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Abstract. Traditional network authentication systems like Windows’
Active Directory or MIT’s Kerberos only provide for mutual authenti-
cation of communicating entities, e.g. a user’s email client interacting
with an IMAP server, while the user’s machine is inherently assumed to
be trusted. While there have been first attempts to explicitly establish
this trust relationship by leveraging the Trusted Platform Module, these
provide no means to directly react to potentially relevant changes in the
client’s system state. We expand previous designs by binding keys to the
current platform state and involving these in the network authentication
process, thereby guaranteeing the continued validity of the attestee.

1 Introduction

As by now a TPM can be found in almost every contemporary desktop computer,
so has its adoption in security software become widespread. Chipset firmware,
OS loader programs and finally the OS kernel itself use it to log the respective
subsequent components of the boot chain into a verifiable log buffer, harddisk
encryption solutions like BitLocker[3] use it to seal their cryptographic material
once the booting process has finished, and remote attestation protocols use the
recorded system events and the platform state represented by the TPM’s regis-
ters to judge the trust to place into that system according to a certain policy.

Network authentication services, on the other hand, usually do not bother
with establishing a trust relationship with the system a client logs on from; in
fact – although this is an orthogonal observation and neither of the two features
strictly requires the other – most do not even identify the client host1. While
identifying the host may be undesirable or just unnecessary, garnering trust can
only be beneficial.

Especially in a corporate setting, where the IT department can exert tight
control over the tolerated configurations, trust in a client can be defined as the
combination of two assertions: first, that the client host is running an uncom-
promised operating system, and second, that the configuration of the system
remains inside a predefined subset of the configuration state space theoretically

1 Except for logging its purported identity, represented e. g. by its IP address.
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allowed by the OS. Our approach presents a TPM-assisted solution that al-
lows a service instance to gain reliable insights to both of these questions, while
at the same time integrating nicely into the well-known Kerberos network au-
thentication framework. We also elaborate on viable techniques for withdrawing
credentials given out based on these observations.

2 Background

The Trusted Platform Module was conceived as a vessel for placing trust into
a running system. Part of that trust relationship is that private parts of asym-
metric encryption keys never leave the TPM. A special asymmetric key is the
so-called Endorsement Key (EK), because it is endorsed by the manufacturer of
the TPM or the platform manufacturer. The endorsement comes in the form of
a certificate containing the public portion of the EK signed by the manufacturer.
For TPM 2.0 devices the EK is generated from a unique seed using a key tem-
plate. This process will always generate the same EK on a TPM, if the seed stays
the same. This EK itself, accompanied by its EK certificate, would suffice to sign
data and prove its uniqueness. However, on TPM 1.2 devices an EK cannot be
used to create signatures. Our solution should target the broadest set of TPMs,
so we used this limitations as a prerequisite. The one-to-one mapping between
EKs and hardware platforms has several benefits, e.g., it allows for the revoca-
tion of individual keys if their factorization becomes known. However, it comes
with the drawback of making platforms exposing their EK easily identifiable and
thus traceable.

To ameliorate this problem, the EK is used to establish trust in an additional
”pseudonymous” key, which is also non-exportable and therefore tied to the
platform it was generated on, but does not share the privacy concerns and usage
limitations of EKs. These Attestation Identity Keys (AIKs) are certified by a
certification authority (CA) based on the EK certificate presented together with
the AIK. The CA can inspect the EK certificate and the AIK public portion
and generate an activation challenge for the TPM. Only a TPM which possesses
both keys can decrypt the challenge. Part of the challenge is a secret, which can
be a symmetric key to decrypt the certificate for the AIK issued by the CA.
The AIK certificate can then be used to identify the AIK as originating from a
TPM[7]. The concept of AIKs allows to use different keys for different services,
which further protects users from cross referencing keys.

With this technique the exposure of the EK can be limited to a single trusted
service. As we are chiefly discussing corporate settings in our approach, this
seems like a reasonable assumption. For scenarios where this might not be desir-
able, there is also the option of engaging in a zero-knowledge protocol to prove
a platform’s authenticity[2]. Whichever protocol is used, further communication
partners of the platform can then trust a given AIK by virtue of a matching
signature by a ”privacy CA” instead of relying on the EK.

Another important property of a TPM are non-resettable Platform Configu-
ration Registers (PCR). A PCR can be extended through a trapdoor function,
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which takes as input the PCR’s previous value and a new value to incorporate
into the new PCR value. Because these non-resettable PCRs take a well-known
value only when the TPM is powered on and can only be extended after that,
the value of a PCR cannot be rolled back, only forward. The TCG defines 16
non-resettable PCRs for PC architectures. Most of these contain well defined
values, as specified in [8]. The BIOS of a PC will extend hashes of boot events
into the PCRs. The operating system loader and the operating system itself con-
tinue these measurements throughout the boot process. Such boot events include
hashes of all the binaries loaded and executed. In parallel the system keeps a log
of these events containing additional information, such as name of binary, size,
etc. Because the PCRs are non-resettable, they can be used to verify the integrity
of the TCG event log. Under the assumption that every stage of the boot chain
checks the validity (cryptographic signatures, soundness of configuration, etc.)
of the subsequent stage and writes the resulting measurement into the event log
and a hash into the PCRs, there is reliable proof that a certain boot chain has
been traversed. This ensures that even if a component of the chain is later found
to be malicious (due to a zero-day vulnerability), it cannot erase its presence or
alter its image to appear benign without creating a mismatch between log and
PCR values. Using a TPM-held asymmetric key (e. g. an AIK), the TPM can
then create and sign a ”quote” of the PCR values. This way trust in the AIK
certificate can be extended to the TCG event log.

A TPM may also create a key bound to the values of a selection of PCRs.
That key can only be used as long as the selected PCRs have the same values
used at the time of the creation of the key. Should one of the selected PCRs
change its value, the key is rendered useless. We call these keys PCR bound keys
or state bound keys.

3 Design

3.1 TPM-Based Protocol

Using the AIK signed PCR quote together with a TCG event log and AIK
certificate allows an attestor to successfully verify the integrity of the TCG event
log, tracing back the AIK to a cryptographic root of trust. However, the result of
this attestation process only applies to the very moment in time when the quote
was generated on the attestee – even while the examination of the attestor is
running, new entries might be added to the attestee’s event log. This would
alter the system state and possibly also its conformance level to the attestor’s
standards. Therefore the basic AIK based variant of this protocol (as described
in [11]) applies only to systems where there is little change in system state and/or
this problem is negligible.

While the pragmatic approach to this problem might be to simply reduce
the attack window by keeping the validity period of (possibly stale) attestation
certificates at a minimum, there is also a systematic solution using state bound
keys. At the cost of the generation of the state bound key, a platform can prove
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at any time whether its state still matches the one which has been examined at
the time of the creation of the PCR quote.

The common remote attestation protocol can be easily extended to include a
new TPM-shielded state bound – ephemeral – key (EPH). Congruently to the
EK → AIK trust transition above, the TPM can issue a creation certificate,
which proves the basic characteristics of the EPH and is signed by the AIK. If
this data is supplied to the attestation service, it can compare the quoted set
of PCRs with the system state to which the EPH has been bound. If the two
match, the EPH can then serve as an unforgeable proof of the client’s system
state.

This approach completely eliminates the need for an explicit validity period
on the attestation certificate – it is valid as long as the EPH bound to it can be
used and as the attestor trusts the components running on the system. However,
the chosen method is of course unable to protect against unknown vulnerabili-
ties and the ensuing possibility of memory-resident malware; however once the
vulnerable component is identified, systems which have loaded (and therefore ex-
ecuted) a vulnerable version of this specific component can be denied attestation,
effectively forcing them to upgrade to a safe version and to reboot.

All this requires that every significant change in system state actually renders
the EPH unusable. Changes on the OS layer, such as subsequent loading of
additional code modules is discussed in detail in related work[12,5]. Depending
on the scenario there can be other forms of system state changes which should be
considered significant, e. g., changes to the system code libraries. If an attestor
trusts a system configuration it can also establish trust in the policy enforced
on the attestee, which will change the PCRs if a known significant event occurs.
This policy enforcement is technically trivial, as all necessary API elements2 are
available on today’s major operating systems. The attestee can run a ”watchdog”
service, which enforces the requirements of the attestor.

Due to this scenario-dependent definition of the system state space, we have
expanded the basic remote attestation protocol to allow the attestation service
to push a list of state inspection requests to the client. These checks can be
instantaneous, meaning that the results should be transmitted as part of the
system quote, or continuous, i. e. changes to the requested property should be
constantly monitored by the watchdog and EPH should be revoked (by extending
a PCR and logging the event) if a property leaves the defined ”safe state space”.

These additional checks allow for easy determination of system configuration
like the version of the operating system, the patchlevel of core libraries or the
state of vital system services. As a side effect this also defeats the common
”proxy” attack: the possibility for an attacker to have all TPM operations exe-
cuted on a third, clean machine in order to make his own compromised machine
appear innocuous can be thwarted by simply including a check that asks for the
attestee’s hostname or network interface configuration. If an attacker is acting

2 This includes registering file system directories for kernel notifications, communicat-
ing with the TPM from userland – on Windows monitoring the System Registry is
advisable, too.
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as man-in-the-middle, the answer will not match the client address as seen by
the attestation daemon.

3.2 Kerberos Integration

The Kerberos authentication framework and its surrounding ecosystem of glue
libraries (libsasl, libgssapi etc.) have become the de-facto standard for large-scale
authentication settings in Unix-based networks. While its definition, conventions
and API designs span more than a dozen RFC documents, its basic messages are
comparatively simple and easily extensible. At the heart of the protocol lie the
message exchanges between client and Authentication Service (AS) and between
client and Ticket Granting Service (TGS). The former establishes the client’s
identity by issuing a long-lived Ticket Granting Ticket (TGT) encrypted to the
user’s pre-shared key (more commonly the ”password”), the latter can be re-
quested to hand out tickets for individual services, provided that an appropriate
permitting TGT can be presented.

The flow of information in both directions can be extended by supplying op-
tional data in generic holes of the protocol which have been designed explicitly
for this purpose. Requests allow for additional ”preauthentication” data to be
supplied, and returned tickets can be constrained to specific use cases or circum-
stances by filling in the so-called (and somewhat mis-named) ”authorization”
element.

The idea of integrating the additional trust gained by a remote attestation
certificate into the Kerberos protocol leads to the fundamental question at which
point the additional information should be fed into the protocol. Theoretically
all three entry points (AS / TGS / kerberized service) would lead to a valid
combination – we have consciously chosen the second approach in our design for
the following reasons:

– As the attestation certificate includes EPH, including it into the request to
the AS would mean that the TGT was bound to EPH, too. This breaks the
Single Sign-On property of the Kerberos protocol, as the AS exchange would
have to be repeated (and therefor the user’s password reentered) whenever
EPH expires.

– Establishing the TPM-based trust into the client includes many checks which
do not actually involve the client interactively: verifying the RSA signature
on the attestation certificate against the well-known attestation service key,
parsing of contained policy compliance statements, unpacking of EPH mod-
ulus etc. These could be performed by each kerberized service individually –
we deemed it more suitable to keep these operations inside the KDC instead
of the server-side Kerberos libraries.

The only part of the proof which still has to be performed by the actual kerber-
ized service is then a signature by the key EPH on a nonce chosen by the server.
In order to keep the protocol backwards-compatible with standard Kerberos im-
plementations, this requires an additional pair of messages to be exchanged after
the service ticket itself has been presented and validated.
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4 Implementation

The network service components of our scenario do not depend on a specific
hardware configuration or feature set and they implement little new functionality
beyond the well-established roles in the Remote Attestation protocol. We have
therefore opted to build the Privacy CA and the Attestation Service as small
standalone C� applications with only several hundred lines of code each.

The attestation client has been implemented on top of the TSS API as speci-
fied by the TCG[9]. Our Windows implementation uses the primitive operations
provided by the recent tpm.sys kernel driver[4], whereas our Linux implemen-
tation uses the full TSS interface as provided by the TrouSerS tcsd daemon[1].

Finally, we have made small changes to the MIT Kerberos implementation
and the GSS-API library to add our attestation components, thereby replacing
about 200 lines and adding another 350, spread out over 12 files. The changes
consist of the following logical items:

– inclusion of attestation certificate in TGS request
– inclusion of certificate in returned TGT
– introduction of a new GSSAPI context flag representing TPM-based trust
– protocol extension: extra message pair containing EPH signature
– creation and verification of extra message pair
– implementation of above concepts in GSS sample applications3

Fig. 1. Protocol visualization. Note that the AS exchange and the remote attestation
can be completed in arbitrary order, as they do not depend on each other

We will now describe each part of the protocol (cf. also figure 1). TPM op-
erations as defined in version 1.2 of the TPM Specification[10] are typeset in
italics.

3 This alone accounts for nearly 50% of the whole patch set.
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1 communication with Privacy CA
1a The client connects to the Privacy CA, creates an AIK bound to a nonce

chosen by the CA (TPM CreateIdentity), and transmits the activation re-
quest.

1b The PCA validates the properties of the AIK, the soundness of the EK and
the signature, and replies with an activation blob which is decrypted by the
client using TPM ActivateIdentity and stored for later use.

2 remote attestation
2a The client connects to the attestation service and receives a nonce and a list

of system checks.
2b The client determines the current system state by repeatedly calling TPM -

PCRRead and finally generates an ephemeral key EPH bound to the de-
termined set of PCR values by executing TPM CreateWrapKey. In the rare
case of a change in PCR state during this operation, the step is repeated.

2c The client links EPH to AIK by executing TPM CertifyKey2.
2d The client performs the requested checks on its state.
2e The client generates a quote on the current system state through TPM -

Quote2, using EPH as the signing key and the combination of the TCG
bootup event log, the log of accumulated system state change events and
the results of the requested instantaneous system checks as ”external quote
data”.

2f The client transmits the quote, the actual log data and check results, the
required public key material to verify the signatures and the PCA certificate
from step 1 back to the attestation daemon.

2g The attestation daemon verifies the trust chain, assesses the client’s bootup
chain, its history of monitored events and its responses to the requested
checks and determines its compliance to a set of pre-defined policies (e. g.
”Win8 patchlevel 2013/01/01” or ”Ubuntu Lucid”).

2h The daemon issues an attestation certificate that ties EPH to the determined
list of fulfilled policies and transmits it to the client.

3 Kerberos protocol
3a During sign-on, the client obtains a regular TGT from the AS.
3b While trying to obtain a ticket for a particular kerberized service, the client

checks for the presence of a valid attestation certificate. If one is found, the
client includes it as preauthentication in its request to the TGS.

3c The TGS performs validity checks on the included certificate and stores a
parsed version (which still includes the list of policies and the public part of
EPH) as an authorization element in the resulting service ticket.

3d The client connects to the kerberized service, presents its ticket and indicates
that additional operations to establish TPM-based trust are desired.

3e The service issues a nonce.
3f The client executes TPM Sign on the nonce, thus producing an SS INFO

signature of it using EPH as the key, and transmits the result. Note that
the attestation service has to verify that EPH’s key properties specify the
TPM SS RSASSAPKCS1v15 INFO signature scheme. Otherwise it would
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be possible to create and sign a message with EPH which is indistinguishable
from a system quote – a problem particular to this specific protocol, as AIKs
are explicitly forbidden to engage in TPM Sign operations.

3g The service verifies the signature using the public part of EPH and is then
able to grant additional privileges according to the set of policies the client
is now proven to fulfil.

Several parts of this protocol can be easily optimized. Step 1 does not have to
be repeated at all if the AIK is persistently stored on the client – it may only
be desirable in order to change the platform’s pseudonym for the later stages,
and doing so is possible at all times because a change in AIK does not invalidate
already issued attestation certificates.

EPH on the other hand has to be generated at least once per bootup due to
its dependency on the PCR values. As TPM Sign is the only primitive crypto-
graphic operation exposed by the TPM interface, it is impossible to tie the key
closer into the establishment of the TLS context. If the system state changes and
EPH becomes unavailable, existing connections which have been created through
the above protocol will continue to work if they are not torn down explicitly.
This is no technical challenge however, as the expiration of EPH has been caused
by an extension of a PCR value, which can only have been issued by the OS
or the userland component of our aforementioned policy watchdog: this daemon
can also communicate this event to all processes which have running EPH-based
network connections.

5 Evaluation

Our protocol incurs only modest overhead and has almost no surprising factors
compared to regular incarnations of remote attestation. Measurements of boot
components vary between 10 and 60 ms each (mainly dependent on the TPM
model), so assuming a number of about 100 components – which represents a
typical Windows7 installation; typical Linux installations tend to have less –
yields a total slowdown for a cold boot of just a few seconds.

Due to the infrequent need for fresh RSA key pairs, these requests are usually
satisfied by the key pregeneration cache of the TPM and thus do not incur an
additional delay. The remote attestation protocol therefore completes in about 4
seconds (privacy CA) and 5 to 7 seconds (attestation service), depending on the
length of the transmitted TCG log and the list of requested system checks. Our
experiments indicate further that, once a system has performed its initial boot
up and loading of additional driver modules has completed, the configuration
of the system remains stable if a few basic optimizations are applied (e. g. the
generation of additional PCR events for repeated loading and unloading of iden-
tical instances of the same driver module is suppressed). This holds true even
if additional aspects of system configuration are being monitored, like watching
core keys of the Windows Registry or the contents of /lib on a Linux installa-
tion. These only change during system upgrade procedures or deliberate system
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reconfiguration by an administrator, in which cases the penalty of regenerating
a TPM RSA keypair and repeating the attestation process seems admissible.

The only unique delay introduced by our protocol is the TPM Sign operation
on the nonce during the initialization of the GSSAPI session. Our measurements
indicate an average duration of about 2.5 seconds per connection attempt –
however this operation is only executed after the service ticket has been presented
and both parties have agreed to engage in the ”upgraded” handshake method,
so this time is never wasted.

6 Conclusion, Future Work

The designed protocol extensions to the Kerberos framework allow for a con-
venient integration of hardware-based trust certificates, thus allowing network
services to include this new trust dimension into the authentication process.
Next steps may include extending the scenario to support mutual authentica-
tion, or to integrate TPM-shielded RSA keys into an adaptation of the Kerberos
PKINIT extension (cf. [13]). Finally, the use of state-bound keys is not restricted
to Kerberos, e. g. Goldman et al.[6] describe an approach to link TPM based at-
testation to SSL certificates. Their implementation differs in the reversed model
(the service attempts to prove its validity to a client) and their reliance on
short certificate expiration times and instantaneous certificate revocation by the
watchdog, but is quite similar with respect to melding the current system prop-
erties into a TPM-bound health certificate. Combining and further exploring
these techniques may provide valuable insights.
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