
Towards Verifiable Trust Management

for Software Execution

(Extended Abstract)

Michael Huth and Jim Huan-Pu Kuo

Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth,jimhkuo}@imperial.ac.uk

Abstract. In the near future, computing devices will be present in most
artefacts, will considerably outnumber the number of people on this
planet, and will host software the executes in a potentially hostile and
only partially known environment. This suggests the need for bringing
trust management into running software itself, so that executing soft-
ware be guard-railed by policies that reflect risk postures deemed to be
appropriate for software and its deployment context. We sketch here an
implementation of a prototype that realizes, in part, such a vision.

The technical work described below relies on the concept of Trust Evidence. By
this we mean any source of information (credentials, reputation, system state,
past or present behavior, etc.) that can be used in order to assess the trustworthi-
ness of running a unit of code. The variety of sources for Trust Evidence suggest
the need for an extensible language in which such evidence can be combined.
The quantitative (e.g. reputation) and qualitative (e.g. a claimed credential) na-
ture of such evidence means that such a language has to consistently compose
qualitative as well as quantitative notions of Trust Evidence.

We here present an exploratory case study (whose usability issues are dis-
cussed in [1]) where Scala [2] methods are the units of software that guard rails
are meant to control. Guard rails use heterogeneous Trust Evidence sources to
decide the circumstances in which methods may be invoked. The data-flow dia-
gram of our case study, in Figure 1, has a three-layered guard rail architecture.

Annotation blocks @Expects, @Policy, and @Switch precede each method
declaration and, roughly, correspond to a context-sensitive access request, a pol-
icy decision point (where the contextualized request is evaluated), and a policy
enforcement point (where the evaluated decision is realized) – as familiar from
access-control architectures. Atomic expectations (expressed in @Expects) may
be predicates associated with a certain trust score. Intuitively, truth of the pred-
icate secures this trust score in isolation. For example, an atomic expectation
may assign trust score 0.2 if the method is not called by a specific caller method.
Atomic trust scores would then be composed within sub-blocks based on a spec-
ified composition operator (e.g. a pessimistic min operator). Sub-block scores
may be accumulative, pessimistic, etc. and are themselves combined into a lo-
cal trust score that is referred to in the second level (@Policy), which specifies

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 275–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



276 M. Huth and J. Huan-Pu Kuo

a rule-based policy for whether or not to execute the method body. The third
level (@Switch) then implements the enforcement of the guard rails specified in
the expectation and policy levels. We implemented this as a switch statement
that ranges over possible policy decisions and that specifies, for each possible
decision, whether and if so how the “payload” method body should execute.

The proof of concept framework was implemented in the Scala programming
language [2]. One reason for choosing a JVM based language such as Scala is that
there exist frameworks to extend the language and inject behaviours/aspects at
various points of the source code, allowing us to deliver more refined, future pro-
totype implementations. The two frameworks we use in our first implementation
are: ANTLR [3] and AspectJ [4].

���
���

���
	
�

�

��
����

���
���

��

�
�
���

���
���

�

��	������������� ��������
����
��
���
���
����������

����������� ���

!������������
���������������
����� �����
�
��������

!������������������
�������������
�"#"$��
�%���&$����'$����()

*��+,

������
��
	
����� ������
����������

��
���

��
��
���

�
��
��

���
���

!����������
������
�
�� ���
���

��
��
�

���
���

	��
���

�

���

��
���

�
�

��

#���� ��
���
����

���	
����������������
��

Fig. 1. Dataflow of our trust-management implementation for method guard railing

Acknowledgment. Intel R© Corporation kindly funded a sub-project within its
Trust Evidence project. Work reported here is an outcome of said sub-project.

References

1. Huth, M., Kuo, J.H.-P., Sasse, A., Kirlappos, I.: Towards usable generation and
enforcement of trust evidence from programmers’ intent. In: Proc. of 15th Int’l
Conf. on Human-Computer Interaction. LNCS. Springer (to appear, 2013)

2. Odersky, M.: The Scala Language Specification Version 2.9. Programming Methods
Laboratory, EPFL, Switzerland (May 24, 2011) (draft)

3. Parr, T.: The Definitive ANTLR 4 Reference. The Pragmatic Programmer (2013)
4. Lopes, C.V., Kiczales, G.: Improving design and source code modularity using As-

pectJ (tutorial session). In: ICSE, p. 825 (2000)


	Towards Verifiable Trust Management for Software Execution
	References




