution of transformation chains should be possible. In order to
study the execution of transformation chains and which parts of those chains
should be performed manually, we require that a model transformation chain
execution engine exists.

In order to address these requirements, we propose in this paper the FTG+PM
framework. The proposed framework is completely supported by our tool
AToMPM, A Tool for Multi-Paradigm Modelling [9], which allows explicit
modelling of and access to, all used artifacts.

This paper is organised as follows: Sect. 2 provides background information on
meta-modelling, model transformation, and our tooling environment. In Sect. 3
we introduce our running example, the power window case study. Section 4
introduces the FTG+PM framework. Section 5 presents the the explicit exe-
cution semantics of the FTG+PM. Section 6 describes in detail an automotive
power window case study and by doing so illustrates the artifacts involved in
a model transformation chain. Section 7 discusses related work. Finally, Sect. 8
draws some conclusions on how the FTG+PM addresses the aforementioned
requirements and proposes future studies on model transformation chains.

2 Background

Within the context of this paper we have chosen to follow the terminology as
presented in [10]. A model is completely described by its abstract syntax (its
structure), concrete syntax (its visualisation) and semantics (its unique and pre-
cise meaning). A language (also called formalism) is a possibly infinite set of
(abstract syntax) models. This set can be concisely described by means of a
grammar or a metamodel. No semantics or concrete syntax is given to these
models. Several such languages, called metamodels, are used to describe families
of models of computational artifacts that share the same abstraction concerns.
Each metamodel is a language that may have many model instantiations.

Domain Specific Modelling (DSM) captures the fact that certain languages or
classes of languages, called Domain Specific Languages (DSLs) are appropriate
for expressing models in certain domains.

Model transformations involve the mapping of source models in one or more
formalisms to target models in one or more formalisms using a set of transfor-
mation rules.

In this work, we use rule-based graph transformation as the means for model
transformation [11]. This requires (meta-)models to be stored as graphs, thus
allowing model manipulations to be defined as graph grammars.

In our work, we have used AToMPM [9], A Tool for Multi-Paradigm Modelling,
to build metamodels, transformations, and execution support for the FTG.
AToMPM (the successor of AToM3[12]) rigorously applies the “model and con-
forming meta-model” workflow to all facets of domain specific modelling. It allows
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modelling of language syntax (abstract and concrete) and semantics.
The tool supports rule-based graph transformations and pre- and post-condition
pattern languages to allow specification of model transformations. AToMPM runs
on a web browser and provides support for real-time, distributed collaboration.

3 The Power Window Case Study

In order to explain how our FTG+PM framework addresses the requirements
stated in Sect. 1 we will use a running example. In Fig. 1 we show a slice of the
FTG+PM we have built for developing the power window control software. The
power window FTG+PM was built based on our experiences with developing
automotive software. Further details on this case study can be found in [13,14].

A power window is basically an electrically powered window. The basic con-
trols of a power window include lifting and descending the window, but an in-
creasing set of functionalities is being added to improve the comfort and security
of the vehicle’s passengers. When given the task to build the control system for
a power window, a software engineer considers several variables, such as:

(1) the physical power window itself, which is composed of the glass window,
the mechanical lift, the electrical engine and some sensors for detecting for
example window position or window collision events;

(2) the environment with which the system (controller plus power window) in-
teracts, which will include both human actors as well as other subsystems of
the vehicle – e.g. the central locking system or the ignition system.

This idea is along the same lines as that presented by Mosterman and
Vangheluwe in [15]. According to control theory [16], the control software sys-
tem acts as the controller, the physical power window with all its mechanical
and electrical components as the process (also called the plant), and the human
actors and other vehicle subsystems as the environment.

The FTG+PM slice in Fig. 1 presents the design and verification part of de-
veloping the power window software. The case study begins with three domain-
specific languages built for the modelling of power windows (PlantDSL, EnvDSL
and ControlDSL in the FTG part of Fig. 1, allowing respectively modeling the
plant, environment and controller for a power window), plus a network language
(not shown in Fig. 1) that allows the connection of the components defined in
those DSLs. Those domain specific components are separately transformed into
modular Petri nets (EncapsulatedPetriNet in the FTG part of Fig. 1). When all
the modular Petri nets have been built, they are composed into a single Petri
net (PetriNet in the FTG part of Fig. 1). This Petri net can then be used to
verify that the system cannot enter a non-safe state. While the left side of Fig. 1
presents the FTG part of the model detailing the required formalisms and trans-
formations, the right side of Fig. 1 shows how executions of those transformations
are chained. Note also that in Fig. 1 dotted elements PlantToPN, EnvToPN and
ControlToPN denote automatic transformations, while other elements without
dots denote manual ones. The following section elaborates on the syntax of the
FTG+PM language.
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4 The FTG+PM Language

The FTG+PM language is defined using two sub-languages: the Formalism
Transformation Graph (FTG) language and a Process Model (PM) language.
We give a brief overview of FTG+PM in this section. The formalization of the
language along with further details on the framework can be found in [17]. A
unified metamodel of the FTG+PM language is shown in Fig 2.

Node

ControlObjectAction

Fork Join MergeFinal

ActivityFinal FlowFinal

DataFlowControlFlow

*

*

*

*

Transformation

Language

ActionTypedBy

ObjectTypedByinputsoutputs

FTG PM

*

*

1

1

*
**

1

Initial Decision

Fig. 2. Formalism Transformation Graph and Process Model (FTG+PM) Metamodel

The Formalism Transformation Graph (FTG) is a hypergraph with languages
as nodes and transformations as edges. It lays down the relationships among the
multitude of languages and transformations used for the development of a partic-
ular system or systems within a domain. The framework takes into account the
heterogeneous nature of the MDE process, and integrates the MDE paradigms:
multi-abstraction, multi-formalism, and metamodelling. The languages at each
level in the FTG are used to represent and model knowledge at different levels
of abstraction starting from requirements to code synthesis. Depending on the
activity involved, we build our FTG by choosing the most appropriate formalism
based on the nature of the problem and the intention: discrete-event formalisms,
continuous time formalisms, hybrid formalisms, or others. All the languages in
the FTG are metamodelled, and the transformations are specified using rule-
based graph grammars. Languages in the FTG are denoted by labelled rectan-
gles, and transformations are denoted by labelled circles on edges. The incoming
edges show the source languages of the transformation, and the outgoing edges
point to the target languages. Fig 1 (discussed in detail in Sect. 6) shows a slice
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of a FTG+PM model for the automotive domain (complete model presented in
[14]), and describes a part of the artifacts and the process necessary to build
software to control power windows of automobiles. The FTG model may in-
clude self loops to languages (for example, when a transformation is endogenous
in nature).

The Process Model (PM) (see sample PM in Fig 1 highlighted in gray) is used
in conjunction with the FTG to model the MDE process. Having a process model
integrated with the FTG allows us to precisely and in detail model the MDE
process we follow, and to provide execution support for it when needed. The
PM exhaustively describes the control flow and data flow in the MDE process.
Our process model is a subset of the UML 2.0 activity diagram metamodel. In
the PM language, the labelled roundtangles (actions) in the Activity Diagram
correspond to executions of the transformations declared within the FTG. This
typing relation is made explicit in the FTG+PM model by the thin horizontal
links connecting the action nodes in the PM to the transformation elements in
the FTG. Labelled rectangles (object nodes) in the PM correspond to models
that are consumed or produced by actions. A model is an instance of a lan-
guage declared in the FTG part of the model with the same label. This typing
relation is again made explicit by horizontal links connecting the object nodes
to the language elements in the FTG. Notice that in a PM model thin edges
denote data flow, while thick edges denote control flow. Notice also that for each
model input and output edge of a PM action a corresponding edge exists for the
transformation typing it on the FTG side. The input and output models of an
action are typed according to the input and output languages of the FTG trans-
formation that types that action. Finally, the join and fork Activity Diagram
flow constructs represented as horizontal bars, allow us to represent concurrent
activities.

The FTG defines a set of transformations and the PM describes the chain-
ing of the transformations and the execution order for a particular intent. The
FTG+PM can thus be considered to be a model transformation chaining lan-
guage for describing the composition of transformations by defining their or-
der of execution, source and target model types, and the relationships and
dependencies among them.

Various business process modelling or workflow languages exist in the litera-
ture. Our intention is to model the MDE process as a chain of model transforma-
tions rather than a business process with models as first class artifacts and with
model transformations as the core of the approach, hence we have chosen to use
UML 2.0 activity diagrams for our purpose. In addition, UML 2.0 is a standard
in the MDE community, and our tool, AToMPM (A Tool for Multi Paradigm
Modelling) [9] also provides support for UML. Our framework is supported by
AToMPM for creating metamodels, describing graph transformations, and for
building execution support for the FTG.
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5 FTG+PM Semantics: Transformation and Tool
Support

TheproposedFTG+PMlanguage is implemented in ourAToMPMtool.AToMPM
contains its own transformation language. Transformations and transformation
rules, in AToMPM, are treated as normal models conforming to an appropriate
meta-model. Transformation rules, consisting of a left hand side (LHS), a right
hand side (RHS) and a set of negative application conditions (NAC), are tried
in an order given by a rule scheduling model, in this case described in a finite
state automaton-like formalism. Since transformation rules and their scheduling
are explicitly modelled within AToMPM using appropriate meta-models, defining
higher-order transformations is straightforward.

To execute a FTG+PM model, we transform the PM to the native transfor-
mation scheduling language of AToMPM. The result of the transformation of the
power window FTG+PM shown in Fig. 1 to the native AToMPM transformation
language is depicted in Fig. 3. A PM action which is mapped to a transforma-
tion can be either automatic (e.g. see dotted elements PlantToPN etc. in Fig. 1)
or manual (other elements in Fig. 1 without dots). Manual transformations are
not implemented using graph transformations, but involve actions in which the
output models need to be created by the user(s).

Fig. 3. The resulting transformation model of the example FTG+PM
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The transformation schedule is created as follows:

(1) a PM Action node tagged as automatic corresponds to the execution of a
transformation defined in the FTG Transformation node typing it;

(2) transformations are scheduled according to the control-flow defined in the
PM.

An example rule of this transformation from FTG+PM into AToMPM’s trans-
formation scheduling language is shown in Fig. 4. Note that the LHS of a rule
matches a pattern in the input model including a PM Action (round-tangle)
typed by a FTG Transformation (circle), while the RHS rewrites it by build-
ing the scheduling of the transformation execution as a double round-tangle (a
composite transformation application in AToMPM’s rule scheduling language).
The double round-tangle is then used to execute this transformation within
the AToMPM environment. For example, the PlantToPN action in Fig. 1 is
mapped to the transformation T PlantToPN (inside the double round-tangle
node) in Fig. 3.

The scheduling language additionally includes rectangular nodes correspond-
ing to the execution of a single transformation step to handle opening of input
models (shaded as /Models/PW/PWReq.model in Fig. 3) or writing (includes
editing and saving) of output models (shaded as /Models/PW/PWConfig.model
in Fig. 3), and control flow arrows to impose the ordering of the scheduling of
the transformations.

When executing a FTG+PM model, the input of a scheduled transformation
depends on whether there are incoming dataflow arrows:

(a) if there are incoming dataflow arrows into the action node, for each of these
dataflow arrows a transformation step is created that opens the specified
input model in the appropriate formalism in the current canvas. The trans-
formation rules that open the specified models are scheduled before the
execution of the transformation defined by the action node;

(b) If there is no incoming data flow arrow, the result of the previous transfor-
mation (present on AToMPM’s modelling canvas) is used as the input.

A similar solution is used for the output of an action:
(a) when a dataflow arrow emanates from an action node, a transformation step

is created to save the target model (specified in the location by the object
node) and clears the modelling canvas. The transformation step is scheduled
after the transformation defined by the action node;

(b) If no dataflow arrow exits the node, the canvas is not cleared.

Manual transformations (such as ModelPlant highlighted in dark gray in Fig 1)
are not mapped to a transformation, i.e. a double round-tangle node, in the
resulting schedule. They are mapped to transformation steps that first open
the input models and then to transformation steps that write/save the output
models. One transformation step corresponds to one open/save model and one
or more associated formalisms. For instance, the ModelPlant action is mapped
to a pair of transformation steps in Fig. 3:
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(1) a step that opens the input requirements model, /Models/PW/PWReq.model,
which is a model instance of TextualReq;

(2) a step that writes /Models/PW/PWConfig.model, the output plant
configuration model, which is an instance of PlantDSL.

In case of multiple input and output models, a transformation step is created in
the schedule corresponding to each open and write step. When output model(s)
are produced by manual transformations, a new AToMPM window is spawned
for each output model, which loads the model if it already exists (to allow for
further editing) or opens an empty canvas with the formalism toolbars loaded
otherwise. Once the user is done creating or modifying the model, a button needs
to be pressed to save the model and to return to the parent AToMPM window
where automatic transformation resumes.

In the current implementation, there is no support for the (semi-)parallel
execution of fork and join nodes since the current transformation language in
AToMPM does not allow this. Instead, the transformation towards the AToMPM
transformation language makes sequential the different branches between the
joins and the forks. This is done in the same way as described in [18] where a
marker is made at the top of the fork. Another marker is used to follow the chain
until the join node is found. Afterwards the full branch is scheduled before the
join node. This is done until all branches are made sequential.

When nesting occurs, the inner fork/join pairs are made sequential first.
Since the canvas can be used as the input for the next action node, the state

of the canvas has to be saved before the fork node. This is done by inserting
an object node, connected to the action node before the fork node. The output
goes to the first actions of each of the branches after the fork. At the last action
of each branch, a similar object node is inserted that is connected to the first
action after join node.

Because all models are saved and closed after the action node has executed
and reloaded before starting a new action, the sequential process model preserves
the original semantics.

6 Languages and Transformations in the Power Window
Case Study

In this section, we present some of the languages and transformations that
allow building and executing the transformation chains in the power window
FTG+PM. Note that all the metamodels, models and transformations we present
in Sections 6.1 and 6.2 have been built and are readable and/or executable using
the AToMPM modelling environment. Note also that in the sections that follow
the metamodels, models and transformations are not explained in complete de-
tail, as the goal of their presentation in this paper is to illustrate the usage of
the FTG+PM, rather than the case study itself. Again, for further details on
the models presented in the sections that follow we refer the reader to [13].
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6.1 Building the Domain Specific Languages

The design and verification part of the power window FTG+PM in Fig. 1 makes
use of several domain specific languages (DSLs) for defining controller, the plant
and the environment models.

Due to space reasons, we only present in this text the plant DSL which
allows the specification of the hardware necessary for a given power window
configuration.

Fig. 5. Plant DSL Metamodel

In Fig. 5, the metamodel of the plant DSL can be observed. The main class
of the language is the PowerWindow class, which is abstract and can be instan-
tiated as a Side window or a Roof window. A physical power window includes a
set of switches of two kinds: Lockout switches allow removing control from other
power windows in the car (as specified by the controls association); Rocker or
PushPull switches allow controlling window movement. Finally, a power window
may also have sensors of types Infrared or ForceDetecting for detecting if an
object is blocking the window from going up.

In Fig. 6, we present a model instance of the Plant DSL, where a configuration
of two power windows of an automobile is described. The model includes a driver
and a passenger power window, where the driver’s window has three buttons:
a pushpull button for controlling the driver’s window, a pushpull button for
controlling the passenger’s window, and a lockout switch for disabling/enabling
the control of the passenger’s window. The passenger’s window includes a rocker
button and a infrared sensor meaning the window automatically stops rolling up
when an object obstructs its path.
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Fig. 6. Plant DSL: Example Model

6.2 Transformations

From Domain Specific Models to Modular Petri Nets. Two types of
modular Petri nets are generated from the Plant DSL model by the PlantToPN
transformation in Fig. 1, depending on the power window configuration. In Fig. 7,
the Petri net modelling the discrete behavior of a power window with an obsta-
cle detecting sensor can be observed. During operation the window can either
be at the bottom of the frame (bot place, meaning the window is completely
open), somewhere in the middle of the frame (mid place, meaning the window
is partially open), or at the top of the frame (top place, meaning the window
is closed). Additional places in Fig. 7 (midDetObj, topDetFrame and danger)
are used to model object detection during window operation. The modular Petri
net in Fig. 7 also includes ports (having as concrete syntax black squares) for
synchronisation with other modular Petri nets. An example rule of the Plant-
ToPN transformation in Fig. 1 is shown in Fig. 8. This particular rule builds the
behavior of a power window without obstacle detection. Notice that the negative
application condition of the rule (inside the dashed square) prevents the power
window that is matched by the LHS of the rule from having a sensor.

Due to space constraints, we are unable to present here the similar transfor-
mations into modular Petri nets defined for both the control and environment
models (called EnvToPN and ControlToPN in Fig. 1).
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Composition of the Modular Petri Nets. Once the environment, plant,
and control models are transformed to the modular Petri nets, it is necessary to
compose those models. This last transformation, called CombinePN in Fig. 1,
allows to manually1 build the complete Petri net of the power window example
using the produced modular Petri nets and an additional network model (not
shown here). This composed Petri net is an instance of the PetriNet formalism
in the FTG part of Fig. 1. An example of such a model (produced from our
example models in Fig. 6 and Fig. 7) can be (partially) observed in Fig. 9. This
composed Petri net is used for the validation of the safety requirements of the
power window. In particular we have used it to automatically check that a state
where an object obstructing the window has been detected and the window is
still going up is never reached. In this state a token exists in the “danger” place
in the EncapsulatedPetriNet model in Fig. 7. This place can be found in the
rightmost subnet of the composed model in Fig. 9, highlighted by a red ellipse.
Note additionally that in the transformation chain found in the complete power
window FTG+PM defined in [14], the Petri net verification step is itself built as
a transformation.

7 Related Work

We consider different approaches for the composition of model transformation
chains. We have looked at work which have applied mega-modelling concepts
and/or process modelling concepts in their approach. A megamodel is a concep-
tual framework used to reason about MDE and represents the global view of the
considered artifacts (models, metamodels, and other global entities) in a system
and the relationships between them [19,20]. Key in their approach is that not
only models, but also tools and the services and operations they provide are also
represented as models, with all sorts of relations in between.

The approaches are compared on a number of properties. The first criteria
is whether the approach uses mega-modelling and therefore has an explicit rep-
resentation of the modelling languages and relations between the languages by
means of transformation definitions. The second is whether the approach allows
the composition of chains by means of an explicit representation of the process.
Finally, we consider both automatic transformations where the execution of the
transformation is completely automated and manual transformations where a
modelling environment is setup in the defined language(s). Table 1 shows the
comparison of the different approaches.

Most approaches allow for the data-flow composition of model transforma-
tions where input and output relations of the transformations are used to chain
different transformations. The control-flow of these approaches is inferred from
this data-flow composition. Oldevik proposes a framework for the data-flow com-
position of transformations in [2]. It uses UML activities like our FTG+PM to
model these relations, though control flow is not taken into account. A definition

1 We are currently building the transformation to automatically execute this
composition.



198 L. Lúcio et al.

Table 1. Comparison of the approaches (supports (�), does not support (x) , un-
known/unclear (∼))

Tool Explicit Megamodel Explicit Process Model Transformations

Control Flow Data Flow Automatic Manual

Oldevik et al. [2] � x � � ∼
Vanhooff et al. [3] � x � � x

UniTI [4] � x � � x

TraCo [5] � x � � x

Wagelaar [6] x x � � x

MoTCoF [7] ∼ x � � x

Wires* [21] x x � � x

transML [22] � ∼ � � x

Epsilon [23] ∼ x � � ∼
MCC [8] x x x � x

Aldazabal et al. [24] x � � � ∼
Diaw et al. [25] � x � � ∼

FTG+PM � � � � �

for manual transformations is present, though it is not described how the frame-
work copes with these transformation types. In [3], a data-flow composition of
transformation framework is presented similar to the UniTI framework [4]. The
concepts of these frameworks are extended by the TraCo framework [5] where
additional validation checks are performed on the composition of the transfor-
mations. Wagelaar [6] presents a DSL for the composition of transformations.
The models are transformed to ANT scripts for execution. Seibel et al. present
the MoTCoF framework [7] for the data-flow and context composition of model
transformations. The meta-model of the approach is not shown, but most likely
an explicit megamodel is present. Wires* [21] provides a graphical language
for the orchestration of ATL model transformations. It has modelling elements
for complex data-flow for example decision nodes, parallel execution and sup-
port for loops. It does not however take manual activities into account. The
transML framework [22] is created for transformations in the ‘large’. It provides
meta-models for requirements, analysis, architecture and testing of transforma-
tions. The tool supports data-flow chaining of transformations by transforming
to ANT-tasks. The Epsilon Framework, presented in [23], provides a model man-
agement framework where ANT-tasks can be used to build chains of transfor-
mations. It is not clear if the Generic Model Manipulation Task can be used for
the loading of a modelling environment though models can be loaded and stored
using ANT tasks. Finally, Kleppe proposes a scripting language MDA Control
Center (MCC) [8] for combining multiple transformations in sequence and in
parallel.

In the process modelling community, frameworks for MDE are proposed as
well, though these usually do not focus on transformation chaining, for example
[26,27]. Two examples however do take transformation chaining into account.
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In [24], Aldazabal et al. present a framework for tool integration where transfor-
mations can be chained. The process is modelled in SPEM or BPMN (Business
Process Modelling Notation) and is transformed to BPEL (Business Process Exe-
cution Language) for execution support. They do not however have a megamodel
to validate input-output relations. In [25], Diaw et al. present an adaptation of
SPEM [28] for the use in an MDE context. The composition is a data-flow com-
position like most transformation chaining approaches discussed above. Both
frameworks allow the modelling of manual activities, though it is not clear how
the frameworks handle these manual activities.

Our approach, combines the explicit modelling of the languages and trans-
formations (megamodel) together with a process model that supports complex
control-flow constructs. This allows the modelling of non-linear transformation
chains for building complex applications. Transformations can either be executed
automatically or require manual intervention. In the manual case the framework
opens a modelling environment for the activity and continues the process when
the activity is finished. The explicit modelling of all the components allows to
reason about these complex chains of transformations.

8 Conclusion and Future Work

In this paper, we have presented a framework for explicitly describing model
transformation chains within MDE. We have introduced the FTG+PM language,
composed of the Formalism Transformation Graph (FTG) and its complement,
the Process Model (PM). The building blocks of the FTG are formalisms (nodes
in the graph) and transformations (edges in the graph). The FTG describes the
different languages that can be used at each stage of model development. The
transformations model development activities, and the control flow and data
flow between each transformation action are explicitly modelled in the PM.

In its current form, the FTG+PM framework satisfies the requirements stated
in Sect. 1. We have explicitly described the abstract and concrete syntax of the
FTG+PM language by metamodelling them in our tool, AToMPM. In addition,
the syntax of each of the languages appearing as a node in the FTG is also
explicitly modelled. The transformations defined as activities in the PM are all
modelled as rule-based graph transformations using AToMPM’s transformation
language (which was itself modelled explicitly). The FTG+PM language allows
transformations to be defined as automatic or manual. Our framework allows
user interventions in the MDE process, and provides means for creating artifacts
using manual activities. The process model connects the transformations using
control flow and data flow links. UML 2.0 activity diagrams were chosen as the
language to describe the PM. This allows us to model the chaining of transfor-
mations as a process model and to build execution support for it. For execution,
we map the process model to the native transformation scheduling language
of AToMPM. The mapping takes into consideration whether a transformation
is automatic or manual. In case of manual activities, the users can complete
the task at hand and resume the execution of the process model which con-
tinues with the execution of the next scheduled transformation. The FTG+PM
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approach was applied to a concrete problem in the automotive domain: the power
window case study.

As mentioned in Sect. 1, the goal of having a framework that allows us to
thoroughly describe and automate model transformation chains is to give use the
means to study and optimize such chains. As such we are currently developing
the following:

– We currently use the power window case FTG+PM to study the notion
of intent in model transformations. In our work in [29], the intent of a
model transformation is defined as “a description of the goal behind the
model transformation and the reason for using it”. The FTG+PM model
of the power window model transformation chain helped us to construct a
transformation intent language. We are currently building a catalogue of
model transformation intents (akin to design patterns in the OO world) and
are formalising the properties of such intents. As mentioned in [30], the study
of the formal properties of model transformations is in its infancy;

– As a result of our transformation intent work, we are now attaching intent -
related annotations to the transformations described in the PM part of an
FTG+PM model. Such annotations may serve to identify formal proper-
ties that should be proved for a model transformation. As transformation
chaining is a form of relational composition, the formal composition of the
properties of individual transformations in the chain is of great importance;

– Using the concrete power window case, we are also investigating the multi-
paradigm modelling aspects of the FTG+PM [14]. We expect the study to
help in identifying methodological and reusability concerns when developing
model transformation chains for the automotive domain, that can hopefully
be extrapolated to other domains.

Acknowledgements. Part of this work has been developed in the context of
the NECSIS project, funded by the Automotive Partnership Canada.
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Abstract. In Model Driven Engineering, traceability is used to estab-
lish relationships between various software artifacts during the software
life cycle. Traceability can be also used to define dependencies between
related elements in different models, to propagate and verify properties
from one model to another and to analyze the impact of changes. In this
paper we describe how to define typed trace-links between different kinds
of models in our model transformation chain PUMA4SOA, which gener-
ates Layered Queuing performance models from UML software models of
service-oriented applications. The goal of PUMA4SOA is to help evalu-
ate the performance of SOA systems in the early development phases. In
our approach, the traceability links are stored externally in a new model,
which maintain traces separately from the source and target models they
refer to. We illustrate how traceability links can be used to propagate the
results of the performance model back to the original software model.

Keywords: Software Performance Engineering, SOA, Traceability,
Trace-Links, Aspect-oriented modeling, Model transformation, Perfor-
mance Analysis.

1 Introduction

Model-Driven Engineering (MDE) is a software development paradigm that
changes the focus from code to models. Many models of different types are
used to describe the software under development in different lifecycle phases
and at different levels of abstractions. Models in different modeling languages
are created, updated and transformed either manually or automatically. This
raises challenges related to the ability of managing and configuring the software
models. In order to improve the coherence, and consistency of models used in an
MDE process, it is useful to establish and maintain trace-links between models.
Traceability is a known software approach used to establish relationships between
various software artifacts (including all kinds of models) during the software life
cycle. This allows the developers to understand the relationships and dependen-
cies between artifacts, to maintain their consistency and to analyze the impact
of changes in different artifacts.
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A wide range of traceability approaches have been discussed in the literature.
The survey in [1] discusses the state of the art of traceability approaches in
MDE, classifying them into three categories: 1) requirement-driven, 2) modeling,
and 3) transformation approaches. In requirement-driven approaches, traceabil-
ity is defined in the requirement models as “the ability to describe and trace
the requirement specifications forward and backward in the life cycle during the
software development” [2]. The modeling approaches are focusing on using meta-
models and models to define trace-links. In the transformation approaches, the
traceability details are generated by using model transformations. This can be
done by creating trace-links between the source and target model elements dur-
ing the model transformation. In terms of storing and managing traceability, two
approaches are proposed in [3]: the intra-model and the extra-model approach.
In the intra-model approach, traceability links are embedded inside the models
they refer to as new model elements. In the extra-model approach, traceability
links are stored externally in a new model, to maintain traces separately from
the model they refer to. In terms of capturing the trace-links, [4] proposes two
categories: explicit trace-links captured directly in the models using a suitable
concrete syntax (such as UML dependencies), and implicit trace-links generated
by a model operation (such as transformation or comparison).

Performance from Unified Model Analysis for SOA (PUMA4SOA) is a mod-
eling framework introduced by the authors in [5,6] and [7], which generates a
Layered Queueing Network (LQN) model from the UML design model of a SOA
system; the LQN model is then used for analyzing the performance characteris-
tics of the SOA system in early phases of the software life cycle. PUMA4SOA
extends the PUMA framework developed previously in our research group [8],
as presented in the next section. PUMA4SOA in its present state does not pro-
vide trace-links between the elements of the source and target models, which
are needed for tracing, analyzing or propagating the impact of changes between
different models.

The focus of this paper is on defining a traceability model for PUMA4SOA,
which establishes trace-links between the elements of its different models. The pa-
per is organized as follows: Section 2 gives a high-level view of the transformation
chain in PUMA4SOA. Section 3 presents the proposed traceability metamodel,
which defines trace-links between UML, CSM (Core Scenario Model) and LQN
model elements; the metamodel is also extended to handle cases where aspect
models are used. Section 4 illustrates the use of the traceability model with a
Purchase Order system example. Section 5 presents related work and Section 6
gives the conclusion and directions for future work.

2 PUMA4SOA Transformation Principles

The PUMA4SOA transformation chain is described in Fig. 1. It takes as input
three UML design models: 1) platform independent model (PIM), 2) deploy-
ment diagram, and 3) aspect platform models. The SOA systems are modeled
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in UML [9] extended with two OMG standard profiles: MARTE [10] for adding
performance annotations and SoaML [11] for describing the service architecture.

After getting the UML input design and selecting the generic aspect models
for the platform operations required in the model, the next step is to transform
the UML PIM model and the aspect models into intermediate models called Core
Scenario Models (CSM [12]. The purpose of CSM is to bridge the semantic gap be-
tween the UML input design model and various performance models that could
be generated. At the CSM level, the aspect platform models are composed with
the platform independent model to generate the platform specific model (PSM).
Transforming the CSM PSM to LQN is the final step in the model transformation
chain [6,8]. The LQN model is an extension of queuing networks with the capabil-
ity of representing nested services [13]. An LQN model defines a set of tasks rep-
resenting software processes (threads) or hardware devices, which offer services
called entries. An entry of a task can make a request to an entry of another task.
Once the LQN model is generated, an existing LQN solver is used to produce the
performance results (such as response time, throughput, and utilizations). The
results are then fed back to the UML input design for further analysis.

The UML platform independent model (PIM) describes the structural and
behavioral views of SOA systems at three levels of abstractions: a) the work-
flow model representing the business process layer, b) the service architecture
model describing the invoked services, the participants, ports and service con-
tracts, and c) the service behavior model giving details about the behavior of
the invoked services. The deployment diagram represents the configuration of
the SOA system, showing the allocation of software to hardware resources. The
aspect platform models represent platform operations provided by the underly-
ing service middleware, such as service invocation, service publishing and service
discovery. Each aspect model can be seen as a template with generic parameters,
which will be bound eventually to concrete values just before the respective as-
pect will be composed with the PIM in all places (join points) where a platform
operation needs to be executed. For instance, a “service invocation” aspect will
be composed with the PIM for every service invocation contained in the PIM.
The aspect composition can take place at three levels, as discussed in [7]: UML,
CSM or LQN level. In Fig. 1, the aspect composition is performed at the CSM
level, which has certain advantages [7]. The final result of the composition is a
platform specific model (PSM) expressed in this case in CSM.

PUMA4SOA also defines a so-called performance completion (PC) feature
model that represents the variability (i.e., alternatives) in the service platform.
It provides the choice to select between multiple aspects based on the business
requirements for the given application. The “performance completion” concept
was introduced in [14], where “completions” close the gap between the abstract
design models and the functions provided by a platform external to the design
model. In [15], a PC feature model is used to define the variability in plat-
form choices, execution environments and other external factors that might im-
pact the system performance. A concrete example of PC-feature model can be
found in [7].
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Fig. 1. PUMA4SOA approach

A high-level view of the transformation chain from UML software models to
CSM and then to LQN is shown in Fig. 2. Please note that only the behavioural
view of the UML model is presented in Fig. 2; the service architecture, the
deployment and the platform aspect models are not shown, although they do
contribute to the CSM derivation. Figure 2 emphasizes the fact that workflow
and the service-providing components are represented separately in the UML
model, contributing to distinct parts of the CSM and LQN models. The basic
transformation principles are as follows:

a) A UML workflow model (normally an activity diagram) will generate a top-
level scenario in CSM, which in turn will generate a LQN reference task that
embeds an LQN activity graph corresponding to the workflow activities.

b) A service-providing run-time component in UML will generate a component
in CSM executing subscenarios that represent the behaviour of services; each
service subscenario is invoked by the workflow steps or other services. In turn,
this will generate an LQN task with entries modeling each provided service.

c) An activity or an execution occurrence corresponding to a message in UML
will generate a Step in CSM and an activity or phase in LQN.
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Fig. 2. Transformations in PUMA4SOA

d) A processing node in UML will generate a processor in CSM and a hardware
device representing a processor in LQN.

e) An aspect model representing a platform operation will generate a subsce-
nario in CSM, which will be woven into the PIM model when such operations
are called.

3 Traceability Metamodel of PUMA4SOA

We used an approach similar to [16] for defining the PUMA4SOA traceability
metamodel. The trace-links are classified into three groups: UML2CSMTraceLink
between the UML and CSM elements, CSM2LQNTraceLink between CSM and
LQN elements and LQN2CSMTraceLink between LQN and UML elements. The
first two correspond to the model transformations shown in Fig. 2, while the
third can be derived from the first two and it is used for feeding back to the
UML model the LQN results. The three trace-links groups are aggregated into
TraceModel (see Fig. 3).

Fig. 3. PUMA4SOATraceabilityMetamodel top level
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3.1 UML to CSM Traceability

The first group of trace-links in PUMA4SOA is defined between the elements of
the UML input design models and the CSM model. The UML models are built
using several types of UML diagrams, i.e. activity diagram (AD), component
diagram, sequence diagram (SD) and deployment diagram. For simplicity, we
will show here the trace-links for a subset of UML model elements.

To define UML2CSMTraceLink, we use the UML metamodel and the CSM
metamodel, as the purpose is to capture trace-links between models elements
which conform to those two metamodels. Each trace-link between an element of
the source model and an element of the target model has its own type. It also
has two associated properties (modeled as association roles in UML): the source
refers to a metaclass in the UMLMetamodel and the target to a metaclass in the
CSMMetamodel. An example of trace-link type between an Action element in
the UML metamodel and a StepType element in the CSM metamodel is Action-
StepTypeTL. The trace-links are derived during model transformation from to
the mapping between corresponding UML and CSM elements. The relationships
between the source and target model elements can be one-to-one (such as Node
and ProcessingResource), one-to-many, many-to-one (such as ActivityPartition,
LifeLine and ComponentType), or many-to-many.

All trace-link metaclasses inherit from UML2CSMTraceLink, which is aggre-
gated into TraceModel. Figure 4 presents a subset of the traceability metamodel
between UML and CSM. A subset of UML and CSM metamodels are represented
at the top and the bottom of the figure, respectively.

Fig. 4. Trace-Links between the elements of UML and CSM
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3.2 CSM to LQN Traceability

The next group of trace-links in PUMA4SOA is defined between the elements
of CSM and LQN model. We use the same procedure as in the previous section.
The purpose is to capture the traceability between models that conform to the
CSM metamodel and to the LQN metamodel. The metaclasses in PUMA4SOA
TraceabilityMetamodel have two associated properties: the source refers to a
metaclass in the CSMMetamodel and the target to a metaclass in the LQN-
Metamodel. When an element in the source or the target model is not mapped
during the model transformation, it means that it does not have equivalent ele-
ment(s) in the other model. In this case a trace-link will not be defined for this
element. As an example, the OutputResultType, which is defined in the LQN
metamodel to create elements that store the results, is not linked with a CSM
element; however it will have trace-links to an UML element to propagate the
LQN output results. Figure 5 presents a sample of trace-links between the CSM
and LQN.

Fig. 5. Trace-Links between the elements of CSM and LQN

3.3 LQN to UML Traceability

The third group of trace-links in PUMA4SOA is defined between the LQN and
UML model elements, and can be derived from the combined effect of the two
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Fig. 6. Trace-Links between the elements of LQN and UML

transformations from Fig. 2, as there is no direct transformation from UML to
LQN. The LQN2UML metaclasses define two associated attributes: the source
refers to a meta-class in the LQNMetamodel and the target to metaclass in
the UMLMetamodel. Figure 6 presents a sample of trace-links between LQN
and UML.

As shown in Fig. 1, the LQN model is derived by a model transformation from
the platform dependent CSM model, which in turn was generated by composing
the platform aspect models into the PIM at the CSM level. Since the UML
model does not contain a PSM, the mapping from LQN to UML encounters
some difficulties, as discussed in the next section.

3.4 Trace-Links Related to Aspect Models

The trace-links between the LQN and UML models have not been properly
defined yet in Section 3.3, because the LQN model is a Platform Specific Model
(PSM), while the UML input design models do not contains a PSM, only the
PIM and Generic Aspect Models (see Fig. 7). For instance, in this example we
modeled the service invocation operation as a generic aspect, which involves
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Fig. 7. Traceability for aspect models

XML parsing and marshaling/unmarshaling of the SOAP messages exchanged
between the service client and the service provider. These actions are usually
performed by a service middleware process, which may be instantiated multiple
times on different processors, depending on the deployment of the components
providing and requesting services.

Some of the concrete LQN elements obtained from the instantiation of a
generic aspect model (such as the concrete instance of a service middleware
used for a certain service invocation) cannot be traced back to a UML element,
since only the generic middleware counterpart exists in the UML model. In this
section, we extend the traceability metamodel defined in the previous sections to
address this issue. The extension is used to define additional trace-links between
some of the already defined trace-links. These extended trace-links allow for the
mapping of the generic elements from the CSM level to LQN level. If LQN carries
information about the generic model element corresponding to each concrete
model element, trace-links between the concrete LQN elements can use that
information to point to the generic UML counterpart.

Figure 8 shows an example of how the PUMA4SOA TracibilityMetamodel
was extended. Two extra trace-links are created that make it possible to link
a concrete LQN element (such as a concrete middleware task) with informa-
tion about its generic counterpart (the generic role representing the middleware
process in the aspect model). The first trace-link ProcessorProcessorTL defines
the trace-links between NodeProcessingResourceTL (UML2CSM) and Process-
ingResourceProcessorTL (CSM2LQN), and it owns two associated attributes:
the concreteSource to define the concrete LQN Processor, and the genericTar-
get to define the generic CSM ProcessingResource. The function SetProcessor is
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Fig. 8. Extension of PUMA4SOATraceabilityMetamodel

used to set an instance of the defined attribute genericProcessor to its equivalent
generic CSM ProcessingResource. The second TaskTaskTL defines the trace-links
between LifeLineComponentTypeTL (UML2CSM) and ComponentTypeTaskTL
(CSM2LQN), and it also owns two associated attributes: the concreteSource to
define the concrete LQN Task, and the genericTarget to define the generic CSM
ComponentType. The function SetTask is used to set an instance of the defined
attribute genericTask to its equivalent generic CSM ComponentType. By using
such trace-links, a concrete middleware task running on a concrete processor in
the LQN model can be traced to the generic UML counterparts and can also
indicate the context in which they were instantiated.

4 Example: Traceability Model of Purchase Order System

In previous work [7], we used PUMA4SOA to build the UML design model of a
Purchase Order (PO) system and to generate a LQN model in order to study its
performance properties. In this section, we use the same example to create the
traceability model which defines the trace-links between the model elements at
UML, CSM and LQN levels.

A brief description of the PO case study is given first. The platform inde-
pendent model (PIM) contains two parts: a) the workflow (Fig. 9) represented
as a UML activity diagram, which describes the actions of receiving, invoicing,
scheduling and shipping an order; and b) the service behavior models, which
describe the details of each activity in the workflow.

ProcessSchedule (Fig. 10) is an example of service behavior model; the detailed
models for the rest of the activities from Fig. 9 are similar, but not shown.

The deployment diagram (Fig. 11) shows the allocation of software compo-
nents to the hardware nodes. The aspect platform models describe the structure
and behavior of the platform operations (in this case the service middleware used
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Fig. 9. Workflow model of Purchase Order system

Fig. 10. Service behavior model of ProcessSchedule

for service invocation, discovery, publishing) in a generic format. Each middle-
ware operation is represented by a different aspect model that has a structural
and behavioural view. In this example we use only the Service Invocation op-
eration, which describes the message construction (including XML parsing and
marshaling/unmarshaling) and sending/receiving of the SOAP messages for ser-
vice request and service reply, respectively (for more details, please refer to [7]).

At the CSM level, two separate CSM models are generated: one from the
UML PIM (Fig. 12) and the other from the UML generic platform aspect model
(service invocation in our case). Figure 12 contains two CSM scenario graphs
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Fig. 11. Deployment diagram of Purchase Order system

composed of steps: the left one represents the workflow CSM corresponding
to Fig. 9, and the right one the details of the composite step ProcessSchedule
obtained from Fig. 10. The Aspect Oriented Modeling (AOM) technique is then
used to generate a platform specific model (PSM) in CSM by composing the
instantiated aspect models into the primary model (Fig. 13). The gray steps
from Fig. 13 represent the woven aspects for the service request and reply.

The LQN model (Fig. 14) is generated next from the CSM Platform Specific
Model. After generating the LQN model, the LQN solver produces complete
performance results for the PO system, such as utilization of all resources, re-
sponse times and throughput for scenarios, etc. By identifying the performance
hotspots in the system, the results are fed back to the UML level to improve
the software design models. Trace-links are used to propagate the performance
results and to feed back the suggested improvements from the LQN to UML.

The workflow model has two MARTE stereotypes in Fig. 9. The first stereo-
type <<GaAnalysisContext>> defines the contextParams attribute which de-
clares two variables: $Nusers for number of users and $R for response time.
The second stereotype <<GaScenario>> captures system-level behavior and at-
taches allocations and resource usage to it. It defines many attributes, such as
respTime, utilization and throughput. In our case, the respTime has two val-
ues: a required value (no more than 3 seconds) and a calculated value that will
be assigned to $R, (the variable defined in the contextParams). The $Nusers
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Fig. 12. The CSM model of PIM for Purchase Order system

variable is initialized by the modeler, and the $R variable will be assigned
output results from the LQN model using trace-links.

PUMA4SOA allows for different types of performance analysis, such as sensi-
tivity analysis, pass/fail and finding optimal values, which may require multiple
iterations of the model transformation chain. In our case, the performance re-
quirement specifies that the response time should be maximum 3s in average,
which may require multiple model changes to achieve it. Hence, to manage the
propagation of the model changes, we define a traceability model as in Fig. 15.
For simplicity, trace-links for only three UML elements are defined: POSys-
tem:Activity, Sales:LifeLine and InvoicingHost:Node. Some of the model ele-
ments have more trace-link relationships. For example, there are two trace-links
defined between some LQN elements and the UML element POSystem:Activity.
The trace-link between POSystem:TaskActivityGraph and POSystem:Activity
corresponds to the relationship caused by the model transformation that gen-
erated LQN from UML. The other trace-link between results:OutputResultType
and POSystem:Activity is used to propagate the generated output result of the
LQN, such as response time and throughput. The OutputResultType is defined
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Fig. 13. Result of composition for ProcessSchedule
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Fig. 14. LQN model of Purchase Order system (PSM)

in the LQN metamodel to create elements that store the results. To meet the
performance requirement defined for the PO workflow (required mean response
time <= 3s), three iterations of the model transformation chain have been exe-
cuted as described in Table 1 for $Nusers = 100.

The first iteration represents the base case, where the multiplicity of all
tasks and hosts equals one. The response time and throughput are calculated
and passed to the POSystem:Activity through the trace-link perfResultsTL:
OutputResultTypeActivityTL. Based on the LQN solver results, the Sales:Task
is found to be the bottleneck server.

This is a case of software bottleneck, usually solved by increasing the concur-
rency level by having more threads in the pool. Thus we change the multiplicity
of Sales to 15. The new value is propagated through the trace-links to their
corresponding element in UML and CSM. The same procedures happen in the
second iteration, except that the bottleneck is the processor InvoicingHost:Node.
We increase its multiplicity value to 5 (which means using 5 cores instead of one).
In the third iteration, the calculated response time is less than 3s, so it meets
the performance requirement. More iterations could be done to find out if the
requirement can be met with fewer resources.
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Fig. 15. Sample of traceability model of PO system

Table 1. Performance analysis of PUMA4SOA

$Nuser= 100, respTime = ((3,s, mean), req)
UML CSM LQN

1 POSystem:Activity
{respTime = $R}
After feedback $R=7014ms

POSystem:
ScenarioType

POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 7014ms}

Sales: LifeLine
{poolSize = 1}

Sales: ComponentType
{multiplicity = 1}

Sales: Task {multiplicity = 1}
Solve software bottleneck ->
multiplicity=15

InvoicingHost: Node
{ resMult = 1}

InvoicingHost:
ProcessingResource
{multiplicity= 1}

InvoicingHost: Processor
{multiplicity = 1}

2 POSystem: Activity
{respTime = 7014ms}
After feedback $R=3442ms

POSystem: ScenarioType POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 3442ms}

Sales:LifeLine
{ poolSize = 15}

Sales: ComponentType
{multiplicity = 15}

Sales:Task
{ multiplicity = 15}

InvoicingHost: Node
{ resMult = 1}

InvoicingHost:
ProcessingResource
{multiplicity = 1}

InvoicingHost: Processor
{ multiplicity = 1 }
Solve hardware bottleneck ->
multiplicity=5

3 POSystem: Activity
{respTime=3442,ms}
After feedback $R=1607ms

POSystem: ScenarioType POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 1607, ms}

Sales: LifeLine
{poolSize = 15}

Sales:ComponentType
{multiplicity = 15}

Sales: Task
{multiplicity = 15}

InvoicingHost:Node
{ resMult = 5}

InvoicingHost:
ProcessingResource
{multiplicity = 5}

InvoicingHost: Processor
{ multiplicity = 5}
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5 Related Work

Traceability information is used to manage the artifacts of a software system dur-
ing its development life cycle. The survey in [1] has classified three traceability
approaches: a) the requirement-driven approach which describe the traceability
of requirement specification to its subsequent deployment and use; b) the mod-
eling approach, which is mainly focused on defining tracing mechanisms for a
modeling language at the metamodel level (such as special tracing relationships);
and c) the transformation approach, where the tracing process is performed be-
tween a source and a target model during the model transformation, by creating
trace-links between the source and the target model elements. PUMA4SOA uses
the transformation approach to define trace-links between the elements of its
three modeling languages, i.e. UML, CSM and LQN.

There are several papers in the literatures using the transformation approach;
in [17] the author presented a method of attaching traceability generation code
to pre-existing ATL programs [18]. The method produces a loosely coupled trace-
ability, which can be used for any kind of traceability range and format. In [19]
the authors presented a method of generating annotated models which contain
traceability information, by merging the primary models with their defined trace
models. The generated trace-links can be stored internally, where the trace-links
are embedded as new elements inside the target models they refer to, or ex-
ternally where the trace-links are stored separately in a new model. In [20] the
authors proposed a traceability framework, implemented in the model-oriented
language Kermeta, to facilitate modeling transformations. Using a trace meta-
model, the framework allows for tracing the transformation chain within Ker-
meta. Model transformation trace-links are defined in the metamodel as a set of
source nodes and target nodes.

Two ways to manage the complexity of traceability information in MDE where
introduced in [16]. One is by identifying the trace-links through a process called
Traceability Elicitation and Analysis Process (TEAP), which is mainly used to
extract and analyze traceability relationships within an MDE process, to deter-
mine how these relationships would fit into a trace-link classification. The second
way is by describing a strict metamodeling approach, which defines semantically
rich trace-links between the elements of different models. Three characteristics
are defined for the semantically rich trace-links: a) to be typed, b) to conform
to a case-specific traceability metamodel, and c) to define a set of constrains
within the case specific meatmodel to validate the requirements that cannot be
captured by the metamodel itself. In this paper, we used a metamodeling ap-
proach similar to [16] to create a traceability metamodel for our PUMA4SOA,
which defines trace-links between the elements of the UML, the CSM and the
LQN elements. Also, in order to handle the problem of traceability loss when
applying aspect-oriented techniques we extended the metamodel by defining new
trace-links between the previously defined trace-links.

Similar to our work, in [21,22], the authors use trace-links between a software
model (Smodel) and the corresponding Performance model (Pmodel) of a service-
oriented system to study the change propagation when applying design patterns
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to a Smodel. The purpose is to develop methods for incremental propagation of
changes from Smodel to Pmodel, in order to study the performance effects of
design patterns.

6 Conclusions

The paper focuses on defining a traceability metamodel for PUMA4SOA, which
is used to define trace-links between different types of models, namely UML,
CSM and LQN. We also addressed the problem of trace-links when applying
aspect-oriented modeling techniques. Trace-links are used in PUMA4SOA to
analyze the impact of changes at different model levels, i.e. UML, CSM and
LQN, and to feed back the performance results from the LQN model to the
UML model. We illustrate the proposed approach with a simple PO system.

In the future, we are planning to define formally the constraints within
PUMA4SOA traceability meatmodel to express well-formedness rules that can-
not be captured by the metamodel itself. We are also working on implement-
ing the traceability metamodel proposed in this paper, integrating it with the
existing PUMA4SOA model transformations.

Acknowledgements. This research was partially supported by the Natural Sci-
ences and Engineering Research Council (NSERC) and industrial and
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Abstract. Software language descriptions comprise several heteroge-
neous interdependent artifacts that cover different aspects of languages
(abstract syntax, notation and semantics). The dependencies between
those artifacts demand the simultaneous adaptation of all artifacts when
the language is changed. Changes to a language that do not change
semantics are referred to as refactorings. This class of changes can be
handled automatically by applying predefined types of refactorings.
Refactorings are therefore considered a valuable tool for evolving a
language.

We present a model transformation based approach for the refactor-
ing of software language descriptions. We use asymmetric bidirectional
model transformations to synchronize the various artifacts of language
descriptions with a refactoring model that contains all elements that
are changed in a particular refactoring. This allows for automatic, type-
safe refactorings that also includes the language tooling. We apply this
approach to an Ecore, Xtext, Xtend based language description and de-
scribe the implementation of a non-trivial refactoring.

Keywords: DSL evolution, language description, refactoring, bidirec-
tional model transformations.

1 Introduction

Software languages evolve continuously [1] and software language engineering
does not only include the initial development but also the continuous adaptation
of software languages. Especially the engineering of domain-specific languages
(DSLs) requires an agile process to evolve a language along rapidly changing
user requirements.
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During this process, two distinct problem sets arise. First, languages are al-
ready used while they evolve, and artifacts written in a language need to be
co-adapted to language adaptations. Secondly, the different artifacts that con-
stitute the description of a language (and eventually the tooling of that language)
need to be co-adapted when one of those artifacts changes. We call the former
vertical and the latter horizontal co-adaptation.

In this paper, we are only concerned with horizontal co-adaptation. A lan-
guage description (depending on the nature of that language) consists of several
artifacts: an abstract syntax (i.e., a metamodel, e.g., an Ecore model), con-
crete syntax (e.g., Xtext grammar, GMF model), and description of semantics
(e.g., model transformation rules or code generator). Fig. 1 depicts the different
artifacts in language development and their dependencies. When one of these
artifacts is changed to evolve the language (e.g., the multiplicity of a metamodel
feature is changed), the other artifacts need to be changed, too (e.g., the code
generator rules need to be adapted towards the changed metamodel).
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Fig. 1. Aspects of a language and concrete artifacts in metamodel-based language
development

Refactorings play an integral role during the evolution of a language. Whereby
a refactoring is described as a semantically invariant change of the language de-
scription [2]. This includes for example changing metamodel identifiers, moving
features within the inheritance hierarchy (pull-up, push-down), changing the
organization of grammar and transformation rules, etc.

In this paper, we present an approach that allows the refactoring of language
description artifacts with automated co-refactoring of depending artifacts of the
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same language description. We model these co-refactorings as view-update re-
lations between a common view capturing the refactoring-specific information
and the dependent artifacts using asymmetric bidirectional model transforma-
tions [3]. This allows for a more declarative and modular description of refac-
torings which allows for more possibilities of verification and better reuse. We
demonstrate the practicability of our approach by implementing refactorings on
Ecore metamodels, Xtext grammars and Xtend-based code generators as arti-
facts.

The paper is organized as follows: In the first part we present different areas of
language evolution and give an overview of existing and related work in language
evolution. The following section describes a specific case study, which was de-
cisive for this paper. Section 4 describes our approach for handling refactorings
of interdependent heterogeneous artifacts in language development. Afterwards,
we give an outlook of an implementation using model transformations. Finally,
we conclude the paper including some discussion and show up possible directions
for future work.

2 Background and Related Work

When we discuss the evolution of languages, the need for co-adaptation arises.
We have multiple interdependent artifacts and if we change one the others have
to change as well.

2.1 Horizontal vs. Vertical Co-adaptation

We can distinguish two forms of co-adaptation.

– First, when we change the language description (especially the metamodel)
language instances have to be changed as well. We call this vertical co-
adaptation: Changes need to be propagated from the meta-layer (top) down
to the instance layer (bottom). Notable contributions to this kind of co-
adaptation comes from Wachsmuth [4] and Hermannsdörfer [5].

– The second form of co-adaptation happens within the same layer, hence
horizontal co-adaptation. Software engineers might use several languages to
create one piece of software on the instance-layer, and language engineers
might use different meta-languages to describe a single language (e.g., a DSL)
on the meta-layer. In both cases heterogeneous interdependent artifacts are
created. Since we mainly discuss horizontal co-adaptation (more specifically
co-refactoring) in this paper, we discuss the related work in this field more
detailed in the following subsections.

2.2 Horizontal Co-adaptation in Software Engineering

Software systems in general are often mixed-language systems. They are con-
structed with declarative descriptions for the user interface, imperative applica-
tion logic implemented with a general-purpose programming language (GPL),
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and other specific languages, e.g., configuration scripts, styling or plug-in man-
agement. Strein et al. investigated the evolution of a given inter-language soft-
ware system [6]. They described the interdependencies in an object-oriented web
application that is implemented with ASP.NET, HTML, C# and Visual Basic.
They identified that modern integrated development environments (IDEs) sup-
port the evolution of certain artifacts through offering refactorings or simple
adaptations like introducing getters and setters, but these IDEs are limited con-
cerning the co-adaptation of dependent artifacts written in different languages.
For transferring adaptations to other parts of a system Strein et al. developed an
IDE called X-Develop. They captured refactoring-relevant information, con-
cerning more than just one language, in a model and adapt this model, which is
a typical approach for implementing refactorings in software engineering.

2.3 Horizontal Co-adaptation in Language Engineering

As languages evolve too, the development process of a domain-specific language
has similarities to general software development [1]. Changes in a language
specification can have an impact on the corresponding language tools [7]. In
metamodel-based language development (i.e., where the metamodel that de-
scribes the abstract syntax is the central artifact) other meta-descriptions often
reference the types defined by the metamodel. Therefore, many of the needed
co-adaptations that are necessary when the metamodel changes can be detected
by checking these references. Although multiple (meta-) languages are involved
in DSL development, these languages are interconnected via the metamodel and
form the description of one language. Therefore, we call this intra-language evo-
lution. In this paper, we are concerned with intra-language evolution of DSLs
and other software languages (e.g., modeling languages).

Pizka and Jürgens already captured the difficulties of DSL evolution and
the need of co-adaptations for these systems [8]. For handling the evolution
of a language they implemented Lever (Language Evolver) [9]. Lever provides
different integrated DSLs for the description of grammars, the tooling, and the
coupled evolution of these parts. Lever focuses on textual DSLs and allows only
for adaptation of tooling after the grammar changes.

In this paper we present an approach for describing refactorings and show an
exemplary implementation that works with established technologies (e.g., EMF,
Xtext) and allows for co-adaptations resulting from changes to different kinds of
artifacts at the metalevel. We also believe that our approach is applicable to the
evolution of graphical DSLs.

3 Motivating Example: The NanoWorkbench

The motivation for the work that we present in this paper emerged from practical
experiences during the development of an Xtext-based DSL for developing opti-
cal nanostructures (NanoDSL) and a corresponding integrated tool-suite for that
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DSL (a domain-specific workbench called NanoWorkbench [10]). This project
is subject of a cooperation with the nano-optics research group at the physics
department.

The members of this group design geometrical structures that are smaller
than the wavelength of optical light in order to affect the motion of photons
in a similar way a semiconductor crystal affects the motion of electrons. The
properties of these photonic crystals are tested by simulating the propagation
of an electromagnetic pulse within the structure. There are different simulation
methods for that, e.g., the finite difference time domain method (FDTD) or the
finite element method (FEM). Fig. 2(a) shows a picture of a photonic crystal
and Fig. 2(b) shows a schematic overview of the workbench incorporating dif-
ferent DSLs and different simulation methods, as well as a model-driven data
management and model-driven communication channels for performing external
experiments or computations.

As we pursued an agile, iterative process to develop the DSL and its domain-
specific workbench (with continuous consultation of the domain-experts), we
identified problems similar to general software development: When implement-
ing changes requested by the domain experts we had to change the design of the
language specification several times. After solving change requests we manually
adapted the generator and artifacts concerning the tooling to preserve consis-
tency. Figure 3 gives an overview of corresponding generators that have to be
adapted after the language changes.

As a concrete example, the metamodel of the NanoDSL started with a de-
scription/class for only adding cylinders as geometrical objects to the photonic
crystal. This is the application the physicists mostly used. Later they wanted
to add other structures like truncated cones or cuboids. With these structures
they wanted to simulate manufacturing faults. For this change request we in-
troduced a superclass for geometrical objects in general. The existing structure
was renamed to Cone and became a subclass of the introduced class as shown
in Figure 4. We identified that some attributes are more general, e.g., height or
position in space, than others. To handle this redundancy we started to pull up
these attributes.

For solving this change request, we applied at least three well-known refac-
torings - rename, introduce superclass, pull up feature. Although we could easily
rewrite the core language description, we had to update the existing tooling and
in our special case had to adapt two complex model-to-text transformations de-
scribing different execution semantics and one model-to-model transformation
for a 2D-visualisation. Additionally, we implemented a transformation rule for
each added subclass. For calling the rules we need to check the object’s type via
the instanceof-operator first for providing the correct transformation. These
manual changes are time-consuming and error-prone. Thus, we identified the
practical need for automatic co-refactorings of interdependent artifacts in DSL
development.



Refactorings in Language Development 227

(a) A photonic crystal [11]
(b) Overview of the domain-specific

workbench

Fig. 2. A domain-specific workbench for the development of optical nanostructures

Fig. 3. Implemented parts of the domain-specific workbench
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4 A Model Transformation-Based Approach for Evolution
of Interdependent Artifacts in Language Development

In the following subsections, we present our model transformation based ap-
proach to refactoring of software languages. First, we will sketch the traditional,
imperative approach that is used to realize refactoring for, e.g., general purpose
programming languages like Java (homogeneous artifacts). Secondly, we identify
differences between the refactoring of, e.g., Java programs and DSLs. Thirdly,
we describe refactoring of software languages as a model-view-synchronization
problem. Fourthly, we present lenses as one concrete method for model-view-
synchronization. Finally, we summarize our approach and identify the compo-
nents necessary to describe a refactoring within our approach.

4.1 Traditional Imperative Approach

Bäumer, Gamma & Kiezun [12] propose the following three steps to perform a
refactoring.

– First, create a program database (e.g., an AST) that stores information about
declarations and references (independent from a compiler). The database
needs to provide a search interface for queries like What program elements
reference a certain method?. This general step is independent from concrete
refactorings.

– Secondly, perform structural program analysis using the previously estab-
lished database. In this step the cone of influence is determined for concrete
refactorings: all affected compilation units and program elements are identi-
fied and refactoring-specific preconditions are checked.

– Thirdly, the actual changes are performed. Elements of the previously de-
termined cone of influence are changed according to the refactoring.



Refactorings in Language Development 229

4.2 Refactoring of Software Languages

It is hard to extend the traditional imperative approach to the refactoring of
software languages like DSLs. The existing refactoring capabilities for one type
of artifact (homogeneous artifacts, e.g., refactorings for Ecore models) need to
be extended to other types of artifacts (heterogeneous artifacts, e.g., Ecore refac-
torings that also affect related Xtend rules).

There are two specific problems. First, there is no common program database
that includes elements for all types of artifacts involved in DSL development.
Secondly, there are explicit relations between artifacts of different types and there
are also implicit or indirect relations. A code generation rule for example is not
only connected to meta-classes it directly references, but also from its super
classes and its features. Furthermore, in some cases there are whole artifacts
that are implicit. An example is the generated metamodel in Xtext-based DSL
development, where the abstract syntax is fully generated from the concrete
syntax. Code generator rules are explicitly linked to the generated metamodel,
but also indirectly connected to grammar rules.

4.3 Modeling Language-Refactorings as a Model-View-
Synchronization Problem

To solve the previously stated problems, we apply the steps of the traditional
imperative approach with declarative methods. The information stored in a pro-
gram database is already contained in the original artifacts and can be extracted
through model transformation rules (step 1).

The cone of influence is a view (i.e., an abstraction) on the model that is
the sum of all artifacts (i.e., the language description). This refactoring view
can be described as model transformations between all types of artifacts and
the refactoring view (step 2). These transformations filter all elements in all
artifacts for those elements that are affected by the refactoring. In that sense,
the refactoring view aggregates all refactoring related information scattered in
all artifacts into a single view.

The actual manipulation of the model can be described by an in-place model
transformation that changes the refactoring view and as model transformations
from the refactoring view into all types of artifacts (step 3). Here, the aggregated
information about all refactoring related elements is used to change all those
elements accordingly.

Pairs of model transformations between artifacts and refactoring view and
between refactoring view and artifacts (i.e., forward and backward transforma-
tions) can be described as bidirectional model transformations and, thus, the
application of a refactoring can be described as a model-view-synchronization
problem. Conclusively, each type of refactoring (e.g., a pull down) is described
by (1) a metamodel of the refactoring view, (2) one model transformation for
altering that view, and (3) bidirectional model transformations between each
artifact type and the refactoring view.
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4.4 Asymmetric Bidirectional Transformations

We model the refactoring of DSLs as a model-view-update problem. There are
many approaches to bidirectionalmodel transformations for solving amodel-view-
synchronization problem. For refactorings we favor asymmetric bidirectional
model transformations (more specifically lenses). This specific kind of bidirec-
tional model transformation fits the needs of a model-view-synchronization [14].

Lenses, as introduced by Pierce et al. [15], are asymmetric bidirectional trans-
formations, i.e., one of the two structures that are synchronized has to be an
abstraction of the other. This asymmetric approach is inspired by the view-
update problem known in the database community, where a database view – the
abstraction – has to be updated when the database changes and vice versa.

Given a source set S of concrete structures and a view set V of abstract
structures, a lens comprises two functions:

get : S → V
put : V × S → S

The forward transformation get derives an abstract view structure from a given
concrete source structure (e.g., filtering for a cone of influence). The backward
transformation put takes an updated abstract view structure and the original
concrete source structure to yield an updated concrete structure (e.g., propagate
refactoring related changes into an artifact). Fig. 5 depicts a lens and its two
functions.

Lenses, as presented by Pierce et al., is a combinator-based approach to asym-
metric bidirectional transformations, i.e., lenses are composed from other lenses.
There are primitive and combinator lenses. Formal properties of lenses can be
proved for combinations if the used combinator preserves these properties. The

:= 

source

updated
source

view

updated
view

get

put

Fig. 5. Asymmetric Bidirectional Model Transformation (based on [13])
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lenses framework therefore provides a flexible model transformation technique
with strong capabilities for reuse and formal verification. However, the more
general notion of a lens (an encapsulated tuple of the two functions) is already
useful when modeling a model-view-synchronization problem.

The lenses approach stands in contrast to directly manipulating the source
(which would be the naive object-oriented approach), as it describes the synchro-
nization as two side-effect-free functions. However, the lenses approach is only
possible when at a given time always only one artifact is changed and imme-
diately synchronized with its interdependent artifacts, i.e., with no concurrent
changes. This is always the case in our refactoring scenario.

4.5 Describing Refactorings with Model Transformations

A refactoring type R is described as an x-tuple of one refactoring view metamodel
MMrv, a number of asymmetric bidirectional transformations �sv between the
metamodels of all involved artifact types and the refactoring view metamodel,
and one unidirectional view-change-transformation →vv (view to view) on the
refactoring view model.

R = 〈MMRV , [�sv],→vv〉

In principle, this framework is independent of the concrete types of artifacts
(unless they are not applicable to the same model transformation method) and
independent of the concrete model transformation (unless it does not allow for
asymmetric bidirectional transformations). Fig. 6 shows a refactoring type (pull
up) based on Ecore and Xtend as artifact types.

Information

Ecore Artifact

Xtend Artifact

«metamodel»
Ecore.Xtend

{Refactoring}
Information

«metamodel»

Ecore

«metamodel»

Xtend

Ecore.Xtend
PullUp

Information

:= 

Fig. 6. The Pull-up refactoring involving an Ecore and an Xtext artifact
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4.6 Advantages and Disadvantages

The proposed approach provides the following advantages compared to tradi-
tional imperative approaches. Firstly, the approach allows for more comprehen-
sible and reusable descriptions of refactorings as a clear set of models and trans-
formations. Refactoring related logic is not scattered across multiple parts of
the language description anymore. Secondly, the declarative model transforma-
tion based approach clearly separates meta-language tooling (e.g., Xtext, Ecore,
Xtend tools) from refactorings. The refactoring description only depends on
models and not on tools. Thirdly, the approach provides a history of changes
and refactorings as a set of model transformation traces. Finally, the declarative
and side-effect-free lenses based approach provides good verification capabilities,
especially when implemented in a functional manner.

As a disadvantage, a potentially large number of transformations has to be
created for each refactoring – up to two times the number of involved artifacts.
Firstly, this number can be halved by using special languages for bidirectional
transformations that provide special notations for defining both the forward
and the backward transformation at the same time. Secondly, we argue that
the refactoring logic is the same as in the traditional imperative approach, it is
just structured differently. This different structure can result in code duplication
when implemented naively, e.g., when transformations for multiple involved arti-
facts are very similar. However, by defining reusable building blocks for transfor-
mations and by composing transformations from them, it is possible to not only
keep code duplication within a refactoring minimal, but also code duplication
across refactorings, which is one of the advantages of our approach.

5 Implementation with Model Transformations

The general approach presented so far is independent from concrete modeling
technologies or model transformation languages. It can be implemented using
special languages for the description of bidirectional transformations or pairs of
unidirectional transformations which again can be described with special model
transformation languages or GPLs.

In this section we demonstrate how to implement our approach using Java as
a GPL and how to integrate it with Eclipse-based modeling technologies. As an
example, we use the ’Pull Up Item’ refactoring in the Ecore, Xtext, and Xtend
based scenario that we motivated in Sect. 3.

5.1 Abstract Refactoring Structure

Listing 1.1 shows the abstract structure of refactorings where three artifacts are
affected: A grammar describing a textual concrete syntax, a metamodel describ-
ing the abstract syntax, and a generator describing one execution semantics.
Thus, a refactoring consists of three asymmetric bidirectional model transfor-
mations (i.e., lenses, see List. 1.2) that synchronize the grammar, the model,
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and a generator, respectively, with a refactoring-specific refactoring view. In
addition to that, an abstract method for implementing the (typically trivial)
change on that refactoring view is provided. It takes a second parameter of type
ChangeInfo, if there are different possibilities how to perform the change.

1 public abstract class
Refactoring<RefactoringView,ChangeInfo,Grammar,Model,Generator>
{

2

3 public Lens<Grammar, RefactoringView> grammarLens;
4 public Lens<Model, RefactoringView> modelLens;
5 public Lens<Generator, RefactoringView> generatorLens;
6

7 public abstract RefactoringView changeView(RefactoringView
oldView, ChangeInfo info);

8 }

Listing 1.1. Java implementation of the Refactoring structure

1 public interface Lens<Source, View> {
2 public View get(Source src, ISelection sel);
3 public Source put(Source src, View view, ISelection sel);
4 }

Listing 1.2. A lens interface with parameterizable lens functions

5.2 Implementation of ’Pull Up Item’ for Xtext, Xtend and Ecore

Based on this general structure of a refactoring description, the following listings
show parts of an exemplary implementation of the ’Pull Up Item’ refactoring [2].
First, a refactoring-specific view type is defined which, in this case, holds the
attribute that is to be pulled up, the class it originally belongs to (the subclass),
and a list of this class’ superclasses (List. 1.3). From the list of superclasses one
is to be chosen for the attribute to be pulled up to.

1 public class PullUpRefactoringView {
2 public EAttribute selectedAttribute;
3 public EClass subClass;
4 public List<EClass> superClasses;
5 }

Listing 1.3. RefactoringView for ’Pull up Item’

Next (refer to List. 1.4), the concrete refactoring type is defined by extending
the abstract refactoring type and by providing appropriate type parameters:
Obviously, the view type is the previously defined PullUpRefatoringView. The
ChangeInfo contains the target superclass. As multi-inheritance in principle is
allowed in model-driven engineering, we provide a wizard for selecting the target
superclass if there is more than one option. Before an instance of this view can
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be created, refactoring-specific pre-conditions have to be checked like Exists at
least one superclass? or Are there already attributes with the same signature in
the selected superclass?.

The remaining type parameters are specific to the involved technologies: An
Xtext resource for the grammar description, EObject for the root object of
the (meta-) model describing the abstract syntax, and again an Xtext resource
for the Xtend-based generator because Xtend is based on Xtext. Apart from
providing these type parameters (and, thus, typing the three lenses accordingly)
the declaration of the refactoring type only provides a concrete implementation
of the changeView-method, which here, only changes the attribute in the view
so that it belongs to the selected superclass of its originally containing class.
Listing 1.4 shows the complete definition of the PullUpRefactoring type (except
the trivial, field initializing constructor).

1 public class PullUpRefactoring extends
Refactoring<PullUpRefactoringView, PullUpChangeInfo,
XtextResource, EObject, XtendResource>{

2

3 public Lens<XtextResource, PullUpRefactoringView> grammarLens;
4 public Lens<EObject, PullUpRefactoringView> modelLens;
5 public Lens<XtendResource, PullUpRefactoringView> generatorLens;
6

7 @Override
8 public PullUpRefactoringView changeView(PullUpRefactoringView

oldView, PullUpChangeInfo info) {
9 // ..

10 // checking parameter and relevant preconditions
11

12 PullUpRefactoringView newView = oldView;
13 EAttribute changedEAttribute = clone(oldView.getAttribute());
14

15 for (EClass superClass : newView.getSuperClasses()) {
16 if (superClass.getName() ==

info.selectedSuperClass.getName()) {
17 // Change the container for the attribute
18 superClass.getEStructuralFeatures().add(changedEAttribute);
19 }}
20

21 newView.setAttribute(changedEAttribute);
22 return newView;
23 }}

Listing 1.4. The PullUpRefactoring class

Now, the vital parts of the refactoring are the bidirectional model transforma-
tions, which are defined separately and are then passed as constructor arguments
to the refactoring during instantiation. As we show an implementation without
the use of special languages for bidirectional transformations, a total of six trans-
formations have to be provided in this case (three forward and three backward
transformations.) For brevity, we only show two selected transformations.
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Listing 1.5 shows the forward transformation get of the lens synchronizing
between the Xtend-based generator and the refactoring view. First, we are ex-
tracting the element, which is the target of the refactoring from the text selection
sel. Afterwards we collect the relevant information – the containing class and
its superclasses – and build the refactoring view. To gain this information, we
navigate through the containment hierarchy of the resolved element. Finally, the
refactoring view is returned.

1 public PullUpRefactoringView get(XtextResource src, ISelection sel) {
2 PullUpRefactoringView pullUpRefView = new PullUpRefactoringView();
3

4 EObject elementUnderChange = getElement(sel);
5

6 // Attribute which will be pulled up
7 pullUpRefView.attribute = (EAttribute)elementUnderChange;
8 // Containing class of attribute
9 pullUpRefView.subClass = getContainerOfType(elementUnderChange);

10 // List of possible superclasses
11 pullUpRefView.superClasses = getSuperClasses(elementUnderChange);
12

13 return pullUpRefView;
14 }

Listing 1.5. Forward transformation of the generator lens of ’Pull Up Item’

The backward transformation of the lens synchronizing between the Ecore-
based (meta-) model and the refactoring view is shown in Listing 1.6. Addition-
ally to the (potentially altered) refactoring view, this transformation takes the
original artifact as the src argument – here, the original model. A copy of this
model is created and the selected attribute is replaced by the one contained in
the refactoring view (including the attribute’s updated reference to its containing
class).

1 @Override
2 public EObject put(final EObject src, final PullUpRefactoringView

view, ISelection sel) {
3 EObject newModel = copy(src); // returns a copy of src
4

5 EAttribute selectedEAttribute = getSelectedAttribute(sel);
6

7 // replace the selected attribute with containment hierarchy
8 newModel.eSet(selectedEAttribute, view.getAttribute());
9

10 return newModel;
11 }

Listing 1.6. Backward transformation of the model lens of ’Pull Up Item’
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5.3 Alternative Implementation Approaches

In the previous subsections, we demonstrated a pragmatic implementation of our
model transformation based approach using Java as a GPL, because it is well-
known and eases integration with existing EMF-based technologies. However,
the advantages are more apparent, when using special model transformation
languages for the implementation. For a Java-like integration of such languages
with EMF-based technologies, we showed how to implement a unidirectional
rule-based model transformation language as an internal DSL in the Scala pro-
gramming language [16]. Using this language or another unidirectional model
transformation language like ATL [17], the forward and backward transforma-
tions of refactorings could be described more concisely.

However, in order to use our approach to its full capacity, special languages
for describing bidirectional model transformations like QVT Relations could be
used instead of describing pairs of unidirectional transformations. Unfortunately,
QVT Relations suffers from weak tool support and from semantic issues regard-
ing non-bijective relations [18]. This especially affects the presented scenario of
constructing and synchronizing an abstracted view. The combinator-based ap-
proach of lenses that was presented by Pierce et al. is especially strong in such a
scenario. Therefore, we are working on an implementation of such combinator-
based lenses that integrate well with EMF-based technologies [14] and work on
an implementation of our refactoring approach using these lenses.

Furthermore, an issue that arises with our current implementation approach,
is that some logic, e.g., for finding all occurrences of an element, is needed in
both the forward and the backward transformation (because it takes the original
source as an argument) but is currently not shared, resulting in code duplication.
Therefore, we are investigating into splitting the process of building a view into
two steps: First, the abstraction step that only collects relevant information and,
second, the aggregation step that merges redundant information so that it can
be used as a shared view on different artifacts. This way, the abstraction step
could be shared by forward and backward transformation.

6 Conclusions and Future Work

We presented a declarative approach to horizontal co-refactorings in language
development. Our approach employs asymmetric bidirectional model transfor-
mations to extract all information important for a refactoring into a refactoring
view first, and then to synchronize all artifacts of a language description with
the changes made to that refactoring view.

This approach allows for describing types of refactorings independent from
tooling and concrete notation of meta-languages. All that comprises a refactoring
is put into its description – which is a clear set of models and transformations
– and refactoring related logic is not spread over and mixed with meta-tools.
This allows for extending refactorings towards new meta-languages. Sequences
of changes can be recorded through traces of model transformations. Different
model transformation languages can be used to implement our abstract approach
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as long as they allow for asymmetric bidirectional transformations. However,
the advantages of our declarative approach can be leveraged in conjunction with
special (often more declarative) transformation languages for bidirectional model
transformations. Therefore, our approach should benefit from ongoing research
in that area [3,14,19].

We showed the principle feasibility of our approach based on the ’Pull up
item’ refactoring, which we applied to an Ecore, Xtext, Xtend based DSL. We
are working on a full catalog of refactorings in order to better show advantages of
our approach in terms of comprehensibility and reuse of transformations across
multiple refactorings. Furthermore, we want to provide an implementation that
makes use of special languages and frameworks for bidirectional model transfor-
mations. Therefore, we are evaluating which of such languages and frameworks
work best for our scenario. Finally, we are investigating how our approach can
be generalized towards co-adaptations that are not refactorings.
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Abstract. Real-time tasks are a concept used in real-time systems to
structure and schedule execution, in order to handle load situations, and
to meet deadlines. In previous work, we have transferred this concept to
the Specification and Description Language (SDL), by incorporating the
notion of real-time task into SDL’s formal syntax and semantics. More
specifically, we have defined an SDL real-time task as a set of transition
executions, which may span different SDL processes and are ordered by
a strict partial order with a least element. In this paper, we extend this
concept by the notion of distributed real-time task, which may span SDL
processes of different SDL systems, thereby supporting tasks executed
on several nodes. In addition, we introduce the notion of task types,
which support task multiplexing in SDL processes. We then outline our
implementation of real-time tasks in our SDL tool chain, consisting of the
SDL transpiler ConTraST, the SDL Runtime Environment (SdlRE), and
the SDL Environment Framework (SEnF). To evaluate the gain in real-
time performance, we have devised an SDL specification of an Adaptive
Cruise Controller taken from the automotive domain, and have executed
it on an Imote2 hardware platform. The results clearly show that task-
based scheduling outperforms ordinary and priority-based scheduling in
terms of processing delays and reaction times to critical events.

1 Introduction

The Specification and Description Language (SDL) [1] has been devised as a for-
mal design language for distributed systems. Yet, due to its notion of time (now)
and its timer mechanism, it also provides expressiveness to specify certain aspects
of real-time systems. To broaden this expressiveness, we have proposed, defined,
implemented, and evaluated several language extensions, in particular SDL real-
time signals [2] and SDL process priorities [3]. These extensions have proven
valuable to enhance the predictability of networked control systems, which we
have developed in a model-driven way with SDL as design language [4].

To further enhance the real-time capabilities of SDL, we have considered the
concept of real-time task (or task for short), which is used in real-time sys-
tems to structure and schedule executions, in order to handle load situations
and to meet deadlines. Tasks are code unit executions, and may be initiated
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dynamically when a significant change of state occurs (event-triggered) or at
determined points in time (time-triggered). In the context of SDL, these code
unit executions may be structured into several ordered SDL transition execu-
tions associated with one or more SDL processes. After some consideration, we
came to the conclusion that our previous extensions, i.e., SDL real-time signals
and SDL process priorities, were not sufficient to express real-time tasks in SDL.
Therefore, we have devised further language extensions, which were necessary
to enable real-time tasks in SDL [5]. Thus, we have established the notion of
real-time task1 in SDL’s formal syntax and semantics.

In this paper, we continue our previous work conceptually and, in particular,
by presenting the implementation and evaluation of SDL real-time tasks. Con-
ceptually, we introduce the notion of distributed real-time task, which may span
several SDL processes of several SDL systems (Sect. 2). In practical situations,
this means that several nodes may be involved in the completion of a given real-
time task. In addition, we propose task types, which can be used to naturally
specify task multiplexing in SDL processes.

The focus of this paper, however, is on the implementation and evaluation of
SDL real-time tasks and task scheduling. In Sect. 3, we outline the implementa-
tion in our SDL tool chain [4], which consists of the SDL transpiler ConTRaST,
the SDL Runtime Environment SdlRE, and the SDL Environment Framework
SEnF. In Sect. 4, we present extensive experimental results showing the gain
of SDL real-time tasks and task scheduling w.r.t. the predictability of reaction
times compared to existing scheduling approaches. To run these experiments, we
have specified an Adaptive Cruise Controller (ACC) taken from the automative
domain with SDL, and have executed it on an embedded hardware platform.
From the experiments, it is obvious that real-time task scheduling outperforms
existing scheduling strategies, in particular with increasing system load, and sub-
stantially improves the predictability of reaction times. The paper is completed
by a survey of related work (Sect. 5) and conclusions (Sect. 6).

2 Distributed SDL Real-Time Task

In this section, we extend our previous work [5] by introducing the concept of
distributed real-time tasks in SDL (see Sect. 2.1). With the extension, SDL tasks
can not only be used to group functionality-related behavior of a single SDL sys-
tem, but also to identify and prioritize behavior spanning several network nodes.
To incorporate distributed real-time tasks in SDL, several language extensions
are presented in Sect. 2.2.

2.1 Concept of SDL Real-Time Task

The formal definition of real-time task is based on a set of transition executions
and a strict partial order with a least element, i.e., each real-time task starts
1 Not to be confused with the existing notion of task in SDL, which is a sequence of

statements.
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with a single transition execution. Real-time tasks are dynamic in the sense that
the set of transition executions is determined at run-time and may depend on
the internal state of the system, that is, for instance, the current time or states
of SDL processes. They terminate after all transition executions are finished. Let
N be the set of network nodes. Then, a real-time task is defined as follows.

Definition 1. A real-time task τ is a tuple (idτ , Te(τ), fprio, fnode, <eo),
where idτ is a globally unique task id, Te(τ) is the set of transition executions,
fprio : Te(τ) → N is a function assigning a priority to each transition execution,
fnode : Te(τ) → N is a function to allocate each transition execution to a network
node, and <eo� Te(τ) × Te(τ) is an execution order on Te(τ) with following
properties:

– <eo is a strict partial order, i.e., <eo is irreflexive, transitive, and antisym-
metric

– ∃te ∈ Te(τ).∀t′e ∈ Te(τ).(t
′
e 	= te ⇒ te <eo t′e), i.e., there is a least element

defining the starting point of the task, which is the first transition execution.

We note that the definition allows concurrent transition executions within a
real-time task, if they are not ordered by <eo. A real-time task may be non-
terminating, if its set of transition executions is infinite. Thereby, a real-time
tasks τ may consist of cyclic executions of transitions, since executing the same
transition multiple times results in different transition executions, i.e., different
entries in Te(τ). An example for such a task is the periodical calculation of
control values. A real-time task itself is non-recurring, i.e., it is executed only
once.

The definition of real-time tasks so far covers node-local and node-spanning
tasks. Based on the general definition, we define distributed tasks as follows.

Definition 2. A distributed SDL real-time task τdist is a real-time task,
for which the image of fnode contains at least two distinct elements:

∃t1, t2 ∈ Te(τdist) : fnode(t1) 	= fnode(t2).

To fulfill this definition, there must be at least two SDL systems deployed on
different network nodes, each running at least one transition execution of the
task. Thereby, distributed behavior, such as an Request-to-Send/Clear-to-Send
(RTS/CTS) handshake or a distributed leader election, can be expressed as a
single task.

The definition of distributed SDL real-time task does not model communi-
cation explicitly. Instead, consecutive transition executions of different nodes
are ordered by the execution order only, and the required synchronization and
value passing is left to the environment of the SDL system. A distributed SDL
real-time task may run on several nodes in parallel, if there is suitable concur-
rency according to the execution order <eo. Otherwise, the transitions of the
distributed SDL real-time task are processed successively by the nodes.
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The distinction between SDL transitions as code units and transition execu-
tions as execution units results in a very generic definition of real-time task.
Some properties of this definition are:

– Loose temporal ordering: The definition does not make a statement on the
time between transition executions.

– Flexible activation paradigm: Every transition execution can be event- as
well as time-triggered. In particular, a real-time task can be temporarily
suspended or wait for the activation of the next transition execution trigger.

– Transition repetitions : The same transition can be executed by one task
several times, particularly with different priorities.

– Priority-independent transition definitions: A transition as code unit has no
(static) priority assigned. Instead, the priority is (dynamically) associated
with its execution, thereby allowing the same transition to be executed with
different priorities.

– Transition sharing: Several real-time tasks may execute the same transition.

Though a real-time task is nonrecurring, it usually describes actions to execute
a recurring system task like the response to a specific event that is observed
by the environment of the node. To enable the association of a real-time task
with the system task it fulfills, the notion of task type is introduced. During a
transition execution, the information on the task type is, for instance, helpful
for task multiplexing within the system or for changing the priorities of future
transition executions. The relation between SDL task and task type has an
analogy in object-oriented programming languages, because a real-time task τ
(object) states the execution (instantiation) of a task type (class), and multiple
executions of a task type result in multiple real-time tasks with distinct task
(object) identifiers idτ . Formally, the relation between real-time tasks and task
types is as follows: Assuming τ is a real-time task and Γ is the set of all task
types. Then, there is a function ftype with ftype(τ) ∈ Γ returning the task type
of the real-time task.

2.2 Language Extensions to SDL

In [5], real-time tasks have been incorporated in SDL’s syntax and semantics. By
dynamically associating transition executions with task attributes, consisting of
task id idτ and a priority, a transition runs in the context of the real-time task τ .
To accommodate task types, task attributes are now extended by ftype(τ). The
task attributes are transported by SDL signals (so-called task signals), which
are used to trigger task execution. Consuming a task signal transfers the task
attribute to the triggered transition execution. The priorities given by the task
attributes have implications on the transition selection order, such that task
signals are consumed according to their priority and have additionally preference
over plain SDL signals.2 Thereby, transition executions of time-critical real-time
tasks take precedence over all other transition executions.
2 There is an exception for this rule, if the signal with highest priority is saved in the

current process state.
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Fig. 1. Example showing the use of real-time tasks in SDL. Bold characters state new
keywords/operators

Due to the consideration of priorities, transitions may be executed in a differ-
ent order compared to standard SDL. Thus, existing tools – like tools perform-
ing reachability analysis to find deadlocks or implicit consumptions – must be
extended to consider priorities. Since transition priorities are included in each
signal’s task attributes, all required information is, however, available in the
SDL system and analysis of the system specification is still possible. This is even
an additional benefit compared to many implementation methods introducing
priorities in a separate implementation phase, because with such approaches,
priorities are not available for system analysis on design level.

To control the execution of real-time tasks in SDL specifications, [5] presents
several syntactical extensions, in particular, regarding task creation and forking
(continuation of an existing task). Additionally, a new data type to store task
ids (Tid) has been introduced together with a function returning the task id
of the current task. To support task types and relative changes of priorities,
the syntax has been extended with functions returning type and priority of the
current task.

The example in Fig. 1 presents the use of real-time tasks in SDL: In process
P0, a new task is created by the output of signal sig. This new real-time task is
scheduled with task priority 0 and is of type TaskType0. In P1, task execution
starts by consuming the task signal and by identifying the task type by means of
the taskType operator. Because the task type is TaskType0, the right branch is
taken, i.e., the transition stores the task id in the variable t_id and triggers the
next transition execution of this task by sending sig to process P2 (not shown).
Because no priority is provided, the task is continued with priority 0. The figure
only shows excerpts of SDL processes highlighting language elements that have
been extended to enable the control and processing of real-time tasks in SDL.
In a real scenario, there are usually further application-related actions in the
transitions’ bodies (see also Sect. 4.1).
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Fig. 2. Schematic outline of the task scheduler implementation

3 Implementation of Real-Time Tasks

The concept of real-time tasks has been implemented in our SDL tool chain,
which supports an embedded ARM platform, Linux/PC, and various simula-
tors. The tool chain consists of three main components: The code generator
ConTraST, the SDL Runtime Environment (SdlRE), and the SDL Environment
Framework (SEnF) providing interfaces and drivers of the SDL environment. To
support real-time tasks, changes to all components were necessary.

Though we would prefer the extension of SDL’s concrete syntax to control real-
time tasks (see Sect. 2), our implementation is based on annotations, thereby
allowing the re-utilization of the graphical editor and analyzer of IBM’s Rational
SDL suite [6]. When generating C++ code, ConTraST analyzes the real-time
task annotations in SDL/PR and generates relevant C++ instructions.

To support and schedule real-time tasks during system runtime, SdlRE has
been extended by task signals and a non-preemptive scheduler realizing the task
scheduling strategy (short: Prioritiestasks). Additionally, SdlRE provides an im-
plementation of the Tid datatype and an interface to access the task id, priority,
and task type of the transition that is currently executed.

Task signals are implemented by extending the existing SDL signal class with
task attributes, i.e., task id, priority of the triggered transition execution, and
task type. Further information of the real-time task, such as the node executing
the transition, is implicitly available and not stored explicitly.

Different to Sect. 2, where task priorities affect the transition execution order
of SDL processes3 only locally, Prioritiestasks enforces priorities system-wide. A
schematic overview of Prioritiestasks is presented in Fig. 2. In total, the scheduler
operates on three global queues: A queue holding signals with future arrival times
(e.g., timers), a queue with task signals sorted by task priorities, and a queue
with runnable processes. When searching for the next transition to be executed,

3 Due to their background of Abstract State Machines, the dynamic semantics of
SDL-2000 is based on different types of agents [7]. Thus, to be precise, we would
have to use the notion of agents when referring to the execution of an SDL system.
Nevertheless, we use the term SDL process in the rest of the paper, because all
schedulers of SdlRE affect the scheduling of agents that evolve from SDL processes.
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the process holding the first consumable signal in the queue of task signals runs
to fire the corresponding transition. If there is no such signal, the first process
of the process queue is dispatched to execute one transition that is either a
transition consuming a regular signal or a continuous signal.

Following our annotation-based approach, the runtime environment can be
configured to use the task scheduling strategy Prioritiestasks by annotations in
the head symbol of the system. Besides Prioritiestasks, our tool chain supports
the following non-preemptive strategies:

– Signal-based First-Come-First-Served strategy (short: FCFSsignals)
The transition execution order of FCFSsignals is determined by the arrival
times of the triggering signals. For this purpose, a global First-In-First-Out
(FIFO) queue of SDL signals is maintained. When searching for the next
transition to be executed, the first consumable signal in the queue is taken.

– Process-based First-Come-First-Served strategy (short: FCFSprocess)
FCFSprocess is also based on a FIFO queue, but, different to FCFSsignals,
the queue is filled with processes. Thus, a process with several signals in its
inport, is scheduled only once. The process at the front of the FIFO queue is
executed as long as it has firable transitions, thereby reducing the overhead
of the scheduler compared to FCFSsignals.

– Process Priority Scheduling (short: Prioritiesprocess)
In [3], Prioritiesprocess has been introduced in order to privilege time-critical
SDL processes. Static priorities are assigned to processes in the SDL specifi-
cation, where lower values represent higher priorities. The scheduling strat-
egy works on a queue of executable processes, which is sorted by their pri-
orities.

Due to the non-preemptive character of all strategies, there is in general a non-
zero waiting delay for all schedulers, increasing in particular reaction times in
systems with long-running transitions. However, independent of the scheduling
strategy, such transitions should already be avoided by design rules, because
they always delay other transition executions of the same SDL process.

To support distributed SDL real-time tasks, the environment (implemented
by SEnF) has been extended, such that task attributes are attached to outgo-
ing data, e.g., to CAN messages, before leaving the node. By extracting task
attributes from received data and adding them to generated SDL signals, the
environment continues existing real-time tasks on the local node. Thereby, the
SDL runtime environment can treat incoming signals according to their priority
and task type, though the continuation of the real-time task is transparent to
the system.

A special element of a task attribute is the task id. To guarantee its uniqueness
also in case of distributed real-time tasks, further measures became necessary.
In our implementation, the uniqueness is ensured by composing task ids of the
node’s id and a locally unique identifier, which is incremented each time a new
task is generated.
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Fig. 3. Message schedule of the node hosting the PID controller in the ACC scenario

4 Evaluation of Real-Time Tasks in a Control System

In this section, we present experimental results of our SDL task implementation.
To assess its impact, we compare the task scheduling strategy with standard
schedulers of SDL implementations as well as an SDL process priority scheduler.
The scenario evaluates a network node that is connected to a Controller Area
Network (CAN) bus and hosts an Adaptive Cruise Control (ACC), a realistic
scenario from the automotive domain. An ACC is an enhanced cruise control
system focused on retaining a reference speed against disturbance variables such
as the current gradient or aerodynamic resistance. In contrast to a simple cruise
control, a radar sensor is used to detect the distance to obstacles in front of
the car. Depending on the speed of and distance to the obstacles, the reference
speed is adjusted to keep a minimal safety distance or an emergency braking
is initiated. Our realization of an ACC uses a Proportional-Integral-Derivative
(PID) controller to minimize the difference between desired and actual speed.

An abstract schedule of the ACC is shown in Fig. 3. The ACC periodically
(every 20 ms) calculates new control quantities, which are sent via CAN bus to
the engine control unit. The duration to calculate and transfer the control value
to the CAN controller is given with dcontroller in the figure. For correct operation
of the controller, control values must be calculated and transferred on schedule
with low delay, and sensor values of the reference and actual speed must arrive
at the PID controller on time, taking the processing delay of the system into
account. In Fig. 3, the sensor delay in the system, i.e., the duration between
reception of the last sensor value at the CAN controller and the updating of
the values at the PID controller process, is denoted by dsensors. Because this
delay may vary, a maximal sensor delay dsensorsMax has to be considered in the
schedule. The best quality of control is achieved, if the sensor values are as new
as possible, i.e., if the processing delay of the node generating the sensor value,
the communication delay, and dsensors is small and almost constant, allowing a
small dsensorsMax before the periodic control task. In addition to the periodic
speed values, the node also receives sporadic radar messages that are used to
keep an adequate distance to other objects by correcting the controlled speed
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and/or by enforcing to brake. To test the system under different workloads,
additional sporadic load messages are sent to the system.

Since the scenario is based on a networked system, a comprehensive analysis
must consider delays that are introduced by all nodes as well as the network
itself. Because the system designer must consider the worst case when planning
the global schedule, all delays must not only be low but also free of large jitter.
This, in particular, demands high requirements to scheduling decisions in cases
of secondary system load, which must be deferred on behalf of relevant system
tasks. In a first step, this requires the assessment of delays at each single network
node. This evaluation focuses on the impact of SDL schedulers on the behavior
of the node hosting the PID controller.

4.1 Evaluation Setup

Hardware. To obtain reliable and reproducible results, all experiments ran on
an Imote2 node, an embedded hardware platform that can be linked to various
peripherals and communication technologies. E.g., in [8], a FlexRay [9] com-
munication controller is connected to the Imote2 via Serial Peripheral Interface
(SPI). The Imote2 is equipped with 256 kB SRAM, 32 MB SDRAM, and 32 MB
flash ROM. Its processor is based on an ARM architecture providing up to
416 Mhz. Due to energy aspects, the processor frequency was fixed to 104 Mhz
in all experiments. Since our implementation on the Imote2 is a bare implemen-
tation (without further operating system), SEnF and SdlRE have full control
over the system’s execution and interrupts. Therefore, all measured times can
be attributed to the execution of the SDL system and its runtime environment.

Because the experiment’s objective is not the evaluation of the communication
technology, we did not use a real CAN bus. Instead, we simulated all CAN events
taking the minimal interarrival time of CAN messages into account. As a side
effect, this approach avoids distortion of results due to communication errors.
To additionally avoid faulty measurements, results of experimental runs were
stored in the local memory of the node and transferred to a PC via UART after
the end of the run. Thus, the measurement overhead is minimized and uniform
for all evaluated scheduling strategies.

System Under Test. The SDL system used in the evaluations is shown in Fig. 4
and consists of four blocks. The CAN block is the interface to the environment
and contains two processes. The CANMac process converts between CAN identi-
fiers and internal event expressions. ConcatCoder, on the other hand, encodes
and decodes the data of CAN messages into SDL types. On top of the CAN block
are two blocks (Speed and Distance) that are part of the cruise control. The
third block Load processes background load that is stimulated by messages from
the environment. I.e., load messages are forwarded by CANMac and ConcatCoder
before arriving at the Load block, in which they trigger further transition execu-
tions. Because the origin of load is in the system’s environment, the generation
of additional load is independent of the SDL system. By changing the average
frequency of load messages, different load situations are emulated.
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Fig. 4. SDL specification of the evaluated Adaptive Cruise Control system

In the evaluations, the system receives four different types of CAN messages,
which are sent as canRX signals by the environment to process CANMac. After
forwarding them through the CAN block, they are delivered to their responsi-
ble SDL processes. In the case of task scheduling, task types can be used in
ConcatCoder to determine the target process of a signal. The CAN messages
with the actual and reference speed are sent to the processes speedCtrl and
distanceCtrl, in which they are received as SDL signals actSpeed or refSpeed.
On the other hand, the radar and load messages are delivered as SDL signals
radar or loadStart to process distanceCtrl and lInit respectively. CAN
messages sent by the system are received by the SDL environment as canTX
signals. They are either engine and brake control values, or load information.
The engine control values are periodically calculated by speedCtrl and initially
sent as SDL signal engineCmd. Brake control values and load information are
generated reactively as responses to radar or loadStart signals and have their
origins in distanceCtrl and lInit. distanceCtrl also creates a correction
signal, which is considered by speedCtrl to calculate the engine control values.

The presented SDL system is executed with four different scheduling strate-
gies (see Sect. 3). The priorities used in experiments with Prioritiesprocess are
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Table 1. Process priorities used by
Prioritiesprocess
processes priority
CANMac, ConcatCoder 3
speedCtrl 2
distanceCtrl 1
lInit, l0, l1 4
environment 0

given in Tab. 1. They are assigned such
that the environment obtains highest pri-
ority and processes in the Load block
have lowest priority. For the task schedul-
ing strategy Prioritiestasks, Tab. 2 sum-
marizes the task types of the system,
their priorities, and the affected signals.
Tasks with sources or destinations in ital-
ics are distributed tasks and include com-
munication via CAN bus. By deriving
task types and task ids from received CAN messages, the environment continues
existing tasks in the evaluated system, considering their privileges as well. On
the other hand, before transmitting CAN messages, task attributes are appended
to the messages.

The control of real-time tasks in the ACC system is illustrated by means
of an exemplary excerpt of process speedCtrl in Fig. 5. The figure shows the
start transition and four transitions that are executed in the context of real-time
tasks. As discussed in Sect. 3, the control of real-time tasks is specified by anno-
tations to be compatible with the graphical tool and analyzer of IBM’s Rational
SDL suite [6]. In the process, a periodical real-time task computing new engine
control values is created with priority 3 in the start transition. This task is pro-
cessed by executing the transition consuming controlTimer. In this transition,
a further real-time task is created propagating the new engine control value. The
calculation of engine control values takes the reference speed, the current speed,
and a correction value given by the distance controller into account. Each of
these values is received in a separated transition. Though the executions of the
transitions receiving these values are part of a corresponding real-time task, no
task control actions are specified, because the real-time tasks end after receiving
the values.

Table 2. Task types of the system. Sources and destinations in italics state processes
on other nodes.

task type source destination priority task signals
reference speed refSpeedInput speedCtrl 4 canRX, receive, refSpeed
actual speed actSpeedSensor ConcatCoder 4 canRX, receive

ConcatCoder speedCtrl 4 actSpeed
ConcatCoder distanceCtrl 5 actSpeed

speed control value speedCtrl speedCtrl 3 controlTimer
engine regulation speedCtrl engineCtrl 3 engineCmd, send, canTX
radar radarSensor distanceCtrl 2 canRX, receive, radar
collision avoidance distanceCtrl brake 1 brake, send, canTX

distanceCtrl speedCtrl 4 correction
load loadSimulator loadSimulator 8 canRX, receive, loadStart

loadEnd, send, canTX
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Fig. 5. Excerpt of speedCtrl showing the usage of real-time tasks exemplarily

4.2 Evaluation Results

In two series of experiments, the evaluations focus on three delays: Sensor de-
lay dsensors, control delay dcontroller, and reaction delay dreaction to radar mes-
sages. The sensor and control delays are evaluated in the first series consisting
of 125 runs for each scheduling strategy. In each run of this series, in which
no radar messages are used, 200 sensor values (reference and actual speed) are
received by the system and 100 new control values are calculated and sent. The
second series comprises 200 runs and includes additionally 50 radar messages per
run that are sent to the system sporadically with a minimal interarrival time of
35 ms.

The runs of each series are divided into 25 different load situations, ranging
from no additional load up to approximately 80% additional load. Since the
regular system load is about 15%, the heaviest load situation takes the system
almost to its limits. The load is processed by the processes within the Load block
after the reception of special sporadic CAN messages and regulated by changing
the average frequency of these messages.
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(c) 40% additional load
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(d) 80% additional load

Fig. 6. Ratio of sensor value consumptions at speedCtrl as a function of the sensor
delay dsensors in three different load situations

Accuracy of Sensor Values. To enable correct operation of the PID con-
troller, delays between taking the sensor values and running the control algo-
rithm must be as low and as constant as possible. In particular, this implies high
requirements on the processing delay dsensors at the controller node.

In Fig. 6, the percentage of consumed actSpeed and refSpeed signals is
plotted against dsensors for three different amounts of load. The lines in each
plot show how many sensor values have been received by the speedCtrl process
after a given delay dsensors. On each line, there is a point marking the maximal
delay, i.e., the time after which the latest sensor value was updated in speedCtrl.

In case of no additional load (Fig. 6(b)), only sensor values are sent to the
system and all schedulers perform almost similar. In detail, the best scheduler
(Prioritiestasks) delivers the latest sensor signal after 1.67 ms and the worst
scheduler (Prioritiesprocess) requires 1.76 ms. These small differences are basi-
cally due to two reasons: First, ConcatCoder forwards actSpeed, one of the
sensor signals, to distanceCtrl and to speedCtrl, thereby introducing a seri-
alization delay. The second reason is due to different overhead of the scheduling
algorithms.

However, in situations with load, the sensor delays increase and the differ-
ences between the scheduling strategies become observable. In Fig. 6(c), about
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Fig. 7. Delay of calculating the control value and transfer to the SDL environment

40% additional load is added to the system, resulting in a maximal sensor de-
lay of 1.83 ms for the best scheduler Prioritiestasks and 2.59 ms for the worst
scheduler FCFSsignals. Here, the increased delay with Prioritiestasks is due to
its lack of preemption, i.e., before the SDL environment is executed to transfer
an SDL signal with sensor values into the system, the running transition must
finish. A second reason is attributed to software and hardware caches perform-
ing more replacements in case of load. But all other strategies additionally suffer
from an inadequate transition execution order. Though the second best strat-
egy Prioritiesprocess benefits from the rejection of processes in the Load block
(maximal delay 2.13 ms), sensor delays are increased due to the execution of
transitions in ConcatCoder and CANMac that are triggered by signals belonging
to the background load.

In the high load situation (Fig. 6(d)), the differences become even larger
and only Prioritiestasks is almost insusceptible against the load. As result, the
maximal sensor delay with task scheduling is 41% lower than with the next best
scheduling strategy Prioritiesprocess. Another big advantage is the low sensor
delay jitter with Prioritiestasks that is only 370μs. In contrast, the second best
scheduling strategies suffers from a jitter of 1560μs.

These results clearly show that a schedule as shown in Fig. 3 can be realized
very accurately with task scheduling. All other scheduling strategies require a
more pessimistic value for dsensorsMax, thereby decreasing the quality of control.

Control Delay. This section assesses the four scheduling strategies w.r.t. con-
trol delay, because the best quality of control is achieved if the periodical com-
putation of new control values is on time and if the new control values are
transferred to the actuators rapidly.

Figure 7 depicts the measured control delays in terms of a bar diagram. The
plot shows average, minimum, and maximum delays for each scheduling strategy
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in four different load situations. The four bars in the left part of Fig. 7 present the
results in case of no load. Similar to the sensor delays, control delays differ only
slightly in this case. However, when load is added to the system, task scheduling
again outperforms the other scheduling strategies.

If the additional system load is about 10%, the average delay remains almost
unchanged, but the maximal delay increases for all scheduling strategies. How-
ever, the increase with Prioritiestasks is much lower than with the other schedul-
ing strategies. In detail, the maximal control delay with Prioritiestasks is about
240μs less than with the second best scheduling strategy Prioritiesprocess. This
difference is basically due the shared transitions in ConcatCoder and CANMac for
which Prioritiesprocess can not distinguish between load and control signals. If
the number of signals or shared processes would be higher, reaction times with
Prioritiesprocess would even get worse.

With increasing system load, both FCFS strategies suffer more and more from
an inadequate transition execution order, whereas the priority-based strategies
are less prone to the load. Thus, comparing situations with 10% and 80% addi-
tional load, there are only small differences of control delay with Prioritiestasks as
well as Prioritiesprocess. Maximum and average control delays with FCFSsignals

and FCFSprocess, however, are more than 2.5 times higher than with Prioritiestasks
in case of 80% additional load, thereby demonstrating that fair strategies are not
adequate if predictability is required.

Similar to the sensor delays, task scheduling does not only achieve a lower con-
trol delay but is also attended by a lower jitter, thereby increasing predictability
significantly and resulting in a better quality of cruise control.

Reaction Times to Time-Critical Events. Though the fair scheduling strate-
gies are prone to load, reading sensors and calculating control values are periodic
events, thereby allowing to determine an off-line event schedule as shown in Fig. 3
by taking the maximal delays for each scheduling strategy into account. How-
ever, with sporadic events, such a schedule is often not possible or requires very
pessimistic assumptions on the events’ interval. In the following scenario, we add
sporadic time-critical radar messages to the system that require fast reactions
and measure the reaction times between the reception of the radar messages and
the sending of brake commands for each scheduling strategy.

The average and maximal reaction times are presented in Fig. 8, each with
25 different load situations. In case of no load, the average reaction times are
almost equal. However, increasing load results in increased average reaction
times with FCFSsignals, FCFSprocess, and Prioritiesprocess, whereas the reaction
times with Prioritiestasks stay constant. For instance, the average delay with
Prioritiestasks is only 60% of the average delay with the next best scheduler
Prioritiesprocess at 80% additional load.

The maximal delay already differs without load (see Fig. 8(b)), because only
task scheduling can entirely prefer radar and brake events, which are more time-
critical than the actual and reference speed or engine control values. Thus,
the maximal reaction time with Prioritiestasks is about 38% less than with
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Fig. 8. Reaction delays: Time between radar messages and brake messages

Prioritiesprocess, though there is no additional system load. The differences be-
come even larger if the system is stressed with load, and with 80% additional
load, task scheduling is actually 2.4 times faster than process priority scheduling.

Discussion. The results of all experiments demonstrate the benefits of task
scheduling regarding both shorter and less variable reaction times of time-critical
system tasks. They also point out that existing language elements of SDL are
not sufficient to develop applications with real-time requirements if the hard-
ware platform is predetermined and severely limited. These shortcomings can,
in particular, be ascribed to the gap between the concurrent execution of all
processes according to the SDL semantics and the required serialization of tran-
sition executions on embedded hardware. Though there is language support in
SDL to prefer transition executions within single SDL processes (e.g., priority
inputs)4, the scheduling non-determinism of transition executions in different
SDL processes is not addressed by SDL. Thus, the preference of specific system
tasks distributed across several SDL processes can not be expressed in SDL.

To serialize transition executions, several scheduling strategies have been pro-
posed. In our evaluation, we compare task scheduling with three common SDL
scheduling strategies. In summary, the results demonstrate that existing ap-
proaches have drawbacks: FCFS strategies are in general inadequate, because
they can not prefer time-critical system tasks at all. Strategies with static pri-
orities are more adequate but suffer from their dependence on the static system
specification. With task scheduling, these limitations are removed by dynami-
cally adding information about the context of a transition execution, i.e., the
system task it contributes to. Though these extensions improve delays signifi-
cantly, the amount of additional information and overhead is only very low.

4 We note that these language elements are limited, because they are based on static
elements in the system’s specification. In contrast, real-time tasks are created at
run-time and assign priorities to transition executions dynamically.
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5 Related Work

SDL real-time tasks enrich SDL in two respects: First, they improve the lan-
guage expressiveness by enabling the specification and identification of SDL
process- and node-spanning functionalities. Thus, there is a similarity to Message
Sequence Charts (MSCs) [10], which is a common technique to describe the com-
munication within and between nodes. The second impact of real-time tasks is
on the scheduling of SDL systems, in which task priorities determine transition
execution orders, thereby improving the predictability of reaction times. Hence,
this section also outlines related work regarding SDL schedulers.

Because MSCs are a high-level way to specify distributed behavior, there are
several proposals to transform MSCs to SDL [11,12]. In [11], Dulz et al. present
the transformation of MSCs to synthetic SDL specifications used for early per-
formance predictions. The intention of the MSC to SDL transformation proposed
by Khendek et al. [12] is to achieve consistency between both specifications. For
this purpose, the authors present a tool called MSC2SDL using an MSC and
a target SDL architecture as input. Since MSCs are not suitable for describing
complete systems, the influence of such approaches on the run-time behavior is
limited. Yet, MSCs are a useful method to visualize and identify SDL task types.

Due to the scheduling non-determinism of the SDL semantics, there are many
proposals dealing with the implementation of SDL schedulers. These proposals
can be divided into two categories: The activity thread model, mapping SDL
signal transfer to procedure calls [13,14], and the scheduling of the SDL system by
means of priorities [6,15,16]. An overview of alternatives of SDL implementations
can be found in [17,18].

The activity thread model differs from the SDL semantics, because it is syn-
chronous and dissolves the distinction between communication and transition
execution [17]. Yet, it is an efficient and often standard-compliant way of im-
plementing SDL. However, different from SDL tasks, the activity thread model
is not able to prefer specific transitions. Additionally, due to its synchronous
execution model, deadlocks may occur in systems with cyclic signal flows [19].
To overcome these limitations, several measures, e.g., the reordering of signal
outputs, have been proposed [13,14]. Similar to SDL tasks, the system execution
with activity threads is driven by SDL signals and not by SDL processes.

Priority-based scheduling solutions operate either on process [6,15] or signal
priorities [6,16]. E.g., C-micro [6], which is part of IBM’s Rational SDL suite,
supports static signal priorities as well as static process priorities. An extension
of SDL’s execution model with dynamic process priorities is introduced in [15],
where priorities are derived from fixed transition priorities, forming the basis of
a preemptive scheduler and schedulability analysis. Other than task priorities,
prioritization based on processes or static signal priorities is not well-suited if
transitions of a process are used to fulfill both time-critical and non-time-critical
functionalitites. In [16], a scheduling approach with dynamic signal priorities,
called Message Earliest Deadline First (MEDF), is proposed, sorting transition
executions by means of message deadlines. For this purpose, several language
extensions, e.g., annotations to specify timing constraints, are presented. Similar
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to SDL tasks, the proposed execution model can pass priorities on to signal
outputs during transition executions. A drawback of MEDF compared to SDL
real-time tasks is the limitation of SDL’s language constructs. Additionally, EDF
scheduling is in general more costly.

6 Conclusions

In this paper, we have continued our previous work on SDL real-time time tasks
both conceptually, and, in particular, with a strong focus on implementation and
evaluation. Conceptually, we have introduced distributed SDL real-time tasks,
which may now span transition executions of SDL processes of several SDL
systems. This enables distribution of real-time functionality across nodes while
preserving tight control of global scheduling decisions and transition execution
priorities. Furthermore, we have added SDL real-time task types, which can be
used to naturally specify task multiplexing in SDL processes.

We have then presented an overview of the implementation of SDL real-time
tasks in our tool chain, with emphasis on transition scheduling strategies. Based
on this implementation, we have conducted extensive experiments to provide ev-
idence of the benefit of SDL real-time tasks. In particular, we have measured the
gains of SDL real-time task scheduling w.r.t. standard SDL scheduling strate-
gies and SDL process priority scheduling. In summary, the delays of time-critical
transition executions grouped into SDL real-time tasks was considerably lower
when using task scheduling, in particular, in situations with increasing CPU
load. In the evaluated ACC system, it has, for instance, been shown that the
worst case reaction delay with task scheduling is 2.4 times less than with SDL
process priority scheduling, which suffers from processes executing time-critical
and none-time-critical transitions. In addition, we have observed a dramatic
drop of jitter with task scheduling, which accounts for far better predictability
of reaction times. Our experiments also show that these real-time performance
gains have been achieved without creating additional overhead during transition
selection.

As future work, we are considering applications of SDL real-time tasks in real
control systems to assess its benefit to the quality of control. Additionally, we
plan to extend our simulation framework by Imote2 nodes as hardware-in-the-
loop in order to evaluate distributed real-time tasks in large networked systems.
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Abstract. A full representation of a simulation model encompasses the
behavior of the elements that define the model, the definition of the
probability distributions that define the delays of the events that control
the model, the experimental framework needed for execution, and the
graphical representation of certain model elements. This paper aims to
use specification and description language to achieve a full model rep-
resentation by adding two extensions to the language, which allows for
a complete and unambiguous definition of a discrete simulation model
that is similar to a common discrete operations research simulation tool.

Keywords: Formal Languages, Specification and Description Language,
SDL, Operations Research, Discrete Simulation, Virtual Reality.

1 Introduction

A discrete simulation model can be described using formal languages that allow
a clear separation between the definition of the model and its implementation.
However, for discrete simulation (for operations research), the use of formal lan-
guages is desirable but not common. Many of the important discrete simulation
tools do not work with a formal language and often are based on proprietary
syntax and tools. This proprietary representation of the simulation model often
presents a challenging problem for transforming the model to a different imple-
mentation.

This paper aims to use a formal language, the Specification and Description
Language [1], to achieve a complete representation of a simulation model. This
representation encompasses the behavior and structure of the model as well as
the graphical representation of the model execution, which simplifies the model
validation as suggested in [2]. We developed two simple extensions to the 2000
version of the language (SDL-2000), which allow for a complete definition of a
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discrete simulation model that is similar to common discrete operations research
simulation tools; however, we use an unambiguous graphical and standard for-
mal language to improve the model description and reuse, while maintaining the
benefits of a formal language as suggested in [3]. To achieve this objective, it
is necessary to define the behavior of the elements that define the model: the
characterization of the probability distributions that define the delays of the dif-
ferent events that control the model, the experimental framework for execution,
and the structures for model representation.

Operations research simulation tools apply different paradigms to represent
the real world. The discrete-event paradigm includes classical languages, such
as GPSS/H [4,5] and SLAM II [6]. These tools have features that are similar
to Simprocess [7], Arena [8], Simio [9], and Simul8 [10]. The paradigms that
are usually represented with these tools include process-interaction or event-
scheduling [11,12]. Other simulation tools do not exactly follow these paradigms.
For example, Witness [13] constructs processes using push/pull rules for the dif-
ferent elements in the model. This type of software often allows for
if. . . then. . . else rules for the definition of resources and attributes and al-
lows for the use of dynamic link libraries (DLLs) to use specialized code defined
with C++, C# or Visual Basic.

These software tools always allow for a complete definition of the model be-
havior, structure, time and representation.

Similar to the current paper, there are certain programming libraries and
infrastructures that allow for defining a simulation model following a formal lan-
guage. The tools related to DEVS [14] and PetriNets formalisms [15,16] often
represent an excellent alternative to define and implement a simulation model
with the previously mentioned simulation tools. An interesting example of ex-
tending Petri Nets can be reviewed on [17] . For the DEVS tools and infrastruc-
tures, a non-exhaustive list can be reviewed in [18]. For Petri Nets, a similar list
is available in [19].

CD++ [20] and DEVSJAVA [21] are examples of DEVS infrastructures.
CD++ is mainly a toolkit for Discrete-Event modeling and simulation and the
environment is based on the DEVS (Discrete-Event systems Specifications) for-
malism. Currently, a plug-in exists that allows for using a graphical interface
with the Eclipse platform. Figure 1 includes the CD++ plug-in on the eclipse
platform.

One of the strengths of DEVS is that it supports the transfer of models from
one concrete tool to another (due to the use of XML). Several attempts have
been made to define a standard XML representation for DEVS with a complete
and common XML schema [22,23].

Specification and Description Language also has different tools that allow for
the implementation of a simulation model [24,25,26]. These tools allow the gen-
eration of code from the model representation. In this study, we use Specification
and Description Language Parallel Simulator, SDLPS [23,27].
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Fig. 1. CD++ infrastructure on the Eclipse Platform (source: http://cell-devs.
sce.carleton.ca/mediawiki/index.php/ Screenshots)

2 Our System

This study describes a small part of a system from an ongoing project with
the Arbora-Ausonia enterprise. The main elements of this sub-system include a
conveyor and robot.

Fig. 2. An example of a roller conveyor similar to that modeled in the project (Source
Wikipedia)

For confidentiality, we only show the behavior of one of the more common el-
ements in industry, a roller conveyor belt (see Fig. 2). However, for our purposes
this is enough to explain the system. Although it is a common element, the belt is

http://cell-devs.sce.carleton.ca/mediawiki/index.php/
http://cell-devs.sce.carleton.ca/mediawiki/index.php/
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complex enough to justify the use of the extensions to SDL-2000. Additionally,
a conveyor includes the complex behavior of boxes that continuously travel the
length of the unit and requires minimization of the number of events (or signals).

2.1 Used SDL-2000 Extensions

We define models using the Specification and Description Language, but to fully
define a simulation model, as was performed with certain tools presented, it
is not enough to only allow for the definition of the model structure (that is
defined for the different elements in the model) and behavior (that is defined for
each element). A complete definition of the behavior (including the time) and
graphical representation of the simulation model are required.

2.2 Time and Priority Management

For a discrete simulator, a complete definition of the behavior of a model is
needed to describe the time related to the execution of each event that manages
its evolution. Usually each type of event has a specific probability distribution,
which determines when the event is executed. For an event scheduling simulator,
the engine manages the time for all the events and decides where and when these
events must be sent (to other simulation elements, which are the agents in a
Specification and Description Language model).

SDL-2000 has two main structures for time management, Timers and Delay-
ing Channels [1].

Delaying Channels of SDL-2000 were not acceptable for representing the de-
lays in a simulation model because in SDL-2000 there were no existing mecha-
nisms to define the required time to reach the destination with these channels.
The Delaying Chanel represents a delay in the transmission of the signal, but the
probability distribution of this delay cannot be defined. The other mechanism,
Timers, is inadequate, because each different instance of a signal that can travel
in parallel requires the definition of a new Timer. For example, if we need to
send a signal to represent the arrival of new entities to a machine, when a new
arrival is sent to this machine, the Timer is reprogrammed; thus, the signal has
not arrived to its final destination and is reprogrammed. Only one instance of
the signal represented by the Timer can travel through the system. Addition-
ally, Timers cannot represent the priorities. This represents a strong limitation
in order to perform a more readable representation of a dynamic system where
the delays and priorities must be completely defined.

Specification and Description Language time management has been studied
by several groups [28,29]. Specifically, [29] presented an extension that defines
three kinds of transitions; (i) eager (consumed without delay), (ii) lazy (not
urgent) and (iii) delayable (an enabling condition depending on time). For a
discrete simulator, all the transitions can be considered delayable because all the
transitions have a defined time. An eager transition is equivalent to a delayable
transition with the temporal condition set to now=x [29].
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Considering these issues, we implemented extensions of SDL-2000 in SDLPS.
In SDLPS, all the signals carry the parameters with the following elements: (i)
ExecutionTime or delay, the time when the event must be executed. (ii) Priority,
the priority of the event, which is used to eliminate simultaneity of events. (iii)
CreationTime, the time when the event is created. (iv) Id, an identifier of the
event. (v) Time, the clock reading for the process (represents the time related
to the last event that was processed by the process). (vi) Destination, the final
destination (process PId) of the signal.

The parameter event delays or sorts (by priority) the different signals. When
a signal is received, SDLPS uses the event parameter to manage the time and
the priorities of the signal. In SDLPS, we can use extension elements to define
this parameter related to the signal, as shown in Fig. 3. Not all the parameters
of the event structure have to be defined: only those required to fully define the
behavior of the model.

Fig. 3. A delayable signal. This signal requires 2 time units to reach its destination.
Additionally, priorities can be defined to avoid ambiguity when two signals reach the
destination at the same time.

Summarizing this section, to manage time we add to the language:

1. All signals can have a time delay: each signal instance output has a parameter
that defines the time needed to travel to its final destination (i.e., a delay
or the value of the ExecutionTime value minus the current time) and an
input queue schedule parameter defining the priorities with respect to the
other signal instances that arrive at the destination at the same time (i.e.,
the ExecutionTime value). A signal instance is therefore only available in
the destination input port when the current time is greater or equal than
the ExecutionTime.

2. The signals in the input port are scanned in the following order to determine
if there is an enabled signal: ExecutionTime and priority. Signal priority
determines the signal that is processed first. If two signals with the same
ExecutionTime and priority exist, the implementation decides which signal
is executed first (the model does not specify this scenario).

These proposed extensions are included in the SDL-2010 release of the stan-
dard [1].
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2.3 To Represent the Model

To represent the model, we assume that all SDL-2010 agents (system, block and
process) can be represented. Thus, the agent that represents the conveyor has
a real position on the model graphical representation (or layout) and also has
a file that describes its shape. This representation suggests that the definition
of an agent can also have information related to its representation (information
regarding the visual behavior of the agents in a 2D or 3D environment). Our cur-
rent implementation provides this representation in an XML file that describes
the initial position of the agents and a file that describes its shape (see Fig. 4).

<Agent name=’BCinta2 PCinta2’>
<state name=’ROLLING’>

<mesh scale=’1’>default.obj</mesh>
<pos x=’0’ y=’0’ z=’0’ />
<rot x=’0’ y=’0’ z=’0’ />

</state>
</Agent>

Fig. 4. XML representation of an agent with the extensions used to represent the agent
in a virtual reality environment. For agent BCinta2 PCinta2 in the state of ROLLING,
default.obj represents the agent and the initial position and orientation is (0,0,0).

In this case in the shape for the agent BCinta2 PCinta2 (a process) is in a
file (default.obj) and its initial position is 0,0,0 with no rotation.

To represent the model with a 3D (or 2D) animation we define a library that
can be accessed during the execution time using a Procedure Call. In Fig. 5 there
is an example of this Procedure Call called AnimTo.

Fig. 5. The AnimTo procedure allows for defining the animations to represent the
model in a 3D (or 2D) environment

When the simulator executes the procedure it creates a representation in the
3D environment. The parameters of this call are described as follows:

AnimTo( ID, meshPath, delay, x, y, z )
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In this case, the element is identified by the ID identity and moves to (x, y,
z) coordinates at the current execution time plus the time delay. The shape is
defined by a mesh in a WaveFront OBJ format that is stored in the meshPath
path parameter.

A sequential execution of this procedure creates an animation between the
specified points. For the conveyor case, this procedure is used to represent
the elements that the conveyor transports. Thus, to create an animation from
the beginning to the end of the conveyor we must execute:

AnimTo( ID, meshPath, 0, x0, y0, z0 )
AnimTo( ID, meshPath, delay, x, y, z )

Where (x0, y0, z0) is the initial position, (x, y, z) is the last position and delay
is the time to move the distance of the conveyor.

2.4 Conveyor Model

It is not our intention to perform a complete description of the model. Instead,
we detail the behavior of the most complex element (with representation), the
conveyor. The conveyor has different parameters including the speed of the boxes,
defined by the rotation speed of the rollers. Additionally, we can define the
number of boxes that can be carried (this parameter depends on the size of each
box). All the parameters that can be configured by the user are represented on
the SDLPS diagrams using DCL statements. The behavior of the conveyor is
described as follows.

Elements can be added to the beginning of the conveyor. The conveyor con-
tinuously moves the elements to the end of its structure. Because this conveyor
is composed of different cylinders that move the elements (not by a continuous
belt), when the first elements reaches the end of the conveyor (but cannot leave
because the next element is blocked), the other elements can continue moving.
This relationship implies that the conveyor behaves as a buffer that can store
elements until MaxElems boxes is reached (defined in the declarations).

Because we are planning to use SDLPS to interpret and generate the model,
the notation of the declarations and the code for the diagrams is written in ANSI
C language to simplify the DLL needed to perform the execution of the system.
This coding implies that the language we are using is similar to SDL-RT [26]
or C-language binding as in SDL-2010 [1]. We define following terminology to
describe the diagrams.

Entity: the entities are the elements that move through the system using
different facilities to define different processes. Each entity “travels” through
different agents that perform operations on them.

Process: despite having an agent titled process in SDL-2010, a theoretical
process in operations research represents the set of operations that must be
performed to the entities. The definition of these operations is based on the
SDL-2010 process agents.

Event: An event occurs in the simulation model and implies the modification
of select state variables of the model. In our approach, the events are represented
using SDL-2010 signals.
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With these considerations for the model definition, there are two main events
(signals), NewReference (used to indicate that a new element reaches and at-
tempts to enter another element) and TakeReference (the other element, i.e.,
agent, attempts to take one of the elements that was completed in the process).
From these two signals, we can define a model that is similar to a PUSH/PULL
paradigm for a process interaction engine and similar to the simulation tools
that were described previously.

For the conveyor, we only consider the ROLLING state. In this state, we can
receive events, including NewReference, Full, Reroll, TakeReference, Unblock and
Roll. The behavior of these elements is described in Fig. 6, Fig. 7 and Fig. 8.

Figure 6 shows the declarations that contain the elements of the conveyor
that can be modified to define different scenarios. For example, the variable
double MaxElems=10 can be changed to test the difference between using a
short (MaxElems=5 ) or a long (MaxElems=20 ) conveyor.

3 The Implementation and Execution of the Model

The model was implemented with SDLPS software, developed in the InLab FIB
of the Polytechnic University of Catalonia [23,27]. This tool uses SDL-RT (the
code for tasks is defined using C language) and the the extensions to SDL-2000.
Regarding the infrastructure, SDLPS was built with C++ and C languages.
The model code (written in C for the tasks and procedures of the SDL-2000
blocks) are used through a DLL. The SDL-XML model is generated with a
plug-in on Microsoft Visio®. This coding implies that the model can be mainly
validated and verified by reviewing the graphic diagrams on Microsoft Visio®.
This property dramatically simplifies the interaction between the different parts
involved in the project.

SDL-2010 does not define the ordering of events when two events with the
same ExecutionTime have the same priority. This situation must be defined in
the model or by the simulation engine. SDLPS eliminates this ambiguity by
storing these events in a FIFO queue.

From Fig. 9, the simulator shows the model diagrams that will be simulated.
The system uses an XML representation of the model that is obtained from
Microsoft Visio® with the SanDriLa© plug-in.

Because we use this infrastructure, no specific implementation was performed
for this project, simplifying the verification process required for simulation
projects [30].

Figure 10 shows the steps that are simplified (red in the online paper/ grey
in the printed paper) by this methodology that are needed for a simulation.

The obtained results from the model emulation trace can be presented in Mi-
crosoft Excel® or SDLPSEye, which is capable of representing information in a
3D environment (for the representation events described in the previous section).
All agents can have unique representations, and due to the time extensions, we
can determine the movement of the simulation entities.



266 P. Fonseca i Casas et al.

Fig. 6. PCinta for the ROLLING state (1/3). This figure shows how the process is
instantiated. The time4position variable is defined from the START symbol and is the
time that is required for each of the pieces to reach a specific position on the conveyor.
From the “rolling” state, we can receive a NewReference signal. We then analyze the
number of elements that are in the conveyor. If this number is equal to the conveyor
capacity, the conveyor sends the “Full” signal to the previous agent. Otherwise, the
conveyor processes the element (sends the TakeReference signal to the previous agent).
Then, the program determines if the animation must be completed from the beginning
or if this element is connected to another conveyor AnimPrev value. In this example,
the AnimPrev value is 0, such that the previous element is not a conveyor.
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Fig. 7. PCinta for the ROLLING state (2/3). When a conveyor receives a TakeRefer-
ence signal, the NewReference is accepted by the next agent. Thus, after receiving this
signal, we can decrease the number of elements of our agent and unblock the previous
agent (in case that agent was blocked by our agent). We also can observe the behav-
ior of the conveyor when it receives a Reroll signal. This signal is sent by the agent
(self-signal) and is used to start the motion of the conveyor after a blocking occurs.
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Fig. 8. PCinta for the ROLLING state (3/3). A conveyor receives an Unblock signal
when we need to unblock the previous agent. To unblock the previous agent, we simulate
receiving a NewReference signal. We also observe the formalization of the Roll signal.
This signal is used to simulate the traveling time of the elements along the conveyor.
When an element attempts to travel from the current position to position number 5,
we send a Roll signal to the self conveyor with a delay, which represents the time for
traveling from one position to the next.
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Fig. 10. Simplified version of the modeling process [30]

3.1 The Model Eyes: SDLPSEye

The representation of the model is stored in a trace file. This file contains the
representation events from all the simulations. The events can be generated by
the AnimTo procedure or by changing any process of the model. For the lat-
ter, the event must be completed with a representation of every possible state
of the given process. Figure 11 is an example with a defined state representa-
tion of every agent. In this case, the agent BRobot PRobot has 3 states (IDLE,
BLOCKED and WORKING). Figure 12 is an example of a representation of an
event sequence. In this case, there are two representation events types, which
include EYE SetState and EYE AnimTo.

Figure 13 and Fig. 14 represent the model that was obtained from the descrip-
tion of the SDL diagrams. The boxes are the mesh elements (the representation
of the agent) defined on the extensions.

4 Concluding Remarks

Despite that the obtained results from the simulation model can be used for a de-
cision process in industry, the Specification and Description Language becomes
an excellent language to fully describe the behavior of the enterprise elements,
due the added time and representation capabilities. As we see in the introduction
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Fig. 11. XML file defining the representation of the model

Fig. 12. A trace of the representation, representing the complete behavior of the model
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Fig. 13. The conveyor contains three boxes. The two boxes at the end are waiting for
service.

Fig. 14. The conveyor is full and blocking the box generator (in red). In this exam-
ple, 4 blocks are represented. From left to right, the first, third and fourth elements
have the simplest representation, consisting of a color representation of each state.
For the conveyor block, a more accurate representation is presented using the AnimTo
procedure.

there are certain formal languages, programming libraries and infrastructures
that allow defining a simulation model. However, any of these languages allows
the definition of the model representation. To achieve this it is needed to use
proprietary infrastructures and tools. This obviously is far from the objective to
achieve a complete and formal representation of a simulation model independent
of the tool or infrastructure used to finally perform the implementation.

Thus, once the system is fully described, a client can modify the structure
of the model using only Microsoft Visio® SDL-2010 diagrams with the San-
DriLa [31] plug-in. Additionally, because the more important parameters of the
model are defined in the declarations and can be modified directly in the SDLPS
infrastructure, simple modifications (new parameterizations) of the model are
not time intensive. Thus, in industry, the managers can validate the accuracy of
certain proposed alternatives using common tools such as Microsoft Visio® .

Additionally, this tool can validate the accuracy of several of the proposed
solutions. Thus, the diagrams that represent the tacit and explicit knowledge of
the industry can be validated, allowing for the representation and validation of
these types of knowledge.

We are currently continuing with the project implementation in industry and
installing the system for the clients so they can modify and define their own
models. The main elements of the system can be predefined with SDL-2010
blocks that implement a library, so that several elements can be reused.
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As shown in this study, specification and description language can be used
in operations research to fully represent discrete simulation models with tem-
poral extensions and a library to represent the basic operations to render a 3D
environment.

Because the validation of the model is performed in the SDL-2010 representa-
tion of the model, non-simulation specialists that are experts in system behavior
can understand the model’s behavior. Thus, all the actors involved in the project
can participate in the model validation. Thus, SDL-2010 diagrams can be used
to represent the tacit knowledge that expresses the behavior of the complex
interactions between several actors in industry.
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Abstract. The paper proposes an approach for integration of a number
of SDL model instances into a SystemC project. It is done by conversion
of an SDL model into a C/C++ library. Implementation of the library is
performed by means of post-processing of previously auto-generated C
code by the CAdvanced code generator. The main benefit of the approach
is reducing of the project work effort and achieving a better quality of
the simulation results.

1 Introduction

Key interests of industrial telecommunication companies are increased quality
of products with reduced time-to-market. Modeling is a mechanism that meets
these requirements by its application at the early stages of product develop-
ment. This paper focuses the communication protocol development. The ITU
Specification and Description Language (SDL) [1,2] and SystemC [3–5] language
can both be used separately for the modeling of the communication protocols.
SystemC network models are used to explore the behavior, functional and non-
functional properties of protocols. Formal SDL models focus primarily on the
protocol behavior exploration at the specification development stage. In general,
the development of protocol stack models in SystemC and in SDL is performed
in parallel. However, resources are often limited, so this way of development
carries project delay or commercial risks. This paper proposes a new approach
for integrating the SDL model instances into the SystemC network model by
means of a special protocol stack library. This approach minimizes the poten-
tial risks and decreases the complexity of a project. The library implemented in
accordance with the proposed approach contains an SDL model of a protocol
stack.

2 The Problem Statement

Nowadays, modeling plays an important role in protocol stack development. It
is one of the most efficient methods of protocol mechanisms development, and
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is performed by implementation of high-level behavior models and testing them.
SDL and SystemC are widely used languages for these purposes.

SDL is a formal description technique (FDT) [6] based on a formal semantics
and is widely used for specification and investigation of event-driven communi-
cation systems. Moreover, the formal SDL specification can be taken as a part of
the official protocol specification as a reference. The SystemC language is a C++

library, which provides a capability of event-driven simulation and system design
using the Object Oriented Programming (OOP) paradigm and software design
patterns. These features make SystemC an appropriate tool for exploration of
functional and performance characteristics of protocols by simulation of network
models operation. However, implementation of large SystemC projects can lead
to difficulties during debugging. On the other hand, SDL has a graphical rep-
resentation that helps to design a protocol stack model rapidly. Therefore, the
problem that is faced is how to efficiently use the SDL and SystemC languages
together.

The common use of SDL and SystemC in one model could decrease time costs
for protocol development. To provide this common use, we use an SDL/SystemC
co-modeling method [7,8]. In this method the SystemC tester manages the simu-
lation of the SDL model, configures it, generates test sequences, etc. This method
partly solves the efficiency problem, but has a list of drawbacks. The most im-
portant issue is that it is impossible to create different numbers of SDL model
instances for the tester environments to use in network simulations. Another
complexity is that the SystemC developer should understand the principles of
SDL model operation.

The problem can be solved by means of a special library, which can be applied
during networks simulation in SystemC. This library should implement the orig-
inal SDL model and SDL simulation kernel as well as provide special services for
the user (term ‘user’ stands for the SystemC developer, who uses the library).

3 Overview of SDL/SystemC Co-modeling Approach

3.1 Tool Choice

The approach of SDL/SystemC co-modeling described in this paper assumes that
we have a SystemC project that corresponds to the whole model to be considered.
The whole model contains SDL and SystemC parts. Consequently, this approach
uses a C/C++ representation of the SDL system [9]. Before starting a description
of the discussed approach, we need to introduce general principles of co-modeling
with some requirements and important notions for modeling. Consider some
abstract SDL tool. This SDL tool should meet the following requirements:

1. Provide a possibility to generate C/C++ code for the implemented model
that is the equivalent of the SDL.

2. The generated C/C++ code operation should be controlled by some kind of
a manager engine (SDL kernel).
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3. The SDL kernel should provide a number of functions for initialization and
simulation of the SDL model. For the further discussion it is necessary to
introduce declarations for two main functions: SDL Init(), which is responsi-
ble for initialization, and SDL Simulate(), which is responsible for emulation
of the SDL system, so that one SDL transition is executed during each call
of this function. One SDL transition is a system state change from one to
another.

It should be pointed out that this kind of the SDL tool already exists. For
example, all these features are provided by the IBM Rational SDL Suite [10].

3.2 Modeling with SDL and SystemC

Modeling with SDL and SystemC is an approach that focuses on modeling of
systems that include SDL and SystemC models. This model consists of an SDL
model of a protocol layer and a SystemC model of the same layer. The SDL/Sys-
temC co-model is represented by a SystemC project, which contains SDL and
SystemC parts. The SystemC model is a master and it provides all the mecha-
nisms for simulation. The SDL part is represented by C/C++ code, which was
generated from the original SDL system. Generation of code is performed by
means of the CAdvanced code generator, which is a part of the IBM Rational
SDL Suite.

The process for connection of SDL and SystemC parts can be subdivided into
the following stages:

1. Preparation of the SDL system to be the part of the whole model.
2. Generation of C/C++ code on basis of the SDL system.
3. Insertion of this C/C++ code code to the SDL kernel.
4. Preparation of the SystemC part of the model.
5. Integration of the SDL kernel with the generated C code into the whole

model.

According to this approach, the SystemC model is a master and the SDL model
is a slave. So SystemC provides the mechanisms for modeling. Co-modelling or-
ganization starts after implementation of the SDL and the SystemC parts of
the model. The SystemC project should contain a special thread, which is in-
tended for the SDL part (SDL thread). This thread calls the SDL kernel function
SDL Simulate(). Control of the SDL thread can be specified in any acceptable
way. The choice of this way depends on the requirements of the modeled system.
Initialization of the SDL part of the model requires a call to the SDL Init()
function.

One of the most interesting questions in the area of SDL/SystemC co-modeling
is how scheduling is organized, because of the difference in the notions of the
SDL and SystemC modeling times. According to the SDL/SystemC co-modeling
approach, SystemC provides all necessary mechanisms for scheduling of events.
Each point of the modeling time corresponds to a number of delta-cycles, which
trigger in zero time. According to the SDL/SystemC co-modeling approach one
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execution of the SDL transition is performed in one delta-cycle. Each transition
of an SDL process from one state to another can result in scheduling of the new
events. There are two ways for events scheduling – signals and timers. Using
of signals means that the event should be performed at the current moment of
modelling time. Such an event is processed during the next delta-cycles after a
delta-delay. The timer expiration is scheduled at another moment of modelling
time. So it causes a new event, which is processed when all current time events
will be performed [7].

Fig. 1 shows a simple example of the SDL/SystemC co-model structure. This
is an example, when two nodes interact with each other through the channel,
but one node is implemented in SDL while another node and channel – in Sys-
temC [11].

Fig. 1. SDL/SystemC co-modeling example

SDL/SystemC co-modeling approach can be successfully applied for valida-
tion of SDL models within the SystemC tester. In this case, the SDL model
contains two instances of either a protocol layer or a protocol stack which work
independently. Communication is performed through SystemC channels which
can operate in accordance with different algorithms for error generation, signal
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loss, etc. SystemC test environment is a master component that fully controls
the slave SDL system.

The implementation of the tester can be divided into the following general
stages taking into account the general SDL/SystemC co-modeling principles:

1. Implementation of an SDL model of a protocol.
2. Implementation of special wrappers for conversion of SDL data types to the

SystemC data types and vice versa.
3. Implementation of the SystemC test engine, channel for communication of

the nodes and control components.
4. Writing test cases. Test cases are implemented as SystemC components,

which work in accordance with different algorithms. By switching between
these components, developers can change test scenarios.

The architecture of a co-model is shown in Fig. 2. It includes three main parts
– SystemC test control components, an SDL part (SDL model and SDL simu-
lation kernel) and SystemC channels. In Fig. 2 the SDL model is essentially the
generated C code which implements the original graphic model.

SDL/SystemC co-modeling approach has been successfully used for validation
and testing in such projects as UniPro [12] and SpaceWire-RT [13].

Fig. 2. Testing SDL under SystemC
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4 Different Approaches to a Solution

Our goal is to develop an approach that allows creating several instances of the
SDL model. Moreover, since we use the IBM Rational SDL Suite, our approach
is tool specific. Especially for the SDL/SystemC co-modeling we use the CAd-
vanced code generator and C source code of the SDL model, which has been
generated by it.

Since SystemC is based on C++ and since CAdvanced generates plain C code,
there appears a task of combining C and C++ parts of the model. The use of
available C++ code generators can probably solve some problems. But in the
case of using our codebase, embedding a new tool requires making global changes
to our projects.

We consider it is important to understand how the original SDL model is
implemented in the C source code and, moreover, what are the source code
equivalents for different elements of the SDL language. Another question is how
we can reuse the code to have an opportunity to instantiate more than one SDL
model. There are not many publications that describe the design of generation
of source code from SDL and the principles of communication with an SDL
simulation kernel. The paper [14] observes some details of this code generation
and the principles of its functionality. Another publication [15] (a thesis) that
proposes an integrated design flow for embedded systems, where the author also
uses the CAdvanced code generator, describes several mechanisms that are used
in SDL Simulator, and how the generated code interacts with the simulation
kernel.

Based on the IBM Rational SDL Suite documentation together with [14, 15]
we have conducted research in the design of model generated to find the ways
for acheving our specific goal.

4.1 Integration of C Code into C++ Environment

We need to localize the SDL model instances in a memory. The most obvious
approach is integration of the generated C code of the SDL model and the
SDL simulation kernel into a C++ environment for its further operation in the
user’s code. If integration is possible, then the target library can be developed
with the use of different OOP patterns. However, practical application of this
approach has shown that this way entails a number of technical problems. Since
the generated code of the SDL model is represented by C code that strictly
conforms the ANSI C standard, the most complex problem is integration of the
C code for operation in the C++ project. Consequently, the significant part of the
SDL simulation kernel and generated code of the SDL model should be changed.
Therefore, it can be concluded that the implementation of this approach takes
a considerable time.

4.2 Code Post-processing

Another way of solving the problem is post-processing of the SDL model gen-
erated C code in order to have an opportunity of creating different numbers of
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SDL model instances by the use of dynamic memory allocation. The main feature
of the CAdvanced code generator is that the implementation of an SDL model
represents the hierarchical structure that is called symbol table and organized
as a tree [15]. The symbol table contains objects that represent SDL entities
(system, blocks, processes, signals, etc). These objects are global variables, so
static memory allocation is used.

To have an opportunity to create different numbers of SDL model instances,
we need to change the memory allocation mechanism from static memory al-
location to dynamic memory allocation. This can be done by the code post-
processing. Ideally, we need to change the implementation of the CAdvanced
code generator, but this is almost impossible as we use an existing industrial
tool. On the other hand, it is a well known approach to develop an auxiliary
toolchain for existing products.

5 An Approach of SDL Model Instances Integration

5.1 The Library Development Flow

The solution is aimed to develop an environment that allows creating the target
library. This library provides an ability to use a different number of SDL model
instances in the SystemC user’s project and contains both the SDL model and
the SDL simulation kernel. The library development flow and library usage in a
project is shown in Fig. 3.

These are the steps of the proposed library development flow:

1. Analysis of requirements and implementation of an SDL model.
2. Obtaining a PR-model using the GR-to-PR converter.
3. Obtaining C code of the SDL model with use of CAdvanced. The code

consists of three parts: a symbol table, which corresponds to the SDL model
architecture, a set of initialization functions and a set of PAD (Process Ac-
tivity Description) functions [10] which implement the behavior of SDL pro-
cesses.

4. Code post-processing of the obtained C code. Generation of initialization
functions and patching of some parts of PAD functions.

5. Building a target library according to the proposed approach. Creation
of the symbol table selector. Development of a user’s code interface, which
is a set of C++ classes.

Then all the generated source code is compiled and linked, so the user gets
a target library ‘component.lib’. The implementation of the SDL kernel stays
unchanged during the library development flow, but the new functionality for
operating with a different number of SDL model instances is added. The user’s
project operates with the target library and the SystemC library simultaneously.
The user interface is intended for using services provided by the library.
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Fig. 4. SystemC model structure

5.2 Application Structure

Let us consider a simple example. Fig. 4 shows the architectural diagram of the
SystemC model of SpaceWire MCK-01 switch [16].

The model contains a Switch module and four ports connected to four inde-
pendent SDL model instances. The Switch and Port modules are implemented in
SystemC. According to the proposed approach it is possible to design a switch
model, where each port includes the implementation of full protocol stack in
SDL. In this case the network layer is implemented in SystemC while the bot-
tom ones – in SDL. The structure of the application implemented in accordance
with the proposed approach is shown in Fig. 5.

It consists of the following parts:

1. The SystemC library, which includes SystemC kernel.
2. The SystemC model implemented by a user.
3. The target library, which provides an ability to create a number of differ-

ent SDL model instances. The library is divided into three parts: the user’s
model interface, which describes the services for communication between the
users SystemC model and the SDL kernel; the SDL kernel, which performs
scheduling of the generated SDL model and the SDL model itself. For com-
munication with C++ classes a basic xInEnv/xOutEnv [10] mechanism is
used. Implementation of the SDL model has four parts:
(a) A set of PAD functions. These functions implement behavior of SDL

model processes.
(b) A selector of a symbol table (ST).
(c) A set of SDL model instances. Each of them has its own symbol table,

but all instances have a set of common PAD functions.
(d) A set of initialization functions. These functions are used for instanti-

ation of each new symbol table with the use of the dynamic memory
allocation.
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Fig. 5. Application structure

User’s SystemC model is a single threaded application, which is controlled by the
SystemC kernel. The Switch module with its ports communicates with the SDL
kernel via user’s interface. The SDL kernel is responsible for scheduling of SDL
model processes. The kernel calls different PAD functions and each PAD func-
tion chooses an SDL model instance by means of ST selector. ST selector uses a
symbol table identifier, which is generated by a user’s C++ object which repre-
sents the SDL model (for example Port #0 ). The ST selector clearly indicates
the required SDL model instance.
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6 Main Principles of Model Memory Organization and
Management

As an example we take the simple SDL model to clearly explain the proposed
approach. The SDL model, which is taken as the basis for the example, consists
of one block communicating with the environment by means of signals ‘sig.req’
and ‘sig.rsp’. This block contains only one process, which operates with the same
signals.

First we should generate the C code from the SDL model. It is done by means
of CAdvanced code generator. This C code contains a set of interacting data
structures and each of them could be a huge hierarchical tree. These structures
represent the SDL model symbol table. Thereafter, it is possible to convert the
generated C code to the XML. The XML representation contains 226 nodes (a
node comprises a C data structure and its fields) with 251 connections between
them for such a simple example.

According to the proposed approach the C code should be divided into a num-
ber of post-processing steps. Initialization functions were generated and PAD
functions were patched. Initialization functions are called each time a new SDL
model instance is initialized. In the case when the original SDL model was de-
signed with use of packages, the CAdvanced generates an implementation of
each package and places them into separated source file. Each package has its
own initialization function. Therefore, we need to post- process all source files to
have opportunity of build the symbol table in memory using dynamic memory
allocation. After the initialization each SDL model instance is separately stored
in the heap. Since initialization is performed with the use of the same function,
which does not returns any value, it is not possible to get access to all symbol
tables (as each new instance is initialised by a consecutive calling of initializa-
tion functions). To solve this problem some special nodes of the SDL model
symbol table are added to special arrays. These arrays are used to determine
the necessary nodes of symbol table of SDL model instance while sending signals
from environment [1] to SDL model or sending signals from SDL model to an
environment. Communication mechanisms are shown in Fig. 6.

The heap stores two symbol tables of the SDL model. A set of arrays, which
are global variables, is stored in a data segment and contains pointers to signals,
channels and environment processes, since every SDL model instance has its own
environment. The SDL kernel extracts the first process from the ready queue [10]
and calls associated PAD function.

A PAD function must obtain information about SDL model instance before
it can send a signal to any process. It is done by using of a multiplexer, which
is able to choose an instance depending on the information from arrays. The
signal array, the channel array and the environment processes array are used for
a required SDL model instance choice. Multiplexer does it by using traverse of
hierarchical part of symbol table. The system identifier is stored on a system
level of the hierarchy of SDL entities [1]. Such an identifier is associated with
each new SDL model during the initialization stage.
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So during the execution of a PAD function and sending a signal to environment
by xOutEnv function or to other process by SDL Output function, it uses the
multiplexer to determine a symbol table of the SDL model instance. When signal
is sent from environment (from user’s SystemC model) to SDL model instance
by xInEnv function, it uses the multiplexer which performs search for a channel
and a signal in arrays for identification of the SDL model instance.

7 An Example of the Approach Application

This example gives more details of the proposed approach and shows how the
SystemC developer can use it in his project. Let us assume that we need to
create a network model in SystemC and also we need to use it for an exploration
of non-functional properties of a protocol while the SDL model of a protocol has
already been implemented. To simplify the SDL model we use the same SDL
model as we used in section 6. The example is shown in Fig. 7.

Fig. 7. Example of the approach application

The SystemC model includes the Source node, three switches and the Desti-
nation node. The Source node is responsible for data generation while the Des-
tination node is responsible for its reception. Each switch contains the SystemC
module, which includes a number of SystemC threads, each of which corresponds
to an independent instance of the SDL model. All these instances are created by
the user in C++. The library controls all of them.

A fragment of source code of the SystemC module of a Switch is shown in
Listing 1.1. This fragment shows the part of source code of the switch module

class and sdl model class. Constructor of the switch module class is responsible
for initialization of a module and creation of a corresponding new instance of
the SDL model. The sdl model class contains functions which form the user’s
interface and which are used in the switch module class. The sdl model thread

firstly waits for a request event. After the event has been generated the thread
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1 /**** part of user ’s interface ****/

2 class sdl_model {

3 public:

4 // initialization of the new instance

5 sdl_model ();

6
7 // function for sending sig.req to the instance

8 void send_sig_reg ();

9 ...

10 };

11
12 /**** part of user ’s code ****/

13 class switch_module : ... {

14 public:

15 ...

16 void sdl_model_thread ();

17 private:

18 sc_event sig_req_event ;

19 };

20
21 // switch module ctor

22 switch_module :: switch_module (sc_module_name name) :

sc_module (name){

23 // thread creation and event setting

24 SC_THREAD (sdl_model_thread );

25 sensitive << sig_req_event ;

26
27 // creation of a new instance of the SDL model

28 sdl_model_instance = new sdl_model ;

29 ...

30
31 }

32
33 // switch module thread

34 void switch_module :: sdl_model_thread (){

35 while(1){

36 wait(sig_req_event ); // waiting for input event

37
38 // sending sig.req signal to the instance

39 sdl_model_instance ->send_sig_reg ();

40 }

41 }

Listing 1.1. Part of SystemC module source code
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handles it and the signal is sent to SDL model instance using function call. The
function is provided by the library and it is one of a set of functions of the
user’s interface. Therefore, the instance can be used in such a manner as if it is
a SystemC component. Thus, SystemC developer can work with any instance of
the SDL model of a protocol not knowing anything about its implementation.

The proposed approach gives an opportunity to focus on implementation of
the SystemC model of a network comprising hundreds of nodes rather than on
implementation of the SDL model of a protocol.

8 Conclusion

This paper gives an overview of the problem of integration of different numbers of
SDL model instances into the SystemC project. The paper proposes and explains
the elaborated approach. The SDL model is encapsulated inside a self-contained
C++ class and could be easily instantiated. During instantiation of every new
copy of the SDL model, it is placed on heap. For this opportunity, the generated
source code of the SDL model has to be post-processed and the memory alloca-
tion mechanism should be changed from the original static memory allocation
to a dynamic memory allocation. In addition, we provide an example of the suc-
cessful application of the approach. The proposed approach is expected to reduce
the project work effort and help in achieving a better quality of the simulation
results. However, there is still a number of open questions and tasks for future
work: definition of rules for code post-processing, memory management, proving
of a model implementation and behavior correctness.

The future work would be mostly focused on the creation of a special tool.
This tool is planned to be applied during the SpaceWire-RT standard model
implementation and validation.
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