
 123

LN
CS

 7
90

4

6th International Conference, TRUST 2013
London, UK, June 2013
Proceedings

Trust
and Trustworthy
Computing

Michael Huth N. Asokan
Srdjan Capkun Ivan Flechais
Lizzie Coles-Kemp (Eds.)

Lecture Notes in Computer Science 7904
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Michael Huth N. Asokan Srdjan Čapkun
Ivan Flechais Lizzie Coles-Kemp (Eds.)

Trust
and Trustworthy
Computing
6th International Conference, TRUST 2013
London, UK, June 17-19, 2013
Proceedings

13

Volume Editors

Michael Huth
Imperial College London, UK
E-mail: m.huth@imperial.ac.uk

N. Asokan
University of Helsinki, Finland
E-mail: asokan@acm.org

Srdjan Čapkun
ETH Zurich, Switzerland
E-mail: srdjan.capkun@inf.ethz.ch

Ivan Flechais
University of Oxford, UK
E-mail: ivan.flechais@cs.ox.ac.uk

Lizzie Coles-Kemp
Royal Holloway University of London, Egham, UK
E-mail: lizzie.coles-kemp@rhul.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38907-8 e-ISBN 978-3-642-38908-5
DOI 10.1007/978-3-642-38908-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939781

CR Subject Classification (1998): C.2, K.6.5, E.3, D.4.6, J.1, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 6th International Conference on
Trust and Trustworthy Computing (TRUST), held in London, UK, during June
17–19 2013.

Continuing the tradition of the previous conferences, held in Villach (2008),
Oxford (2009), Berlin (2010), Pittsburgh (2011), and Vienna (2012), TRUST
2013 featured both a technical and a socioeconomic track. Like its previous in-
stances, TRUST 2013 provided a unique interdisciplinary forum for researchers,
practitioners, and decision makers to explore and evaluate new ideas for design-
ing, building, and using trustworthy computing systems.

The conference program of TRUST 2013 shows that research in trust and
trustworthy computing is active, at a high level of competency, and that it
spans a wide range of areas and topics. In the technical track, for example,
papers dealt with issues such as key management, hypervisor usage, information
flow analysis, trust in network measurements, random number generators, case
studies that evaluate trust-based methods in practice, simulation environments
for trusted platform modules, trust in applications running on mobile devices,
trust across platforms, etc. Papers in the socioeconomic track investigated, for
example, how trust is managed and perceived in online environments, and how
the disclosure of personal data is perceived; and some papers probed trust issues
across generations of users and for groups with special needs. It is also pleasing
to report that some papers in the proceedings could be placed well in either
of the two tracks, suggesting that research in both tracks is beginning to show
genuine signs of convergence – an essential ingredient in building and validating
the trustworthy systems of the future.

Paper submissions were received from 21 countries on four continents. The
number of submitted papers was 39 in the technical track and 14 in the socioeco-
nomic track. Of these 39 and 14 submissions, the Program Committees accepted
14 and 5 papers, respectively. This amounts to an acceptance rate of about 35%
for both tracks, and overall. This year, we also encouraged people to report on
work in progress by submitting 2-page abstracts describing ongoing research.
A panel of experts reviewed these submitted abstracts. Five of these abstracts
were selected to be included in these conference proceedings. We hope that these
abstracts will convey a sense of the vibrancy and current themes of research in
trusted and trustworthy computing. Authors of these abstracts also presented
posters of their work at the conference. Furthermore, the conference program
contained several keynotes by leaders in academia, industry, and government
agencies.

We would like to express our gratitude to those people without whom TRUST
2013 would not have been this successful an event, and whom we mention
now in no particular order: the Publicity Chairs, the members of the Steering

VI Preface

Committee (where Claire Vishik deserves a special mention for her continued and
valuable advice during the preparation of this conference), the keynote speakers,
and the panel (Androulaki Elli, Pouyan Sepehrdad, and Christian Wachsmann)
who reviewed the 2-page abstracts. We also want to thank all Program Com-
mittee members and their sub-reviewers; their hard work made sure that the
scientific program was of high quality and reflected both the depth and breadth
of research in this area. Our special thanks goes to all those who submitted
papers, and to all those who presented posters and papers at the conference.
We thank SBA Research for assisting in the organization of this conference, no-
tably Edgar Weippl and Yvonne Poul. Yvonne was instrumental in making sure
that the planning and execution of the event went smoothly. Thomas Schnei-
der helped with the planning of the conference program. Finally, we would like
to acknowledge our sponsors Intel Corporation and Microsoft; their financial
contribution was crucial for realizing the vision for TRUST 2013.

June 2013 Michael Huth
N. Asokan

Srdjan Capkun
Ivan Flechais

Lizzie Coles-Kemp

Organization

Steering Committee

Alessandro Acquisti Carnegie Mellon University, USA
Boris Balacheff Hewlett Packard, UK
Paul England Microsoft, USA
Andrew Martin University of Oxford, UK
Chris Mitchell Royal Holloway University of London, UK
Sean Smith Dartmouth College, USA
Ahmad-Reza Sadeghi TU Darmstadt / Fraunhofer SIT, Germany
Claire Vishik Intel, UK

General Chair

Michael Huth Imperial College London, UK

Program Chairs (Technical Strand)

Srdjan Capkun ETH Zurich, Switzerland
N. Asokan University of Helsinki, Finland

Program Committee (Technical Strand)

Haibo Chen Shanghai Jiao Tong University, China
Liqun Chen HP Labs, UK
Xuhua Ding Singapore Management University, Singapore
Jan-Erik Ekberg Nokia Research Center, Finland
William Enck NC State, USA
Michael Franz UC Irvine, USA
Peter Gutman University of Auckland, New Zealand
Trent Jaeger Penn State University, USA
Limin Jia CMU, USA
Apu Kapadia Indiana University, USA
Ghassan Karame NEC Laboratories, Germany
Engin Kirda NorthEastern University, USA
Jiangtao Li Intel Labs, USA
Mohammad Mannan Concordia University, Canada
Ivan Martinovic Oxford University, UK
Jonathan McCune Google, USA

VIII Organization

Aziz Mohaisen Verisign Labs, USA
Mohammad Nauman MIIT, Universiti Kuala Lumpur, Malaysia
Bryan Parno Microsoft Research, USA
Matthias Schunter Intel, Germany
Sean Smith Dartmouth College, USA
Vijay Varadharajan Macquarie University, Australia
Martin Vechev ETH Zurich, Switzerland
Xinwen Zhang Huawei, USA

Program Chairs (Socioeconomic Track)

Lizzie Coles-Kemp Royal Holloway University of London, UK
Ivan Flechais University of Oxford, UK

Program Committee (Socioeconomic Track)

Debi Ashenden Cranfield University, UK
Pam Briggs Northumbria University, UK
Ian Brown University of Oxford, UK
Jean Camp Indiana University, USA
Paul Dunphy Newcastle University, UK
Shamal Faily University of Oxford, UK
Simone Fischer-Hübner Karlstad University, Sweden
Cormac Herley Microsoft, USA
Christina Hochleitner Center for Usability Research and Engineering,

Austria
Gabriele Lenzini University of Luxembourg, Luxembourg
Heather Lipford UNC Charlotte, USA
Anne-Marie Oostveen University of Oxford, UK
Dusko Pavlovic Royal Holloway University of London, UK
Geraint Price Royal Holloway University of London, UK
Peter Ryan University of Luxembourg, Luxembourg
Mina Vasalou University of Birmingham, UK
Melanie Volkamer TU Darmstadt and CASED, Germany
Yang Wang Syracuse University, USA
Tara Whalen Carleton University, Canada
Jeff Yan Newcastle University, UK
Alf Zugenmaier Munich University of Applied Science,

Germany

Publicity Chairs (Technical Track)

Elli Androulaki ETH Zurich, Switzerland
Thomas Schneider EC-SPRIDE/TU Darmstadt, Germany

Organization IX

Publicity Chairs (Socioeconomic Track)

John Vines Newcastle University, UK
Shamal Faily University of Oxford, UK

Table of Contents

Technical Strand

KISS: “Key It Simple and Secure” Corporate Key Management 1
Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, and
Virgil Gligor

Guardian: Hypervisor as Security Foothold for Personal Computers 19
Yueqiang Cheng and Xuhua Ding

Improving Trusted Tickets with State-Bound Keys 37
Jan Nordholz, Ronald Aigner, and Paul England

Group Signatures on Mobile Devices: Practical Experiences 47
Klaus Potzmader, Johannes Winter, Daniel Hein, Christian Hanser,
Peter Teufl, and Liqun Chen

Limiting Data Exposure in Monitoring Multi-domain Policy
Conformance . 65

Mirko Montanari, Jun Ho Huh, Rakesh B. Bobba, and
Roy H. Campbell

Towards Trustworthy Network Measurements . 83
Ghassan O. Karame

Stochastic Model of a Metastability-Based True Random Number
Generator . 92

Molka Ben-Romdhane, Tarik Graba, and Jean-Luc Danger

Semi-automated Prototyping of a TPM v2 Software and Hardware
Simulation Platform . 106

Martin Pirker and Johannes Winter

Tapping and Tripping with NFC . 115
Sandeep Tamrakar and Jan-Erik Ekberg

TEEM: A User-Oriented Trusted Mobile Device for Multi-platform
Security Applications . 133

Wei Feng, Dengguo Feng, Ge Wei, Yu Qin, Qianying Zhang, and
Dexian Chang

TRUMP: A Trusted Mobile Platform for Self-management of Chronic
Illness in Rural Areas . 142

Chris Burnett, Peter Edwards, Timothy J. Norman,
Liang Chen, Yogachandran Rahulamathavan,
Mariesha Jaffray, and Edoardo Pignotti

XII Table of Contents

First-Class Labels: Using Information Flow to Debug Security Holes 151
Eric Hennigan, Christoph Kerschbaumer, Stefan Brunthaler,
Per Larsen, and Michael Franz

A Framework for Evaluating Mobile App Repackaging Detection
Algorithms . 169

Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu

Towards Precise and Efficient Information Flow Control in Web
Browsers . 187

Christoph Kerschbaumer, Eric Hennigan, Per Larsen,
Stefan Brunthaler, and Michael Franz

Socio-Economic Strand

Granddaughter Beware! An Intergenerational Case Study of Managing
Trust Issues in the Use of Facebook . 196

Ann Light and Lizzie Coles-Kemp

Contextualized Web Warnings, and How They Cause Distrust 205
Steffen Bartsch, Melanie Volkamer, Heike Theuerling, and
Fatih Karayumak

All In: Targeting Trustworthiness for Special Needs User Groups
in the Internet of Things . 223

Marc Busch, Christina Hochleitner, Mario Lorenz, Trenton Schulz,
Manfred Tscheligi, and Eckhart Wittstock

Trust Domains: An Algebraic, Logical, and Utility-Theoretic
Approach . 232

Gabrielle Anderson, Matthew Collinson, and David Pym

“Fairly Truthful”: The Impact of Perceived Effort, Fairness, Relevance,
and Sensitivity on Personal Data Disclosure . 250

Miguel Malheiros, Sören Preibusch, and M. Angela Sasse

Poster Abstracts

Formal Evaluation of Persona Trustworthiness with EUSTACE 267
Shamal Faily, David Power, Philip Armstrong, and Ivan Fléchais

Identity Implies Trust in Distributed Systems – A Novel Approach 269
Lyzgeo Merin Koshy, Marc Conrad, Mitul Shukla, and Tim French

Non-intrusive and Transparent Authentication on Smart Phones 271
Nicholas Micallef, Mike Just, Lynne Baillie, and Gunes Kayacik

Quaestio-it.com: From Debates Towards Trustworthy Answers 273
Valentinos Evripidou and Francesca Toni

Table of Contents XIII

Towards Verifiable Trust Management for Software Execution 275
Michael Huth and Jim Huan-Pu Kuo

Author Index . 277

KISS: “Key It Simple and Secure” Corporate Key
Management

Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, and Virgil Gligor

Carnegie Mellon University and CyLab, Pittsburgh, Pennsylvania, United States
{stephenzhou,junhan,tenma,perrig,gligor}@cmu.edu

Abstract. Deploying a corporate key management system faces fundamental
challenges, such as fine-grained key usage control and secure system administra-
tion. None of the current commercial systems (either based on software or hard-
ware security modules) or research proposals adequately address both challenges
with small and simple Trusted Computing Base (TCB). This paper presents a new
key management architecture, called KISS, to enable comprehensive, trustwor-
thy, user-verifiable, and cost-effective key management. KISS protects the entire
life cycle of cryptographic keys. In particular, KISS allows only authorized ap-
plications and/or users to use the keys. Using simple devices, administrators can
remotely issue authenticated commands to KISS and verify system output. KISS
leverages readily available commodity hardware and trusted computing primi-
tives to design system bootstrap protocols and management mechanisms, which
protects the system from malware attacks and insider attacks.

Keywords: Key Management, Trusted Computing, Isolation, Trusted Path.

1 Introduction

As consumers and corporations are increasingly concerned about security, deployments
of cryptographic systems and protocols have grown from securing online banking and e-
commerce to web email, search, social networking and sensitive data protection. How-
ever, the security guarantees diminish with inadequate key management practices, as
exemplified by numerous real-world incidents. For example, in 2010 Stuxnet targeted
Iranian uranium centrifuges, installing device drivers signed with private keys stolen
from two high-tech companies [11]. In another incident, the private keys of DigiNotar,
a Dutch certificate authority, were maliciously misused to issue fraudulent certificates
for Gmail and other services [23]. Even high-profile, security-savvy institutions fall
prey to inadequate key security, let alone companies with a lower priority for security.

Despite its indisputable significance, none of the current corporate key management
systems (KMS) – either industrial solutions based on software, or hardware security
modules (HSM), or research proposals known to us – provide comprehensive key man-
agement with small and simple trusted computing base (TCB). There are at least two
significant challenges that lead to the insufficiency of the KMS, as shown in Table 1.

Fine-grained Key Usage Control. A comprehensive life-cycle KMS should enforce
fine-grained key usage control (i.e., whether an application operated by a user has the
permission to access a specific cryptographic key). This problem is exacerbated with

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 Z. Zhou et al.

Table 1. A comparison between KISS and current key management systems. “HSM”, “SW”, and
“TPM” represent the KMS that are based on HSM, software packages, and TPM seal storage,
respectively. “ROT” denotes the root of trust of the systems.

Systems Key Usage Control Administration Interfaces TCB ROT
HSM
[18,20,7,16,17]

coarse-grained (applica-
tion or machine control)

HSM & complex admin dev, non-
verifiable

large HSM, ad-
min dev

SW [15,19,9] insecure (rely on OS) keyboard/display, non-verifiable large OS
TPM
[5,11,2,13,14]

coarse-grained (only ap-
plication control)

keyboard/display, non-verifiable large TPM

KISS fine-grained (both appli-
cation and user control)

trusted path & simple admin dev,
verifiable

small TPM, ad-
min dev

the current trend of Bring Your Own Device (BYOD), which allows client devices
(e.g., tablets and laptops) to increasingly host both personal and security-sensitive cor-
porate applications and data.

Although commercial HSMs [18, 20, 7, 15, 17] provide high-profile physical protec-
tion of cryptographic keys and algorithms, they fail to control key usage requests from
outside their physical protection boundary (e.g., the users and applications on other
client computers). The attackers can cause key misusage [23] by compromising client
computers and submitting fake key usage requests to the HSMs. Some HSMs enable
porting key usage applications to an in-module secure execution environment [18, 20].
This method only provides application-level key usage control, and is not scalable due
to the limited resources of the dedicated environment. Some HSMs enforce key usage
control by accepting requests from client machines that deploy special hardware tokens
only. This mechanism is insecure because it cannot block requests from a compromised
operating system (OS) or an application on an authenticated machine.

Cost-sensitive companies commonly deploy key management software [14, 19, 8]
on commodity servers, and rely heavily on the underlying OS services to protect cryp-
tographic keys and management operations. These systems are untrustworthy because
modern OSes are large and routinely compromised by malware.

Research proposals (e.g., credential protection systems [5, 10, 2] and hypervisor-
based solutions [12, 13]) leverage Trusted Platform Modules (TPM) sealed storage. It
assures that the cryptographic keys sealed by an application can only be accessed by the
same software. However, this approach is coarse-grained; it does not enforce any user
authentication of the sealed keys.

Secure System Administration. A trustworthy KMS should allow benign administra-
tors to securely manage the system and defend against attacks from malicious insiders.
It must guarantee the authenticity of the communication between the administrators and
the KMS. Otherwise, an adversary can cause unintended key management operations by
stealing administrator login credentials, modifying or spoofing the administrator com-
mand input or the KMS output (e.g., operation result, system status).

The HSMs usually mandate the administrators to perform management operations
via the I/O devices (e.g., keyboard and display) that are physically attached to the mod-
ules. For remote administration, they need complicated management software running

KISS: “Key It Simple and Secure” Corporate Key Management 3

on a commodity OS or a dedicated administrator device. Both mechanisms signifi-
cantly increase system TCB and thus exposes larger attack surface. For software-based
KMS, the I/O interfaces and authentication-relevant devices are controlled directly by
the underlying OS, which means that the administrator credentials, input commands,
and KMS output can easily be compromised by malware in the OS. Similarly, research
proposals [5, 2, 10] do not support trustworthy remote management mechanisms. More
importantly, none of KMS solutions provide intuitive ways for administrators to ver-
ify the status of the administration interfaces. Without such verification, administrators
cannot trust any displayed system output and may mistakenly perform operations.

Contributions. To address the above challenges, this paper presents KISS (short for
“Key it Simple and Secure”), a comprehensive, trustworthy, user-verifiable, and cost-
effective enterprise key management architecture. Table 1 compares KISS with main-
stream KMS and research proposals. Among them, KISS is the first KMS that supports
fine-grained key usage control based on users, applications, and configurable access-
control policies. To do this, KISS isolates authorized corporate applications from the
untrusted OS and measures the code identities (cryptographic hash) of the protected
applications. KISS also directly accepts user authentication by isolating user-interface
devices and authentication relevant devices from the OS. Moreover, KISS enables se-
cure system administration, leveraging a simple external device with minimal soft-
ware/hardware settings. The KISS administrators execute thin terminal software on
commodity machines. The thin terminal accepts administrator input via trusted paths,
remotely transfers the input to and receives system output from the KISS system. The
administrators use the external devices to verify the execution of the thin terminal and
trusted paths and guarantee the authenticity of the input/output.

KISS leverages hypervisor-based isolation to protect the key management software
and cryptographic keys from the large untrusted OS, applications, and peripheral de-
vices. The administrators securely bootstrap the KISS system using the simple admin-
istrator devices and lightweight protocols, regardless of malware attacks and insider
attacks from malicious administrators. These mechanisms together significantly reduce
and simplify the KISS TCB, enabling higher security assurance. Because KISS lever-
ages commodity hardware and trusted computing techniques, it is cost-effective and
makes the wide adoption of KISS in small- and medium-sized business possible, in ad-
dition to financial or governmental institutions. KISS showcases how trusted computing
technologies achieve tangible benefits when used to design trustworthy KMS.

Paper Organization. First, we describe the KISS attacker model and introduce the
background in Sections 2 and 3, respectively. Section 4 describes in detail the KISS sys-
tem model and administrative policies. In Section 5, we illustrate the KISS hypervisor-
based architecture and the simplicity of the external administrator devices. Sections 6, 7,
and 8 introduce the detailed mechanisms for system bootstrap, secure administration,
and fine-grained key usage control, respectively. We analyze potential attacks on KISS
and our defense mechanisms in Section 9. Section 10 discusses KISS extensions with
stronger security properties or address real-world application issues. We then compare
our solution with related work (Section 11) and conclude the paper.

4 Z. Zhou et al.

2 Attacker Model

We consider an adversary that remotely exploits the software vulnerabilities of the OS
and applications on KMS machines. The adversary can then access any system re-
sources managed by the OS (e.g., memory, chip-set hardware, peripheral devices) and
subvert any security services provided (e.g., process isolation or file system access-
control). However, we trust the correctness of the key management software, and as-
sume that it cannot be exploited by the adversary. The mechanisms to guarantee the
correctness is out of the scope of this paper.

We also consider insider attacks from malicious administrators that attempt to leak,
compromise, or misuse the cryptographic keys. They can actively issue unauthorized
key management operations, intentionally misconfigure the KMS and corporate appli-
cations, or steal the administrator devices or credentials (e.g., password, smart cards)
of benign administrators. However, benign administrators are trusted to protect their
administrator devices and credentials and comply with the KISS protocols.

We do not address the following three types of attacks in this paper: (1) physical
attacks to the hardware that KISS relies on (e.g., TPM), (2) side-channel attacks to
cryptographic keys and algorithms, and (3) denial-of-service attacks. Countermeasures
against these attacks are complementary to KISS.

3 Background

This section introduces the technical building blocks of KISS: program isolation [12, 13]
and trusted paths [25, 3]. They are implemented based on readily available trusted com-
puting primitives, such as dynamic root of trust for measurement (or Late Launch) [1, 9],
remote attestation, and sealed storage [21].

Program Isolation. Recent research contributions [12, 13] demonstrate the capability
of removing large commodity OS from the TCB of small program modules. These
systems isolate program modules by leveraging a small and trustworthy hypervisor with
higher privilege level than the OS. The hypervisor guarantees that the OS, applications,
and DMA-capable devices cannot compromise the execution integrity, data integrity,
and secrecy of the isolated program modules. The protected code modules are self-
contained, and they should not rely on OS services.

Trusted Path. A Trusted Path (TP) is a protected channel providing secrecy and au-
thenticity of data transfers between a user’s I/O devices (e.g., keyboard, display, USB
devices) and an isolated program trusted by the user. Recent research advances demon-
strate the usage of a small, dedicated hypervisor to establish trusted paths, completely
bypassing the commodity OS [25, 3]. The hypervisor exclusively redirects the I/O
communications (e.g., memory-mapped I/O, DMA, interrupts) of the trusted-path de-
vices to the isolated software module. The TP device drivers are included in the iso-
lated software module and redesigned to communicate with the devices via the
hypervisor.

KISS: “Key It Simple and Secure” Corporate Key Management 5

(1) Server
Bootstrap

(2) Client Bootstrap

(3) Remote
Management

(4) Key Generation
and Distribution

(5) Key Usage
Control

TADs

Administrators

Key Management Server Key Management Clients

Applications

Remote
Managers

Legend
Remote Connection
(e.g., network)

Local Connection
(e.g., USB)

Trusted Software

Key Usage Requests

Trusted Hardware

Fig. 1. KISS system model

4 Overview

Corporate key management in this paper refers to the establishment and usage of cryp-
tographic keys in corporate and distributed environments. In this section, we provide
a high-level overview of KISS system entities and model, and demonstrate how this
model enables scalable and hierarchical enterprise key management.

4.1 System Entities

Figure 1 shows the four major entities in the KISS system.

Key Management Server (KISS Server). A commodity server machine that executes
the key management software to perform server-side key life-cycle operations (e.g., key
generation, registration, backup, revocation, de-registration, and destruction).

Key Management Clients (KISS Clients). Distributed machines (e.g., employees’
desktops or corporate web servers) that install the KISS client software to receive cryp-
tographic keys from the KISS server and use the keys to provide services to corporate
applications. For example, On employees’ desktops, the cryptographic keys stored in
the KISS client software can be used to encrypt confidential documents. For a corpo-
rate web server, the keys are used to authenticate the outgoing network traffic.

Remote Managers (KISS Managers). Commodity machines used by KISS adminis-
trators to perform remote management. These machines install the KISS manager soft-
ware to securely transfer administrative commands to and receive system output from
the KISS server or clients.

Trusted Administrator Devices (KISS TAD). Small, dedicated devices that are di-
rectly connected (e.g., via USB) to the KISS server or clients for local administration,
or connected with the KISS managers for remote management.

6 Z. Zhou et al.

4.2 System Model

Figure 1 also demonstrates a basic workflow of bootstrapping and using the KISS sys-
tem. In Steps (1) and (2), administrators install and execute the KISS software on the
server or clients, and perform bootstrap protocols to establish cryptographic channels
between the server software, client software and TADs. We design our system to protect
the server/client software and the channel keys against malware attacks (see Section 5).
The bootstrap protocols must be performed by a quorum of administrators to defend
against malicious insider attacks. Each participating administrator use his/her TAD to
confirm that the KISS bootstrap process succeeds. After bootstrap, the KISS server soft-
ware starts recording subsequent system operations in a tamper-evident audit log, which
helps the administrators detect insider attacks. Section 6 illustrates the KISS bootstrap
protocols, cryptographic channel establishment, and audit log in detail.

In Step (3), the administrators remotely manage the KISS server/client software,
leveraging their TADs and KISS managers. The KISS system protects the manager soft-
ware (acting as a thin terminal) and user-interfaces devices (e.g., keyboard, and display)
against malware attacks from the KISS manager OS. The administrators can securely
input commands and review system output via the KISS manager user interfaces. The
administrators use their TADs to authenticate the outgoing commands, and verify the
authenticity of the operation results back from the KISS server/client software. Sec-
tion 7 describes the remote management process and how our design significantly re-
duces KISS TCB.

In Step (4), new cryptographic keys (which are our key management products) are
generated in the KISS server and securely distributed to the clients via the cryptographic
channels established in step (2). In Step (5), the KISS client software protects the dis-
tributed keys, and handles key usage requests from various applications. KISS enables
more fine-grained control of key usage than previous key management systems and pro-
posals. It isolates the applications (similar to the isolation of KISS server software from
the server OS) and measures their code identities. It also provides protected channels
between authentication devices and the KISS client software, so that the KISS client
software can directly authenticate the users of the applications. If the requests are from
authorized users (e.g., company employees) and corporate applications (e.g., corporate
document editors), the KISS client software uses the corresponding cryptographic keys
to process the requests (e.g., decrypt confidential documents). The KISS client software
rejects any key usage request from unauthorized users (e.g., visitors that are not allowed
to read any confidential document) or applications (e.g., personal web browsers, media
players). Section 8 describes the detailed mechanisms of our fine-grained key usage
control.

The KISS client is necessary for collecting application and user information to per-
form key usage control. By receiving keys from the server, it also supports offline key
usage, which reduces the key access latency and allows key usage when network con-
nections are unavailable (e.g., while traveling on flights). However, offline key usage
increases the risk of key abuse (e.g., when client machines are stolen). Companies
might enforce special key usage policies to reduce this risk, such as requiring client
machines to periodically obtain key usage permissions from the KISS server. Note that
KISS can easily be modified to serve as the key usage control front end of the HSM.

KISS: “Key It Simple and Secure” Corporate Key Management 7

Untrusted CorporateKey Mgmt
Regime Regime Regime

(only on client)

Legend

Hardware

Software

Isolation
Boundary

TCBUSB
Other KISS machines NIC

TAD

Sec Dev UI Dev Auth Dev

KISS Hypervisor

KISS

Software

Corporate

Application

App App

OS

Fig. 2. System architecture for KISS client, server, and manager. Sec Dev is the hardware (e.g.,
TPM) that provides trusted computing primitives. UI Dev denotes the user-interface devices,
such as a keyboard and a display. Auth Dev is the device used for authentication (e.g., fingerprint
scanner, and keypad). The KISS machines communicate via the network interface cards (NIC),
and connects with TADs via USB interfaces.

The KISS server software receives approved key usage requests from the clients, and
securely transfers them to the HSM on the server machines via trusted paths. Both the
cryptographic keys and algorithms are always protected inside HSM.

5 System Architecture

In this section, we introduce the unified hypervisor-based architecture for the KISS
server, client, and manager, and the hardware/software settings of TAD. We demonstrate
how our architectural design significantly reduces and simplifies the TCB of the whole
system, which is necessary for achieving high security assurance.

5.1 KISS Server, Client, and Manager

KISS server, client, and manager share the same architecture, hence we only illustrate
the KISS client in detail here. As shown in Figure 2, the KISS hypervisor is a thin layer
of software running in a higher privilege than the commodity OS of the client. Unlike
commercial hypervisors/virtual machine monitors (VMM) (e.g., VMware Workstation,
Xen), the KISS hypervisor does not virtualize all hardware resources or support the
concurrent execution of multiple OSes. Thus, the code base of the KISS hypervisor is
orders of magnitude smaller and demonstrably simpler than an OS or a full-functioning
hypervisor/VMM. The TCB of a KISS client is only the hypervisor, the client software,
the corporate applications that utilize the keys, and some commodity hardware (e.g.,
Sec, Auth, and UI Dev in Fig. 2). The KISS hypervisor is dedicated to three main tasks:

Isolation. The KISS hypervisor divides the client to three isolated software regimes,
which are lightweight “virtual machines” as described in Section 3. The key manage-
ment regime runs the KISS client software and stores all cryptographic keys during its
run time. We also leverage TPM sealed storage to protect the cryptographic keys at rest.

8 Z. Zhou et al.

Each authorized application that uses the keys is isolated in its own corporate regime.
The untrusted regime consists of the commodity OS, other applications, and devices.

Trusted Paths. When the administrators locally manage the client machine, the hyper-
visor establishes trusted paths between the client software and the UI Dev or Auth Dev
(Figure 2). The trusted paths protect the administrator command input and the client
software output and safeguard the user authentication credentials. We defer the detailed
explanation to subsequent sections.

Key Usage Control. The hypervisor helps the KISS client software to collect the iden-
tifier of the corporate applications and users that request key usage. When isolating the
corporate applications in corporate regimes, the KISS hypervisor computes a crypto-
graphic hash of the corporate application code and static data, and transfers the hash
value as application identifiers to the KISS client software. The hypervisor also es-
tablishes trusted paths between the authentication-relevant devices and the KISS client
software, for user authentication. Section 8 describes the key usage control procedure.

5.2 TAD

TAD is a small, dedicated, embedded device that assists system administration, both
locally and remotely. TAD employs much simpler software/hardware than the typical
administrator devices in current KMS. TAD does not need a full user-interface hardware
for the key management command input and system output. Instead, the administrator
can leverage the trusted paths provided by the KISS hypervisor on the server, client or
manager. TAD does not implement complicated key management software to interpret
operation input/output. These are directly handled by the KISS server/client software.
During remote management, the KISS manager software only collects and transfers
administrator input to server/client, and receives returning operation results.

TAD implements software for the KISS bootstrap protocol, standard cryptographic
primitives, remote attestation protocol, and necessary hardware drivers (note that the
USB driver code is included, but not in the TCB). The TAD software is responsible for
three tasks: (1) performing server/client bootstrap; (2) remotely attesting to the KISS
server, client, and manager software; and (3) authenticating the administrator input and
verifying the authenticity of the server/client output. To meet these functional require-
ments, TAD includes only a low-end CPU, small on-chip RAM and flash storage, a
USB controller, a few buttons, a minimal display to show hexadecimal values, and a
physical out-of-band channel receiver (e.g., QR code scanner).

6 System Bootstrap

In this section, we introduce the lightweight KISS bootstrap protocols. These protocols
allow a quorum of administrators to verify that the “known good” KISS software is
executing on the server/clients, and to establish cryptographic channels between their
TADs, the server software and the client software. These channels (depicted in Figure 3)
are used in secure system administration and key life-cycle operations. The bootstrap
protocols are resilient against malware and insider attacks.

KISS: “Key It Simple and Secure” Corporate Key Management 9

Server Client

Srv-TAD Channel
(Authenticity)

TAD

KTPM_S
KTPM_S

-1
KTPM_C
KTPM_C

-1

 KSrv KTAD
-1

KTPM_S

 KTAD

 KSrv

 KSrv

-1 KTAD

TPM TPM

(a) Server Bootstrap

Server Client

Srv-TAD Channel
(Authenticity)

Cli-TAD Channel
(Authenticity)

TAD

KTPM_S
KTPM_S

-1
KTPM_C
KTPM_C

-1

 KSrv KTAD
-1 KCli

KTPM_S KTAD KTPM_C

 KSrv

 KCli

 KSrv

-1 KTAD

 KCli

 KSrv

 KCli

-1 KTAD

Srv-Cli
Channel

(Authenticity
& Secrecy)

TPM TPM

(b) Client Bootstrap and Registration

Fig. 3. Cryptographic channels established during KISS bootstrap. Before the bootstrap, the
server and clients only have their TPM keys, and TADs has no pre-injected keys.

1. TPM
OOB−→TADi : KTPM S

2. TADi : Generates device key pair {KTADi ,K
−1
TADi

}
3. TADi → Server : {Ci,KTADi }, where Ci lists the configurations of the Server,

e.g., # of involved administrators N, and quorum threshold t.
4. Server : Gathers N messages from TADi before timeout,

late launches HYP and Server (their measurement is stored in TPM).
5. Server : Checks that all Ci are consistent, and N ≥ t,

generates Server key pair {KSrv,K
−1
Srv}

6. Server → TPM : Stores the measurement of {KSrv,Ci,Λ = {K1, · · · ,KN}}
7. TADi → TPM : Nonce Ri

8. TPM → Server : Signature Si = {Ri,M}
K−1

TPM S
,

where M is the measurement of {HYP,Server,KSrv,Ci,Λ}.
9. Server → TADi : IDi, Si, Λ , KSrv, where IDi is a unique identifier for TADi
10. TADi : Verifies Si and M, checks KTADi ∈ Λ , #(Λ) = N, and stores KSrv

Fig. 4. KISS Server Bootstrap Protocol. Each administrator possesses a TADi.

6.1 Server Bootstrap

During the KISS server bootstrap, a quorum of administrators execute authentic KISS
server software and establish the Srv-TAD cryptographic channel (Figure 3(a)). Our
lightweight server bootstrap protocol needs minimal administrator involvement. It does
not require pre-sharing secrets in TAD (e.g., vendor-injected device private keys). After
the bootstrap, the server software starts recording subsequent system operations in a
tamper-evident audit log, which help the administrators detect insider attacks.

Bootstrap Protocol. Figure 4 illustrates the server bootstrap protocol. Before the pro-
tocol begins, we assume that the administrators creates the necessary configuration file,
Ci, of the KISS server software independently and store them in TADs. The Ci in-
cludes the number of participating administrators, N, a quorum threshold, t, and other
necessary server parameters. In Step 1, each administrator gathers the information of
the hardware root of trust, i.e., the TPM public key KT PM S of the server, via a trusted

10 Z. Zhou et al.

out-of-band (OOB) channel. We suggest a secure and practical OOB channel, in which
KT PM S is encodes as a tamper-evident physical label, e.g., an etched QR code on TPM
chip surface. Each TADi securely attains KT PM S by scanning the QR code.

After that, each TADi generates a device key pair, {KTADi ,K
−1
TADi

}, and sends Ci

along with the public key, KTADi , to the server (Steps 2 and 3). In Steps 4–6, the server
executes the KISS hypervisor and server software via late launch primitives [1, 9]
Late launch resets a special Platform Configuration Register (PCR) of the TPM, and
stores the cryptographic measurement of the HYP and the server software in this reg-
ister for further remote attestation. After that, the server software generates a key pair,
{KSrv,K

−1
Srv}, and a key list, Λ , by receiving the public keys, KTADi , from all participating

TADs. The server software stores the measurement of KSrv, Ci, and Λ into other PCRs
of the TPM. The accumulated measurement, together with its signature generated by
TPM attestation keys (linked with the TPM private key, K−1

T PM S), are sent to the verifier
during remote attestation (Step2 7– 9).

Upon receiving the attestation response, TAD verifies the signature using KT PM S,
and trusts the authenticity of the accumulated measurement, M (Step 10). TAD re-
computes M using its pre-installed knowledge (e.g., cryptographic hash of HYP and
server software, configuration file Ci), the received KSrv and Λ . If the verification suc-
ceeds, TAD trusts that an authentic hypervisor/server instance is executing on the KISS
server with the appropriate configurations, and that the server instance has the server
private key and a correct list of TAD public keys. TAD also verifies that its own public
key is included in the public key list, Λ , and the number of keys in Λ equals to the
number of participating administrators. If all verification passes, TAD notifies its ad-
ministrator via the display. The only task that each administrator needs to perform is
to visually check that all TADs display verification success messages. KISS introduces
an additional computational overhead (e.g., remote attestation and quorum checking)
compared to traditional system bootstrapping. However, we argue that this cost is ac-
ceptable, considering the security guarantees it achieves.

Audit Log. During the server bootstrap, malicious administrators may inject spurious
configuration files with a small quorum threshold, or even forge administrator public
keys. These administrators are then capable of passing the quorum check that is nec-
essary for any key management operations. In KISS, the server software maintains an
operation log to record all of the system administration operations, including bootstrap
operations. This helps legitimate administrators/auditors detect any insider attacks dur-
ing the server bootstrap. In addition, the audit log helps relaxes the quorum control and
improves system usability. Becasue all key management operations are held account-
able, KISS may allowing a smaller number of administrators or even merely one to
perform operations.

The audit log is stored in the untrusted regime. The KISS server software maintains
an aggregated hash of the log entries in the TPM non-volatile memory (NVRAM). The
TPM NVRAM access-control (similar to sealed storage) ensures that only KISS server
software can access/update that hash, Note that frequent NVRAM updates are imprac-
tical on TPM. To minimize NVRAM updates, we leverage an update mechanism that is
similar to the PCR-NVRAM two stage update technique presented in [16]. During the

KISS: “Key It Simple and Secure” Corporate Key Management 11

audit procedure, the auditor verifies the integrity of the log by recomputing the aggre-
gated hash and comparing it with the hash stored in TPM NVRAM.

6.2 Client Bootstrap and Registration

Bootstrapping a KISS client is similar to the server bootstrap. A quorum of admin-
istrators verifies the authenticity of the KISS hypervisor, client software, and its con-
figuration file. The client software securely sends its public key, KCli, to each of the
participating TADs, and collects the device public keys KTADi (generated during the
server bootstrap). The configuration file sent to the client software differs from the
one established during the server bootstrap. It contains the server public key, KSrv, and
the client-side system parameters (e.g., access-control policies of key usage, user au-
thentication information, and the corporate application information). These client-side
configurations are used in the fine-grained key usage control (See Section 8). Upon a
successful client bootstrap, TADs establish Cli-TAD cryptographic channels with the
KISS client, which allows subsequent client administration.

The administrators then register the client to the server by sending the client soft-
ware public key, KCli, to the server software, via Srv-TAD cryptographic channels. This
establishes the Srv-Cli cryptographic channel (see Figure 3(b)). This channel diffs from
the Srv-/Cli-TAD channel in that it provides both secrecy and integrity protection to the
data transferred between the server and the clients (e.g., KISS product keys).

7 Secure System Administration

This section describes how the KISS administrators perform local and remote opera-
tions using their TADs and remote managers. Unlike traditional KMS, our remote man-
agement mechanism introduces a very small TCB that consists of a thin terminal, the
KISS hypervisor, the user-interface devices on KISS manager, and the simple TADs. In
addition, it enables flexible administrative policies for better usability.

Secure Local Management. Administrators physically present at the KISS server or
client connect the TADs directly with the machines to perform management. TADs first
perform remote attestation to verify that the connected KISS machine is executing the
desired hypervisor, software, and trusted paths. Thus, any command input (or KISS
system output) is securely directed to (or displayed by) the KISS server/client software.
The administrators also use the TADs to authenticate their command input, by allowing
the KISS server/client to display the command input with its digest (a cryptographic
hash, H(input)) to the administrators. The alleged digest H(input) is sent to the TADs
via untrusted USB connection. The administrator confirms that the digest value dis-
played on his/her TAD is identical to the one on the server/client display. Then, the
administrator press a button on the TAD to generate an authentication blob (digital sig-
nature) on digest H(input) with the Srv-/Cli-TAD channel keys. The KISS server/client
software verifies this blob to ensure the authenticity of launched commands.

Secure Remote Management. Administrators not physically present at the KISS server
or client leverage the KISS managers and the TADs to perform maintenance tasks. The
KISS manager software is isolated from the untrusted regime, and connects with the

12 Z. Zhou et al.

Table 2. KISS System Operation Categorization

Category Operations
Local or Quorum Manual or
remote? or any? automatic?

1 server bootstrap, adding administrators local quorum manual

2
server software and config update,

either quorum manual
removing administrators

3 client bootstrap local either manual

4
client registration, software and config update

either either manual
(e.g., change key usage control policy)

5
server/client key life-cycle operations

either either either
(e.g., key generation, distribution, usage)

user-interface devices via hypervisor-established trusted paths. The administrators not
only use their TADs to authenticate the command input (the same as in local manage-
ment), but also to verify the authenticity of the system output returning from the KISS
server or client software. The KISS server/client generate similar authentication blobs
for each of their responses, using the Srv-/Cli-TAD channel keys. The KISS manager
software recomputes the digest H(response), and displays it to the administrators via
the trusted paths. It also forwards the digest and the authentication blob to the TADs.
The TADs verify the authenticity of the blobs, and display the digest on the screen. If
the two digests are identical, the administrators trust that the response indeed originated
from the KISS server/clients. Note that our remote management mechanism can be ex-
tended to protect the secrecy of the command input and system output, and avoid the
hash computation overhead and comparison efforts (Section 10).

Administrative Policies. KISS fully considers the balance between security and us-
ability when making administrative policies. We categorize different system operations
according to their administrative requirements, as is shown in Table 2.

In KISS, only three operations require the physical presence of administrators at the
KISS server/client; the majority of operations can be performed remotely. In Category
1, server bootstrap and adding new administrators require the physical presence of a
quorum of administrators. These two operations bootstrap cryptographic channels be-
tween TADs and the KISS server software and require our server bootstrap protocol
(Section 6.1). Client bootstrap also mandates the physical presence of administrators,
because administrators scan the TPM public key to their TADs.

In KISS, only a few operations mandate a quorum of administrators. We require all
server-side administrative operations in Category 1 and 2 to be performed by an admin-
istrator quorum in an attempt to prevent malicious insider attacks on the KISS server.
However, once the server audit log is bootstrapped, all subsequent client-side admin-
istrative operations in Categories 3 and 4 and server/client key life-cycle operations in
Category 5 could possibly relax the quorum requirement, because we can always detect
insider attacks by analyzing the audit log.

In addition, for efficiency and usability, all Category 5 operations can be automati-
cally performed by the KISS server/client software, without the involvement of admin-
istrators. For example, once an authorized corporate application requests a new key, the

KISS: “Key It Simple and Secure” Corporate Key Management 13

(4) User
Authentication

User Untrusted
Regime

Corporate
Application

KISS Client
Software

KISS
Hypervisor

(1) App
Execution

(2) App
Verification

(3) Remote
Attestation

(5) Key Usage
Control

select and execute

protect and measure
verify

notify via TP

store measurement

authenticate via TP

attestation

operate key usage

Sec DEV

UI DEV

Auth DEV

UserV

Fig. 5. Work flow of key usage control on KISS client. Dashed lines are interactions via trusted
paths. UI, Sec, and Auth Dev are identical to those in Fig. 2. UserV denotes the users’ dedicated
verifier that can remotely attest to the KISS client.

KISS client software can immediately contact the server for the new key. These auto-
matic operations are controlled by the administrator-configured key usage policies (see
Section 8), and can be recorded in the server audit log (or similar audit logs on clients).

8 Fine-Grained Key Usage Control

This section explains how the KISS client software and hypervisor performs fine-grained
control of key usage. Figure 5 presents a typical workflow where a user executes a
KISS-capable application that uses the cryptographic key generated by KISS.

Application Verification. The user selects the corporate application he/she intends to
run via the untrusted regime (e.g., via a pop-up dialog by the OS). The OS loads and
executes the selected corporation application and notifies the KISS hypervisor of the
application execution. The hypervisor creates a corporate regime and protects the ex-
ecuted application in this regime. The hypervisor then measures that application and
sends the measurement as the application identifier to the KISS client software. The
software compares the received measurement with the known-good value in its ap-
plication database and notifies the result to the user via trusted paths. Recall that the
authorized application database in the KISS client software was configured during the
client bootstrap and can be updated by the administrators via remote management.

The KISS-capable corporate applications are not legacy applications. They are de-
veloped to execute in corporate regimes, communicating with the hypervisor instead
of the OS [12, 13]. Note that recent research [6] eases this development effort by al-
lowing protected applications to securely use OS services. The corporate application
should also be modified to communicate with the KISS client software for key usage.
While allowing key usage control, this introduces context switch overhead between the
application and the KISS client software. A corporate application can be a stand-alone
application (e.g., a KISS-capable document editor) or the security-sensitive modules

14 Z. Zhou et al.

of a legacy application that uses cryptographic keys (e.g., the ServerKeyExchange au-
thentication module in an HTTPS server software). This is an application-specific de-
sign choice that depends on the application complexity (e.g., how the application is
modularized and privilege-separated) and the strictness of the key usage control policy
(application-wise or module-wise).

Remote Attestation. To trust the application verification results displayed in last step,
and to defend against subtle user-oriented credential stealing attacks (e.g., tricking the
user to input passwords), the users should leverage a small, dedicated device, called
UserV, to attest that they are interacting with the correct KISS software and corporate
applications. The UserV is similar to, but much simpler than TAD. The only task of
the UserV is to perform standard remote attestation to the KISS hypervisor and client
software. It does not generate or store any secrets (e.g., shared secrets or private keys).
It merely needs one button to start the attestation, and a LED to display attestation
results [25]. Upon successful remote attestation, the user verifies that the application
displayed is the one that he/she intends to run. Otherwise, the user should stop interact-
ing with the corporate applications to prevent any sensitive information leakage.

User Authentication. In order to use the corporate application, the user needs to au-
thenticate to the KISS client software. If the authentication fails, the KISS hypervisor
immediately teminates the corporate application. KISS can support all types of common
authentication methods (knowledge, inherence, and ownership-based) and multi-factors
authentication. For knowledge-based authentication (e.g., password, PIN) or inherence-
based methods (e.g., fingerprint scanning, voice pattern recognition), the users should
leverage the trusted paths between the authentication-relevant devices (e.g., keyboard,
fingerprint reader) and the KISS client software. With the trusted paths, malware in the
untrusted regime cannot intercept the users’ credentials 1. For ownership-based authen-
tication, users usually carry certain authenticators (e.g., smart cards, security tokens)
and rely on the embedded secrets to respond to the challenges of the KISS client soft-
ware. No trusted path is needed between the authentication devices (e.g., smart card
reader) and KISS client software. For all the authentication methods above, the KISS
client software should be configured with necessary authentication information (e.g.,
password hash, fingerprint database, and keys to verify smart cards’ responses) by the
administrators during client bootstrap or remote management.

Key Usage Control. During execution, the corporate applications trigger key usage re-
quests to the KISS client software via KISS hypervisor. The key usage requests can be
driven by the users (e.g., the user wants to encrypt a confidential document) or by the
application itself (e.g., the HTTPS web server software digitally signs its ServerKeyEx-
change messages). Upon receiving the key usage requests, the KISS client software
knows the identifiers of the requesting application and the user. The KISS client soft-
ware leverages the pre-configured access control policies to decide whether to approve
or deny the requests. KISS supports flexible access-control policies with different gran-
ularity. It can perform simple ON/OFF key usage control. For example, KISS allows

1 Even if the attackers have the users’ credentials, they still need to physically be present at the
KISS client to input the credentials. The KISS client software takes inputs directly from the
hardware devices via trusted-paths, not from any software.

KISS: “Key It Simple and Secure” Corporate Key Management 15

user Alice to use the authorized document editor to decrypt her own documents, but
restricts other users who are using the same editor or Alice using different software
(e.g., an email client, or a compromised document editor) from accessing the docu-
ments. It can also support more complicated policies, such as rate limiting, access time
restriction, and role-based access control. The administrators decide the access control
policies, configure them in the client software during bootstrap, and update the policies
via remote management.

9 Security Analysis

This section analyzes potential attacks on KISS and our defense mechanisms.

System Bootstrap. During the system bootstrap, malicious administrators or malware
on KISS server/clients may tamper with the code or configurations of the hypervisor
and the KISS software. The benign administrators can detect this attack via TAD remote
attestation. Malicious administrators may also launch Sybil attacks by creating bogus
administrator accounts during the bootstrap process. As described in Section 6, the
administrators visually check that all TADs display success messages. This confirms
that the server/client software receives only the public keys of the participating TADs,
not any bogus key.

Key Life-Cycle Operations. Malware in the server/client untrusted regime may try to
modify the KISS software code, interfere with its execution, or access the cryptographic
keys generated or stored by the software. The KISS hypervisor prevents these attacks by
protecting the code and data memory of the KISS software from the untrusted regime.
When the KISS software is at rest, the cryptographic keys are protected by the TPM
sealed storage. Only the same KISS software can unseal the keys; the malware or the
compromised KISS software cannot. Malware attacks that compromise the client soft-
ware to trigger unintended KISS server operations also fail, because the client private
key for authenticating operation requests is sealed by the TPM.

System Administration. Any manual administrative operation requires at least one au-
thorized TAD. The malware cannot steal the private keys in TADs, nor can it intercept
other administrator credentials, such as bio-metric information or passwords, which are
transferred to the KISS software via trusted paths, and/or Srv-/Cli-TAD authentic chan-
nels (Section 7). Similarly, the administration commands and system output are also
transferred via trusted paths or Srv-/Cli-TAD channels. The attackers cannot modify
any command or forge any system output. Though malicious administrators may use
their TADs to execute operations that do not require the quorum, those operations are
recorded in the server/client audit log and held accountable.

Key Usage Control. As described in Section 8, unauthorized applications and users
cannot bypass the KISS hypervisor and the client software to use any cryptographic key.
A malicious administrator may intentionally update the application and user database in
the KISS client software to allow key mis-uses. However, this administrative operation
is recorded in the client audit log and held accountable. The malware cannot steal users’
authentication credentials, because those credentials are delivered to the KISS client
software via trusted paths. The users also verify that they are communicating with the
authentic KISS client software before inputting their authentication credentials.

16 Z. Zhou et al.

10 Discussion

This section discusses the KISS system extensions that provide higher security guaran-
tees and address some real-world application issues (e.g., cloud computing).

Administrative Operation Secrecy. Section 7 describes how KISS protects the au-
thenticity of administrative inputs and system outputs. We could extend KISS to protect
input/output secrecy by establishing encryption keys for Srv-/Cli-TAD channels, and
an extra trusted path on KISS manager between the manager software and the USB
controllers that connects the TAD. Note that this trusted path also avoids the hash com-
putation overhead and comparison efforts described in Section 7, because it protects the
authenticity of data between the TAD and the manager software.

TPM 2.0 Enhanced Authorization. The TPM 2.0 library specification [22] is currently
under public review. It supports enhanced authorization by allowing the construction of
complex authorization policies using multiple authorization qualifiers (e.g., password,
command HMAC, PCR values, NVRAM index values, and TPM time information).
KISS can reduce its TCB by offloading some authorization checking to TPM 2.0, given
that it can securely collect the authorization information, deliver it to the TPM, and
protect it from the untrusted OS. However, it is not clear how the performance of TPM
authorization checking compares to that of the KISS software.

Compatibility to Cloud Computing. The KISS hypervisor is a small, dedicated hy-
pervisor that runs on bare metal. If the KISS servers and clients are deployed on an
enterprise private cloud, we could consider (1) integrating KISS hypervisor with the
full-functioning the hypervisor/VMM or (2) adding nested virtualization support [24]
to KISS hypervisor and running the full-functioning hypervisor/VMM upon it. Option
(1) has much larger TCB, but has better compatibility and performance than option (2).

11 Related Work

We review the state-of-the-art key management systems and related technologies. The
first category of KMS solutions are software-based solutions, such as OpenSolaris
Crypto KMS Agent Toolkit [14], IBM Tivoli Key Manager [8], and StrongKey open-
source KMS software [19]. These rely on process isolation, user privilege control, and
file permissions provided by the OS to protect cryptographic keys and control the ap-
plications’ access to them. Their implementation of trusted paths for administrators is
based on the OS services (e.g., Ctrl+Alt+Del command or trusted window manager).
Compared with KISS, the software-only approaches are more cost-effective and easier
to deploy on commodity computers (e.g., no hypervisor, work with legacy corporate ap-
plications, no security hardware requirement). However, they rely heavily on the large
OS and thus fail to provide the same level of security assurance as KISS.

An alternative is leveraging high profile HSMs [20, 18, 15, 7, 17]. An HSM pro-
vides hardware-level tamper-resistant protection to cryptographic keys and algorithms
for both run-time and at rest, while KISS provides hypervisor-based software isolation
for keys and algorithm during run-time, and TPM level hardware protection for keys
at rest. For performance, an HSM may employ customized hardware engine to accel-
erate cryptographic algorithms. It is more efficient than KISS and the software-only

KISS: “Key It Simple and Secure” Corporate Key Management 17

solutions. The downside of the HSM is that it fails to provide the same secure level
of key usage control as in KISS, as we have explained in Section 1. Indeed, the KISS
system can be extended to serve as the key usage control front end of the HSM, which
may achieve the benefits of both systems. For system administration, some high-end
HSMs [20, 18] achieve the same level of security guarantees as KISS (e.g., quorum
control, trusted paths using on-HSM I/O devices, remote management using adminis-
trator devices). However, their administrator devices introduce larger TCB than KISS
(e.g., complicated key management software stack for interpreting commands and op-
eration results). The HSM administrators usually blindly trust the devices, and have no
intuitive way to verify their software status.

There are research proposals that seek to offer similar protections for user credentials
in the key management systems. Wallet-based web authentication systems (e.g., [5])
isolate user credentials in an isolated domain (e.g., a L4 process upon L4 Micro-kernel)
during run-time and protect the credentials at rest by TPM-based sealed storage. They
only allow authenticated websites to access their own credentials. These systems have a
reasonable TCB size, but do not provide fine-grained and flexible key usage control as
in KISS (e.g., user-based control). Bugiel and Ekberg [2] propose a system that only al-
lows the application to access its own credentials (protected in mobile trusted module).
The On-board Credentials (ObC) [10] approach enables an isolation environment (like
KISS) for both third-party credential algorithms/applications and credentials, on smart-
phones and conventional computers. However, one faces multiple challenges extending
these systems for corporate key management. For example, ObC approach lacks pro-
tection mechanisms against malicious administrators and do not support trusted paths
for administrator management. PinUP [4] binds files to the applications that are autho-
rized to use them by leveraging the SELinux capability mechanisms. This suggests that
PinUP introduces a larger TCB to provide security assurance on par with KISS.

12 Conclusion

In this paper, we leverage widely-deployed trusted computing techniques to design a
trustworthy key management system architecture. KISS aims to reduce cost by relying
solely on commodity computer hardware, and minimize the system TCB by the thin-
hypervisor-based design and lightweight administrator devices. KISS is the first key
management system to support fine-grained control of key usage. KISS is bootstrapped
and operated in the face of software attacks from malware in the OS and insider attacks
from malicious administrators. KISS provides user-verifiable trusted paths and simple
dedicated external devices for secure system administration. KISS showcases the ben-
efits of applying trusted computing techniques to designing trustworthy systems. KISS
offers trustworthy key management systems at a price point that enables wide-spread
adoption beyond the security-sensitive financial or governmental institutions.

Acknowledgments. We are grateful to the reviewers and Aziz Mohaisen for their in-
sightful suggestions. We also want to thank Geoffrey Hasker, Yueqiang Cheng, and
Miao Yu for stimulating conversations and valuable feedback.

18 Z. Zhou et al.

References

[1] AMD. AMD64 architecture programmer’s manual. No. 24594 rev. 3.19 (2012)
[2] Bugiel, S., Ekberg, J.: Implementing an application-specific credential platform using late-

launched mobile trusted module. In: Proc. ACM STC (2010)
[3] Cheng, Y., Ding, X., Deng, R.H.: DriverGuard: A fine-grained protection on I/O flows.

In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 227–244. Springer,
Heidelberg (2011)

[4] Enck, W., McDaniel, P., Jaeger, T.: Pinup: Pinning user files to known applications. In: Proc.
ACSAC (2008)

[5] Gajek, S., Löhr, H., Sadeghi, A., Winandy, M.: Truwallet: trustworthy and migratable
wallet-based web authentication. In: Proc. ACM STC (2009)

[6] Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: secure applications
on an untrusted operating system. In: Proc. ASPLOS (2013)

[7] HP. Enterprise Secure Key Manager, http://h18006.www1.hp.com/products/
quickspecs/13978 div/13978 div.PDF

[8] IBM. Tivoli Key Lifecycle Manager, http://www-01.ibm.com/software/
tivoli/products/key-lifecycle-mgr

[9] Intel. Intel trusted execution techonology. No. 315168-008 (2011)
[10] Kostiainen, K.: On-board Credentials: An Open Credential Platform for Mobile Devices.

PhD thesis, Aalto University (2012)
[11] Matrosov, A., Rodionov, E., Harley, D., Malch, J.: Stuxnet Under the Microscope,

http://www.eset.com/us/resources/white-papers/
Stuxnet Under the Microscope.pdf

[12] McCune, J., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB reduction and attestation. In: Proc. IEEE Symp. on Security and Privacy (2010)

[13] McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution in-
frastructure for TCB minimization. In: Proc. EuroSys (2008)

[14] Oracle. Opensolaris project: Crypto kms agent toolkit, http://
hub.opensolaris.org/bin/view/Project+kmsagenttoolkit/WebHome

[15] Oracle. Oracle Key Manager,
http://www.oracle.com/us/products/servers-storage/storage/
tape-storage/034335.pdf

[16] Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Practical state
continuity for protected modules. In: Proc. IEEE Symp. on Security and Privacy (2011)

[17] RSA. RSA Data Protection Manager,
http://www.emc.com/security/rsa-data-protection-manager.html

[18] SafeNet. SafeNet hardware security modules,
http://www.safenet-inc.com/products/data-protection/
hardware-security-modules-hsms/

[19] StrongAuth. StrongKey SKMS, http://www.strongkey.org
[20] Thales. Thales hardware security modules, http://www.thales-esecurity.com/

en/Products/Hardware%20Security%20Modules.aspx
[21] Trusted Computing Group. TPM specification version 1.2 (2009)
[22] Trusted Computing Group. Trusted platform module library family “2.0” (2011)
[23] VASCO. Diginotar reports security incident (2011),

http://www.vasco.com/company/about vasco/press room/
news archive/2011/news diginotar reports security incident.aspx

[24] Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of virtual ma-
chines in multi-tenant cloud with nested virtualization. In: Proc. ACM SOSP (2011)

[25] Zhou, Z., Gligor, V., Newsome, J., McCune, J.: Building verifiable trusted path on com-
modity x86 computers. In: Proc. IEEE Symp. on Security and Privacy (2012)

http://h18006.www1.hp.com/products/quickspecs/13978_div/13978_div.PDF
http://h18006.www1.hp.com/products/quickspecs/13978_div/13978_div.PDF
http://www-01.ibm.com/software/tivoli/products/key-lifecycle-mgr
http://www-01.ibm.com/software/tivoli/products/key-lifecycle-mgr
http://www.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://www.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://hub.opensolaris.org/bin/view/Project+kmsagenttoolkit/WebHome
http://hub.opensolaris.org/bin/view/Project+kmsagenttoolkit/WebHome
http://www.oracle.com/us/products/servers-storage/storage/tape-storage/034335.pdf
http://www.oracle.com/us/products/servers-storage/storage/tape-storage/034335.pdf
http://www.emc.com/security/rsa-data-protection-manager.html
http://www.safenet-inc.com/products/data-protection/hardware-security-modules-hsms/
http://www.safenet-inc.com/products/data-protection/hardware-security-modules-hsms/
http://www.strongkey.org
http://www.thales-esecurity.com/en/Products/Hardware%20Security%20Modules.aspx
http://www.thales-esecurity.com/en/Products/Hardware%20Security%20Modules.aspx
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx

Guardian: Hypervisor as Security Foothold
for Personal Computers

Yueqiang Cheng and Xuhua Ding

School of Information Systems
Singapore Management University

{yqcheng.2008,xhding}@smu.edu.sg

Abstract. Personal computers lack of a security foothold to allow the end-users
to protect their systems or to mitigate the damage. Existing candidates either rely
on a large Trusted Computing Base (TCB) or are too costly to widely deploy for
commodity use. To fill this gap, we propose a hypervisor-based security foothold,
named as Guardian, for commodity personal computers. We innovate a bootup
and shutdown mechanism to achieve both integrity and availability of Guardian.
We also propose two security utilities based on Guardian. One is a device mon-
itor which detects malicious manipulation on camera and network adaptors. The
other is hyper-firewall whereby Guardian expects incoming and outgoing network
packets based on policies specified by the user. We have implemented Guardian
(≈ 25K SLOC) and the two utilities (≈ 2.1K SLOC) on a PC with an Intel pro-
cessor. Our experiments show that Guardian is practical and incurs insignificant
overhead to the system.

1 Introduction

The operating system is the cornerstone of all security applications such as anti-virus
and firewall. Once the OS is compromised, the adversary has the ability to disable all
security services and access all sensitive data in the system. Even if a security-conscious
end-user is aware of the attack, she still can not get a reliable security foothold to miti-
gate the damage. It is challenging to seek a feasible and secure solution. Rewriting com-
modity OS, e.g., splitting the OS into low- and high-assurance portions, is too costly to
be practical. Adopting new security-capable devices (e.g., secure co-processors) usually
requires substantial modifications to hardware, OS and/or applications, which makes
these solutions difficult to widely deploy in the near future.

A usable security foothold should meet the following requirements. Firstly, it should
be secure against attacks from rootkits which can subvert the operating system. Sec-
ondly, it should allow the human user to use it, e.g., to issue a command. Last but not
the least, it should be always available throughout the life cycle even when the OS is
corrupted. By virtue of the virtualization, a hypervisor is widely deemed as a software
which can resists attacks from an untrusted guest OS. However, almost no hypervisor
can simultaneously satisfy all the above requirements, especially for the availability
requirement.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 19–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 Y. Cheng and X. Ding

In this paper, we harness the fast-growing hardware-assisted virtualization tech-
niques to build a tiny but reliable hypervisor as the security foothold for personal
computers. The hypervisor we propose is named as Guardian. Guardian has two promi-
nent new features which are the enabling techniques for the hypervisor to become a
security foothold. The first is a new secure bootup and shutdown mechanism, which
enhances the existing hardware-based security boot up by offering integrity and avail-
ability protection of the TCB image and critical information. The other feature is a
secure user-hypervisor interface which allows the end-user to issue commands to and
receive responses from Guardian at runtime. The interface is secure in the sense that
the channel between the human end-user and the hypervisor is authentic and the ex-
changed information is not exposed to the guest. We also propose two practical security
utilities based on Guardian. The first is a device monitor utility, whereby the user can
instruct Guardian to monitor the state of peripheral devices, e.g., a camera. The sec-
ond is a hyper-firewall whereby Guardian inspects inbound/outbound network traffic
and drops illegal packets. We have implemented Guardian on a desktop with a Linux
guest. Guardian consists of around 25K SLOC, and the utilities consist of around 2.1K
SLOC. Our experiments show that Guardian inflicts an insignificant workload to the
whole system.

The growing hardware support for virtualization will continue to empower the hy-
pervisor with more effective and stronger security control over commodity platforms
with smaller code size and better performance. We envisage that using a hypervisor as
a generic security foothold is a promising direction to greatly boost up the security for
commodity platforms. Our work presented in this paper is an important step towards
this ultimate goal. We summarize our contributions as follows:

1. We design and implement Guardian which is the first system to provide both in-
tegrity and availability guarantees. Note that all existing hypervisors do not achieve
the availability guarantee.

2. We design and build a device monitor and a hyper-firewall as two security utilities
on top of Guardian.

In the next section, we present our research objectives and threat model. Then we
present the design of Guardian and the security utilities in Section 3 and Section 4.
In Section 5, we describe the implementation and the evaluation. Finally, we discuss
the related work in Section 6 and conclude the paper in Section 7.

2 Problem Definition

We aim to provide a tiny and reliable hypervisor as a security foothold for personal
computers. Namely, we undertake to furnish the end-user with a reliable security basis
when the conventional one (typically the operating system) fails. Though the security
foothold, the human user can configure security policies and manage resources in the
platform. It not only boosts up the system security, but also facilitates the end-user to
determine the trustworthiness of her system. Note that we do not attempt to detect and
remove malicious software from the platform, nor is to protect the operating system or
a user application.

Guardian: Hypervisor as Security Foothold for Personal Computers 21

2.1 Threat Model

Since our goal is to assist the end-user, we assume that they are security- conscious
users, who are happy and intended to use our system to protect their systems. We do
not consider any human adversary who may have physical access to the system. For
instance, the adversary can issue malicious DMA accesses by inserting extra physical
devices (e.g., a firewire device). A malicious human user can always remove the hyper-
visor from the platform.

The adversary in our threat model is malware residing in the operating system which
can subvert the operating system and launch arbitrary attacks. However, we assume
that they can not compromise the hypervisor. Note that the hypervisor makes use of
hardware-assisted virtualization techniques to defend against malicious software ac-
cesses and illicit DMA accesses. This assumption can be more reasonably held if the
hypervisor has a tiny code size and simple logic so that only a small attack interface
is exposed to the adversary. Existing techniques [4, 24, 39, 40] can also be applied to
enhance hypervisor security.

We assume that the adversary can not compromise the hardware devices whose be-
havior always exactly follow their specifications. We also assume the system firmware
is trusted. In fact, the modern BIOS has a built-in hardware lock mechanism [17,35] to
set itself as read-only so that the OS cannot tamper with it. Furthermore, the modern
BIOS only accepts signed updates [36, 38]. Due to the complexity of the x86 platform
(e.g., optional ROM), this assumption may not always true. Nonetheless, it is still pos-
sible to validate the system firmware by the proposed attestation approach [20] or by a
trusted system integrator.

3 Design of Guardian

In this section, we introduce the techniques for establishing Guardian as a security
foothold, and describe the functionalities of the two secure user interfaces.

3.1 Establishing Guardian as a Security Foothold

To establish Guardian as a security foothold, it is necessary but not sufficient to ensure
a secure boot. The secure boot alone can only validate the integrity of the system’s
TCB image during booting up, while a reliable security foothold needs both integrity
and availability guarantee, so that the system still boots up into a trusted state even if
the TCB image on the hard drive are modified by attackers. We do not elaborate the
details of secure boot (e.g., TPM-based secure boot [37]) to avoid verbosity as it has
been widely used in the literature. Our focus is to explain how to ensure that the intact
TCB image is always available for the boot up. The TCB of our system consists of the
BIOS, the bootloader-core and the Guardian image. Recall that the BIOS is protected
by the hardware and is trusted in our threat model. Therefore, we intend to protect the
bootloader core and the Guardian image against runtime attacks.

A straightforward approach is for Guardian to intercept and validate every disk I/O,
such that any access to the security critical image residing on the disk is blocked.

22 Y. Cheng and X. Ding

Obviously, this solution is costly due to the high overhead and complexity of a disk I/O
interception multiplied by the huge number of disk operations.

We devise a novel scheme without interposing on disk operations. The basic idea
(visualized in Figure 1) is that once Guardian is launched, it immediately relocates
its image and the bootloader core from the disk into a protected memory region prior
to launching the guest. Then, Guardian intercepts all power off events, and writes the
protected image back to the disk before cleaning up the memory. In the following,
we describe the details of secure boot up and secure shutdown, which in tandem with
runtime protection bolster the availability of Guardian throughout its whole life cycle.

Disk Main
Memory

 TCB image

Hypervisor
 Space

Guest Space

Backup

Restore

Guardian
Boots up

Guest
Boots up

Power Up

Guest
Shutdown

Guardian
Shutdown

Backup TCB Runtime Restore TCB Power Down

Fig. 1. Protection of the TCB (from power up to power down). The TCB consists of the Guardian
image and the bootloader core. The protected memory for the TCB image is reserved by Guardian
and inaccessible for the guest OS.

Secure Bootup. Figure 2 illustrates the disk layout for Guardian, where a special parti-
tion, referred to as the hypervisor-partition, is created during installation to avoid being
trespassed by normal file systems. To allow for a secure boot without increasing the
TCB size and complexity, we make slight changes on the bootloader (e.g., Grub 2). The
BIOS passes the control to the bootloader core in the boot track. The bootloader core
includes the Master Boot Record (MBR), the diskboot image and the basic-function
image, which provides all basic functions and usually has to load other modules and
configuration files such as grub.cfg to launch an operating system due to the limited
size of the boot track (32KB in maximum).

Our modification is on the basic-function image only, such that it always launches
Guardian before loading other components including the OS. In specific, once the core
is loaded to the CPU by the BIOS (illustrated by Step 1 in Figure 3), it checks a bit
flag in main memory (referred to as VMM flag) which indicates Guardian’s presence.
If VMM flag is not set, i.e., the core immediately passes the control to Guardian whose
image is placed at a fixed disk address upon installation (Step 2 in Figure 3). The address
of Guardian is hard-coded into the core, such that it loads Guardian directly using disk
I/O without involving any file system.

Guardian: Hypervisor as Security Foothold for Personal Computers 23

��� ����	

������ �����������
������

�

�������

����	

��
������
��

�����
�����

���������
������

��!��"��
���
!����
��

Fig. 2. An illustration of the disk layout

After occupying the CPU, Guardian loads the TCB image into a reserved memory
region. It then configures the hypervisor page table, the EPT and IOMMU to ensure that
the reserved region is not in the hypervisor or the guest’s space and not accessible by
DMA devices either. Separating the reserved region from the hypervisor space ensures
no accidental accesses to the region. (As shown later, Guardian must map the region
into its space by re-configuring the page table in order to access it.)

Finally, Guardian sets VMM flag indicating its presence, and passes the control back
to the bootloader core (Step 3). After asserting the flag is set, the core loads other
modules and configuration files (Step 4) and proceeds to boot up the guest in the normal
way (Step 5).

Fig. 3. The sequence of secure bootup

Device Configuration Space Protection. A rootkit may manipulate the device config-
uration space (e.g., the space-overlapping attack [44]) to thwart Guardian to intercept
certain I/O events or access to I/O data. In order to defeat the configuration space ma-
nipulations and conflicts/overlapping between different devices, Guardian is poised to
intercept and validate any update to the device configuration registers after its boot up.
Note that these registers are located in the northbridge chipset [11]. The interception

24 Y. Cheng and X. Ding

are realized via configuring Virtual-Machine Control Structure (VMCS) for I/O ports
and the EPT for MMIO regions.

Secure Shutdown. The guest may modify the Guardian image on the disk. Therefore,
when the system is powered off, the TCB saved in the reserved memory must be written
back to their original locations in the disk for the next round of execution. There exist
two types of shutdown events. One type is the sleep events, where the system enters
a sleep state through the Advanced Configuration and Power-management Interface
(ACPI) [14]; the other is the reboot event, where the system restarts from the BIOS.
Guardian intercepts both types of shutdown events and responds accordingly.

ACPI Sleep. The ACPI sleep event is managed by the Operating System Power Man-
agement (OSPM) subsystem on the modern ACPI-compatible system. Receiving com-
mands from software (e.g., system call) or external interrupts (e.g., the System Control
Interrupt triggered by pressing the power/sleep button or closing the laptop lid), the
OSPM subsystem sets the PM1a CNT register to force the system entering the corre-
sponding sleep state. Note that Guardian prohibits the ACPI sleep event to be triggered
by the optional sleep control and PM1b CNT registers. Specifically, there is a 32-bit
pointer in the Fixed ACPI Table (FADT) pointing to the PM1b CNT block. Guardian
clears this pointer and intercepts accesses to the PM1b CNT register. The same method
is used on the control sleep register.

Guardian intercepts the guest’s sleep command issued to the PM1a CNT register.
Note that the actual interception method depends on whether the register is accessed by
PIO or MMIO. The former involves VMCS configuration whereas the latter requires
the EPT.

S5 (Soft-Off)

S4 (Hibernate)

S0~S3 (Light-Sleep)

Running
ACPI

Sleep States

Fig. 4. ACPI sleep states

Among the six Sleep states (S0 to S5) defined in the ACPI specification (in Figure 4),
the light-sleep (S0 to S3) states are not of concern, because the main memory remains
powered and Guardian remains alive. Therefore, Guardian performs no action. For the
soft-off state (S5) where the system will be powered off, Guardian restores the TCB

Guardian: Hypervisor as Security Foothold for Personal Computers 25

image back to the respective disk locations by using direct disk I/O operations. Note
that Guardian needs to re-activate the disk which has been closed (but remains powered)
before the ACIP sleep command is issued. In the end, Guardian clears VMM flag and
resumes the intercepted ACPI command which turns the platform off.

It is slightly more complicated to deal with the hibernation state S4 due to the need
for platform context saving. Guardian needs to save its context into the hypervisor par-
tition, in addition to the restoration work done for S5. For the guest context, Guardian
disables and prohibits the ACPI S4BIOS Transition 1, which bypasses Guardian as the
BIOS directly saves all memory content into the hard disk including Guardian’s con-
text. Therefore, only the OS-assisted hibernation method is supported and the OS must
write its own context into the disk before hibernation.

Note that after the PM1a CNT register is set, the platform passes the point of no
return, because the ACPI hardware will force the platform to enter S4 or S5 state and
no software will be loaded to the CPU. In other words, Guardian is the last piece of
code executed before shutdown, which guarantees the security of the TCB and critical
data resting on the disk.

System Reboot. There are three possible ways to reboot a system. One is ACPI reset,
which is activated by the ACPI reset register. Note that the system will immediately
reboot once the reset register is set. The ACPI reset register can be accessed by port I/O
or memory-mapped I/O, which can be intercepted by Guardian through configuring the
VMCS or EPT, respectively. The second way is essentially triggered by the CPU INIT
signal. Guardian intercepts the event through configuring the VMCS.

In the third way, an attacker can switch the CPU to the real mode and jump to the
BIOS entry to reboot the system. The tricky part is that it can bypass the INIT and
ACPI reset mechanisms, meaning that the previous two interception methods will fail
to intercept this one. To intercept it, a straightforward solution is to intercept the CPU
switch from protected mode to real mode. However, the cost will significantly rise up
when legitimate CPU-mode switches take place frequently, e.g., in Windows. Our so-
lution is to prevent jumping to the BIOS reboot-routine from the guest by configuring
the EPT. Any attempts from the guest OS to reboot the system will be intercepted by
Guardian whose response is to repeat Step 3-5 in secure bootup without rebooting the
whole platform.

Recovery. Guardian provides an alternative secure boot mechanism, where the system
is able to boot up from a trusted-storage, such as a live CD or a read-only USB token.
The bootup sequence is the same as the one described in Section 3.1. For convenience,
the end-user can configure the system always boot up from a trusted storage, such that
the system still can boot up into a trusted state.

The secure shutdown procedure may not be triggered due to some unexpected and
irresistible events, e.g., power failure or system crash. Given that such unexpected sys-
tem failure events may lead to the untrustworthiness of the TCB image, we need the
TPM-based secure boot [37] to guarantee that only the trusted image can be booted.

1 It clears the F bit in the Firmware ACPI Control Structure (FACS) and intercepts accesses to
the SMI CMD command register, which is S4BIOS service activation.

26 Y. Cheng and X. Ding

In such cases, the system can not boot up, and the security-conscious end-users need
the recovery mechanism to restore Guardian image. Specifically, the bootloader in the
trusted storage is extended to restore TCB image into the hard drive. Note that the boot-
loader originally has the capabilities to read/write the hard drive, the trusted storage and
the main memory. Therefore, we can easily combine these functions to do the recovery.

3.2 Secure User-Hypervisor Interface

The secure interface is a duplex channel between the end-user and Guardian without
involving the guest OS. Guardian shields the channel against any access from the guest.
With the interface, the end-user can configure Guardian during its boot-up, and issue
commands during runtime. For the sake of usability and simplicity, we do not rely on
any external device such as a USB token. The user inputs are through the keyboard
while the outputs are via the display in VGA mode.

Guardian provides two secure UIs. One is the Boot Up Secure User Interface (BUSUI),
which is used in the secure boot phase before the guest starts to run. Since the platform
then is in a trustworthy state, the implementation of BUSUI is straightforward. Guardian
utilizes the BIOS services (i.e. INT 0x16 and 0x10) for input and output. The end-user
activates it by holding a special key for a few seconds. In our current design, a user can
deposit a text message to Guardian as a shared secret and can also input policies.

The other interface is the Run Time Secure User Interface (RTSUI), which is used
after the guest boots up. The RTSUI can be dynamically launched by the end-user.
RTSUI extends the secure user interface in KGuard [8]. Namely, Guardian securely
receive inputs of a human user through a keyboard while it securely produces outputs
through the display. Both the input and output paths are inaccessible to the guest OS.
Since the interface in KGuard is only for password input, we extend it to a command-
line interface such that the user can conveniently input commands and read responses.

4 Security Utilities

When designing security utilities based on Guardian, we endeavor to deal with threats
plaguing normal end-users and system administrators. To this end, we propose a device
monitor and a hyper-firewall.

4.1 Device Monitoring

A rootkit can misuse a peripheral device without the user’s consent. For instance, it can
quickly turn on the camera of a laptop to take a picture of the user and then turn it off. In
a stealthy manner, it can also turn a network adaptor into the promiscuous mode so as
to sniff the entire LAN traffic. We develop a Guardian utility to monitor the states of the
camera and the network interface. In case of risky device usage, the end-user is alerted
via the hypervisor-user interface or a beep sound. Note that the beep cannot be stopped
by the adversary, because Guardian is able to intercept all accesses to that device.

Camera Control. Our design considers an external camera attached to the platform
through a USB interface. (It can also be extended for a built-in camera.) The USB port

Guardian: Hypervisor as Security Foothold for Personal Computers 27

is controlled by an EHCI [16] or UHCI [15] controller. In either case, a frame list, with
its base address specified by the PERIODICLISTBASE register, is used to queue I/O
commands. To enable the camera, the driver must insert a transfer descriptor or TD to
the frame list. The host controller automatically fetches it from the queue and responds
properly.

Upon the user’s activation command, the camera control utility makes use of the
interception primitive to set read-only on the region for the base register, the frame list
and the TD queue. If it detects a new TD with the open command UVC SET CUR for
the camera, it alerts the user through a beep sound.

NIC Promiscuous Mode Control. The control on the network interface is simpler than
EHCI. The Unicast Promiscuous Enabled (UPE) bit and the Multicast Promiscuous
Enabled (MPE) in the Receive ConTroL Register (RCTL) are the flags that turns on
the NIC’s promiscuous mode. The monitoring utility intercepts the accesses to RCTL.
Once the UPE bit or the MPE bit is set, an alert is raised to the user.

Note that Guardian and its utilities are not burdened with the complicated task of
device management, for instance, to block illegal operations. This is to keep the hyper-
visor size small and more reliable.

4.2 Hyper-firewall

Recent attacks have shown that both application-level and OS-level firewalls can be
disabled by rootkits. One solution proposed recently is the VMwall [32], which isolates
the firewall in a separated domain (i.e., the Dom0 in the Xen setting). However, this
approach dramatically increases the TCB size and requires the user to run two domains
concurrently.

We propose in this section a more elegant and stronger solution called hyper-firewall
as the firewall functions in the hypervisor space. The basic idea is that a Guardian utility
interposes on network I/O. It drops illegal packets if their TCP/IP headers are not com-
pliant to the firewall policies set by the end-user through the secure UI. Since Guardian
does not comprise any NIC driver, this utility does not significantly increase Guardian’s
code size. The main challenge is how to intercept network packets in an efficient way.
Before presenting the details, we briefly explain the network I/O mechanism.

The packet transmission mechanism is illustrated in Figure 5. The NIC makes use
of a ring buffer (essentially a circular queue) to store transmit descriptors which point
to the packets to transmit. The ring buffer has its base address saved in the TDBAL
and TDBAH registers, has its size saved in the TDLENL and TDLENH registers, and
has a head register and a tail register pointing to the queue head and tail respectively.
The NIC always dequeues the descriptor pointed by the head register, and then fetches
the corresponding packet. After retrieval, it advances the head pointer. The tail pointer
is maintained by the device driver. To send a new packet, the driver enqueues one or
multiple descriptors. Then, the tail pointer is also advanced. The NIC only uses the
descriptors between the head and the tail. It stops transmission when the two pointers
collide.

The packet receiving mechanism is analogous to the transmission mechanism. It
also has a ring buffer storing receive descriptors, and has its own base address registers,
length registers, and the head and tail registers. Initially, the driver allocates a set of fixed

28 Y. Cheng and X. Ding

��#�����	

��#�	����	���
��
	���#��	

�
��
	���#��	

��#�	����	#��$����
������

�	
�#������#�	����	���	��
	������

���������#��	#
����� �����

�	
�#������#�	����	�
�
#�����	�##�%����&

�
�����

�
�����

������#��#�
���

�������	��#�	�#�
���

Fig. 5. The transmit descriptor circular queue used by the NIC

length DMA buffers, and enqueues the corresponding descriptors into the ring queue.
When receiving packets, the NIC stores them into those pre-allocated DMA buffers,
updates the corresponding descriptors, and advances the head pointer accordingly. Fi-
nally, it throws out an interrupt to notify the driver to fetch the packets according to the
descriptors. Since the packet sending and receiving mechanisms are different, we de-
sign two interposition schemes, respectively. Note that the registers used by NICs may
be different. To support all NICs, we can provide a profile which can provide necessary
information for Guardian to understand register meanings.

Outbound Packet Filter. Guardian uses the EPT to intercept all write accesses the TD-
BAL, TDBAH, TDLENL and TDLENH registers so that Guardian can always locate
the legitimate ring buffer. Similarly, it sets up the EPT and IOMMU tables, such that
the head register can only be updated by the NIC2, and all accesses to the tail register
are intercepted by Guardian. Lastly, it sets the entire ring buffer as read-only.

When a write access to the ring buffer is intercepted by Guardian, it checks whether
the write overwrites an existing descriptor which has not been fetched by the NIC. If so,
the access is blocked; otherwise, Guardian emulates the write. When a write access to
the tail register is intercepted, Guardian performs the following. (1) It checks whether
the packets pointed by the descriptors between the present tail and the new tail are
compliant with the firewall policies; (2) It copies all legal packets to the hypervisor
space and updates those descriptors accordingly so that the NIC can fetch them from
their new locations; for illegal packets, it sets the packet-length field in their descriptors
as zero; (3) It emulates the tail update.

2 In the current hardware specification, the driver is not able to instruct the NIC to update the
header register.

Guardian: Hypervisor as Security Foothold for Personal Computers 29

Once the packets are moved to the hypervisor space, their descriptors are not allowed
to be changed. Note that packets are much smaller than a memory page. Therefore,
relocating them into the hypervisor space avoids undesirable page faults as compared
to protecting them in the guest space.

Inbound Packet Filter. The inbound packet filter mechanism is similar to its outbound
counterpart. By enforcing access control on those control registers and the ring buffer
for the receiving descriptor, Guardian locates the DMA buffers allocated by the driver.
To retrieve a packet, the driver first fetches the receive descriptor which triggers a page
fault. Guardian then performs the packet inspection according to the firewall policies,
and drops illegal ones.

5 Implementation

We have built a prototype of Guardian on a Dell OptiPlex 990 MT desktop with an In-
tel(R) Core(TM) i7-2600 CPU @ 3.40GHz processor3 and 4GB main memory. Guardian
consists of around 25K SLOC for its core functions, which is much smaller than Xen
(263K SLOC for Xen-4.1.2) and Linux (8,143k SLOC for Linux-2.6.33.20). A compre-
hensive comparison between Guardian and other hypervisors is listed in Figure 6.

0

100

200

300

400

500

Li
ne

s o
f S

ou
rc

e
Co

de
 (K

)

Trusted Computing Base (TCB)

Hypervisor Other Trusted Componets

Fig. 6. Comparison of the TCB size. TrustVisor itself is around 17K SLOC. NOVA [33] consists
of the microhypervisor (9K SLOC), and several trusted components, i.e., a thin user level envi-
ronment (7K SLOC), and the VMM (20K SLOC). BitVisor [31] and VMware ESXi are 194K and
200K SLOC, respectively. KVM is around 200K SLOC, as well as a customized QEMU (140K
SLOC). Xen is around 263K SLOC with Dom0 that can be customized to 200K SLOC [19].
Microsoft Hyper-V uses a Xen-like architecture with a hypervisor (around 100K SLOC) and
Windows Server 2008 (larger than 400K SLOC).

3 The Hyper-threading mode is disabled since our current hypervisor does not support the multi-
processor mechanism.

30 Y. Cheng and X. Ding

64 128 256 512 1K 2K 4K 8K 16K

Packet Length (in Bytes)

70

75

80

85

90

95

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/S

)

without firewall
with firewall

Fig. 7. The benchmark results with and without hyper-firewall

The binary size of Guardian is around 223KB, which is much smaller than Xen
(around 1,264KB for Xen-4.1.2) and Linux (around 134,134KB for Linux-2.6.33.20)
image, and the bootloader core is around 30KB. Guardian reserves 512KB memory
space for TCB images and other critical information. Guardian also provides 11 hy-
percalls for security services, which is smaller than Xen exported hypercall surfaces
(i.e., 46 hypercalls). Note that Guardian only focus on the security services, while these
systems (e.g., Xen) usually provide many more functional services.

5.1 Device Monitoring Evaluation

The device management component consists of 1.2K SLOC. Currently Guardian sup-
ports to monitor camera and network card working modes. It can be extended to support
other similar devices, such as a microphone.

We experiment with a USB Logitech web camera attached on an EHCI host con-
troller. Note that the monitoring has no effect on the camera’s performance as the
scheme does not intercept runtime commands and data transferring.

The network card mode monitor is built upon the Intel 82579LM Gigabit Network
Card, whose registers are accessed using MMIO. The experiment results produced by
network benchmark tool netperf [25] prove that the monitor service almost does not
affect the network I/O throughout. Note that the device management service does not
require any modifications in the guest kernel or device drivers.

5.2 Hyper-firewall Evaluation

The packet filter service is built on the Intel Corporation 82579LM Gigabit Network
Card, and does not add any code into the guest OS. Current hyper-firewall supports
adding policies on inbound and outbound packets. For the outbound packets, hyper-
firewall restricts the region of the target destination (e.g., external IP addresses), and for
the inbound packets, hyper-firewall restricts the connection ports (e.g., SSH port 22).

Guardian: Hypervisor as Security Foothold for Personal Computers 31

All hyper-firewall policies can be enabled and disabled through the RTSUI. All experi-
ments show the hyper-firewall works well. We tested the network I/O performance with
benchmark tool netperf [25]. When we only enable outbound policy, the performance
results show that our hyper-firewall only introduces (0.096% - 0.064%) performance
overhead; when we enable inbound and outbound policies, the hyper-firewall introduces
(18.29% - 0.26%) performance overhead. Note that the short packet setting generates
more interceptions. Thus its performance is relatively low. Note that the monitoring of
NIC does not affect the I/O speed of other derives. The packet filter service only adds
0.9K SLOC into Guardian.

5.3 System Benchmark

We first measure the overhead on the OS operations using the LmBench suite. Fig-
ure 8 shows the results: socket (local connection), memory operations (i.e., read, write
and bcopy) and some system calls (i.e., mmap, fork+exec and fork+exit). However,
fork+exec and fork+exit incur higher performance penalties of 39% and 38%, which
are heavily dependent on the Intel EPT performance. We do believe that this could be
improved with the performance enhancing of memory virtualization.

We also measure computation performance with Guardian. The results generated
by the benchmark tool SPEC CPU 2006 (see Figure 9) show that Guardian usually
only introduces 0.2% - 10.3% performance loss, and may lead to 38.2% performance
overhead in some extreme cases (i.e., memory intensive operations with extreme low
cache hit rate), which is also dependent on the page operations of current Intel EPT.
Again, we believe that it can be improved in the further.

For I/O-bound benchmark test, we select a range of benchmark tools, including Bon-
nie, Postmark, netperf and Linux kernel. For Bonnie, we use a 1GB file and perform
sequential read/write (fread/fwrite) and random access (frandom). For Postmark, we
choose 20,000 files, 100,000 transactions and 100 subdirectories, as well as all other
default parameters. For netperf, we use another local machine as the netperf server, and

99 99 99 99 99

61 62

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

LmBenchmark Results

Fig. 8. The LmBench results on OS operations

32 Y. Cheng and X. Ding

98 99
95

62

99 100 97 97 99

90 90 91

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

SPEC 2006 Benchmark

Fig. 9. The system benchmark comparison results generated by SPEC CPU 2006

100 100 99 96 100 96 97

0
10
20
30
40
50
60
70
80
90

100

Pe
rfo

rm
an

ce
 (%

)

IO-Bound Benchmark

Fig. 10. The I/O-bound benchmark results

run both TCP STREAM and UDP STREAM benchmarks to measure basic network
performance. For Linux kernel, we compile the Linux-2.6.33.20 with default configu-
ration. Figure 10 shows the results.

6 Related Work

Software-Based Root of Trust. Software-based ROTs have been proposed and used in
[27,29,30]. The trust establishment is based on a challenge-response protocol. A speed-
optimized function (code block) is established as the ROT on a platform if, within an
acceptable time delay, it can compute a correct checksum of memory regions according
to a given challenge. It is based on the assumption that it incurs a noticeably longer
delay for any other implementation of this function. It also has a restriction on both the
adversary’s capability, for instance no collusion with a third party, as mentioned in [10])
and the capabilities of the target platforms. In addition, to stop the proxy attack, it may
even require to unplug the network and disable the wireless to physically cut down the
connection with outside. These limitations and requirements lead to inconvenience or
even to impracticability. Thus, software ROTs are unqualified to be a security foothold
for normal users’ computers.

Guardian: Hypervisor as Security Foothold for Personal Computers 33

Hardware-Based Root of Trust. The hardware-based ROT can be categorized into
static ROTs and dynamic ROTs. A static ROT is a built-in platform component. When
the platform boots up, a trust chain can be established from the ROT up to the oper-
ating system. The TPM chip [37] is a typical example of static hardware ROT. As a
chip on the motherboard, it is secure against all software attacks. Secure (or authen-
ticated) boot up, remote attestation and sealed storage are the main security services
provided by the TPM framework. The main disadvantages of TPM are its low speed,
inflexibility and passiveness. Therefore, to support various security services, it usually
requires assistance from certain secure software routine (e.g., hypervisor). IBM’s secure
co-processor [2] is a strong hardware root of trust with such a high price tag that it is not
feasible for the mass market. SMART [10] is a hardware-software co-designed scheme,
where a piece of code works on a modified low-end microcontroller units (MCU) to
function as a dynamic ROT. The SwitchBlade architecture [5] can prevent persistent
rootkits from infecting security-critical files (e.g., kernel image) with an ROT residing
on the disk controller. These ROTs may be integrated with Guardian though carefully
design and implementation.

AMD Secure Virtual Machine (SVM) [1] and Intel Trusted Execution Technology
(TXT) [18] are dynamic ROTs. These new processor features allow a piece of code
to be securely executed in an isolated environment enforced by the hardware. Despite
of their easiness of use, they incur high latency as showed in the Flicker system [22].
Fortunately, the high latency may be tolerable for the end-users, since it only required
once when the system as well as Guardian boots up. The boot mechanism of Guardian
is compatible with dynamic ROT techniques.

Hypervisor Related Security Systems. Many hypervisor-based security systems have
been designed and reported in the literature. For instance, a hypervisor can be applied
for I/O related protection [9,31], for kernel integrity protection [3,13,23,26,28,41,42],
and for user space protection [6,7,12,21,34,43]. By studying these systems, we identify
cryptographic engine, measurement, emulation, interception and manipulation as the
fundamental security primitives which are adopted in Guardian as well.

Our work has remarkable differences with the aforementioned systems. Guardian
aims to be a versatile hypervisor. By bring together a number of fundamental security
primitives, Guardian facilitates the design and implementation of virtualization-based
security systems, rather than focusing only on a single security problem. In addition,
Guardian caters to the security needs of the end-user, which demands Guardian to be
highly efficient, easy-to-use and compatible with the operating system and applications

Note that those schemes [4,24,39,40] that enhance the hypervisor security are com-
plimentary to our work. The security of Guardian will be further improved if these
techniques are applied in its implementation.

7 Conclusion

In this paper, we have proposed Guardian as a security foothold on the end-user sys-
tems to enhance their security. Specifically, we introduced Guardian whose integrity and
availability were guaranteed by the novel bootup and shutdown technique. Guardian
also provided a secure user interface, through which the end-user could update the

34 Y. Cheng and X. Ding

configurations of Guardian or dynamically activate/deactivate a dedicated security ser-
vice for the security needs. We also proposed two security utilities based on Guardian:
a device monitor which detects malicious device operations and a hyper-firewall which
inspects the incoming and outgoing network packets from the hypervisor space. We
have implemented Guardian and the two utilities. The experiment results show that
they are efficient and easy to use. Our work demonstrates that computer security can be
significantly boosted up by using a tiny and reliable hypervisor.

Acknowledgement. We thank the reviewers and especially Mohammad Mannan for
their constructive comments. This research/project is supported by the Singapore Na-
tional Research Foundation under its International Research Centre@ Singapore Fund-
ing Initiative and administered by the IDM Programme Office.

References

1. AMD. Secure virtual machine architecture reference manual. Technical report (2005)
2. Arnold, T.W., Van Doom, L.P.: The IBM PCIXCC: a new cryptographic coprocessor for the

IBM eserver. IBM J. Res. Dev. 48(3-4), 475–487 (2004)
3. Azab, A.M., Ning, P., Sezer, E.C., Zhang, X.: HIMA: A hypervisor-based integrity measure-

ment agent. In: Proceedings of the 2009 Annual Computer Security Applications Conference,
ACSAC 2009, pp. 461–470. IEEE Computer Society, Washington, DC (2009)

4. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: Hypersentry: enabling
stealthy in-context measurement of hypervisor integrity. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, pp. 38–49. ACM, New
York (2010)

5. Butler, K.R.B., McLaughlin, S., Moyer, T., McDaniel, P.D.: New security architectures based
on emerging disk functionality. IEEE Security and Privacy Magazine (September 2010)

6. Champagne, D., Lee, R.B.: Scalable architectural support for trusted software. In: Jacob,
M.T., Das, C.R., Bose, P. (eds.) HPCA, pp. 1–12. IEEE Computer Society (2010)

7. Chen, X., Garfinkel, T., Christopher Lewis, E., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2008, Seattle, WA, USA (March 2008)

8. Cheng, Y., Ding, X.: Virtualization based password protection against malware in untrusted
operating systems. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M.,
Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 201–218. Springer, Heidelberg (2012)

9. Cheng, Y., Ding, X., Deng, R.H.: Driverguard: a fine-grained protection on I/O flows. In:
Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 227–244. Springer, Heidel-
berg (2011)

10. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: Secure and Minimal Architec-
ture for (Establishing a Dynamic) Root of Trust. In: Proceedings of the 19th Annual Network
and Distributed System Security Symposium, San Diego, USA, February 5-8 (2012)

11. Fleming, S.: Accessing pci express configuration registers using intel chipsets. otechnical
report (2008)

12. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual machine-based
platform for trusted computing. In: Proceedings of the 9th ACM Symposium on Operating
Systems Principles, pp. 193–206. ACM, New York (2003)

Guardian: Hypervisor as Security Foothold for Personal Computers 35

13. Grace, M., Wang, Z., Srinivasan, D., Li, J., Jiang, X., Liang, Z., Liakh, S.: Transparent pro-
tection of commodity OS kernels using hardware virtualization. In: Jajodia, S., Zhou, J. (eds.)
SecureComm 2010. LNICST, vol. 50, pp. 162–180. Springer, Heidelberg (2010)

14. Hewleet-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configuration and power
interface specification. (Revision 3.0b) (October 2006)

15. Intel. Universal host controller interface (UHCI) design guide (March 1996)
16. Intel. Enhanced host controller interface specification for universal serial bus (March 2002)
17. Intel. Intel I/O controller hub 9 (ICH9) family datasheet (2008)
18. Intel. Intel Trusted Execution Technology (Intel TXT) software development guide (Decem-

ber 2009)
19. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without

the virtualization. In: Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA 2010, pp. 350–361. ACM, New York (2010)

20. Li, Y., McCune, J.M., Perrig, A.: Viper: verifying the integrity of peripherals’ firmware. In:
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS
2011, pp. 3–16. ACM, New York (2011)

21. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvisor: Efficient
TCB reduction and attestation. In: Proceedings of the 2010 IEEE Symposium on Security
and Privacy, pp. 143–158. IEEE Computer Society, Washington, DC (2010)

22. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution in-
frastructure for TCB minimization. In: Proceedings of the ACM European Conference in
Computer Systems (EuroSys) (April 2008)

23. de Oliveira, D.A.S., Felix Wu, S.: Protecting kernel code and data with a virtualization-
aware collaborative operating system. In: Proceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC 2009, pp. 451–460. IEEE Computer Society, Washington,
DC (2009)

24. Rafal, W., Joanna, R., Alexander, T.: Xen 0wning trilogy, Black Hat conference (2008)
25. Rick, J.: Network Performance Benchmark Tool - Netpref,

http://www.netperf.org/netperf/
26. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with VMM-based

memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

27. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Scuba: Secure code update
by attestation in sensor networks. In: Proceedings of the 5th ACM Workshop on Wireless
Security, WiSe 2006, pp. 85–94. ACM, New York (2006)

28. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide lifetime
kernel code integrity for commodity OSes. In: Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, SOSP 2007, pp. 335–350. ACM, New York
(2007)

29. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: verifying code
integrity and enforcing untampered code execution on legacy systems. In: Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, SOSP 2005, pp. 1–16. ACM,
New York (2005)

30. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: SWATT: Software-based attestation for
embedded devices. In: IEEE Symposium on Security and Privacy (2004)

31. Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T., Hirano, M.,
Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., Kato, K.: Bitvisor: a
thin hypervisor for enforcing I/O device security. In: Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE 2009,
pp. 121–130. ACM, New York (2009)

http://www.netperf.org/netperf/

36 Y. Cheng and X. Ding

32. Srivastava, A., Giffin, J.: Tamper-resistant, application-aware blocking of malicious net-
work connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 39–58. Springer, Heidelberg (2008)

33. Steinberg, U., Kauer, B.: Nova: A microhypervisor-based secure virtualization architecture.
In: Proceedings of the European Conference on Computer Systems (2010)

34. Strackx, R., Piessens, F.: Fides: selectively hardening software application components
against kernel-level or process-level malware. In: Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS 2012, pp. 2–13. ACM, New York
(2012)

35. Sun, K., Wang, J., Zhang, F., Stavrou, A.: SecureSwitch: BIOS-assisted isolation and switch
between trusted and untrusted commodity OSes. In: Proceedings of the 19th Annual Network
and Distributed System Security Symposium, San Diego, California, USA (2012)

36. Phoenix Technologies: Trustedcore: Foundation for secure CRTM and BIOS implementation
(2006), https://forms.phoenix.com/whitepaperdownload-/
docs/trustedcore wp.pdf

37. Trusted Computing Group: TPM main specification. Main Specification Version 1.2 rev. 85
(February 2005)

38. Vasudevan, A., Parno, B., Qu, N., Gligor, V.D., Perrig, A.: Lockdown: A safe and practical
environment for security applications (CMU-Cylab-09-011) (2009)

39. Wang, J., Stavrou, A., Ghosh, A.: HyperCheck: A hardware-assisted integrity monitor.
In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 158–177.
Springer, Heidelberg (2010)

40. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In: Proceedings of the 2010 IEEE Symposium on Security and Pri-
vacy, SP 2010, pp. 380–395. IEEE Computer Society, Washington, DC (2010)

41. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering persistent kernel rootkits through sys-
tematic hook discovery. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008.
LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

42. Xiong, X., Tian, D., Liu, P.: Practical protection of kernel integrity for commodity os from
untrusted extensions. NDSS (2011)

43. Yang, J., Shin, K.G.: Using hypervisor to provide data secrecy for user applications on a per-
page basis. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE 2008, pp. 71–80. ACM, New York (2008)

44. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted path on com-
modity x86 computers. In: Proceedings of the IEEE Symposium on Security and Privacy
(May 2012)

https://forms.phoenix.com/whitepaperdownload-/docs/trustedcore_wp.pdf
https://forms.phoenix.com/whitepaperdownload-/docs/trustedcore_wp.pdf

Improving Trusted Tickets

with State-Bound Keys

Jan Nordholz1, Ronald Aigner2, and Paul England2

1 TU Berlin, Germany
jnordholz@sec.t-labs.tu-berlin.de

2 Extreme Computing Group, Microsoft Research
{ronald.aigner,paul.england}@microsoft.com

Abstract. Traditional network authentication systems like Windows’
Active Directory or MIT’s Kerberos only provide for mutual authenti-
cation of communicating entities, e.g. a user’s email client interacting
with an IMAP server, while the user’s machine is inherently assumed to
be trusted. While there have been first attempts to explicitly establish
this trust relationship by leveraging the Trusted Platform Module, these
provide no means to directly react to potentially relevant changes in the
client’s system state. We expand previous designs by binding keys to the
current platform state and involving these in the network authentication
process, thereby guaranteeing the continued validity of the attestee.

1 Introduction

As by now a TPM can be found in almost every contemporary desktop computer,
so has its adoption in security software become widespread. Chipset firmware,
OS loader programs and finally the OS kernel itself use it to log the respective
subsequent components of the boot chain into a verifiable log buffer, harddisk
encryption solutions like BitLocker[3] use it to seal their cryptographic material
once the booting process has finished, and remote attestation protocols use the
recorded system events and the platform state represented by the TPM’s regis-
ters to judge the trust to place into that system according to a certain policy.

Network authentication services, on the other hand, usually do not bother
with establishing a trust relationship with the system a client logs on from; in
fact – although this is an orthogonal observation and neither of the two features
strictly requires the other – most do not even identify the client host1. While
identifying the host may be undesirable or just unnecessary, garnering trust can
only be beneficial.

Especially in a corporate setting, where the IT department can exert tight
control over the tolerated configurations, trust in a client can be defined as the
combination of two assertions: first, that the client host is running an uncom-
promised operating system, and second, that the configuration of the system
remains inside a predefined subset of the configuration state space theoretically

1 Except for logging its purported identity, represented e. g. by its IP address.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 37–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 J. Nordholz, R. Aigner, and P. England

allowed by the OS. Our approach presents a TPM-assisted solution that al-
lows a service instance to gain reliable insights to both of these questions, while
at the same time integrating nicely into the well-known Kerberos network au-
thentication framework. We also elaborate on viable techniques for withdrawing
credentials given out based on these observations.

2 Background

The Trusted Platform Module was conceived as a vessel for placing trust into
a running system. Part of that trust relationship is that private parts of asym-
metric encryption keys never leave the TPM. A special asymmetric key is the
so-called Endorsement Key (EK), because it is endorsed by the manufacturer of
the TPM or the platform manufacturer. The endorsement comes in the form of
a certificate containing the public portion of the EK signed by the manufacturer.
For TPM 2.0 devices the EK is generated from a unique seed using a key tem-
plate. This process will always generate the same EK on a TPM, if the seed stays
the same. This EK itself, accompanied by its EK certificate, would suffice to sign
data and prove its uniqueness. However, on TPM 1.2 devices an EK cannot be
used to create signatures. Our solution should target the broadest set of TPMs,
so we used this limitations as a prerequisite. The one-to-one mapping between
EKs and hardware platforms has several benefits, e.g., it allows for the revoca-
tion of individual keys if their factorization becomes known. However, it comes
with the drawback of making platforms exposing their EK easily identifiable and
thus traceable.

To ameliorate this problem, the EK is used to establish trust in an additional
”pseudonymous” key, which is also non-exportable and therefore tied to the
platform it was generated on, but does not share the privacy concerns and usage
limitations of EKs. These Attestation Identity Keys (AIKs) are certified by a
certification authority (CA) based on the EK certificate presented together with
the AIK. The CA can inspect the EK certificate and the AIK public portion
and generate an activation challenge for the TPM. Only a TPM which possesses
both keys can decrypt the challenge. Part of the challenge is a secret, which can
be a symmetric key to decrypt the certificate for the AIK issued by the CA.
The AIK certificate can then be used to identify the AIK as originating from a
TPM[7]. The concept of AIKs allows to use different keys for different services,
which further protects users from cross referencing keys.

With this technique the exposure of the EK can be limited to a single trusted
service. As we are chiefly discussing corporate settings in our approach, this
seems like a reasonable assumption. For scenarios where this might not be desir-
able, there is also the option of engaging in a zero-knowledge protocol to prove
a platform’s authenticity[2]. Whichever protocol is used, further communication
partners of the platform can then trust a given AIK by virtue of a matching
signature by a ”privacy CA” instead of relying on the EK.

Another important property of a TPM are non-resettable Platform Configu-
ration Registers (PCR). A PCR can be extended through a trapdoor function,

Improving Trusted Tickets with State-Bound Keys 39

which takes as input the PCR’s previous value and a new value to incorporate
into the new PCR value. Because these non-resettable PCRs take a well-known
value only when the TPM is powered on and can only be extended after that,
the value of a PCR cannot be rolled back, only forward. The TCG defines 16
non-resettable PCRs for PC architectures. Most of these contain well defined
values, as specified in [8]. The BIOS of a PC will extend hashes of boot events
into the PCRs. The operating system loader and the operating system itself con-
tinue these measurements throughout the boot process. Such boot events include
hashes of all the binaries loaded and executed. In parallel the system keeps a log
of these events containing additional information, such as name of binary, size,
etc. Because the PCRs are non-resettable, they can be used to verify the integrity
of the TCG event log. Under the assumption that every stage of the boot chain
checks the validity (cryptographic signatures, soundness of configuration, etc.)
of the subsequent stage and writes the resulting measurement into the event log
and a hash into the PCRs, there is reliable proof that a certain boot chain has
been traversed. This ensures that even if a component of the chain is later found
to be malicious (due to a zero-day vulnerability), it cannot erase its presence or
alter its image to appear benign without creating a mismatch between log and
PCR values. Using a TPM-held asymmetric key (e. g. an AIK), the TPM can
then create and sign a ”quote” of the PCR values. This way trust in the AIK
certificate can be extended to the TCG event log.

A TPM may also create a key bound to the values of a selection of PCRs.
That key can only be used as long as the selected PCRs have the same values
used at the time of the creation of the key. Should one of the selected PCRs
change its value, the key is rendered useless. We call these keys PCR bound keys
or state bound keys.

3 Design

3.1 TPM-Based Protocol

Using the AIK signed PCR quote together with a TCG event log and AIK
certificate allows an attestor to successfully verify the integrity of the TCG event
log, tracing back the AIK to a cryptographic root of trust. However, the result of
this attestation process only applies to the very moment in time when the quote
was generated on the attestee – even while the examination of the attestor is
running, new entries might be added to the attestee’s event log. This would
alter the system state and possibly also its conformance level to the attestor’s
standards. Therefore the basic AIK based variant of this protocol (as described
in [11]) applies only to systems where there is little change in system state and/or
this problem is negligible.

While the pragmatic approach to this problem might be to simply reduce
the attack window by keeping the validity period of (possibly stale) attestation
certificates at a minimum, there is also a systematic solution using state bound
keys. At the cost of the generation of the state bound key, a platform can prove

40 J. Nordholz, R. Aigner, and P. England

at any time whether its state still matches the one which has been examined at
the time of the creation of the PCR quote.

The common remote attestation protocol can be easily extended to include a
new TPM-shielded state bound – ephemeral – key (EPH). Congruently to the
EK → AIK trust transition above, the TPM can issue a creation certificate,
which proves the basic characteristics of the EPH and is signed by the AIK. If
this data is supplied to the attestation service, it can compare the quoted set
of PCRs with the system state to which the EPH has been bound. If the two
match, the EPH can then serve as an unforgeable proof of the client’s system
state.

This approach completely eliminates the need for an explicit validity period
on the attestation certificate – it is valid as long as the EPH bound to it can be
used and as the attestor trusts the components running on the system. However,
the chosen method is of course unable to protect against unknown vulnerabili-
ties and the ensuing possibility of memory-resident malware; however once the
vulnerable component is identified, systems which have loaded (and therefore ex-
ecuted) a vulnerable version of this specific component can be denied attestation,
effectively forcing them to upgrade to a safe version and to reboot.

All this requires that every significant change in system state actually renders
the EPH unusable. Changes on the OS layer, such as subsequent loading of
additional code modules is discussed in detail in related work[12,5]. Depending
on the scenario there can be other forms of system state changes which should be
considered significant, e. g., changes to the system code libraries. If an attestor
trusts a system configuration it can also establish trust in the policy enforced
on the attestee, which will change the PCRs if a known significant event occurs.
This policy enforcement is technically trivial, as all necessary API elements2 are
available on today’s major operating systems. The attestee can run a ”watchdog”
service, which enforces the requirements of the attestor.

Due to this scenario-dependent definition of the system state space, we have
expanded the basic remote attestation protocol to allow the attestation service
to push a list of state inspection requests to the client. These checks can be
instantaneous, meaning that the results should be transmitted as part of the
system quote, or continuous, i. e. changes to the requested property should be
constantly monitored by the watchdog and EPH should be revoked (by extending
a PCR and logging the event) if a property leaves the defined ”safe state space”.

These additional checks allow for easy determination of system configuration
like the version of the operating system, the patchlevel of core libraries or the
state of vital system services. As a side effect this also defeats the common
”proxy” attack: the possibility for an attacker to have all TPM operations exe-
cuted on a third, clean machine in order to make his own compromised machine
appear innocuous can be thwarted by simply including a check that asks for the
attestee’s hostname or network interface configuration. If an attacker is acting

2 This includes registering file system directories for kernel notifications, communicat-
ing with the TPM from userland – on Windows monitoring the System Registry is
advisable, too.

Improving Trusted Tickets with State-Bound Keys 41

as man-in-the-middle, the answer will not match the client address as seen by
the attestation daemon.

3.2 Kerberos Integration

The Kerberos authentication framework and its surrounding ecosystem of glue
libraries (libsasl, libgssapi etc.) have become the de-facto standard for large-scale
authentication settings in Unix-based networks. While its definition, conventions
and API designs span more than a dozen RFC documents, its basic messages are
comparatively simple and easily extensible. At the heart of the protocol lie the
message exchanges between client and Authentication Service (AS) and between
client and Ticket Granting Service (TGS). The former establishes the client’s
identity by issuing a long-lived Ticket Granting Ticket (TGT) encrypted to the
user’s pre-shared key (more commonly the ”password”), the latter can be re-
quested to hand out tickets for individual services, provided that an appropriate
permitting TGT can be presented.

The flow of information in both directions can be extended by supplying op-
tional data in generic holes of the protocol which have been designed explicitly
for this purpose. Requests allow for additional ”preauthentication” data to be
supplied, and returned tickets can be constrained to specific use cases or circum-
stances by filling in the so-called (and somewhat mis-named) ”authorization”
element.

The idea of integrating the additional trust gained by a remote attestation
certificate into the Kerberos protocol leads to the fundamental question at which
point the additional information should be fed into the protocol. Theoretically
all three entry points (AS / TGS / kerberized service) would lead to a valid
combination – we have consciously chosen the second approach in our design for
the following reasons:

– As the attestation certificate includes EPH, including it into the request to
the AS would mean that the TGT was bound to EPH, too. This breaks the
Single Sign-On property of the Kerberos protocol, as the AS exchange would
have to be repeated (and therefor the user’s password reentered) whenever
EPH expires.

– Establishing the TPM-based trust into the client includes many checks which
do not actually involve the client interactively: verifying the RSA signature
on the attestation certificate against the well-known attestation service key,
parsing of contained policy compliance statements, unpacking of EPH mod-
ulus etc. These could be performed by each kerberized service individually –
we deemed it more suitable to keep these operations inside the KDC instead
of the server-side Kerberos libraries.

The only part of the proof which still has to be performed by the actual kerber-
ized service is then a signature by the key EPH on a nonce chosen by the server.
In order to keep the protocol backwards-compatible with standard Kerberos im-
plementations, this requires an additional pair of messages to be exchanged after
the service ticket itself has been presented and validated.

42 J. Nordholz, R. Aigner, and P. England

4 Implementation

The network service components of our scenario do not depend on a specific
hardware configuration or feature set and they implement little new functionality
beyond the well-established roles in the Remote Attestation protocol. We have
therefore opted to build the Privacy CA and the Attestation Service as small
standalone C� applications with only several hundred lines of code each.

The attestation client has been implemented on top of the TSS API as speci-
fied by the TCG[9]. Our Windows implementation uses the primitive operations
provided by the recent tpm.sys kernel driver[4], whereas our Linux implemen-
tation uses the full TSS interface as provided by the TrouSerS tcsd daemon[1].

Finally, we have made small changes to the MIT Kerberos implementation
and the GSS-API library to add our attestation components, thereby replacing
about 200 lines and adding another 350, spread out over 12 files. The changes
consist of the following logical items:

– inclusion of attestation certificate in TGS request
– inclusion of certificate in returned TGT
– introduction of a new GSSAPI context flag representing TPM-based trust
– protocol extension: extra message pair containing EPH signature
– creation and verification of extra message pair
– implementation of above concepts in GSS sample applications3

Fig. 1. Protocol visualization. Note that the AS exchange and the remote attestation
can be completed in arbitrary order, as they do not depend on each other

We will now describe each part of the protocol (cf. also figure 1). TPM op-
erations as defined in version 1.2 of the TPM Specification[10] are typeset in
italics.

3 This alone accounts for nearly 50% of the whole patch set.

Improving Trusted Tickets with State-Bound Keys 43

1 communication with Privacy CA
1a The client connects to the Privacy CA, creates an AIK bound to a nonce

chosen by the CA (TPM CreateIdentity), and transmits the activation re-
quest.

1b The PCA validates the properties of the AIK, the soundness of the EK and
the signature, and replies with an activation blob which is decrypted by the
client using TPM ActivateIdentity and stored for later use.

2 remote attestation
2a The client connects to the attestation service and receives a nonce and a list

of system checks.
2b The client determines the current system state by repeatedly calling TPM -

PCRRead and finally generates an ephemeral key EPH bound to the de-
termined set of PCR values by executing TPM CreateWrapKey. In the rare
case of a change in PCR state during this operation, the step is repeated.

2c The client links EPH to AIK by executing TPM CertifyKey2.
2d The client performs the requested checks on its state.
2e The client generates a quote on the current system state through TPM -

Quote2, using EPH as the signing key and the combination of the TCG
bootup event log, the log of accumulated system state change events and
the results of the requested instantaneous system checks as ”external quote
data”.

2f The client transmits the quote, the actual log data and check results, the
required public key material to verify the signatures and the PCA certificate
from step 1 back to the attestation daemon.

2g The attestation daemon verifies the trust chain, assesses the client’s bootup
chain, its history of monitored events and its responses to the requested
checks and determines its compliance to a set of pre-defined policies (e. g.
”Win8 patchlevel 2013/01/01” or ”Ubuntu Lucid”).

2h The daemon issues an attestation certificate that ties EPH to the determined
list of fulfilled policies and transmits it to the client.

3 Kerberos protocol
3a During sign-on, the client obtains a regular TGT from the AS.
3b While trying to obtain a ticket for a particular kerberized service, the client

checks for the presence of a valid attestation certificate. If one is found, the
client includes it as preauthentication in its request to the TGS.

3c The TGS performs validity checks on the included certificate and stores a
parsed version (which still includes the list of policies and the public part of
EPH) as an authorization element in the resulting service ticket.

3d The client connects to the kerberized service, presents its ticket and indicates
that additional operations to establish TPM-based trust are desired.

3e The service issues a nonce.
3f The client executes TPM Sign on the nonce, thus producing an SS INFO

signature of it using EPH as the key, and transmits the result. Note that
the attestation service has to verify that EPH’s key properties specify the
TPM SS RSASSAPKCS1v15 INFO signature scheme. Otherwise it would

44 J. Nordholz, R. Aigner, and P. England

be possible to create and sign a message with EPH which is indistinguishable
from a system quote – a problem particular to this specific protocol, as AIKs
are explicitly forbidden to engage in TPM Sign operations.

3g The service verifies the signature using the public part of EPH and is then
able to grant additional privileges according to the set of policies the client
is now proven to fulfil.

Several parts of this protocol can be easily optimized. Step 1 does not have to
be repeated at all if the AIK is persistently stored on the client – it may only
be desirable in order to change the platform’s pseudonym for the later stages,
and doing so is possible at all times because a change in AIK does not invalidate
already issued attestation certificates.

EPH on the other hand has to be generated at least once per bootup due to
its dependency on the PCR values. As TPM Sign is the only primitive crypto-
graphic operation exposed by the TPM interface, it is impossible to tie the key
closer into the establishment of the TLS context. If the system state changes and
EPH becomes unavailable, existing connections which have been created through
the above protocol will continue to work if they are not torn down explicitly.
This is no technical challenge however, as the expiration of EPH has been caused
by an extension of a PCR value, which can only have been issued by the OS
or the userland component of our aforementioned policy watchdog: this daemon
can also communicate this event to all processes which have running EPH-based
network connections.

5 Evaluation

Our protocol incurs only modest overhead and has almost no surprising factors
compared to regular incarnations of remote attestation. Measurements of boot
components vary between 10 and 60 ms each (mainly dependent on the TPM
model), so assuming a number of about 100 components – which represents a
typical Windows7 installation; typical Linux installations tend to have less –
yields a total slowdown for a cold boot of just a few seconds.

Due to the infrequent need for fresh RSA key pairs, these requests are usually
satisfied by the key pregeneration cache of the TPM and thus do not incur an
additional delay. The remote attestation protocol therefore completes in about 4
seconds (privacy CA) and 5 to 7 seconds (attestation service), depending on the
length of the transmitted TCG log and the list of requested system checks. Our
experiments indicate further that, once a system has performed its initial boot
up and loading of additional driver modules has completed, the configuration
of the system remains stable if a few basic optimizations are applied (e. g. the
generation of additional PCR events for repeated loading and unloading of iden-
tical instances of the same driver module is suppressed). This holds true even
if additional aspects of system configuration are being monitored, like watching
core keys of the Windows Registry or the contents of /lib on a Linux installa-
tion. These only change during system upgrade procedures or deliberate system

Improving Trusted Tickets with State-Bound Keys 45

reconfiguration by an administrator, in which cases the penalty of regenerating
a TPM RSA keypair and repeating the attestation process seems admissible.

The only unique delay introduced by our protocol is the TPM Sign operation
on the nonce during the initialization of the GSSAPI session. Our measurements
indicate an average duration of about 2.5 seconds per connection attempt –
however this operation is only executed after the service ticket has been presented
and both parties have agreed to engage in the ”upgraded” handshake method,
so this time is never wasted.

6 Conclusion, Future Work

The designed protocol extensions to the Kerberos framework allow for a con-
venient integration of hardware-based trust certificates, thus allowing network
services to include this new trust dimension into the authentication process.
Next steps may include extending the scenario to support mutual authentica-
tion, or to integrate TPM-shielded RSA keys into an adaptation of the Kerberos
PKINIT extension (cf. [13]). Finally, the use of state-bound keys is not restricted
to Kerberos, e. g. Goldman et al.[6] describe an approach to link TPM based at-
testation to SSL certificates. Their implementation differs in the reversed model
(the service attempts to prove its validity to a client) and their reliance on
short certificate expiration times and instantaneous certificate revocation by the
watchdog, but is quite similar with respect to melding the current system prop-
erties into a TPM-bound health certificate. Combining and further exploring
these techniques may provide valuable insights.

References

1. TrouSerS - the open-source software stack, http://trousers.sourceforge.net
2. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-

ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132–145. ACM, New York (2004),
http://doi.acm.org/10.1145/1030083.1030103

3. Corporation, M.: TPM and BitLocker drive encryption,
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487306.aspx

4. Corporation, M.: TPM platform crypto-provider toolkit,
http://research.microsoft.com/en-us/downloads/

74c45746-24ad-4cb7-ba4b-0c6df2f92d5d/default.aspx

5. Corporation, M.: Secured Boot and Measured Boot: Hardening Early Boot com-
ponents against malware. Tech. rep., Microsoft Corporation (2012)

6. Goldman, K.A., Perez, R., Sailer, R.: Linking Remote Attestation to Secure Tunnel
Endpoints. IBM Technical Paper (2006),
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c

......85256b360066f0d4/fb0d5a04296a0bee852571ff0054f9fb

7. Group, T.I.W.: A CMC profile for AIK certificate enrollment. Tech. rep., Trusted
Computing Group (2011)

8. Group, T.P.C.W.: TCG PC client specific implementation specification for conven-
tional BIOS. Tech. rep., Trusted Computing Group (2012)

http://trousers.sourceforge.net
http://doi.acm.org/10.1145/1030083.1030103
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487306.aspx
http://research.microsoft.com/en-us/downloads/74c45746-24ad-4cb7-ba4b-0c6df2f92d5d/default.aspx
http://research.microsoft.com/en-us/downloads/74c45746-24ad-4cb7-ba4b-0c6df2f92d5d/default.aspx
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c......85256b360066f0d4/fb0d5a04296a0bee852571ff0054f9fb
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c......85256b360066f0d4/fb0d5a04296a0bee852571ff0054f9fb

46 J. Nordholz, R. Aigner, and P. England

9. Group, T.C.: TCG Software Stack (TSS) Specification Version 1.2 level 1. Tech.
rep., Trusted Computing Group (2007),
http://www.trustedcomputinggroup.org/files/resource files/

6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS 1 2 Errata A-final.pdf

10. Group, T.C.: TPM main specification level 2 version 1.2 revision 116. Tech. rep.,
Trusted Computing Group (2011),
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

11. Leicher, A., Kuntze, N., Schmidt, A.U.: Implementation of a trusted ticket system.
In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 152–163.
Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-01244-0_14

12. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium, pp. 223–238. ACM (2004)

13. Zhu, L., Tung, B.: Rfc4556: Public key cryptography for initial authentication in
kerberos (PKINIT) (2006),
http://tools.ietf.org/html/rfc4556

http://www.trustedcomputinggroup.org/files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS_1_2_Errata_A-final.pdf
http://www.trustedcomputinggroup.org/files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS_1_2_Errata_A-final.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://dx.doi.org/10.1007/978-3-642-01244-0_14
http://tools.ietf.org/html/rfc4556

Group Signatures on Mobile Devices:

Practical Experiences

Klaus Potzmader1, Johannes Winter1, Daniel Hein1, Christian Hanser1,
Peter Teufl1, and Liqun Chen2

1 Institute for Applied Information Processing and Communications,
Inffeldgasse 16a,

8010 Graz,
Austria

klaus.potzmader@student.tugraz.at,
{johannes.winter,daniel.hein,chanser,peter.teufl}@iaik.tugraz.at

2 Hewlett-Packard Laboratories,
Long Down Avenue, Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom

liqun.chen@hp.com

Abstract. Group signature schemes enable participants to sign on be-
half of a group in an anonymous manner. The upcoming ISO20008-2
standard defines seven such schemes, which differ in terms of capa-
bilities, used crypto systems and revocation approaches. Further infor-
mation about practical considerations, such as runtime performance or
implementation overhead is considered useful when deciding for a cer-
tain scheme. We present a Java framework that allows for a detailed
comparison of the mechanisms, of which three are already implemented.
For these implemented mechanisms, a detailed performance evaluation
is shown for both a notebook and Android-based mobile devices. Fur-
thermore, significant experiences during implementing and evaluating
the schemes as well as crucial bottlenecks are pointed out. We remain
in the flexible Java environment, without special platform-specific opti-
mizations. Using precomputation, we already achieve acceptable online
signing timings. Signing times are considered most important given pro-
posed application scenarios.

Keywords: Group signatures, performance evaluation, mobile devices,
list signature scheme, DAA, e-voting, attestation, e-payment, Android,
Java.

1 Introduction

Group signature schemes as first introduced by Chaum and van Heyst [17] allow
participants to sign messages on behalf of a group in an anonymous manner. The
signature scheme ensures to a verifier by cryptographic means that the signer is
indeed a valid member of such a group, but does not reveal the specific signer’s

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 47–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

48 K. Potzmader et al.

identity. The anonymity resides in the verifier not knowing what exact member
actually signed the document. The degree of anonymity thus strongly depends
on the group size.

Group signatures have many interesting applications, such as e-voting [16],
e-bidding [21], online payment [29] or anonymous attestation [9]. Many of the
above use-cases would additionally benefit from mobile usage. Mobile usage re-
quires efficient implementations on mobile devices, such as mobile phones. Even
with the advent of computationally powerful smartphones, implementing group
signature schemes with reasonable security and response times is still a challenge.
Group signatures are based on cryptographic algorithms which are considerably
more complex than schemes that use a single public key per entity. The problem
is only exacerbated by the sheer number and variety of different group signature
schemes that have been proposed. Often these schemes are based on different
cryptographic approaches, such as RSA or elliptic curve cryptography (ECC). In
an effort to alleviate the above problems, ISO/IEC have proposed the ISO20008-
2 [24,25] standard, which is currently a Draft International Standard (DIS) and
undergoing public review.

In this paper, we present an evaluation of three different group signature
schemes. All three mechanisms are part of the ISO20008-2 standard [25]. The
first mechanism is a scheme for e-voting, proposed by Canard et al. [16]. It is
designed to enable anonymous ballots, whilst still being capable of detecting
double-voting without de-anonymizing the voter. ECC-DAA, the second mech-
anism we analyze, was originally introduced by Chen et al. [20] and is designed
for the upcoming Trusted Platform Module (TPM) 2.01 specification. Used in
conjunction with a TPM, ECC-DAA allows users to prove a specific load-time
software state to a remote entity, called attestation. The remote verifier is thereby
not able to identify the user, but can be sure that the platform report originates
from a valid TPM. The final mechanism, the scheme by Isshiki et al. [23] gears
towards using group signatures for identity management. Labels which uniquely
define a specific group member shall be masqueraded behind a credential that
represents the group as a whole. Therefore, a verifier does not learn any specifics
about an enquiring member, only whether it is a valid member of a group or
not.

The goal of our evaluation is to determine the applicability of those schemes
for use on mobile devices. To achieve this, we have implemented a Java based
framework for evaluating group signature schemes. We have designed the frame-
work to be flexible enough to encompass the different cryptographic approaches
of the three mechanisms, while also providing the common cryptographic prim-
itives used by some of the three mechanisms. We have chosen Java because of
its wide use in mobile phones based on Google’s Android2 operating system.
Furthermore, it allows for detailed comparisons without platform-specific opti-
mizations, thus providing a generalized overview.

1 http://www.trustedcomputinggroup.org/resources/

trusted platform module specifications in public review
2 http://www.android.com/

http://www.trustedcomputinggroup.org/resources/trusted_platform_module_specifications_in_public_review
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_specifications_in_public_review
http://www.android.com/

Group Signatures on Mobile Devices: Practical Experiences 49

Our framework can be extended to implement more than the three mecha-
nisms we compare in this paper. Additionally, we have organized the framework
to abstract cryptographic primitives from existing implementations in the Java
runtime. The reason for this abstraction is ability to replace cryptographic prim-
itives with different implementations both in Java and C and thus to evaluate
their efficiency. Finally, we make most of the framework publicly available under
an open source license3.

In addition to just evaluating the schemes against each other, we also consider
aspects such as optimization for a specific use case. For example, all steps for
ECC-DAA can be precomputed if the use case requires total anonymity.

The paper is organized as follows. In Section 2, the properties, components
and revocation approaches of group signature schemes are discussed in general.
Moreover, the implemented schemes are summarized and compared. Section 3
provides a detailed comparison regarding runtime and memory usage of the
schemes, both on a notebook and on mobile devices. In Section 4, these results
are put into the context of other evaluations by merging them in a table. A
summary of the results and future work aspects are given in Section 5.

2 Background

In the following, group signature schemes are discussed in a broader view, incor-
porating the related concepts of so-called list signature schemes and attestation.

Group signature schemes strive to fulfill the properties Soundness and Com-
pleteness, Anonymity, Unforgeability, Traceability, Coalition Resistance, Non-
Frameability and Unlinkability as defined by Chaum and van Heyst [17] and
extended by Bellare et al. [5, 6]. Note that opening is generally considered a
mandatory feature for group signature schemes and linking is usually unde-
sirable [17]. However, scenarios such as electronic voting have shown uses for
types of schemes where opening is less critical and conditional linking is desir-
able to detect double usage. Canard et al. label these schemata as list signature
schemes [16]. Therefore, traceability and unlinkability are considered optional
features in this case to incorporate both attestation and list signature schemes.
List signature schemes additionally require that adversaries can at most produce
one valid signature per linking indicator and corrupted member. Any additional
signature would cause the adversary to be either detected or to reveal the identity
of the corrupted member.

Scheme Processes. Group signature schemes are comprised of the following in-
dividual processes:

– Group Establishment. The group is initially set up. That is, its public
key and the corresponding group membership issuing key are created. The
creating instance, now holding the membership issuing key, is called issuing
authority.

3 Available at https://github.com/klapm/group-signature-scheme-eval

https://github.com/klapm/group-signature-scheme-eval

50 K. Potzmader et al.

– Joining. New members get added to the group. This is done by a joint
computation of the applicant and the issuing authority in a way that the
private key of the applicant remains secret. The issuing authority issues a
membership credential to complete the join process.

– Signing. Valid members are able to sign documents. Signatures depend on
both the private key and the membership credential, but do not reveal any
of them in a computationally feasible way.

– Verification. Using the group public key, a verifier is able to tell whether
a given signature was issued by a valid member of the group.

– Revocation. Existing members are being excluded from the group. Revoked
members can no longer sign on behalf of the group. This can be achieved in
several ways, which are discussed below.

– Opening. Optional, depending on whether the scheme supports opening. A
separate authority, the so-called opening authority is installed, able to open
signatures and thus reveal the specific identity of a signature’s author.

– Linking. Optional, only applicable if linking is supported and enabled.
Given two signatures, any stakeholder is able to tell apart whether these
signatures were created by the same author.

Revocation. A challenging task for group signature schemes is to remove exist-
ing members without affecting the workings of the group as a whole. Several
approaches appear throughout the literature [19, 24], all of which have advan-
tages and disadvantages:

– Private Key Revocation. A compromised private key of a group member
is added to a list of no longer valid keys. Verifiers, given a signature, are
able to determine whether the signature was created using such a key. If the
revocation list stores both the private key and the associated member id,
a revocation check might immediately reveal the identity of the otherwise
anonymous signer if her key was revoked before. Depending on where this
list is stored and who has access to it, revocation can either be global, that
is affecting all verifiers or local, per verifier [9].

– Blacklist Revocation. Blacklist revocation is typically a local revocation,
in which a verifier stores a list of no longer valid signatures. Given a new
signature, the verifier is then able to determine whether this new signature
was created by either a blacklisted or still valid author [9].

– Signature Revocation. Signature revocation has the same effect as black-
list revocation, but uses a different approach to achieve it. With signature
revocation, revoked signatures are kept in a list as well. A verifier then re-
quires additional proof from the signer, showing that she is not the one who
created any signatures on that list to accept her signature. Naturally, this
approach impacts the overall verification performance. Signature revocation
can be a local or global revocation, depending on where the list is stored and
who has access to it [10].

– Credential Revocation. In this scenario, the membership credentials of
revoked members are stored in a list. Signers might then be required to prove

Group Signatures on Mobile Devices: Practical Experiences 51

that their credential is not on that list. This proof is typically done implicitly,
such that non-revoked signers prove their credibility by being able to still
produce valid signatures. This mechanism is also referred to as credential
update or re-keying and usually involves an update of the public key and
membership credentials. Existing signers who are supposed to keep their
membership are notified with means to update their membership credential
when another member is about to be dismissed. Since the credential of the
leaving member gets outdated, she is no longer able to participate. Credential
revocation is a global revocation. Note that credential update invalidates
existing signatures, as existing signatures will no longer verify when using
the newly created public key [8, 14].

The implemented schemes are briefly explained in the following subsections, and
their relevant properties are summarized for comparison in a table below.

2.1 Canard et al.

The first implemented scheme is the list signature scheme proposed by Canard et
al. [16]. We will refer to it using its authors as name. List signature schemes sup-
port linking signatures as long as they are tagged with the same value. Following
the author’s original description, a tag is typically a time frame in which no two
signatures are allowed, e.g., a voting period. Linking two signatures can be done
by every stakeholder, without the need for any secret, called public detection
by the authors. If two signatures were created using different tags, linkability is
computationally infeasible.

The author’s proposed scheme is based on work by Ateniese et al. [2] and
supports multiple revocation processes, namely private key revocation, both lo-
cally and globally, and blacklisting. The scheme’s security is based on both the
strong RSA and the decisional Diffie Hellman (DDH) assumptions (cf. Section
2 in [16]).

2.2 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) was originally introduced by Brickell et
al. [9] as a mechanism to remotely authenticate a trusted platform in a privacy-
preserving way. It is intended to be used in conjunction with a Trusted Platform
Module4 (TPM) and, therefore, strictly splits the signing party into a compu-
tationally powerful assistant signer and a less powerful principal signer, the
smaller TPM chip. While it differs in its purpose, it is similar to the previously
described list signature scheme when comparing at a property level. DAA also
supports linking, given the signatures were crafted using the same linking base,
a generalization of what has previously been called tag.

For this work, the pairing-based ECC-DAA variant, as proposed by Chen et
al. [20], was implemented using Barreto-Naehrig [3] curves. It was designed for
the Trusted Computing Group5 (TCG) and is now included in the TPM 2.0

4 http://www.trustedcomputinggroup.org/developers/trusted_platform_module
5 http://www.trustedcomputinggroup.org

http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org

52 K. Potzmader et al.

specification. As we do not utilize a TPM in this setting, the strict split-up
between assistant and principal signer was omitted and both components are
merged into one signing party.

The ECC-DAA variant is most flexible in terms of revocation, supporting pri-
vate key revocation, signature revocation, both either locally or globally, black-
listing and credential update. It is provably secure under the DDH, Lysyanskaya-
Rivest-Sahai-Wolf (LRSW) and static Diffie-Hellman (SDH) assumptions, see
Section 1 in [20].

2.3 Isshiki et al.

The third implemented scheme was introduced by Isshiki et al. [23] and is an
adaption of the Camenisch-Groth scheme [13], enabling faster revocation. The
scheme is RSA-based and supports opening, with the opening capability built
on top of an additional elliptic curve group.

In this scheme, the opening authority is entirely separated from the issuing
authority. The issuing authority holds the secret membership issuing key, which
corresponds to the group’s public key. The opening authority holds another
secret, called group membership opening key. Its counterpart is the so-called
group opening key and yet another public key for the group. To achieve this
setup, both authorities are involved during the initial group establishment. The
scheme supports credential update as revocation mechanism and is secure under
the strong RSA and DDH assumptions, see Section 4.2 in [23].

2.4 Comparison Summary

The properties of the three implemented schemes are summarized in Table 1.
The reason for choosing these three schemes is that they vary in both their goals
and their construction. The intention is to gain a principal overview of the three
schemes, and measurements that are roughly mappable to related schemes based
on similar principles. For example, schemes such as the one’s described in [2,13].

Table 1. Scheme comparison

Scheme Optional Openable Crypto- Intractability Revocation Support
Linkability System(s) Assumptions CU PKR BL SR

Canard et al. � RSA
Strong RSA, � �
DDH

ECC-DAA � ECC, DDH, LRSW, � � � �
Pairings SDH

Isshiki et al. � RSA, Strong RSA, �
ECC DDH

CU: Credential Update, PKR: Private Key Revocation, BL: Blacklisting, SR: Signature Revocation

Group Signatures on Mobile Devices: Practical Experiences 53

3 Results and Evaluation

Performance measurements regarding both runtime and memory were gathered
on an off-the-shelf notebook as well as on multiple mobile devices. Concerning
the mobile scenario, especially signing is critical. Signing and verifying denote
regular tasks, whereas group creation and joining are sporadic, if not one-time
events. In mobile scenarios, these two operations have to perform sufficiently fast
in time-constrained settings, for example when placing an order using the mobile
phone. Therefore, the presented analysis concentrates on these two operations.

Before presenting concrete measurements, the framework and test setup are
described. Furthermore, we emphasize that we conducted all tests without active
revocation, even though the framework supports it. After discussing the actual
results, we conclude this section with the key lessons we learned.

3.1 Framework

All evaluated group signature schemes are embedded in a common framework
and use the same implementation of cryptographic primitives. The framework’s
purpose is to provide a flexible environment for performance measurement and
future extension, but it is limited to the task of comparing individual schemes.
Therefore, we did not implement standalone components and message passing
is done entirely locally by simple method invocations. Hence, the measurements
do not include network communication overhead.

The framework is written in pure Java and does not rely on any external
libraries. The same code base runs on both Java Standard Edition and Android
without requiring any special adjustments. The group signature schemes are uni-
fied under a common interface and the surrounding evaluation code is the same
for all concrete implementations. The implementation supports all necessary op-
erations, including revocation mechanisms, but focus was put on measurements
for signing and verification. As a consequence, sub-protocols such as proving the
knowledge of a discrete logarithm in the scheme of Isshiki et al. were omitted.

The pairing map, as required by ECC-DAA, is essentially a Java port of
the Optimal Ate Pairing C implementation6 provided by Beuchat et al. [4]. We
ported the version of January 2013 from Beuchat et al., which in turn benefited
from insights gained by Aranha et al. [1]. Porting from an assembler-optimized C
implementation to an interpreted language, such as Java, has various drawbacks
regarding runtime performance. Some of the optimizations have to be abandoned
and choosing Java comes with further performance impacts, such as just-in-time
compilation and garbage collection. These circumstances leave us at considerably
slower timings of about 7ms for a single pairing evaluation, compared to about
0.5ms of the original C version, measured on the same notebook. Nevertheless,
Java was chosen to allow for general comparability of the schemes by disregarding
platform-specific optimizations and to allow easy portability.

6 Available at http://homepage1.nifty.com/herumi/crypt/ate-pairing.html

http://homepage1.nifty.com/herumi/crypt/ate-pairing.html

54 K. Potzmader et al.

3.2 Test Setup

The notebook case tests were performed on a Lenovo ThinkPad T420s notebook,
equipped with an Intel i7-2620M CPU at 2x2.7GHz and 8GB of RAM using
Windows 8 x64 and Java 1.7.0 11, 64 bit. For the mobile case, different devices
were used during the evaluation. The devices and their relevant specifications
are listed in Table 2.

Table 2. Devices used for the evaluation

Device
Galaxy Nexus Galaxy S Galaxy S3
i9250 Plus i9001 GT-I9300

Manufacturer Samsung Samsung Samsung

Operating System Android 4.2 Android 2.3.6 Android 4.0.4

CPU
2x1.2GHz ARM 1.4GHz ARM 4x1.4GHz ARM
Cortex-A9 Cortex-A9 Cortex-A9

System-on-Chip Texas Instruments Qualcomm Snap- Samsung Exynos
OMAP 4460 dragon S2 MSM8255 4412

Memory 1024MB 1024MB 1024MB

The shown evaluations are not always directly comparable due to the differ-
ent crypto-systems. In fact, a key length of 256 bit in ECC-DAA implies 128
bit security strength. The schemes by Canard et al. and Isshiki et al. evalu-
ate to 112 bit security strength at a parameterization with a modulus length
of 2048 bit. Security strength in this context denotes the number of operations
required to break a cryptographic algorithm, specified in bits; so 80 bit secu-
rity strength means at least 280 required operations. Table 3 summarizes the
evaluated parameterizations, of which all except the 80 bit setup of Canard et
al. are recommended choices by the ISO20008-2.2 draft standard. Note that the
value lp at the scheme by Canard et al. refers to a single factor of the composite
modulus. For details on these parameters, we refer the reader to the ISO20008-2
draft [25] or the original sources [16, 20, 23]. The following results will refer to
these setups using the modulus length as indicator.

All measurements were conducted without a revocation mechanism in place.
Enabling revocation when evaluating the schemes adds numerous additional pa-
rameters, such as the group size or the specific revocation approach used. The
different revocation approaches are hardly comparable, with strong dependencies
on either the group size or the number of already-revokedmembers. Furthermore,
the introduced revocation approaches are not always influencing the verification
time. For example, signature revocation might influence signing, and credential
update is an entirely separate process. Considering these differences, we decided
to exclude revocation from the evaluation, despite its impact for practical pur-
poses. However, the framework supports revocation, so revocation experiments
can be carried out as well.

Group Signatures on Mobile Devices: Practical Experiences 55

Table 3. Scheme security comparison

Scheme Canard et al. ECC-DAA Isshiki et al.

Parameterization lp = 512 lp = 1024 t = 256 Kn= 1024 Kn= 2048
k = 160 k = 160 p = |256| K = 160 K = 224
lx = 160 lx = 160 Kc= 160 Kc= 224
le = 170 le = 170 Ks= 60 Ks= 112
lE = 420 lE = 420 Ke= 504 Ke= 736
lX = 410 lX = 410 K′

e= 60 K′
e= 60

ε = 5/4 ε = 5/4
Security Strength 80 bit 112 bit 128 bit 80 bit 112 bit

3.3 Runtime

The following data was gathered by averaging the single processes over 100 iter-
ations. The mean values are explicitely shown, whereas the standard deviation is
only indicated using error bars. Signing was computed using a different message
per sign operation, though within the same group. Verification was also varied
in terms of message and signature.

Runtimes are split into the notebook and mobile cases. The mobile case is dis-
cussed in more detail, including precomputation. Parts of the signature, which
do not depend on the message can be precomputed, such that the online sign-
ing time is further decreased. Additionally, if optional linkability is disabled in
ECC-DAA and in the scheme by Canard et al., then most of the signature at-
tributes are precomputable. We will leverage this ability by shifting workload to
a precomputation phase.

Furthermore, we measured the runtimes with two different primitive arith-
metic implementations for elliptic curve cryptography, namely the default
java.math.BigInteger, denoted BigInteger from now on, and a custom imple-
mentation, denoted custom. There were particular reasons for choosing another
underlying implementation, which will be discussed later on.

Notebook. Runtimes for signing and verifying on a notebook-like environment
are given in Figure 1. We can see that the parameter length and, thus, the length
of the internally used values roughly dictates the runtimes. In this setting, ECC-
DAA outperforms the schemes by Canard et al. and Isshiki et al. It is faster
in both signing and verifying and provides higher security strength at the same
time. Indeed, all schemes are fast enough to be used out of the box, with no
measurement exceeding 335ms. There are only small differences between the
two used arithmetic implementations, with the custom one being marginally
slower.

Mobile Device. On Android, a different picture emerges. The same implemen-
tation, deployed as an app, results in the signing times as depicted in Figure 2.
We can see that there is not just simple upscaling in place, resulting from the

56 K. Potzmader et al.

Fig. 1. Signing and verifying, notebook case

limited computational power of the devices. Contrary to the notebook case, the
non-ECC scheme by Canard et al. does no longer exceed the runtimes of the
other two schemes that much. Furthermore, we see stronger differences between
using Java’s default BigInteger and the custom implementation.

Before discussing the reasons of these runtime effects, we show the achieved
online times when utilizing the fact that certain parts of the signatures are
precomputable.

Fig. 2. Signing without precomputation, mobile case

Precomputation. ECC-DAA and the scheme by Canard et al. support optional
linkability by computing a linking base into the signature, given that linkability
is desired and the verifier shall be able to provide the linking-base at sign time.
In this scenario, only those parts of the signature not depending on either the

Group Signatures on Mobile Devices: Practical Experiences 57

message or the linking base can be precomputed. We refer to this case using the
term partial precomputation.

If linkability is not required in a certain use case, it can be disabled by setting
the linking base to a constant value. Here, almost the whole signature is pre-
computable, thus vastly decreasing the online signing time. This will be called
full precomputation from now on.

The scheme by Isshiki et al. does not support linking, but allows for exten-
sive precomputation as well, referred to as plain precomputation. Figure 3 is a
comparison of the evaluated schemes using partial (PPC) as well as full (FPC)
precomputation for ECC-DAA and the scheme by Canard et al., and precom-
putation (PC) for the scheme by Isshiki et al.

Fig. 3. Signing with precomputation, mobile case

ECC-DAA with partial precomputation leaves three point multiplications for
the online signing phase, whereas seven out of seven can be precomputed in case
linkability is not needed. The gap between precomputations is smaller for the
scheme by Canard et al., where the difference is essentially one hash computa-
tion and three modular exponentiations. Precomputing the signature for Isshiki
et al. reduces the needed operations at signing time to one hash computation as
well as five additions, multiplications and reductions. Given the differing com-
plexity in the remaining operations, the shown gap in runtime is reasonable.
With full precomputation, the ECC-DAA workload is reduced to a single hash
computation as well as one plain additon, multiplication and reduction.

Verification. As depicted in Figure 4, the notebook results are almost inverted.
As in the mobile signing setting, ECC-DAA and the scheme by Isshiki et al. are

58 K. Potzmader et al.

considerably slower than the scheme by Canard et al. Again, this partially stems
from implementation issues when using elliptic curve cryptography. However,
verification is a less critical factor regarding mobile device performance when con-
sidering typical application scenarios for group signature schemes. Commonly,
verification can take place at more powerful devices [9, 16, 21, 30].

Fig. 4. Verification, mobile case

3.4 Lessons Learned

The runtime anomalies that emerge when comparing the notebook and mobile
cases are partially implementation-related issues. The elliptic curve cryptography
part of the framework, used by ECC-DAA and the scheme by Isshiki et al.,
is comparably slower on mobile devices. The dominating factor for this is the
amount of temporary objects that are instantiated to hold an intermediate value
for a short amount of time and are then of no use anymore. Thus, a lot of runtime
and memory is wasted on instantiating, copying and then garbage collecting
these objects.

The main reason for this is Java’s immutable BigInteger implementation.
Each operation on a BigInteger leads to the allocation of a new object, storing
the result. Considering that BigIntegers are the most basic element, used by
all prime and extension field operations, this has a major impact on runtime.
These temporary instances are less of a problem with operations, such as mod-
ular exponentiation, as used by the schemes by Canard et al. and Isshiki et al.
Modular exponentiation is provided by Java’s BigInteger and uses a mutable
variant internally. The problem becomes apparent for operations built on top of
BigIntegers, such as point multiplication or pairings. Therefore, the scheme by
Canard et al. was only tested with BigIntegers, as the expected gain from using
the custom implementation is very low.

While this is generally a non-issue in the notebook case, it has noticeable im-
pact when the algorithms are run on an Android based mobile device. The reason

Group Signatures on Mobile Devices: Practical Experiences 59

for this is much slower garbage collection in combination with a strict collection
enforcement policy.

The garbage collection overhead is severe enough that point multiplication is
faster using affine coordinates than a mix of Jacobian and affine coordinates,
to give an example. Using mixed coordinates in point multiplication allows to
omit expensive modular inversions during point addition and doubling within
the double-and-add cycle and is thus usually the faster variant [12,30]. However,
using Java’s BigInteger, point multiplication in affine coordinates turned out to
be faster, since it requires less intermediate instances.

Android garbage collection is triggered as soon as there are enough collectable
objects, regardless of the overall free heap. Therefore, the small overall memory
footprint of our implementation poses no advantage in that regard. Originally,
our implementation was developed to give an overview of the different schemes. It
turned out that there is a strong indication that such a portable implementation
is almost powerful enough to be used already, without the need to resort to
highly optimized, but device dependent implementations. In light of this and
also to decouple this platform dependent implementation factor, we aimed at
alleviating the problem by reducing the amount of intermediate instances.

We decided to use a custom integer arithmetic implementation and plug it
underneath the field operations. Since this custom implementation is designed to
enforce in-place operations wherever possible, lots of instantiations are spared.
Furthermore, fixed-width integer arithmetic is used, allowing for easier recycling
of no longer used objects. Taming the garbage collector this way reduces run-
times dramatically. The problem is ameliorated, but there are still a few garbage
collection runs that cost considerable runtime. Nevertheless, the attempt to de-
crease runtimes is successful, considering the visible runtime drops in the mea-
surements.

3.5 Memory

The exact amount of memory consumed by the schemes alone is difficult to
pinpoint in a managed, garbage-collected environment such as Java. On the
notebook, we approximated a heap consumption of below 5.5 megabytes and a
permanent generation space of about 4MB. Lower artificially introduced mem-
ory limits were just ignored by the JVM. Therefore, these values are a loose
upper bar. As we see from experiments on the mobile devices themselves, the
schemes run with less than that. For example, on the Samsung Galaxy S3 device
we used, the initial free heap memory per app is as low as one megabyte, since
the remaining heap is already filled with preloaded Android elements. The im-
plementation ran under these circumstances without further heap growth, thus
having only one megabyte of heap available seems to be enough.

Code Size. The code size was determined by the resulting size of the classes
.dex file when exporting an APK package. ProGuard7 was enabled when doing

7 http://developer.android.com/tools/help/proguard.html

http://developer.android.com/tools/help/proguard.html

60 K. Potzmader et al.

Table 4. Code size comparison

Complete Set Canard et al. ECC-DAA Isshiki et al. Framework

349KB 163KB 249KB 257KB 273KB

these tests, which reduces the size by renaming variable names to commonly
short identifiers. Table 4 lists the code size for each module.

Complete set refers to the whole functionality, including ECC/Pairing code
and all schemes. Framework on the other hand is infrastructure material only.
The separate scheme sizes denote the code size of both the specified scheme itself
and the required framework code for it to work, hence the overlaps.

Since the scheme by Canard et al. does not use any elliptic curve cryptography,
its code size is naturally smaller, as the ECC part of the framework can be
dropped. More than half of the overall code size is consumed by underlying
primitive functionality. ECC-DAA and the scheme by Isshiki et al. are almost
equal in size. Generally, code size is low enough to be run on mobile devices with
the whole package having a size of less than 350KB.

4 Related Work

Group signatures have become an extensive field of research with many different
proposed schemes and suggested approaches. For surveys on group signature
schemes themselves, we refer the reader to [26, 31].

Implementational aspects of group signatures were evaluated in various re-
lated publications. In Table 5, several publications are put into context to allow
for a rough overview of current advances. Unfortunately, a direct comparison is
not possible, since all approaches differ in terms of the test setup, used cryptosys-
tem and the scheme itself. Furthermore, vital details such as the used pairing
map are omitted as well. The intention is to give a brief overview on how a
Java-based implementation fits into this picture, both in the mobile and the
notebook case. Still, these values have to be taken with a grain of salt, especially
when comparing individual results. Most shown implementations are C-based
and use the pairing-based cryptography library PBC8. A high-level implemen-
tation in Java typically cannot compete with low-level C implementations using
partial assembler optimizations, not to mention hardware solutions based on
Application-Specific Integrated Circuits (ASICs) or Field-Programmable Gate
Arrays (FPGAs). However, the enhanced flexibility of platform indepence might
be worth the longer runtimes. The additional runtimes seem acceptable, espe-
cially when comparing our results with the native code estimations from Manulis
et al. [26].

8 See https://crypto.stanford.edu/pbc/

https://crypto.stanford.edu/pbc/

Group Signatures on Mobile Devices: Practical Experiences 61

Table 5. Comparison of other published results

Source Remarks Scheme Setup Strength Sign Verify

H
a
rd
w
a
re

Morioka et
al. [27]

Isshiki et al. [23] ASIC 80 bit 135ms 135ms

Manulis et
al. [26]

C/ASM,
PBC,
estimations

Boneh-
Shacham [8]

FPGA 128 bit 128.7ms 144.76ms

Bichsel et al. [7] FPGA 128 bit 58.3ms 52.3ms

M
ix
ed

Chen,
Page,
Smart [20]

C/ASM
RSA-DAA [9]

TPM 128 bit
33700ms 194ms

ECC-DAA [20] 3400ms 48.31ms

Canard et
al. [15]

C, PBC

XSGS [22],
online signing

WSN

80 bit < 200ms 55ms

XSGS [22],
offline signing

80 bit 3995-
6596ms

55ms

S
m
a
rt
p
h
o
n
e

Manulis et
al. [26]

Android
NDK, PBC,
estimations

Camenisch-
Groth [13]

PHO-
NE

128 bit

431.5ms 431.5ms

Boneh-
Shacham [8]

1211.7ms 2118ms

Bichsel et al. [7] 1002.3ms 1577.4ms

P
C

Manulis et
al. [26]

C/ASM,
PBC,
estimations

Camenisch-
Groth [13]

MPC

128 bit

170.4ms 170.4ms

Boneh-
Shacham [8]

MPC 402.4ms 691.6ms
MPC* 131.4ms 150.1ms

Bichsel et al. [7]
MPC 332ms 508ms
MPC* 61ms 56.8ms

Bringer
and
Patey [11]

C++

Boneh-
Shacham [8]

BPPC 80 bit

1000ms 1170ms

Chen-Li
(patched) [11,18]

450ms 400ms

Legend:

ASIC 0.25um ASIC Implementation, 100MHz clock frequency, by Morioka et al. [27]
BPPC Intel Core2Duo, 2.93GHz
FPGA Xilinx Virtex-6 FPGA prototype, assumptions based on [32]
MPC Intel Core Duo LV L2400, 1.66GHz
MPC* Same as MPC, but assuming the pairing measurements as shown by Naehrig

et al. [28]
PHONE HTC Desire, 1 GHz Qualcomm ARMv7 Scorpion CPU
TPM 33MHz ARMv7, emulated TPM; 2.4 GHz Intel Core2-6600 host platform
WSN MICAz/TelosB wireless sensor node platforms; 1.4 GHz Intel Core2Duo CPU

host platform, see [15]

62 K. Potzmader et al.

5 Conclusion and Future Work

Implementing group signature schemes in plain Java for the Android operating
system yielded various interesting insights. Group signature schemes are con-
sidered ready for scenarios, where signature creation is performed on mobile
devices and verification is done on a more powerful device. The shown schemes
by Canard et al., Chen et al. and Isshiki et al. allow for precomputing parts of
the signature, enabling tolerable online signature timings. The concrete timings
are differing between the schemes and use cases, but are generally considered
acceptable. The worst case scenario runtime we measured averages at about
330ms for online signing, with a huge gap to the second longest run of about
56ms. Newer smartphone generations seem to improve these results significantly.
Verification runtimes are in part noticeably slower, but common scenarios only
require signing to be performed on low-power end user devices. Therefore, we
consider the technology ready to be used on mobile devices. A partial native code
implementation might even allow for omitting the precomputation step whilst
still delivering acceptable runtimes.

The framework did not only enable detailed comparisons of the schemes, it
also revealed factors of considerable impact regarding the runtime environment.
The Android garbage collector turned out to be the main bottleneck. There-
fore, having less intermediates and recycling instances is of great importance on
Android. The runtimes of individual operations tend to be tightly coupled with
the amount of required intermediate instances. Cumulative effects, such as the
garbage collector kicking in after a certain threshold of objects to collect might
also hinder runtime estimations based on the timings of individual operations.

The accompanying framework is open source and allows further extension with
the remaining schemes defined in ISO20008-2 [25] or other, similar schemes.

Subsequent anticipated steps are to loosen the platform independence a bit
and to implement parts of the framework using the Android Native Development
Kit. Given the unmanaged memory environment, this is expected to result in
further acceleration.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

4. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

Group Signatures on Mobile Devices: Practical Experiences 63

5. Bellare, M., Micciancio, D., Warinischi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp.
136–153. Springer, Heidelberg (2005)

7. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get Shorty via
Group Signatures without Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

8. Boneh, D., Shacham, H.: Group Signatures with Verifier-local Revocation. In: 11th
ACM Conference on Computer and Communications Security, pp. 168–177. ACM
Press, New York (2004)

9. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: 11th ACM
Conference on Computer and Communications Security, pp. 132–145. ACM Press,
New York (2004)

10. Brickell, E., Li, J.: Enhanced Privacy ID: A Direct Anonymous Attestation Scheme
with Enhanced Revocation Capabilities. In: 6th ACM Workshop on Privacy in the
Electronic Society, pp. 21–30. ACM Press, New York (2007)

11. Bringer, J., Patey, A.: Backward Unlinkability for a VLR Group Signature Scheme
with Efficient Revocation Check. Cryptology ePrint Archive, Report 2011/376
(2011), http://eprint.iacr.org/2011/376

12. Brown, M., Hankerson, D., López, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

13. Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

14. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

15. Canard, S., Coisel, I., De Meulenaer, G., Pereira, O.: Group Signatures are Suitable
for Constrained Devices. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 133–150. Springer, Heidelberg (2011)

16. Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List Signature Schemes. J.
Discrete Applied Mathematics 154(2), 189–201 (2006)

17. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

18. Chen, L., Li, J.: VLR Group Signatures with Indisputable Exculpability and Ef-
ficient Revocation. In: 2nd IEEE International Conference on Social Computing,
pp. 727–734. IEEE Press, New York (2010)

19. Chen, L., Li, J.: Revocation of Direct Anonymous Attestation. In: Chen, L., Yung,
M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 128–147. Springer, Heidelberg
(2011)

20. Chen, L., Page, D., Smart, N.P.: On the Design and Implementation of an Efficient
DAA Scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

21. Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)

http://eprint.iacr.org/2011/376

64 K. Potzmader et al.

22. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

23. Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using Group Signa-
tures for Identity Management and its Implementation. In: 2nd ACM workshop on
Digital Identity Management, pp. 73–78. ACM Press, New York (2006)

24. ISO/IEC 20008-1: Information technology - Security techniques - Anonymous dig-
ital signatures - Part 1: General. Stage 40.20. International Organization for Stan-
dardization. Geneva, Switzerland (2012)

25. ISO/IEC 20008-2: Information technology - Security techniques - Anonymous dig-
ital signatures - Part 2: Mechanisms using a group public key. Stage 40.20. Inter-
national Organization for Standardization. Geneva, Switzerland (2012)

26. Manulis, M., Fleischhacker, N., Günther, F., Kiefer, F., Poettering, B.: Group
Signatures - Authentication with Privacy, a study issued by the German Federal
Office for Information Security (BSI) (2012),
https://www.bsi.bund.de/ContentBSI/Publikationen/

Studien/GroupSignatures/GruPA.html

27. Morioka, S., Isshiki, T., Obana, S., Nakamura, Y., Sako, K.: Flexible Architec-
ture Optimization and ASIC Implementation of Group Signature Algorithm us-
ing a Customized HLS Methodology. In: 2011 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 57–62. IEEE Press, New York
(2011)

28. Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for Cryp-
tographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

29. Popescu, C.: An Electronic Cash System Based on Group Blind Signatures. J.
Informatica 17(4), 551–564 (2006)

30. Rivain, M.: Fast and Regular Algorithms for Scalar Multiplication over Elliptic
Curves. Cryptology ePrint Archive, Report 2011/338 (2011),
http://eprint.iacr.org/2011/338

31. Wang, G.: Security Analysis of Several Group Signature Schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 252–265. Springer,
Heidelberg (2003)

32. Yao, G.X., Junfeng, F., Cheung, R.C.C., Verbauwhede, I.: A High Speed Pairing
Coprocessor Using RNS and Lazy Reduction. Cryptology ePrint Archive, Report
2011/258 (2011), http://eprint.iacr.org/2011/258

https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/GroupSignatures/GruPA.html
https://www.bsi.bund.de/ContentBSI/Publikationen/Studien/GroupSignatures/GruPA.html
http://eprint.iacr.org/2011/338
http://eprint.iacr.org/2011/258

Limiting Data Exposure in Monitoring

Multi-domain Policy Conformance�

Mirko Montanari, Jun Ho Huh, Rakesh B. Bobba, and Roy H. Campbell

University of Illinois at Urbana-Champaign
{mmontan2,jhhuh,rbobba,rhc}@illinois.edu

Abstract. In hybrid- or multi-cloud systems, security information and
event management systems often work with abstract level information
provided by the service providers. Privacy and confidentiality require-
ments discourage sharing of the raw data. With access to only the par-
tial information, detecting anomalies and policy violations becomes much
more difficult in those environments.

This paper proposes a mechanism for detecting undesirable events
over the composition of multiple independent systems that have con-
straints in sharing information because of security and privacy concerns.
Our approach complements other privacy-preserving event-sharing meth-
ods by focusing on discrete events such as system and network config-
uration changes. We use logic-based policies to define undesirable event
sequences, and use multi-party computation to share event details that
are needed for detecting violations. Further, through experimental eval-
uation, we show that our technique reduces the information shared be-
tween systems by more than half, and we show that the low performance
of multi-party computation can be balanced out with concurrency—
demonstrating an event rate acceptable for verification of configuration
changes as well as other complex conditions.

1 Introduction

Monitoring of complex systems for configuration errors, security breaches, or
regulation compliance requires a large amount of information to be collected
(usually in the form of audit logs) and analyzed. In distributed environments like
clouds or cloud-of-clouds [2], this monitoring may require logs to be shared across
multiple security domains to detect particular security events. However, some of
those logs might contain sensitive information about customers or might have
commercial value. Without the necessary confidentiality and privacy guarantees,
most organizations will be reluctant to share such privileged logs with others.

� This material is based on work supported in part by a grant from The Boeing
Company, and by a grant from Air Force Research Laboratory and the Air Force
Office of Scientific Research under agreement number FA8750-11-2-0084. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 65–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 M. Montanari et al.

Being mindful of such concerns, this paper proposes a solution that facilitates
integration of events across multiple security domains while providing the neces-
sary confidentiality guarantees. With our solution, cloud users or cloud providers
can detect problems in their own systems (e.g., a virtual machine running in an
IaaS cloud), even if some parts of the infrastructure are being controlled by dif-
ferent organizations. We rely on the definition of “invariants,” which capture
the correct or desirable operations of the systems of interest. Only those events
that have the potential to identify violations of those invariants are ever shared,
minimizing the amount of events that need to be shared in the first place.

Privacy-preserving techniques that rely on data aggregation and anonymiza-
tion [23,27,17] have been proposed in the past. While those techniques can be
effective on policies that use numeric data and thresholds [3,6], many conditions
that are of interest to network administrators require the capability to analyze
discrete events (e.g., configuration changes in servers or network devices, changes
in user information, or component failures). To the best of our knowledge, there
is no good solution for aggregating or anonymizing discrete events without losing
the details necessary for validating policies.

The proposed technique, on the other hand, detects complex, inter-domain
policy violations through careful selection of the events to share across the or-
ganization boundaries. We introduce a distributed algorithm that coordinates
the interaction among a dynamic set of monitoring servers to guarantee the de-
tection of all policy violations, and we use a cryptographic mechanism called
privacy preserving secure two-party computation [9] to figure out which events
are relevant to a violation, and share only them across the domain boundaries.

We show that parallelism in the event correlation problem makes secure two-
party computation practical in our case. Additionally, the lack of a central server
where information is analyzed makes our technique suitable for multi-cloud sys-
tems or cloud-broker-based systems where new resources and security domains
are continuously being added at runtime. Our performance evaluation confirms
that our technique is indeed capable of significantly reducing the amount of in-
formation that needs to be shared, and that it can handle event loads of popular
configuration management systems.

The contributions of this paper are summarized as follows:

1. We describe a policy-based algorithm for detecting violations of invariants
across multiple security domains, and provide a proof of correctness of that
algorithm.

2. We propose a mechanism for generating a policy-dependent implementation
of the two-party computation algorithm using an efficient implementation of
garbled circuits [10]. This algorithm identifies the information that needs to
be shared while preserving privacy.

3. We demonstrate that parallelism of the event correlation problem can lead
to a practical deployment of the two-party computation algorithm.

4. Our experimental evaluation shows that our solution is practical and can
reduce significantly the amount of information that needs to be shared across
multiple domains.

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 67

The rest of the paper is structured as follows. Section 2 provides an overview
of related work in the area of multi-domain monitoring and secure information
sharing. Section 3 discusses our own monitoring architecture and distributed
event correlation protocol. Results from the experimental evaluation are pre-
sented in Section 4. Finally, Section 5 presents our conclusions and future work.

2 Related Work

Collaboration between organizations for detecting attacks and other security
problems has been an important research topic for several years. The interde-
pendencies between systems that we find in today’s cloud computing environ-
ments increase the need for such collaboration. However, sharing of information
presents several security problems. Monitoring data can provide insights into an
organization’s computing infrastructure which may give a competitive advan-
tage to rival organizations. Such data can also provide attackers with informa-
tion about possible vulnerabilities. For that reason, a significant amount of work
has been focused on reduction of information sharing, while still permitting the
detection of complex event patterns.

Several past techniques focus on hiding log information through anonymiza-
tion [23,27,17]. Lincoln et al. [17], in particular, introduce a technique for re-
moving critical data from network traces. SEPIA [3] provides a threshold-based
mechanism for sharing aggregated data about network traffic. Denker et al. [6]
use a selective downgrade of GPS data for sharing location data. However, such
techniques generally apply to numeric information, and the summarization is
strongly dependent on the semantics of the information. Our technique focuses
on discrete data that cannot be summarized without loss of the ability to de-
tect policy violations correctly, such as configuration changes, failures of specific
machines, or vulnerability information.

Montanari et al. [20] introduce a protocol for the validation of policies across
two organizations. The authors use explicit meta-data about the completeness
of the information collected from each monitoring system to decide which events
to share. Our work does not require explicit metadata, and our approach is
applicable to multiple security domains. Additionally, the use of a secure two-
party computation protocol further reduces the amount of shared events.

Huh and Lyle [12] propose a trusted computing based approach to enable
“blind log analysis,” allowing different organizations to freely share raw log data
with the guarantees that their raw data will not be revealed to other organiza-
tions. A trustworthy log reconciliation service is attested and verified, providing
assurance that all the log reconciliation and analysis is performed blindly inside a
protected virtual machine. Only the fully processed, privacy-preserving analysis
results are made available to other organizations. In contrast, in our approach,
only the information required for detecting violations leaves the security domain,
reducing the amount of information that need to be shared in the first place.
We reduce the reliance on remote software for protecting the confidentiality of
data, and we do not rely on the capabilities of remote attestation [5].

68 M. Montanari et al.

Techniques focusing on integrating data in a central server for analysis have
also been proposed. Australia’s Commonwealth Scientic and Industrial Research
Organisation (CSIRO) has developed a Privacy-Preserving Analytics (PPA) soft-
ware for analyzing sensitive healthcare data with confidentiality guarantees [22].
PPA performs analysis on the original raw data but modifies the output deliv-
ered to researchers to ensure that no individual unit record is disclosed. Huh
and Martin [13] propose the concept of a “blind analysis server,” an attested
and verified remote server which allows privileged data analysis to be performed
securely and privately. In work closely related to ours, Lee et al. [16] introduce
a framework that allows a group of organizations to share encrypted logs with
a central auditor. The auditor analyzes the encrypted logs and detects attacks
or other policy violations. Our work improves on such approaches in two major
ways. First, we remove the need to store centrally the logs collected from all or-
ganizations. While having a central authority is feasible in certain situations, in
cloud and cloud-of-clouds systems, organizations can integrate resources across
multiple providers and provide them to different clients at runtime. Having all
entities involved push out their logs to a single central location is impractical
and not desirable. Our approach uses a distributed mechanism for correlating
data, and security domains interact directly only when they require information
about specific external resources.

Other approaches rely on explicit confidentiality policies to define which events
to share across organization boundaries. Singh et al. [26] introduce a system
defining explicit confidentiality policies on classes of events. Similarly, Evans et
al. [7] propose a solution in which access control is enforced by tagging events
with labels. Rigid confidentiality policies proposed in those works would not
be fully compatible with our multi-domain scenario. As information should be
shared only when needed, fixed policies are either too open or too strict. Open
policies unnecessarily increase the information shared, while strict policies might
make the system unable to guarantee the detection of all policy violations.

3 Multi-domain Event Sharing for Compliance

The increasing complexity of managing and securing large systems has driven
the development of policy-based approaches to address the problem [8]. In such
approaches, policies or “invariants” identify correct or desirable conditions of the
system. Administrators define rules that identify violations of such policies and
indicate misconfigurations, vulnerabilities to known attacks, or non-compliance
to best-practices that reduce the risk of zero-day attacks. Monitoring systems
continuously collect information about the infrastructure to detect violations.

Examples of policy-based approaches can be found in different domains. For
example, it is possible to define policies to monitor for compliance with regula-
tory requirements such as the Payment Card Data Security Standard (PCI-DSS)
[24] or the Federal Information Security Management Act (FISMA) [25]. Both
regulations mandate a minimum level of security configuration in an infrastruc-
ture. PCI-DSS applies to companies handling credit card data, while FISMA

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 69

Table 1. Example of a multi-domain policy and events required for the detection of a
violation. For each event, we list its source and the information it carries.

Policy example Events Source Res Description
Not run a critical
service on a phys-
ical server that is
sending malicious
traffic

criticalService Private In-
frastructure

P, I Critical service P is
running on instance I

instanceAssigned Cloud
Provider

I, S VM Instance I
launched on S

badTraffic Cloud
Provider

S Malicious traffic de-
tected from S

applies to information systems in the U.S. federal government. Policies define
known types of misconfigurations or error situations, and are used to identify
quickly the presence of a problem before an attacker can exploit it.

In many modern cloud systems, multiple security domains interact to pro-
vide the desired services. For example, in a hybrid cloud environment, services
provided by the infrastructure of an organization are integrated with services
managed by a cloud provider. In intercloud systems [2], or in systems based
on cloud brokers [18], multiple cloud services are integrated to provide a ser-
vice to cloud users. Such services are provided by a variety of cloud providers,
and their selection might depend on dynamic conditions not known beforehand.
In such settings, multiple independent monitoring systems acquire information
about the infrastructure. Monitoring systems in the private infrastructure ac-
quire application-level information from software running on the local infrastruc-
ture and on cloud instances. Monitoring servers managed by the cloud provider
acquire information about the physical location of virtual machine instances,
the colocation of virtual machines with other customers, and the load of the
infrastructure. In these settings, conditions to detect violations can be complex,
and analyzing each organization’s information independently is not sufficient to
detect violations. However, sharing monitoring information outside an organi-
zation is often undesirable. Information about the infrastructure configurations
provides details about security postures or information about the internals of an
organization to competitors.

We can find several examples of policies in enterprise and cloud systems. For
example, a policy can specify that a critical service should not depend on services
running on machines that process a lot of external traffic; another policy might
require a computer joining a private network not to run a certain set of services.
In both cases, it might be desirable not to reveal the entire state of a system at
once, but only when certain conditions occur. For the purpose of explaining our
approach, we use the following example throughout the paper.

Example: An administrator defines a policy requiring that a critical server not
be run on a physical server that is sending malicious or unwanted traffic (e.g. un-
expected port scans). Violation of such a policy can be detected by identifying
three events, as shown in Table 1. Such events are generated by different infor-
mation sources: deployment systems in the cloud provider indicate that a new in-
stance has been created; SNMP agents on virtual machines generate information

70 M. Montanari et al.

Fig. 1. Architecture of our monitoring system. Multiple monitoring servers are placed
in different security domains. Servers communicate to detect violations of policies.

about running programs; and networkmonitoring systems detect malicious traffic
from physical servers. Because information sources are in different organizations,
detecting violations requires sharing data across domains.

We design a monitoring architecture (see Fig. 1) that supports such data
sharing while minimizing the amount of data shared. The monitoring servers
within each organization have a copy of the shared policy and collect informa-
tion about the local infrastructure. The collected information is used to detect
local violations without requiring any communication with other servers. Addi-
tionally, each server verifiers if the local information could potentially create a
multi-organization policy violation if certain conditions are present in other do-
mains. In such a case, the server uses our distributed event correlation algorithm
to check the presence of the condition on remote monitoring servers without re-
vealing information about the local infrastructure, unless a violation is actually
detected. We use a distributed naming system to identify monitoring systems
potentially containing other portions of the event sequence that could cause a
violation. When policies are complex, our policy rewrite algorithm splits the pol-
icy into a sequence of simpler conditions that can be checked by communicating
with a single monitoring server at each step. The policy rewrite is performed
independently on each server, and only local information is used to identify the
remote servers with which the local server needs to communicate to continue
the processing. We show that, using such local actions, our algorithm identifies
the same policy violations found by integrated events in a single server.

3.1 Policy Analysis

Violations of policies are rare events. For that reason, monitoring systems col-
lect a large amount of information that does not contribute to violations. Our
correlation algorithm identifies which events might contribute to violation of
cross-domain policies and shares only those events with other domains.

To perform such an analysis, we take advantage of the semantic structure
of the data in infrastructure monitoring systems. An infrastructure monitoring

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 71

Constraint Description

precedes x+ < y−

meets x+ == y−

overlaps x− < y− < x+ < y+

during y− < x− < x+ < y+

starts x− == y−, x+ < y+

finishes x+ == y+, x− > y−

equals x− == y−, x+ == y+

Fig. 2. Temporal policy constraints.
x− is the starting time of an event x,
and x+ is its end time.

1 : (E1, type, criticalService),
2 : (E1, instance, I), (E1,pname, P),
3 : (E2, type, instanceAssigned),
4 : (E2, instance, I), (E2, server, S),
5 : (E3, type, badTraffic), (E3, server, S),
6 : [E1duringE2]∧
7 : ([E2overlapsE3] ∨ [E2duringE3])
8 :→ (v1, violation, I)

Fig. 3. Policy requiring that a critical
service not be run on a physical server
that is sending malicious traffic

system is an event-based system that collects information about the state of a
set of entities, such as computer systems, users, software programs, or network
connections. We define these entities as “resources.” A violation of a policy is
the presence of a particular state in a set of related resources (e.g., in Table 1,
the resources are a VM instance I, a software P , and a physical machine M).
Our system finds violations through the identification of a sequence of events
that corresponds to incorrect or invalid changes in the state of such resources.

We represent each event as multiple logic statements. Without loss of general-
ity, we use the Resource Definition Framework (RDF). In RDF, each statement
is a tuple (id, property, value) composed of three parts. The first part is an event
ID, which identifies uniquely the event throughout the system. The second part
indicates the name of an event property and represents the type of information
provided by the statement (e.g., the property instance indicates id of an virtual
instance). The last part contains the value for the given property. An event is
composed of multiple statements having the same event ID. In our example, we
represent an event with ID e1 of type criticalService providing information
that a VM instance identified with m is running a program p as follows:

1 : (e1, eventType, criticalService), (e1,pname, p), (e1, instance,m),
2 : (e1, startTime, ts), (e1, endTime, te),

(1)

A policy identifies a sequence of events by expressing conditions over the logic
statements in each event. The condition is represented with a rule expressed us-
ing Datalog with negation (we assume typical Datalog stratification and safeness
conditions on the rule [4]). In addition, we use seven constraints (and their nega-
tion) to represent in interval temporal logic (ITL) all possible temporal relations
between events [1]. The constraints are listed in Fig. 2. Using such relations, we
can express constraints such as the fact that an event e1 happens before another
event e2, or that an event e1 happens while the event e2 is happening. Using
such a language, we represent directly policies expressed as conjunctions and
negations of events. We represent disjunctions by creating multiple rules, each
representing an alternative in the selection of the events that can occur.

72 M. Montanari et al.

1: function SubPolicy(V, P, PR)
2: for all e1, e2 ∈ P sharing variable V do
3: V L = vars(e1) ∪ vars(e2) // we select all variables used in the two events
4: PR = create a rule “e1 ∧ e2 ∧ [timec(e1, e2)] → partiali(V L)”;
5: // We create P’ by removing e1, e2 from P and replace them with partiali
6: P = (P \ e1 \ e2) ∪ partiali(V L)
7: if size of P ′ is 2 then return P ′

8: else
9: if P ′ has no shared variable then
10: Take two events ek, en ∈ P and generate a new random resource r
11: Add a property to ek and en to connect them to r
12: end if
13: V ′ = choose a shared variable
14: return SubPolicy(V’, P, PR)
15: end if
16: end for
17: end function

Fig. 4. Policy rewrite algorithm pseudocode

Fig. 3 shows the formal representation of the example policy in Table 1. The
policy uses the same variable names in the values of the properties instance and
server to define an equality relation between such properties in events E1, E2

and E2, E3. Temporal conditions are expressed within square brackets, as shown
in lines 6-7. The policy is violated if the three events satisfy all conditions.

3.2 Rule Rewrite

Our distributed correlation algorithm splits across multiple servers the process
of building subsequences of events that may violate the policy. Each monitoring
server registers to manage a set of resources in a distributed naming service, and
constructs the sequences of events related to them. Servers receive events gener-
ated within the security domain about the resources for which they are registered.
We use a distributed naming registry based on Zookeeper [14] to maintain an
assignment between resources and monitoring servers within each organization,
and we expose such an assignment to external organizations through a DNS-
based interface: a server obtains the monitoring servers managing a resource
through the resolution of a name containing a short hash of the resource.

Monitoring servers identify violations by analyzing events related to the re-
sources they manage and by connecting them with events stored in other mon-
itoring servers. To identify explicitly the relation between resources, we rewrite
each policy into an equivalent set of rules called resource-based rules.

As resources involved in a policy violation are related to each other, some
events contributing to a violation carry information about two or more of the
resources involved1. Because such a relation between events and resources exists,

1 Such a condition is common among monitoring policies: if no relation exists between
events, any occurrence of certain unrelated events could create a violation.

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 73

we can split a policy into a set of rules, each composed of two events which carry
information about the same resource. As one of the two events also carry in-
formation about some additional resource (otherwise the two resources involved
would be unrelated to the other resources), we connect resource-based rules to-
gether in the following way. The consequence of a resource-based rule is a new
logic statement related to the additional resource; such a statement is used in
other rules. In the processing of events, the first rule identifies two matching
events, and creates a statement indicating that such a match is found. The next
rule takes such a statement and integrates it with an additional event; such a
process is repeated until all events in the violation sequence are matched.

Fig. 4 describes a greedy version of the algorithm we use in the policy rewrite.
Intuitively, the algorithm takes a policy P and selects two events with a resource
in common (line 2). A new resource-based rule PR is created (line 4) based on
the two events and the time constraints timec involving both of them. We replace
the two events in the original policy with the new statement partiali (line 6).
If the resulting policy P is composed of two events, the algorithm is complete
(line 7), otherwise the execution continues recursively (line 14). If the remaining
policy does not have any common variable (i.e., events are unrelated), a new
shared resource is created and added to the events (lines 9-12).

As an example, we apply the rewrite algorithm to our policy of Fig. 3. We
consider three resources I, S, and P , where the VM instance I is assigned to
the server S, and I runs the program P . Our rewrite splits the policy into
two resource-based rules. The first rule integrates the events badTraffic and
instanceAssigned related to the physical server S. Because the physical server
is managed by the cloud provider, such integration is performed on the cloud
provider system. The consequence of such a rule is a statement partial1 that
contains a reference to the instance I. We obtained the following resource-based
rule, where the variables EisT and EieT represent the start time and end time
of the events.

1 : (E2, type, instanceAssigned), (E2, instance, I), (E2, server, S),
2 : (E2, startTime, E2sT), (E2, endTime, E2eT),
3 : (E3, type, badTraffic), (E3, server, S),
4 : (E3, startTime, E3sT), (E3, endTime, E3eT),
5 : ([E2overlapsE3] ∨ [E2duringE3])
6 :→ partial1(I, S,E2sT, E2eT,E3sT,E3eT)

(2)

In the second step, we consider the statement partial1 related to VM instance
I, and we integrate the remaining events criticalService generated by the
private infrastructure. As the new statement contains all information from the
selected events, all temporal constraints and event conditions can still be applied.
The result is as follows.

1 : partial1(I, S,E2sT,E2eT, E3sT,E3eT),
2 : (E1, type, criticalService), (E1, instance, I), (E1, pname, P),
3 : (E1, startTime, sE1sT), (E1, endTime, sE1eT),
4 : [E1duringE2] → (v1, violation, I)

(3)

74 M. Montanari et al.

Because part of the information about I is contained in the cloud provider and
part in the private infrastructure, the two monitoring servers need to communi-
cate for integrating the two events. The next section describes our mechanism
for correlating the two events while revealing information only if a match exists.

The correctness of the rewrite algorithm is shown below in Lemma 1.

Lemma 1. Given a set of rules R generated through the application of Algo-
rithm 4 to a policy P , a set of events e1, . . . , en creates a violation of P iff it
creates a violation of the set of rules R.

Proof Sketch. The rewrite of the formula P creates a tree structure. Each rule
is a node in the tree. A node A is a child of a node B if the consequence of the
rule A (i.e., the partiali statement) is a condition in the parent node B. In our
example, Eq 2 is a child of Eq 3 because the consequence partial1 of the first rule
appears as a condition in the body of the second rule. We prove by induction on
such a tree. If the height of the tree is 1, then the condition is trivially satisfied
as we have only one rule and r = P . Assuming that the height of the tree is n,
we prove that the condition is satisfied for n + 1. We consider a node A in the
n tree. In the n + 1 tree, the node A is replaced with a node A′ with a child
B. B is obtained by considering two events e1, e2 from the rule in A and by
creating a new rule rj having such events as body and a new statement partiali
as conclusion. The node A′ is created by replacing events e1, e2 in A with the
partiali statement. Because the events satisfy all rules at heigh n, the rule rj is
satisfied as the conditions on events e1, e2 were satisfied in the tree n. Hence, the
statement partiali is also satisfied. Because the statement partial maintains all
the information about matched events, all conditions that were not taken and
placed in rj can still be validated in the original node. Hence, no constraints
have been eliminated in this process, and all events that satisfy the rules also
satisfy the original policy.

3.3 Event Correlation

The resource-based rules split the identification of the violation in a set of two-
event correlations. Such processing is performed independently in each monitor-
ing server: when an event matching a part of the resource-based rule is received,
the server triggers a process for identifying the presence of an event matching
the remaining part of the rule, even if the event is stored in another domain. The
server uses the naming system to identify all servers containing events related to
the common resource. For each server, it uses our matching protocol to identify
if events matching the remaining portion of the rule are present. If found, the
local event is shared. Based on the received event, the remote server repeats the
described process and interacts with other servers until a violation is found, or
no event matches the resource-based rule.

Because information about a single resource can be spread across multiple
domains (e.g., for the same host, a domain might provide network information
and another domain provide system information), servers in different domains

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 75

can be registered for the same resource. Additionally, because events carry infor-
mation about multiple resources, a server contains information about resources
for which it is not registered. Our algorithm uses a subscription process to keep
track of data about resources for which the server is not registered. When a
server s receives an event relevant to resource r that matches a rule, it contacts
the registered server for r to search for matching events. Even when matching
events are not found, the registered server maintains a reference to s, as it is
known that it contains events relevant to r. When new events are received, the
registered server contacts s for correlation. Additionally, when another server s′

requests a correlation for r, the address of s is shared, so that s′ can correlate
its events with s directly.

Theorem 1. If events e1, . . . , en satisfy all conditions of a policy, the distributed
protocol identifies the presence of a violation.

Proof Sketch: We assume that there exists a sequence of common resources
that connects all events, i.e., r1, . . . , rn such that ∀ei∃rk, ej : rk ∈ ei, rk ∈ ej . If
such sequence does not exist, our algorithm introduces new common resources to
connect all events. Lemma 1 shows the equivalence between the resource-based
rules and the policy. Hence, we show that if two events matching a resource-based
rule exist, our distributed algorithm identifies them. By construction, such events
have a resource r in common. Hence, given an event e, we need to ensure that a
server finds all events e′ that share the same resource r. We have three cases.

1. Both events e and e′ are received by servers registered for the resource r.
According to our algorithm, when an event is received, the server interacts
with all servers registered for such a resource. As both servers are registered,
the last event received would interact with the server storing the first event.

2. Event e is received by a server s registered for r, and event e′ is received by
a non-registered server s′. If the servers receive the events in the sequence
(e, e′), the arrival of e′ triggers a lookup on the naming registry, leading to
the identification of the server containing e. If the sequence is (e′, e), the
server of e is identified: however the correlation protocol returns false, as e
is not present yet, and the event e′ is not shared. In that case, s saves the
reference for s′. When the event e is received, s runs the correlation protocol
with s′ again and identifies the event e′.

3. Both events e and e′ are received by two non-registered servers s and s′. In
such a case, the first event triggers a lookup in the naming system, leading
to the identification of a server sr registered for the resource r. The correla-
tion process creates the reference to s in the server. Receiving the event e′

triggers the same process. This time, sr saves the reference to s′ and returns
the reference to s. The correlation process between s and s′ identifies the
matching events.

3.4 Privacy-Preserving Matching Protocol

The privacy-preserving matching protocol is initiated between two servers. One
peer, called the gc-client, initiates the process by picking a resource-based rule

76 M. Montanari et al.

1 : partial1(I,E2sT,E2eT),
2 : (E1, instance, I),
5 : [E1duringE2]

equality

...

p.I[0]e1.I[0]p.I[1]e1.I[1]p.I[n]e1.I[n]

<

e2.sT

<

e1.sT

e1.eT

during

GL_2L_1

match

e2.eT

equals

Fig. 5. (left) Simplified resource-based rule containing only constraints requiring input
from both events; (right) circuit blocks implementing the resource-based rule

and an event e for which it wants to find a match. The other peer, called the gc-
server, considers all local events satisfying the local condition of the rule and, for
each event e′, executes a two-event matching protocol. To speed up the process,
the system executes the two-event matching for all pairs (e, e′) in parallel.

We use garbled circuits [9] to implement the two-event matching protocol.
Garbled circuits are a cryptographic mechanism for performing secure two-party
computation. Without the use of cryptography, one server needs to acquire data
about both events to validate all constraints (temporal and others) specified in
the rule. However, such an approach would reveal a large amount of information
to the other party, as all relevant events need to be stored on one server. Using
secure two-party computation, each party provides part of the input data and
collaborates with the other party through a distributed protocol to determine if
two events satisfy the constraints of the rule. The data provided by each party
remains hidden, and only the result of the computation is known to both. In
the last several years, garbled circuits have been shown to be one of the most
efficient methods for performing secure two-party computation [10].

Garbled circuit protocols require expressing the computation as a binary cir-
cuit. Our system encodes events into binary strings and generates a combina-
torial circuit based on the conditions of each resource-based rule. Circuits are
created through the connection of sub-circuit blocks that depend on the type
of constraints specified in the policy. Connections are performed through AND,
OR, or NOT gates. We consider only constraints that require input from both
events, as other constraints are validated locally.

The sub-circuit blocks in our implementation cover all temporal constraints
in Fig. 2, in addition to equality, and less-than constraints. More circuits can be
created for other types of constraints. For the resource-based rule in Eq. 3, the
transformation maintains the equality constraint between the values of the vari-
able I used in the event and the statement, and the during temporal constraint,
as shown in Fig. 5 (left). Fig. 5 (right) also shows the encoding of the policy.

Our system uses a recent implementation of the garbled circuit protocol [10] to
execute the circuit. The gc-client sends the ID of the rule to check, and interacts
with the server to construct the garbled circuit. The gc-server uses an Oblivious
Transfer (OT) protocol [15] to ask the gc-client to encrypt its input, and uses
such data to execute the encrypted circuit locally. The encrypted output of the

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 77

circuit is sent to the client for decryption. If a match is found, the gc-client sends
the matched event unencrypted. The gc-server adds the event in its local storage,
which might trigger other two-server event correlation protocols.

The system executes the privacy-preserving matching protocol for each pair
of events independently from the others. As garbled circuit computation requires
several communication round trips for the exchange of data, parallelization can
significantly improve throughput because of better utilization of the CPU.

In our interactions, the gc-server returns to the gc-client the number of events
satisfying the local conditions to determine the number of times the privacy-
preserving matching protocol is executed. If the number reveals information
about the state of the infrastructure, the monitoring server can report any num-
ber larger than the given value, so that the number of events cannot be used to
make any inference. Once the local events are exhausted, additional computa-
tions are performed with invalid values to ensure that no matching is possible.

3.5 Privacy Analysis and Limitations

From a privacy perspective, the security property of the two-event matching pro-
tocol shows that, for two-event policies, we share only events that create viola-
tions. This is the minimum level of information sharing that we can have between
two organizations [20]. However, when the complexity of the policy increases and
multiple resource-based rules are needed, sequences of events matching a single
resource-based rule need to be shared to process the next resource-based rule. In
such a situation, we limit information sharing by first selecting, when possible,
resource-based rules that are rarely matched.

The interaction between monitoring servers leaks additional information that
can be used to make inferences on the state of the remote party, even if no explicit
sharing occurs. The request for a two-party correlation reveals the hash of the
common resource and the policy involved. The hash is intentionally kept short,
so that conflicts and false positives are possible, making the identification of the
resource ID hard. The presence of an interaction, even if leads to no matched
events, can still reveal that a subsequence of events matching a portion of the
policy is present on the server. To counter such an inference, we add spurious
requests with random events to ensure that such knowledge cannot be inferred.

The implementation of secure two-party computation used in our system relies
on the assumption of an honest-but-curious attacker [9]. Such an attack model
assumes that the two parties interact according to the protocol, and do not
provide false information about their own systems. In the interaction between
organizations, additional mechanisms can ensure that false information is not
provided. The periodic auditing currently performed for ensuring compliance to
regulations could also validate recoded logs of the interactions. Such logs create
an audit trail that could dissuade organizations from providing false information.
In addition, techniques have been proposed to validate the received information
through independent information sources [21] to ensure its correctness. Moreover,
progress has been made in building secure two-party computation that applies
to semi-honest adversaries [11]. Such advance can be integrated to our solution.

78 M. Montanari et al.

4 Experimental Evaluation

Our evaluation measured the reduction in the amount of information exchanged
when our event-correlation method was used, and the event rate obtained with
our two-event matching protocol. We implemented the system in Java and used
a garbled circuit protocol implementation by Huang et al. [10], with modifica-
tions performed to improve significantly parallelism. We ran our experiments on
Amazon EC2 m1.large instances (7.5 Gb memory, 4 compute units), an instance
type which computation capabilities fall in the middle of the EC2 spectrum.

4.1 Reduction of Event Sharing

We measured the reduction in the information shared between domains. Re-
sources were partitioned across servers, and events were distributed randomly.
Information sharing occurs when events about the same resource are stored in
different domains. As the occurrence of such a condition is policy- and event-
dependent, we evaluated our solution in different points in the space by changing
three critical parameters. The first one is the frequency at which two events in
different domains create a partial policy violation. The second parameter is the
fraction of the infrastructure under the control of each organization. The third
parameter is the number of security domains managing the infrastructure.

We measured the performance of our encrypted communication (encr) with
rules of different complexity (2-event rule, 4-event rule). We compared it
with a clear-text solution (clear-txt) that sends events related to a resource to
the monitoring servers managing it (even if they are in a different domain) [19],
and with the minimum need-to-know information (min).

First, we analyzed how the frequency with which events create partial policy
violations affects the amount of information shared. We created events so that
each pair of events in a policy has a given probability of referring to the same
resource, and we randomly distributed them across domains. We show the results
in Fig. 6. Our system significantly outperformed the baseline (i.e., clear-txt)
solution and, for two-event polices, the fraction remained equal to the theoretical
minimum (min). As we measure events shared over total events, the theoretical
minimum number of events for the 4-event rules is smaller than the one for the
2-event rule: in the optimal case, a single interaction can summarize information
about multiple events and it is counted as one event.

The distribution of resources across domains affects the fraction of events
shared, as shown in Fig. 7. To test the system under less than ideal conditions,
we created events that partially matched policies with a probability of 75% and
we distributed them randomly to each server. The highest information sharing
occurred when each organization had half of the resources, while the amount of
event shared is reduced when more resources are managed by a single domain.

We measured the fraction of events stored at each server under different con-
ditions (see Fig. 8). We considered both complete events and events that can
be inferred from the presence of partial statements. Increasing the number of

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 79

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sh
ar

ed
 m

sg
s

/ t
ot

al
 m

sg
s

% matching

encr, 2 event rule
min, 2 event rule

encr, 4 event rule
min, 4 event rule

clear txt, 2 event rule

Fig. 6. Probability of matching events
affects the fraction of events shared

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

se
nt

 m
sg

s

distribution

encr, 2 event rule
min, 4 event rule

encr, 4 event rule
clear txt, 2 event rule

Fig. 7. Fraction of resources allocated
to a monitoring server. 2 servers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

av
g

fr
ac

tio
n

ev
en

t s
to

re
d

servers

2 doms, 2-event rule
3 doms, 2-event rule
4 doms, 2-event rule
2 doms, 4-event rule

clear-txt, 2 doms, 2-event rule
ideal, 1/#servers

Fig. 8. Average fraction of events
known to each server

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12 14 16

co
rr

 /
ev

en
t

sec domains

2 event rule
3 event rule
4 event rule

Fig. 9. Server load, multiple security
domains. One server per domain.

security domains reduced the average number of events in each server. In all
cases, our system provided a significant improvement over a clear-text solution.

To summarize, our experiment showed that while the performance of the sys-
tem depends on the conditions of the policy and the frequency of matching
events, our solution still outperforms a baseline solution. In many cases, the
amount of information shared is close to the minimum possible. Best conditions
occur when events in different domains creating a policy violations are not fre-
quent, and when a significant fraction of interacting resources are stored within
the same security domains, so that most violations can be found locally.

4.2 Performance Evaluation

To evaluate computation overhead, we measured the average number of secure
two-party computations performed by each server, as shown in Fig. 9. We varied
the number of domains. We considered the ratio between two-event correlations
and events received. We saw that increasing the number of security domains
increases the number of two-event correlations performed, as it increases the
likelihood that interacting resources are managed by external servers.

We measured the ability of parallelizing and of distributing the computation
by measuring the average number of computation per-server, as shown in Fig. 10.
We injected a constant number of events into the system and we measured the
ratio between the average number of two-event correlations performed on each

80 M. Montanari et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8

gc
 /

to
ta

l e
ve

nt
s

total # servers

2 domains
4 domains

Fig. 10. Distribution of load with the
increase of the number of servers within
each domain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

ra
te

 [e
ve

nt
/s

ec
]

parallel matchings

AFTER us-east
AFTER us-east <-> us-west

DURING us-east
DURING us-east <-> us-west

Fig. 11. Delay in the processing of an
event as a function of the level of con-
currency in the server

server and the total number of events. When we increase the number of moni-
toring servers within each domain, the average number of per-server two-event
correlations decreases as resources are distributed across the multiple servers.

To demonstrate the practical feasibility of our system, we measured the event
rate achievable using our prototype implementation on an Amazon EC2 deploy-
ment. We used 64 bits for representing the resource name in binary form, and 32
bits for representing each event timestamp. Such values are sufficient to reduce
collisions and to maintain low circuit complexity. Because the performance of
garbled circuit protocols depends on the round-trip communication delays, we
measured the performance between two servers within the same geographical re-
gion, and between servers in different regions. The former represents conditions
found when monitoring servers are co-located within the same provider.

We measured the throughput in event correlation per second and we show the
results in Fig. 11. The remote dataset was split into groups of 100 events, and
the processing of each group occurred in parallel. When using multiple threads,
we increased the rate up to 400 correlations per second on a single server.

We evaluated the effects of the policy constraints on the system’s throughput.
We evaluated two circuits: one checking for an equivalence between properties
and for a constraint after ; and a more complex circuit checking for an equivalence
and a constraint during. The first one had an input size of 192 bits: 64 bits for
each property name and 64 bits for two timestamps. The second circuit used 256
bits: 64 bits for each property name, and 128 bits for the four timestamps. The
complex circuit reduced the throughput by about 30%.

We evaluated the effect of colocation of servers on event throughput. We
considered servers co-located in the us-east region, and servers placed in us-east
and us-west. Without concurrency, co-located servers for the after constraints
obtained a rate of 9.5 event/s. When servers are located in different regions, the
rate was 1.4 event/s. However, increasing the concurrency significantly increased
the event rate. With 500 concurrent executions, co-located servers obtained a
rate of 435 event/s, while servers in different regions obtained 337 event/s, with
a reduction by about 22%. The before constraint had similar results.

Limiting Data Exposure in Monitoring Multi-domain Policy Conformance 81

In summary, our experiments demonstrated that our system is capable of
performing hundreds of correlations per second on a single server, and that
multiple servers can run in parallel to further improve the performance. This kind
of event rate makes our system practical for monitoring system configuration
changes and detecting complex attacks. It would scale to, for instance, taking a
few seconds to validate the effects of a local configuration change on a remote
infrastructure that consists of thousands of servers.

5 Conclusion

This paper introduced a distributed monitoring architecture for detecting vio-
lations of policies in multi-domain systems. The system uses secure two-party
computation to reduce the amount of confidential information shared outside
each security domain: information is shared only after verifying that it can po-
tentially contribute to a violation. Our analysis and experimental evaluation
show that the performance of our technique is adequate for configurations and
other discrete operational state. Our approach is complementary to techniques
that can process a larger amount of numerical data through aggregation and
anonymization, such as network traffic information. We show that our technique
limits the information shared to a minimal need-to-know for simple policies, and
can significantly reduce the amount of information shared for complex policies.

Future work should introduce more optimizations in complex policies by
changing the order of correlations so that the frequency of events and the willing-
ness of the organization to share are taken into account. Additionally, reducing
information stored in other domains can increase the security of the overall sys-
tem, as security breaches in one of domains would provide little information to
attackers about other systems. However, more work is needed to extended the
system beyond the honest-but-curious attack model. For example, redundancy
would provide mechanisms for recognizing compromised monitoring servers.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint
for the intercloud-protocols and formats for cloud computing interoperability. In:
ICIW 2009, pp. 328–336. IEEE (2009)

3. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: Privacy-preserving
aggregation of multi-domain network events and statistics. USENIX Sec (2010)

4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1(1), 146–166 (1989)

5. Grawrock, D.: The Intel Safer Computing Initiative, ch. 1-2, pp. 3–31. Intel Press
(2006)

6. Denker, G., Gehani, A., Kim, M., Hanz, D.: Policy-Based Data Downgrading:
Toward a Semantic Framework and Automated Tools to Balance Need-to-Protect
and Need-to-Share Policies. In: IEEE POLICY (2010)

82 M. Montanari et al.

7. Evans, D., Eyers, D.: Efficient Policy Checking across Administrative Domains. In:
IEEE POLICY (2010)

8. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. IBM Research Zurich, Report
RZ, 3662 (2006)

9. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

10. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

11. Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest
protocols with dual execution. In: IEEE Symposium on Security and Privacy (2012)

12. Huh, J.H., Lyle, J.: Trustworthy Log Reconciliation for Distributed Virtual Organi-
sations. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471,
pp. 169–182. Springer, Heidelberg (2009)

13. Huh, J.H., Martin, A.: Towards a Trustable Virtual Organisation. In: IEEE Inter-
national Symposium on Parallel and Distributed Processing with Applications, pp.
425–431. IEEE (August 2009)

14. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX ATC, vol. 10 (2010)

15. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

16. Lee, A.J., Tabriz, P., Borisov, N.: A privacy-preserving interdomain audit frame-
work. In: WPES. ACM (2006)

17. Lincoln, P., Porras, P., Shmatikov, V.: Privacy-preserving sharing and correction
of security alerts. In: USENIX Security Symposium (2004)

18. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: Nist cloud
computing reference architecture. NIST Special Publication 500, 292 (2011)

19. Montanari, M., Campbell, R.H.: Confidentiality of event data in policy-based mon-
itoring. In: Dependable Systems and Networks, DSN 2012. IEEE (2012)

20. Montanari, M., Cook, L.T., Campbell, R.H.: Multi-organization policy-based mon-
itoring. In: IEEE POLICY 2012 (2012)

21. Montanari, M., Huh, J.H., Dagit, D., Bobba, R.B., Campbell, R.H.: Evidence of
log integrity in policy-based security monitoring. In: Dependable Systems and Net-
works Workshops, DSN-W 2012. IEEE (2012)

22. O’Keefe, C.M.: Privacy and the use of health data - reducing disclosure risk. In:
Health Informatics (2008)

23. Pang, R.: A high-level programming environment for packet trace anonymization
and transformation. In: ACM SIGCOMM, Germany (2003)

24. Payment Card Industry (PCI) Security Standard Council. Data security standard
version 1.1 (2006)

25. Ross, R., Katzke, S., Johnson, A., Swanson, M., Stoneburner, G., Rogers, G., Lee,
A.: Recommended security controls for federal information systems (final public
draft; nist sp 800-53) (2005)

26. Singh, J., Vargas, L., Bacon, J., Moody, K.: Policy-Based Information Sharing in
Publish/Subscribe Middleware. In: IEEE POLICY (2008)

27. Slagell, A., Lakkaraju, K., Luo, K.: Flaim: A multi-level anonymization framework
for computer and network logs. In: LISA (2006)

Towards Trustworthy Network Measurements

Ghassan O. Karame

NEC Laboratories Europe
69115 Heidelberg, Germany
ghassan.karame@neclab.eu

Abstract. End-to-end network measurement tools are gaining increas-
ing importance in many Internet services. These tools were designed,
however, without prior security consideration which renders their ex-
tracted network estimates questionable, given the current adversarial
Internet. In this paper, we highlight the major security vulnerabilities of
existing end-to-end measurement tools and we sketch possible avenues
to counter these threats by leveraging functionality from the OpenFlow
protocol. More specifically, we show that the security of bottleneck band-
width estimation and RTT latency measurements in network coordinate
systems can be strengthened when the network deploys a number of
OpenFlow-operated switches.

Keywords: Software Defined Networks, OpenFlow protocol, Security,
Network Measurements.

1 Introduction

The ability to measure the network performance is an intrinsic component in
the design of the current Internet. Network measurements are crucial for the
operation and security of the Internet, and of several services including con-
tent distribution and peer-to-peer (P2P) systems [23]. Numerous tools for esti-
mating network performance have been proposed (e.g., bandwidth measurement:
Sprobe [24], latency: ping [21], link quality: mtr [3], etc.). However, the increasing
dependence of current applications and services on network measurement tools
is showing the limits of foresight in the design of these tools:

– End-to-end measurements: Current measurement tools push the measure-
ment function to the end-hosts, and do not require functionality from inter-
mediate network elements (e.g., switches). By doing so, they implicitly assume
that end-hosts are honest and behave “correctly”. However, if hosts misbe-
have and do not obey the measurement protocol (e.g., free-riding [23,27]), the
estimated end-to-end metric will not reflect the genuine state of the network.

– No prior security considerations: Current network measurement tools were
developed without prior security considerations, which makes them vulnera-
ble to a number of security threats. Since the measurements are performed
end-to-end, the end-hosts might not be able to distinguish these attacks from
“authentic” measurements [15, 19].

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 83–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 G. Karame

Till recently, the end-to-end principle [22] has provided a justifiable rationale
for moving functions closer to the end-hosts and has shaped the way the current
Internet is designed. The true leverage of the end-to-end argument was implicitly
a global architecture comprising a “naive” network and “smart” applications that
do not require functionality from the switching elements deployed within the
network. Given this, the design of network measurements tools equally adopted
the end-to-end principle, owing to the unavailability of infrastructural support
for measurements and to the absence of viable alternatives. This renders the task
of securing network measurements rather challenging in the current Internet.

Nowadays, the emergence of Software Defined Networks (SDNs) suggests a
slight departure from the end-to-end principle. These networks separate the
“control plane” and the “data plane”, and thus achieve a large degree of “network
virtualization”. OpenFlow [5] is one such protocol that enables the construction
of SDNs in practice. OpenFlow is a data link layer communication protocol that
enables an OpenFlow controller to configure paths, in software, through a num-
ber of OpenFlow-operated switches. Here, the controller issues (routing) rules to
the switches using a secure control channel; the switches can then dynamically
implement the requested rules on the data plane.

In this paper, we argue that the OpenFlow protocol can strengthen the secu-
rity of applications that rely on end-to-end network measurements. To that end,
we start by highlighting the security vulnerabilities of existing network measure-
ment tools. We then sketch possible avenues that leverage OpenFlow to enhance
the security of bottleneck bandwidth estimation and of RTT measurements in
network coordinate systems. To the best of our knowledge, the security provi-
sions of OpenFlow-enabled networks (and the resulting division of trust between
their hosts) have not been yet analyzed in the context of network measurements.

The remainder of the paper is organized as follows. Section 2 compiles a
list of security threats encountered in existing measurement tools. In Section 3,
we sketch possible avenues to alleviate attacks against network measurements
by leveraging functionality from the OpenFlow protocol. Section 4 overviews
related work, and we conclude the paper in Section 5.

2 Threats against Network Measurements

In this section, we start by outlining the major security threats against existing
end-to-end network measurement tools.

2.1 Threat Model

While they might be different in purpose and technique, most active end-to-end
measurement tools share a similar model consisting of a verifier and a prover
connected by a network. The verifier wants to measure and verify the end-to-
end performance of the path to the prover. The verifier actively generates probe
packets destined to the prover, who appropriately echoes back its reply probe
packets to the verifier (the prover cooperates with the verifier, otherwise the
prover will be denied service by the verifier). The verifier then estimates the

Towards Trustworthy Network Measurements 85

performance of the end-to-end path to the prover by extracting and analyzing
the probe packets’ arrival times depending on the measurement technique.

While an external attacker can spoof the IP [11] of the prover and issue
back replies on its behalf, untrusted provers constitute the core of our internal
attacker model. Untrusted provers denote those hosts involved in the measure-
ment process, but they are not trusted by the verifier to correctly execute the
measurement steps. Untrusted provers can intentionally manipulate the sending
time of their reply probes and claim a measurement value of their choice.

2.2 Delay Attacks on Network Measurements

Most end-to-end measurement tools rely on ICMP or TCP/UDP implementa-
tions at end-hosts or at routers to exchange probe packets along a path.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, Client at 100 Mbps
Path 2, Client at 100 Mbps

Fig. 1. Delay Attacks on Sprobe [24]. Here, we con-
ducted our measurements on 100 Mbps symmetric phys-
ical connections deployed on two paths: Path1 where
both the verifier and the prover are located in the same
state, and Path2 where the verifier is located in Europe
and the prover is located in the US.

While rushing attacks
(where the adversary pre-
dicts the reply packets
and sends them ahead of
time) and impersonation
attacks can be countered
by relying on lightweight
cryptographic primitives,
delay attacks pose a se-
rious challenge to ex-
isting network measure-
ments tools. An untrusted
prover can intentionally
delay its reply probes to
convince the verifier of
a performance value of
its choice. Delay attacks
can result in both in-
flated (higher) or deflated
(lower) measurement esti-
mates [18,19]. The amount of delay that needs to be introduced depends on the
probe size and on the estimation techniques in use.

To perform delay attacks, untrusted provers can “manipulate” their network-
ing interface and introduce appropriate delays that match their desired claims.
Alternatively, provers can make use of available software, such as traffic shapers
(e.g., NetLimiter [4], HTB [2], etc.) to throttle their outgoing traffic according
to a target rate matching their network performance claims.

Example—Delay Attacks on Bandwidth Estimation: The packet-pair
technique is a widely adopted technique for measuring the bottleneck band-
width (the minimum capacity) of an Internet path. To measure the download
bandwidth in the packet-pair technique, the verifier sends two back-to-back large
probe packets of equal size to the prover. These packets are likely to queue at the

86 G. Karame

0 100 200 300 400 500 600 700 800 900 1000
200

300

400

500

600

700

800

900

1000

1100

Number of Peers

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
)

Average Download Time for 0% Malicious Peers

Average Download Time for 40 % Malicious Peers (Up)

Average Download Time for 40 % Malicious Peers (Down)

Fig. 2. Impact of bandwidth inflation/deflation attacks on a content distribution net-
work based on multicast binary trees. Each data point is averaged over 1000 runs;
where appropriate, we present the corresponding 95% confidence intervals.

bottleneck link; their dispersion is then inversely proportional to the bottleneck
bandwidth of the path [24]. The prover then issues back small reply probe-pairs;
the verifier estimates the prover’s download bandwidth: B = S

T , where B is
the bandwidth to the prover, S is the size of the request probes, and T is the
time dispersion between the reply probe-pair1 [24]. Similarly, to measure the
upload bandwidth, the verifier issues small request packet probes; the prover in
turn replies with large reply packet probes. The upload bottleneck bandwidth is
inversely proportional to the dispersion between the reply packet pairs.

Untrusted provers can claim a higher (or lower) bandwidth by introducing a

delay Δ = S · | 1
Bclaimed

− 1
Bauth

| before (after) responding to the first request
packet. Here, Bclaimed denotes the fake claimed bandwidth of the prover and
Bauth is the genuine bandwidth of the prover [18,19]. We implemented this attack
on a popular bandwidth estimation tool based on the packet-pair technique,
Sprobe [24]. Our findings are depicted in Figure 1. In the figure, target bandwidth
refers to the bandwidth that an untrusted prover claims and measured bandwidth
denotes the bottleneck bandwidth estimate extracted by the verifier. Indeed, the
prover can, by appropriately delaying its reply probes, claim a bandwidth of its
choice irrespective of its physical bandwidth capability.

Implications of Attacks: We now investigate the impact of the aforementioned
attack in a content distribution network (CDN) based on multicast binary trees.

We implemented a C-based simulator that simulates a content distribution
network, in which a central verifier measures the bandwidths of peers prior to
organizing them in a binary multicast tree. Here, fast peers should be located
close to the multicast root in order to boost the performance of the network [25].
In our simulations, the nodes’ bandwidth were chosen based on the bandwidth
distribution in current P2P networks as reported in [23]. Figure 3 shows the
detrimental impact of fake bandwidth claims on resource distribution; the av-
erage download times over all peers in the network doubles when 40 % of the

1 Since the reply packets are small in size, their dispersion should reflect the initial
dispersion of the large request probes sent by the verifier.

Towards Trustworthy Network Measurements 87

peers claim a lower bandwidth than their own. This effect is more detrimental
when those peers claim a higher bandwidth than they actually have; the average
download time over all peers almost quadruples.

3 Trustworthy Network Measurements Using OpenFlow

In what follows, we analyze the provisions of OpenFlow in strengthening the
security of network measurements and their applications. We focus on bottleneck
bandwidth estimation and on network coordinate measurements. Here, we con-
sider the system model outlined in Section 2.1 and we assume a setting where
the path between the verifier and the prover traverses a network domain D that
is governed by an OpenFlow controller C. We further assume that C cooperates
with the verifier in order to ensure the security of the conducted measurements
(e.g., cooperation between the CDN and the network operator).

3.1 Bottleneck Bandwidth Estimation

We start by outlining a scheme that leverages the OpenFlow protocol and enables
the secure estimation of the upload2 bottleneck bandwidth of the prover using
the packet-pair technique (cf. Section 2.2). Here, we assume that the verifier’s
download bandwidth is much larger than that of the prover, otherwise, it cannot
measure the upload bottleneck bandwidth of the prover.

Our solution unfolds as follows. The verifier crafts request packets that contain
pseudo-randomly generated payloads and requires that the reply packet issued by
the prover echo the contents of the request packets. This prevents the prover from
issuing the reply packets before receiving the corresponding request packets. The
verifier also requests that all measurement packets issued by the prover embed
within their headers a pre-defined flag (e.g., in the ToS field). This serves to
announce to the OpenFlow-operated switches on the path to the verifier that
these correspond to bandwidth measurement packets. Finally, the verifier informs
the controller C about the IP address of the prover.

C then propagates a rule to the outermost OpenFlow-operated switch that
connects to the prover, requesting to queue all the packets that it receives from
the IP addresses of the prover, whose headers contain a measurement flag. This
removes any additional delay that the prover may have inserted within the trans-
mission of its packet-pairs. This process is shown in Figure 3(a). In the OpenFlow
protocol, this request is defined through a FLOW MOD message type. For in-
stance, a FLOW MOD message that requests from a switch to queue packets
that originate from IP address “x.y.z.w” and that have the ToS field set to
“11111111” looks like:

Match set: All wildcards but (NW DST that has value “x.y.z.w” AND
NW TOS that has value “11111111”)
Action set: ENQUEUE (queue: 1, port: a)

2 A similar analysis equally applies for download bandwidth estimation.

88 G. Karame

Here, queue 1 must be appropriately defined on the switch in question; the
scheduler releases packets from this queue only when it contains at least two
packets. In addition, the controller C requests that the switch forwards the
packets (that are filtered in the above match set), along with their received
timestamps, to C (e.g., in the control plane), who in turn sends them to the
verifier. Let disp denote the dispersion between the packet-pair received by the
verifier, and let δ = (t2 − t1), where t1 and t2 denote the respective reception
time of the packet-pair at the switch, as reported by C. Here, two cases emerge:

– δ ≤ disp. Here, the bottleneck link is located between the verifier and the
OpenFlow switch. Since the latter queued the packet-pair, the verifier is
certain that the bandwidth estimate is correct.

– disp < δ. In this case, the bottleneck link is located on the prover’s side of the
OpenFlow switch and the verifier is certain that the bottleneck bandwidth
B of the prover ranges between: S

δ ≤ B ≤ S
disp , where S is the size of the

reply packets of the prover.

The closer is the prover from an OpenFlow-operated switch in D, the more
accurate is the estimate acquired by the verifier. That is, the smaller is the
number of hops that separate the prover from the outermost OpenFlow-operated
switch, the higher is the probability that the bottleneck link is located after the
switch, on the path to the verifier. This conforms with recent studies that show
that bottleneck links typically co-exist within inter-domains links [12].

3.2 Network Coordinate Measurements

Network coordinate systems provide hosts with the means to easily learn their
coordinates (RTT latencies) relative to other hosts in the network. In these
systems, hosts compute their “coordinates” in the network by measuring their
latency to other nodes [9]. In [15,16], Kaafar at al. analyzed the impact of delay
attacks on network coordinate systems and propose the reliance on surveyor
nodes to counter these threats. In what follows, we show that the reliance on
OpenFlow-enabled switches can also alleviate delay attacks on these systems.
Here, we assume that the prover wants to claim a coordinate position of its
choice relative to the verifier (e.g., to be placed favorably in a CDN).

The verifier measures the coordinate position of the prover as follows. The
verifier crafts its echo request packets, by ensuring that their content cannot be
predicted (to prevent rushing attacks) and by inserting a pre-defined flag in their
headers (e.g., in the ToS field). The verifier also requires that the prover’s reply
packets (i) are correlated in content to the request packets (e.g., echoing the re-
quest packets) and (ii) embed the flag in their headers. Given the IP address of
both the prover and the verifier, the controller C then dynamically configures a
random path (across the OpenFlow-operated switches) that the packets (whose
headers contain a flag) exchanged among the verifier and the prover traverse
(Figure 3(b)). For example, in the OpenFlow protocol version 1.0, this is defined
through the following message that is propagated to each switch in D:

Towards Trustworthy Network Measurements 89

(a) Bottleneck bandwidth estimation (b) Network coordinate measurements

Fig. 3. Leveraging OpenFlow to strengthen the security of network measurements. The
shaded area corresponds to a domain D that is located on the measured path.

Match set: All wildcards but (NW DST that has value “x.y.z.w” AND
NW TOS that has value “11111110”)
Action set: OUTPUT (port: a)

Here, by defining the output port of the flow, C manages the routing of the
filtered packets. C also informs the verifier about the chosen path; the verifier
in turn measures the RTT to the prover of the packets traversing the config-
ured path. This process is repeated for a number of independent runs, in which
different paths are configured by the controller. Note that these paths need to
be chosen such that the same outermost OpenFlow-operated switch does not
repeat across different runs. Since the prover cannot predict the path that the
packets will follow to the verifier, it is easy to see that the prover cannot insert
the accurate amount of delays [16] in order to claim a latency/coordinate of its
choice relative to the various OpenFlow-operated switches (and therefore to the
verifier, since the latter knows its RTT latency relative to the switches3).

Clearly, the bigger is the domain D, the larger is the number of OpenFlow-
operated switches, and the harder it is for the prover to predict the path (and
the corresponding required delay) to the verifier. We point out that, here, the
prover does not have to be located in the proximity of D.4

3 These act as hidden landmarks [8] to securely position the prover.
4 In the case where the prover is located is the close proximity of an OpenFlow switch
in D, then the verifier can directly estimate the position of the prover since it knows
the relative coordinate of the OpenFlow-operated switch.

90 G. Karame

4 Related Work

Several tools for active network measurements have been proposed and evaluated
empirically over a number of Internet paths [1]. Examples include Pathchar [13],
and Sprobe [24] measuring the bottleneck bandwidth, ping [21] for measuring net-
work delay, etc.. On the other hand, passive network measurement tools rely on
monitoring existing traffic between end-hosts to extract their estimates. Several
tools for passive measurements exist, such as Nettimer [20], Viznet [6], etc.. How-
ever, these tools are finding less applicability nowadays since existing traffic is
not suitable for them to produce an indicative estimate [24].

In [27], Walters et al. propose to mitigate attacks against measurements in
overlay networks by combining anomaly detection and reputation-based tech-
niques [10, 17]. In [18, 19], Karame et al. investigate the vulnerabilities of band-
width estimation techniques in adversarial settings. In [15, 16], Kaafar et al.
analyze the security of RTT measurements in Internet coordinate systems.

The literature features a number of proposals that leverage SDNs and the
OpenFlow protocol [14, 26]. However, these contributions focus on monitoring
the network status, and do not address the security of network measurements.

5 Concluding Remarks

Given the current trends in designing a “clean-slate” future Internet, this
paper motivates the need for a secure next-generation Internet. Given the
importance of network monitoring, secure infrastructural support for network
measurements becomes rather a necessity [7]. In this respect, we showed that
OpenFlow-operated networks can strengthen the security of applications that
rely on end-to-end network measurements.

However, even if most switches in the network provide support for network
measurements, we still expect other hazards to arise with respect to the se-
curity of the overall network. Indeed, the reliance on dedicated measurement
components requires the presence of trusted authorities that control and main-
tain these components. Here, access control to the infrastructure is a crucial
design property; any compromise might result in severe performance deterio-
ration throughout the entire network. Overcoming these limitations requires a
careful design of the measurement functions in the future Internet.

Acknowledgements. The author would like to thank Srdjan Capkun for the
helpful discussions and valuable comments. The author would also like to thank
Roberto Bifulco for the various discussions on the OpenFlow protocol.

References

1. CAIDA, tools: taxonomies,
http://www.caida.org/tools/taxonomy/performance.xml

2. HTB Traffic Shaper, http://luxik.cdi.cz/~devik/qos/htb/
3. mtr, http://www.bitwizard.nl/mtr/

http://www.caida.org/tools/taxonomy/performance.xml
http://luxik.cdi.cz/~devik/qos/htb/
http://www.bitwizard.nl/mtr/

Towards Trustworthy Network Measurements 91

4. NetLimiter, http://www.netlimiter.com/
5. OpenFlow–Enabling Innovation in your Network, http://www.openflow.org/
6. Viznet, http://dast.nlanr.net/Projects/Viznet/
7. Barford, P.: Measurement as a First Class Network Citizen,

http://pages.cs.wisc.edu/~pb/sngi_whitepaper.pdf
8. Capkun, S., Rasmussen, K.B., Cagalj, M., Srivastava, M.: Secure Location Ver-

ification With Hidden and Mobile Base Stations. IEEE Transactions on Mobile
Computing (TMC) (2008)

9. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A Decentralized Network
Coordinate System. In: Proceedings of SIGCOMM (2004)

10. Dimitriou, T., Karame, G., Christou, I.: SuperTrust – A Secure and Efficient
Framework for Handling Trust in Super Peer Networks. In: Proceedings of ACM
PODC (2007)

11. Harris, B., Hunt, R.: TCP/IP security threats and attack methods. Computer
Communications (1999)

12. Hu, N., Li, L., Mao, Z.M., Steenkiste, P., Wang, J.: A Measurement Study of
Internet Bottlenecks. In: Proceedings of INFOCOM (2005)

13. Jocobson, V.: Pathchar,
http://www.caida.org/tools/utilities/others/pathchar

14. Jose, L., Yu, M., Rexford, J.: Online measurement of large traffic aggregates on
commodity switches. In: Proceedings of Hot-ICE (2011)

15. Kaafar, M.A., Mathy, L., Barakat, C., Salamatian, K., Turletti, T., Dabbous, W.:
Securing Internet Coordinate Embedding Systems. In: Proceedings of ACM SIG-
COMM (2007)

16. Kaafar, M.A., Mathy, L., Turletti, T., Dabbous, W.: Virtual Networks under At-
tack: Disrupting Internet Coordinate Systems. In: Proceedings of CoNext (2006)

17. Karame, G., Christou, I., Dimitriou, T.: A Secure Hybrid Reputation Management
System for Super-Peer Networks. In: Proceedings of IEEE CCNC (2008)

18. Karame, G., Gubler, D., Čapkun, S.: On the Security of Bottleneck Bandwidth
Estimation Techniques. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm
2009. LNICST, vol. 19, pp. 121–141. Springer, Heidelberg (2009)

19. Karame, G., Danev, B., Bannwart, C., Capkun, S.: On the Security of End-to-End
Measurements based on Packet-Pair Dispersions. IEEE Transactions on Informa-
tion Forensics & Security (TIFS) (2013)

20. Lai, K., Baker, M.: Nettimer: A Tool for Measuring Bottleneck Link Bandwidth.
In: Proceedings of USITS (2001)

21. Muuss, M.: ping, ftp://ftp.arl.mil/pub/ping.shar
22. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments in System Design.

ACM Transactions on Computer Systems (1984)
23. Saroiu, S., Gummadi, P., Gribble, S.: A Measurement Study of Peer-to-Peer File

Sharing Systems. In: Proceedings of MMCN (2002)
24. Sariou, S., Gummadi, P., Gribble, S.: SProbe: A Fast Technique for Measuring

Bottleneck Bandwidth in Uncooperative Environments. In: INFOCOM (2002)
25. Schiely, M., Renfer, L., Felber, P.: Self-Organization in Cooperative Content Dis-

tribution Networks. In: Proceedings of NCA (2005)
26. Tootoonchian, A., Ghobadi, M., Ganjali, Y.: OpenTM: Traffic matrix estimator for

OpenFlow networks. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS,
vol. 6032, pp. 201–210. Springer, Heidelberg (2010)

27. Walters, A., Zage, D., Nita-Rotaru, C.: A Framework for Mitigating Attacks
Against Measurement-Based Adaptation Mechanisms in Unstructured Multicast
Overlay Networks. ACM/IEEE Transactions on Networking (2007)

http://www.netlimiter.com/
http://www.openflow.org/
http://dast.nlanr.net/Projects/Viznet/
http://pages.cs.wisc.edu/~pb/sngi_whitepaper.pdf
http://www.caida.org/tools/utilities/others/pathchar
ftp://ftp.arl.mil/pub/ping.shar

Stochastic Model of a Metastability-Based True

Random Number Generator

Molka Ben-Romdhane1,2, Tarik Graba1, and Jean-Luc Danger1,2

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
2 Secure-IC S.A.S.

{benromdh,graba,danger}@telecom-paristech.fr

Abstract. True random number generator (TRNG) designers should
provide a stochastic model of the target of evaluation to be compliant
with the AIS-31 standard evaluation process. In this paper, we present
a model of a TRNG that extracts its randomness from the metastable
behavior of a D-Latch. Such a model needs to be set up for the TRNG
evaluation process. In this work, we describe and analyse the random-
ness coming from a chain of D-Latches when set near their metastable
state. Then, we present a physical model of a metastability-based TRNG.
The main novelty of this paper is the stochastic modeling process of a
metastability-based TRNG. The presented model is validated on FPGA
and a 65nm CMOS technology prototype chip.

Keywords: TRNG, metastability, model, randomness, noise, AIS-31.

1 Introduction

Randomness generation is needed for many applications spanning from Monte
Carlo simulations to security communications. Also many cryptographic proto-
cols are contingent to the unpredictability of random variable. A critical part to
validate a true random number generator (TRNG) is to satisfy stringent veri-
fications to make sure the function is not biased. For instance, statistical tests
have been precisely specified by NIST in [1], BSI in [2] or FIPS in [3]. In the
case of AIS-31 evaluation methodology of physical true random number gen-
erators [2], TRNG designers should provide a stochastic model of the TRNG
behavior besides the compliance with the statistical tests.

On-chip TRNGs extract randomness from the chip ambient noise. There are
many noise sources in CMOS circuits. Some of them are deterministic and others
are random. Thermal noise, shot noise and (1/f) noise are considered as random
noise sources [4]. By applying the central limit theorem, the noise exhibits a
Normal probability density distribution [5].

In this paper, a stochastic model of a metastability-based TRNG is presented.
This TRNG design is an open-loop structure which extracts the noise entropy by
placing a memorizing cell in a metastable state, then observing the stable state
which is the consequence of the noise impact. The presented metastability-based

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 92–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Stochastic Model of a Metastability-Based True Random Number Generator 93

TRNG output takes advantage of a metastable state, MSS, which converges to a
final stable state depending on the noise value. Simulations have been performed
to estimate the parameters that describe the proposed model. To validate this
model, we perform AIS-31 standard statistic tests on acquisitions of both FPGA
and ASIC targets.

Stochastic models of a PLL-based TRNG, a noisy diodes physical RNG and a
floating-gate-based TRNG were introduced respectively in [6], [7] and [8]. Several
analog and digital TRNG designs that extracts randomness from metastability
have been proposed in ([9], [10], [11], [12] and [13]). Given our current knowledge,
there is no such model for metastability-based TRNG in the literature.

As TRNGs require specific certifications, randomness must be proven first
by model then by applying the generated sequence a battery of standard tests.
We devote this paper to these two important steps of TRNG design. This pa-
per is organized as follows: In the second section, an introduction to the basics
of metastability is given. Then, an analytic expression is established to com-
pute the model parameters. The third section deals with the modeling process
and probability computation of the metastability-based TRNG output. In the
fourth section, we validate the presented metastability-based TRNG model by
comparing simulation results against test-chip measurements.

2 Modeling and Characterisation of Metastability

In storage elements, such as latches and flip–flops, whenever the delay between
the clock and data violates the setup or hold time requirements, the normal
behavior is not guaranteed. In fact, the input D must be stable for a duration
of at least tsetup before the active edge of clock and it must remain stable for at
least thold after the same clock edge. If those timing conditions are not met, the
output state can go through an intermediate state where its value is not a valid
logic value. This intermediate state is called metastable state. The final valid
state of the storage element, either 0 or 1, is then not predictable and depends
on the circuit ambient noise. The metastability-based TRNG design exploits this
phenomenon to generate unpredictable random numbers. The main goal of this
work is to try to model the behavior of the TRNG structure and quantify the
output entropy.

To characterise this behaviour, let us consider the internal structure of a stan-
dard cell D-Latch as shown in Fig. 1a. This D-Latch is designed using tri–state
gates controlled by the clock signal G and two back-to-back inverters commonly
used in static storage elements. In the following, we consider an active low trans-
parent D-Latch. When the value of the input clock signal G is ‘0’, the D-Latch
is said to be transparent, i.e. the output Q is equal to the input D, and when
the value of the input clock signal G is ‘1’ the D-Latch is said to be memorizing,
i.e., the output Q keeps its value.

Depending on signal arrival times, the three situations are possible as shown
in Fig. 1b:

94 M. Ben-Romdhane, T. Graba, and J.-L. Danger

D

G G

Q

VoVi

(a) CMOS D-Latch cell

Q

G

D
ΔV

VDD

2

tsetup

Q

case (i)

case (ii)

δtDG

Qcase (iii)

δtDG < tsetup

δtDG � tsetup

δtDG > tsetup

(b) Timing characterisation

Fig. 1. D-Latch internal structure and timing characterisation

(i) The delay between the clock G and the dataD, δtDG, is greater than tsetup.
This implies the Q output goes rapidly to VDD.

(ii) δtDG � tsetup. This means there is a tsetup violation and Q may remain
stuck around an intermediate voltage level VMSS which is neither a 0V nor
VDD.

(iii) δtDG, is less than tsetup the output Q never leaves 0V .

Fig. 2 shows the clock-to-output propagation delay TGQ versus the data-to-clock
delay δtDG.

When the setup requirements are respected (δtDG < tsetup), the propagation
delay is constant and corresponds to the propagation delay of a transparent D-
Latch TGQmax

given by the manufacturer. When δtDG decreases, the propagation
time TGQ increases with a logarithmic shape. This increase is due to the recovery
time from metastability. The asymptotic limit defines a minimum setup time for
which the propagation delay TGQ becomes infinite. In the following, we refer to
this asymptotic value as Tsetup0.

The metastable state, MSS, is a state where the output voltage is neither a
valid low nor a high logic state such as depicted in Fig. 3a. In this state the
voltage values of both the input and the output of the static storage element,
have the same value VMSS � VDD

2 .
Around this point, the inverters of the static storage element can be mod-

eled as two amplifiers with a negative gain (−A) where A 	 1 [14] [15] (we
consider equal gains for both inverters for the simplicity of expression). Each
inverter drives a resistance R and a capacitive load C (considered equal to sim-
plify the expression) which models the gates and connections at each outputs as
represented in Fig. 3b. In the absence of noise, the voltage of the internal node Vo

Stochastic Model of a Metastability-Based True Random Number Generator 95

P
ro

p
ag

at
io

n
 t

im
e

T
G

Q
 (

p
s)

Data-to-clock delay δ tDG (ps)

Tsetup0 0

Fig. 2. Behavior of the propagation delay time TGQ vs. δtDG of a CMOS D-Latch.

should remain stuck at this intermediate voltage, around VDD

2 . The probability
to enter a MSS whose duration is longer than tm is expressed as follows [16]:

p(t > tm) = e−
(A−1)

τ ·tm (1)

Practically, when the G switches to ‘1’ the node voltage is never exactly VDD

2 ,
and even then, ambient noise can shift this position. This bias will condition the
final logical value and the time to reach it as shown in Fig. 3c. In fact, ΔVDG0

impacts on the final state of the D-Latch. Fig. 3d shows the behavior of the
internal memorizing net at MSS state for different data-to-clock delays. The
figure (b) is a zoom of (a) around VDD

2 .
The expression of the voltage difference V (t) = Vo(t) − Vi(t) around MSS is

given in equation (2) [15]:

V (t) = ΔVDG0 · e
A−1
τ t (2)

Where ΔVDG0 = (Vo − Vi)(0) is the voltage difference at the moment where the
D-Latch switches to memorizing mode. τ = R · C is the time constant.

We introduce a threshold voltage Vth aroundMSS. This threshold corresponds
to the voltage over which the state goes from MSS to a valid logic value.

Tr =
τ

A− 1
ln(

ΔVth

ΔVDG0

) (3)

Tr represents the time needed to leave the metastable state or the increase in
the propagation delay.

96 M. Ben-Romdhane, T. Graba, and J.-L. Danger

0
Vdd

Vdd

Vo

Vi

VMSS � VDD

2

Vo = f(Vi)

Vi = f(Vo)

MSS : MetaStable State

Stable State

(a) Transfer Characteristic

-A
R

C C

-A
R

Vi Vo

(b) First order small signal model

0V

VDD/2

VDD

Q
 l

at
ch

 o
u

tp
u

t
v

o
lt

ag
e

(V
)

Time (ps)

Vth=VDD/2+δv

Vth=VDD/2-δv

(c) Propagation delay increase

-δv

0

δv

Time (ps)

ΔV0>VDD/2

ΔV0<VDD/2

(d) Exit from MSS

Fig. 3. D-Latch characterization around metastability

As shown in Fig. 1b, we consider a linear relation between the voltage differ-
ences ΔV and the delay in arrival times of the D and G signals such as:

ΔVth = α A · δtth
ΔVDG0 = α A · δtDG (4)

Where α is the slope of the clock and data input and A the gain of inverter.
Thus, by replacing the expression of Vth in (3) we can express the resolving

time as a function of the time delays as in equation (5).

Tr =
τ

A− 1
ln(

δtth
δtDG

) (5)

Which can be rewritten as:

Tr = γ(β − ln δtDG) (6)

Stochastic Model of a Metastability-Based True Random Number Generator 97

Equation (6) shows that the D-Latch propagation delay TGQ = Tr + TGQmax

increases as δtDG decreases. And this is what we obtain at simulation as shown
in Fig. 2.

The next section provides a detailed analysis of the noise impact on the TRNG
and the probability analysis of the output.

3 Stochastic Model of the Metastability-Based TRNG

3.1 Randomness Extraction

To maximize the probability to catch a metastable event at each clock cycle,a
high speed metastability-based TRNG structure [10] has been introduced. This
structure is illustrated in Fig. 4 and is composed of N latches and a delay struc-
ture to assure a race between the clock and data signals. The offset is first
adjusted by two coarse chains with two control signals ctrd and ctr for the data
and the clock, respectively.

DATA
COARSE
CHAIN

CHAIN
COARSE
CLOCK

D Q D Q D Q D Q

1 2 N-1 N

RNG

CLK
G G G G

Q1 QN

FINE CHAIN CLK

FINE CHAIN D

ctrd

ctr

Fig. 4. Structure of the metastability-based TRNG

For the ith D-Latch, δtDGi
represents the delay between D and G signals

(G being the clock input of the latch). This delay is incremented between two
consecutive latches by a differentiel delay δt, as expressed in equation (7). δt
comes from the difference between the two fine delay chains D and CLK.

δtDGi+1 = δt+ δtDGi (7)

Fig. 5 shows the clock-to-data delay at consecutive latches, superposed with the
propagation characteristic of a D-Latch. This delay can be expressed,

98 M. Ben-Romdhane, T. Graba, and J.-L. Danger

Data-to-clock delay: δtDG

P
ro

p
ag

at
io

n
 d

el
ay

 t
im

e:
 T

G
Q

δt

Qi-3

Qi-2

Qi-1

Qi

Tsetup0

Noise Normal distribution

Fig. 5. The probability to correctly sample the input for consecutive latches

as in (8), as the sum of a deterministic delay, which correspond to the signals
race and a random delay, which models the noise impact.

δtDGi = ΔD0 − i · δt+N (δt) (8)

Where N (σ) is the Normal distribution and ΔD0 is the initial delay between
G and D introduced by the data and clock coarse chains. The incertitude dis-
tribution is considered Normal as it models the influence of the multiple noise
sources in accordance with the central limit theorem [17].

The D-Latch will sample a high logic value 1 if this delay is smaller than
Tsetup0. We denote pQi = p(Qi = 1) this probability:

pQi = p(δtDGi
< Tsetup0) (9)

This corresponds to the gray colored area of the Normal bell in Fig. 5. This
probability can thus be analytically expressed as:

pQi =
1

2

[
1− erf(

δtDGi − Tsetup0

σ
√
2

)

]
(10)

Where:

– Tsetup0 is the experimental asymptotic limit such as represented in Fig. 5.
– erf(x) is the error function.

Stochastic Model of a Metastability-Based True Random Number Generator 99

3.2 Probabilistic Analysis of Metastability-Based TRNG

In the following, we use the notation pX , representing p(X = 1), where X is a
Normal random variable. Since the TRNG output is the XOR of the N D-Latch,
as illustrated in Fig. 4, the probability to have TRNG output equal to 1 is the
probability parity of having an odd number of the N Q outputs D-Latch settling
down to a logic 1. Let pTRNG = p(TRNG = 1) be the probability to have 1 on
the TRNG output. Here we distinguish two cases:

(i) Influence of noise on each of the N Latches is independent.
(ii) The value of Qi of D-Latch i impacts the output value Qi+1 of the (i+1)th

D-Latch.

In the case (i), computing this probability pTRNG is equivalent to compute the
probability of a N -inputs XOR to be equal to 1. Let us consider the first two
latches Q1 and Q2. Equation (11) represents the probability to obtain ‘1’ at the
output of the first stage 2-inputs XOR.

pQ1⊕Q2 = pQ1 · pQ2 + pQ1 · pQ2

= pQ1 · (1− pQ2) + (1 − pQ1) · pQ2

pQ1⊕Q2 = pQ1 + pQ2 − 2pQ1pQ2 (11)

Equation (12) is the factorized expression of (11).

1− 2pQ1⊕Q2 = 1− 2pQ1 − 2pQ2 + 4pQ1pQ2

= (1− 2pQ1) · (1− 2pQ2) (12)

Then, by mathematical induction, we can generalize the expression for N-inputs
XOR as shown in (13).

1− 2p(

N⊕
i=1

Qi = 1) =

N∏
i=1

(1− 2pQi) (13)

Thus, from equation (13), the final expression of p(TRNG = 1) is:

pTRNG =
1

2
[1−

N∏
i=1

(1− 2pQi)] (14)

In case (ii) where pQi impacts pQi+1 if Qi equals ‘1’ there is no way that Qi+1

equals ‘0’, we can thus eliminate some terms in eq. 14.
For example, for a 3-inputs XOR, only the following input triplets (1,0,0)

and (1,1,1) are left. Hence, the probability of the output of XOR pQ0⊕Q1⊕Q2 =
p(Q0 ⊕Q1 ⊕Q2 = 1) would be expressed as follows:

pQ1⊕Q2⊕Q3 = p1 · (1− p2) · (1 − p3) + p1 · p2 · p3

100 M. Ben-Romdhane, T. Graba, and J.-L. Danger

For a 4-inputs XOR, the product of all pi does not appear in the final probability,
as the XOR of an even number of ones is 0.

pQ1⊕Q2⊕Q3⊕Q4 = p1 · (1− p2) · (1− p3) · (1− p4) + p1 · p2 · p3 · (1− p4)

By mathematical induction, we can establish a general expression of pTRNG =
p(TRNG = 1) for an N -inputs XOR (here N is even). Eq. (15) represents thus
the probability pTRNG in case (ii).

pTRNG =

N
2∑

i=1

2i−1∏
j=1

pQj ·
N∏

j=2i

(1 − pQj) (15)

In the next section, we present the model verifications by simulation and experi-
mental results on the test-chip. Then, the AIS-31 statistical tests are applied on
the random number generated by metastability-based prototypes on both FPGA
and ASIC technology targets.

4 Model Verification

TRNG simulations with noise show that the impact of noise on the D-Latch
chain is correlated such as explained in case (ii) of the section 3.2.

4.1 Model Validation by Simulation

We plot the increase of TGQ vs. δtDG for a D-Latch standard cell with 1fs
resolution to estimate the model parameters of equation (10). We find that
Tsetup0 is equal to -38.385ps. The differential delay δt introduced by the fine delay
chains equals to 1ps. Then, to extract the parameter σ, standard deviation of the
TRNG noise source, transient electrical simulation of a single D-Latch standard
cell are held with a noisy data input D for different σ.

Fig. 6 depicts the probability p(Q = 1) as a function of noise standard for
two different deterministic delays chosen around Tsetup0. In Fig. 6a the offset
is of -1ps from Tsetup0 and for Fig. 6b it is 1ps. When the standard deviation
of the noise is small, the probability is either 1 or 0 depending on the relative
position to Tsetup0. In this case, no random behaviour will be observed. When
the standard deviation is higher than 10ps, the probability tends to 0.5 making
the output final logic value unpredictable.

Fig. 7 represents the simulated probability p(Q = 1) with a noise stan-
dard deviation σ = 5ps for offsets from Tsetup0 in the interval [-10,10]ps. The
dashed curve represents, the theoretical p(Q = 1), i.e. the function f(x) =
1
2 (1− erf(x√

2σ
)) with σ = 5 while the plane line curve represents the simulated

probability.

Stochastic Model of a Metastability-Based True Random Number Generator 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

p
(Q

=
1
)

Noise standard deviation in (ps)

(a) Negative offset of 1ps from Tsetup0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

p
(Q

=
1

)

Noise standard deviation in (ps)

(b) Positive offset of 1ps from Tsetup0

Fig. 6. The probability p(Q = 1) vs. the noise standard deviation

Then, the same simulation experiment is performed on the TRNG composed
of N = 64 latches while varying the standard deviation of the noisy data input.
Fig. 8 shows side to side the probability pTRNG vs. the noise standard deviation
obtained from both analytic expression (Eq. (15) and Eq. (14)) and from the
spice simulation for one configuration the coarse delay chain (ctr = 0x00, ctrd =
0x00). We see that for small noise standard deviation both analytic expressions
give similar values. This figure also shows that the proposed model matches well
the simulation results.

4.2 Silicon Proven Metastability-Based TRNG

In order to validate the TRNG model, we have applied standard statistical tests.
FIPS 140-2, AIS-31 and NIST are three evaluation test standards commonly used
to validate the randomness quality.

T0-T5 AIS-31 tests are applied on the digitized noise signal after post-
processing. FIPS 140-2 [3] are similar to T1-T4 tests with different rejection lim-
its. P2 tests class of AIS-31 (corresponding to T6-T7-T8) are the sole that have
to be applied on the raw output of the TRNG, i.e. before any post-processing,
as specified in the AIS-31 evaluation methodology [2].

In what follow, we will thus only present the results of the AIS-31 tests. We
ran the different AIS-31 statistical tests on 20Mbits samples from an ASIC test-
chip and for an FPGA implementation. In both FPGA and ASIC prototype, the
TRNG structure is composed of N=64 latches.

ASIC Test-Chip Experiments. The test-chips were fabricated in the 65nm
CMOS technology process by STMicroelectronics. Two versions of the TRNG
have been use, the first one has a δt equals to 5ps, later referred to as TRNG1,
while the second has a δt smaller than a 1ps, later referred to as TRNG2.

102 M. Ben-Romdhane, T. Graba, and J.-L. Danger

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

p
(Q

=
1

)

Tsetup0 offset in (ps)

Fig. 7. The probability p(Q = 1) vs. the offset from Tsetup0 for a noise standard
deviation σ = 5ps.

The probability p(TRNG = 1) has been measured for different values of
the clock to data offset adjusted by ctrd and ctr coarse chain control signals.
The values reported in Table 1 for TRNG1 allow to conclude that the noise
standard deviation is rather low compared to the diffrential delay δt as most of
the probability value are far from 0.5, as shown by the model and simulation
probability curves. For exemple, for the coarse chain configuration (ctr = 0x00,
ctrd = 0x00), the probability pTRNG measured on the testchip over 100000
samples as in Table 1 is 84.25%. If we compare this value to the probability
obtained for the same configuration from the model and the spice simulation
(Fig. 8a and Fig. 8b), we can see that this probability corresponds to a noise
standard deviation around 2ps.

Table 1. p(TRNG = 1) measured on the testchip for TRNG1 and diffrent ctr and
ctrd configurations of the coarse delay chains

ctrd
ctr

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F

0x00 84.25 95.97 77.91 94.13 88.45 4.98 8.11 91.79

0x01 0.14 0.68 21.43 49.65 96.93 100 94.88 55.91

0x03 100 100 74.94 53.8 98.95 99.99 2.16 99.87

0x07 0.11 7.23 98.49 99.73 74.98 0.28 27.95 100

0x0F 0 0 100 97.39 99.7 26.31 49.83 63.27

0x1F 0 0 93.9 44.96 28.17 76.4 94.09 9.37

0x3F 0 0 0 58.84 2.16 40.51 32.82 99.97

0x7F 0 0 0 1.6 38.2 99.98 5.47 66.77

Stochastic Model of a Metastability-Based True Random Number Generator 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

p
T

R
N

G

Noise standard deviation (ps)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

p
T

R
N

G

Noise standard deviation (ps)

case (i)
case (ii)

(b)

Fig. 8. The probability pTRNG vs. the noise standard deviation (a) simulation (b)
analytic expressions.

Table 2. AIS-31 Class P2 Statistical tests results of ASIC (TRNG2 version) and FPGA
TRNG

AIS-31 Class P2 Tests FPGA ASIC

Uniform distribution test procedure T6a Pass Pass

Uniform distribution test procedure T6b Pass Pass

Test for homogeneity procedure T7a Pass Pass

Test for homogeneity procedure T7b Pass Pass

Entropy estimation test T8 Pass Fail

Results of P2 Class statistical tests on the ASIC TRNG2 without post-
processing are reported in Table 2.

P1 class tests have also been run on post-processed samples. Only Von Neu-
mann post-processing have been used here to balance the number of zeros and
ones and both TRNGs pass this class of tests.

Results of the TRNG1 version are not presented because more tests fail
(3 over 5). This is basically due to a larger δt, which is larger than the ex-
ploitable noise standard deviation.

FPGA Experiments. The FPGA implementation has been done on a Xilinx
Virtex-5 FPGA device, the delay δt is equal to 6ps. Random bits acquired on
this implementation passes both P1 and P2 classes tests of the AIS-31 statistical
tests, without any post-processing as shown in Table 2. This makes us think
that in an FPGA exploitable noise has a larger standard deviation than what
can be observed in an ASIC implementation. This difference could come from
the routing structure of the FPGA which contains more active elements (switch
matrices, line buffers . . .) that generate more noise.

104 M. Ben-Romdhane, T. Graba, and J.-L. Danger

5 Conclusion

In this paper, we presented a stochastic approach to model and characterize a
metastability-based TRNG. The principle is to place a D-Latch in a metastable
state, then sample the stable state which is the consequence of the chip ambient
noise impact. We discussed and presented the method that allows to compute the
parameters of the modeling equation through electrical simulation. The prob-
ability expression of the TRNG is computed in terms of the noise standard
deviation, the characteristics of the D-Latch Tsetup0, and the delay δt of the
delay chain elements. This stochastic model has been validated on an ST 65nm
test-chip and FPGA.

References

1. NIST: Recommendation for the entropy sources used for random bit generation
(2012),
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

2. Schindler, W., Killmann, W.: A proposal for: Functionality classes for random
number generators1 (September 2011)

3. Federal Information Processing Standards (FIPS) Publication 140-2. Security re-
quirements for cryptographic modules (May 25, 2001),
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

4. Mandal, M.K., Sarkar, B.C.: Ring oscillators: Characteristics and applications.
Indian Journal of Pure and Applied Physics 48, 136–145 (2010)

5. Korkmaz, P., Akgul, B.E.S., Palem, K.V.: Characterizing the behavior of a prob-
abilistic cmos switch through analytical models and its verification through simu-
lations (2005)

6. Simka, M., Drutarovsky, M., Fischer, V., Fayolle, J.: Model of a true random
number generator aimed at cryptographic applications. In: Proceedings of the 2006
IEEE International Symposium on Circuits and Systems, ISCAS 2006, p. 4 (May
2006)

7. Killmann, W., Schindler, W.: A design for a physical RNG with robust entropy
estimators. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
146–163. Springer, Heidelberg (2008)

8. Xu, P., Horiuchi, T., Abshire, P.: Stochastic model and simulation of a random
number generator circuit. In: IEEE International Symposium on Circuits and Sys-
tems, ISCAS 2008, pp. 2977–2980 (May 2008)

9. Kinniment, D.J., Chester, E.G.: Design of an on-chip random number generator
using metastability. In: Proceedings of the 28th European Solid-State Circuit Con-
ference (2002)

10. Danger, J.-L., Guilley, S., Hoogvorst, P.: High Speed True Random Number Gen-
erator based on Open Loop Structures in FPGAs. Microelectronics Journal 40(11),
1650–1656 (2009), doi:10.1016/j.mejo.2009.02.004

11. Suresh, V.B., Burleson, W.P.: Entropy extraction in metastability-based TRNG.
In: HOST, pp. 135–140 (2010)

12. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA-based true random number
generation using circuit metastability with adaptive feedback control. In: Preneel,
B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 17–32. Springer, Heidelberg
(2011)

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Stochastic Model of a Metastability-Based True Random Number Generator 105

13. Hata, H., Ichikawa, S.: Fpga implementation of metastability-based true random
number generator. IEICE Transactions 95-D(2), 426–436 (2012)

14. Chen, D., Singh, D., Chromczak, J., Lewis, D., Fung, R., Neto, D., Betz, V.: A com-
prehensive approach to modeling, characterizing and optimizing for metastability
in fpgas. In: Proceedings of the 18th Annual ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, FPGA 2010, pp. 167–176. ACM, New
York (2010)

15. Ginosar, R.: Metastability and synchronizers: A tutorial. IEEE Design Test of
Computers 28(5), 23–35 (2011)

16. Veendrick, H.J.M.: The behaviour of flip-flops used as synchronizers and prediction
of their failure rate. IEEE Journal of Solid-State Circuits 15(2), 169–176 (1980)

17. Trotter, H.F.: An elementary proof of the central limit theorem. Archiv der Math-
ematik 10, 226–234 (1959)

Semi-automated Prototyping of a TPM v2

Software and Hardware Simulation Platform

Martin Pirker and Johannes Winter

Graz University of Technology (TUG),
Institute for Applied Information Processing and Communications (IAIK)

Inffeldgasse 16a, 8010 Graz, Austria
{mpirker,jwinter}@iaik.tugraz.at

Abstract. Recently, the Trusted Computing Group (TCG) released
first specification documents on the Trusted Platform Module (TPM)
version 2 to the general public. This new TPM specification introduces
a novel set of commands and concepts, which in part are fundamentally
different to the features found on the previous generation of the Trusted
Platform Module. At the time of this writing hardware prototypes and
software simulators of the TPM v2 are not available to the general pub-
lic. In this paper, we explore a semi-automated process to synthesize a
TPM v2 software simulator from the published TCG specifications. To
demonstrate the feasibility of our approach, we first assemble a proto-
type TPM v2 software simulator. Further, we show how this prototype
TPM v2 software simulator can be hosted on an FPGA platform, which
then subsequently can be used as an early hardware simulator for next
generation TPMs.

Keywords: Trusted Platform Module, Trusted Computing, TPM v2,
Simulator.

1 Introduction

Secure devices and processing nodes grow steadily in complexity, making the
security analysis of systems as a whole usually an infeasible hard task. Trusted
Computing partly tries to address this problem with a dedicated secure hardware
root anchor of trust – the Trusted Platform Module (TPM).

The development process of security modules is crucial as one single defect
may compromise the security of the whole module, or even worse, of a whole
system. Naturally, humans make mistakes. Thus, the development process should
aid the human developers wherever possible and provide support for automated
toolings. This promises to reduce development complexity and enables detection,
understanding and mitigation of issues as early as possible.

Recently, the Trusted Computing Group (TCG) consortium published a first
public draft1 of the new generation “v2” of the TPM. The TPM specification
documents are advertised to be suited for automated parsing tools and subse-
quent automated processing.

1 TPM v2 revision 00.93 was published at the TCG homepage in mid Oct 2012 [10].

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 106–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Semi-automated Prototyping of a TPM v2 Software 107

Contribution. In this paper, we follow up on the claim2 that the TPM v2 spec-
ification is written for automated processing. We report on our efforts to process
the public TPM v2 specification documents in a semi-automated toolchain. We
explore how to extract code fragments, command and response parameters, data
structures and constants from the public PDF specification documents.

Based on these results we assemble an (almost) complete software simulator.
Only minor manual tweaks and additional implementation efforts are needed to
run this software simulator on standard Linux desktop platforms. Further, we
show how this software TPM v2 simulator can be hosted on an FPGA hardware
platform, which then allows in-system simulation of a hardware TPM on desktop
and embedded systems.

Outline. Section 2 gives the background on the Trusted Platform Module spec-
ification and its use. In Section 3 we first present the specification parser tool
used to semi-automatically extract code for the TPM v2 software simulator pro-
totype. Next, we discuss the code generation process and the practical obstacles
encountered while converting the extracted code into an executable, standalone
TPM v2 software simulator. Based on these results we introduce our prototype
TPM hardware simulator in section Section 4. Section 5 concludes the paper.

2 Background

We refer to secondary literature for an introduction to the relevant Trusted Com-
puting terminology and concepts [4], and for an in-depth discussion of state-of-
the-art trusted (desktop) platforms [1]. This section gives a short introduction
on the Trusted Platform Module specification, its primary user the Trusted Soft-
ware Stack, and the process from specification to implementation.

2.1 Trusted Platform Module

The Trusted Computing Group (TCG) released the TPM v1.1b specification [8]
in February 2002. The specification was continously maintained over the years,
up until the current v1.2 revision 116, published March 2011. The TPM v1.2
is in widespread distribution in a variety of platforms, the TCG estimated in
2011 [9] that worldwide more than 500 million TPMs have been shipped. The
TCG is a membership-only consortium which requires its members to sign a
non-disclosure agreement. Consequently, the development of the TPM v2 was
taking place within the TCG, of which the first publicly visible results, in the
form of a public draft specification, were finally published in October 2012 [10].

2.2 TPM Support Software Stack

The TPM hardware chip requires a support package of software (libraries). The
main component in the trusted platform design is the TCG Software Stack

2 See quote in Section 2.4.

108 M. Pirker and J. Winter

(TSS) [7]. The TSS specification was implemented by two major open-source3

packages: First, the C language based TrouSerS implementation4. Further, we
(co-)developed jTSS 5, a TSS implemented fully in the Java language.

2.3 From Specification to Implementation

The specification of a component such as the TPM is a complex, tedious and
fragile process. This is rooted in the complexity of the TPM itself – security func-
tions are hard to get right – as well as the required coordinated process of writing
hundreds of pages of specification text. Current TPM specification documents
are essentially hundreds of pages of text and tables, which document architec-
tural design decisions, implementation recommendations and data-structures, as
well as algorithmic details [8].

For the development of jTSS (Section 2.2) we painstakingly interfaced to every
TPM function and data structure in Java. We tried to automate this process,
but stopped quite early. While we were able to implement a script which extracts
from the TPM v1.2 specification all commands along with their incoming and
outgoing data structures, about 50% of the script was related to the handling of
special cases to due inconsistencies and bugs in the specification text. In other
words, the effort of script implementation was not worth the results obtained.

Consequently, the experience of the manual implementation of 120 TPM com-
mands and the self-observation of human ways to error while doing so leads to
two major requirements for TPM specifications: First, specifications should be
consistent, accurate and unambigous for easy human comprehension. Next, they
should encourage the use of automated support toolings for correctness checking
and code generation.

2.4 TPM v2 Specification

The TPM v2 specification consists of four major parts, which describe the high-
level architecture, data-structures, commands and support routines. All four
parts together comprise almost 1400 pages. To facilitate the use of automated
tools the TCG did several format improvements over the TPM v1.2 specification.
The new specification [10] prominently states6 this intention:

“[...] The information in this document is formatted so that it may be
converted to standard computer language formats by an automated pro-
cess. The purpose of this automated process is to minimize the transcrip-
tion errors that often occur during the conversion process. [...]”

Further, the support source code included in part 4 documents the inner workings
of a TPM and its surrounding environment. This reveals that for v2 a software

3 The history of commercial TSS implementations is not known to the authors.
4 http://trousers.sourceforge.net/
5 http://trustedjava.sourceforge.net/
6 See Part 2, Chapter 4.1 Introduction.

http://trousers.sourceforge.net/
http://trustedjava.sourceforge.net/

Semi-automated Prototyping of a TPM v2 Software 109

simulation was developed, in parallel to the specification process. Consequently,
ideally, the public specification contains enough information and source code
to enable construction of a TPM v2 software simulator and support software
libraries, with the aid of automated tools.

3 Synthesis of a TPM v2 Software Simulator

To extract a TPM v2 simulator from public TCG specifications, we start with
the PDF documents of public revision 00.93 from the TCG homepage [10]. The
target runtime environments for the extracted TPM simulator are a Linux-like
systems with GNU C compiler and support for the OpenSSL7 cryptography
library. The semi-automated process for assembling a TPM v2 simulator from
its specification consists of four major processing steps:

1. Setup and automated input data transformation.
2. Extraction of data-structures and constants from specification part 2.
3. Extraction of source code fragments from specification parts 3 and 4.
4. Manual implementation of missing code fragments and integration with a

build process.

To implement the semi-automated extraction process, we use a standard Linux
environment, which contains the LibreOffice suite, a Ruby interpreter, the
Nokogiri XML parsing library, and the Makeheaders tool for C function pro-
totype extraction.8

3.1 Setup and Input Data Transformation

In the first step of the TPM simulator extraction process, we transform the PDF
print-ready specification documents into a format which is easier to process by
automated tools. Our initial idea was to convert the PDF documents to sim-
ple plaintext files using a PDF-to-text extractor. Unfortunately, this simplistic
approach loses essentially all of the formatting meta-information.

To overcome the limitations of PDF-to-text converters we exploit the non-
interactive PDF import function9 of the LibreOffice suite, to transform the PDF
specification documents to the OpenDocument FODG format. The XML-based
FODG document format preserves the layout and formatting of the original input
PDF file, which greatly simplifies the further extraction process in later steps.

3.2 Extraction Process

The basis for the further extraction process is a Ruby script, which loads the
FODG documents using the Nokogiri XML parser and extracts all the raw text

7 http://www.openssl.org/
8 We used LibreOffice 3.5.6, Ruby 1.9.3p286, Nokogiri 1.5.5 and Makeheaders 0 p4.
9 libreoffice --headless --convert-to fodg <pdf-filename>.

http://www.openssl.org/

110 M. Pirker and J. Winter

fragments along with their position and text style formatting, ignoring all the
remaining markup. Detailed analysis of the extracted text fragments is done by
an additional Ruby script, which takes the output of the previous step as input.

The second script searches with regular expression patterns for specific text
fragments in combination with their distinctive text style information. This
search identifies hooks in the text, from which the following text fragments then
can be analysed in more detail. Depending on the nature of the specification
part being processed, the Ruby script needs to apply different strategies.

Part 2 of the TPM v2 specification defines data structures and constants.
To process this part, the Ruby script scans for the tables which define TPM
structures or constants, and constructs a large header file containing appropri-
ate C #define directives for constants and type definitions for all TPM data
types. As part of this processing step the Ruby script can also auto-generate the
marshalling code required to serialize TPM data structures to or from raw byte
streams.

Part 3 provides all 110 commands of the TPM v2. The specification of a
single TPM command always comprises the input and output data structures,
formatted as tables, and C code fragments documenting the command actions.
Extraction of the C code fragments is straightforward, as their specific text style
and distinct line number at the left page border makes them easy to identify. The
extractor script simply dumps the fragments into one C source file per command.
The input and output parameter structures of the commands can be handled
similarly to the part 2 data types. For each command the script generates a
header file which contains the C function signature and the input/output data-
structures of the extracted command.

Finally, part 4 of the TPM v2 specification contains support functions and
C code. Functions in part 4 are used by the TPM command code fragments
in part 3 and by code which provides the proper simulation environment for
running a TPM software simulator. Code extraction follows the same strategy
as in part 3 and the filenames are provided in the section titles.

In total we are able to directly extract about 6k lines of code from part 3 and
22k lines of code from part 4 of the TPM v2 specification without any need for
human intervention. The extracted source code is incomplete, in the sense that
most of the header files referenced by C #include directives in part 3 and part 4
are missing at this stage. These header files with function prototypes can be
easily generated by extending the extractor script, or even simpler by utilizing
the well-known makeheaders tool.

3.3 Additional Steps

Our proof-of-concept extraction tool demonstrates that a scripted toolchain is
capable of automatically creating about 340 source files (.c and .h), which
comprises about 95% of a complete TPM v2 simulator.

At the time of this writing we are currently finalizing scripted support for
generation of data structure marshalling code and central command dispatching
code as discussed in sections 6.1, 6.3 and 9.11 of part 4 of the TPM v2 draft

Semi-automated Prototyping of a TPM v2 Software 111

specification. It is possible to auto-generate these missing parts from the specifi-
cation PDFs, however implementation of these facilities are not yet fully covered
by our toolchain. To allow testing of the extracted simulator we filled the missing
parts of the marshalling and command dispatching code with not-autogenerated
code.

To successfully compile the extracted code on our Linux build environment a
few small patches were necessary. Obviously the TPM v2 specification, and the
code snippets contained in the specification, were not written with case-sensitive
file-systems in mind. This problem manifests itself on a Linux build environment,
where the sometimes inconsistent upper/lower-case spelling of header files causes
build problems. To work around these issues, we simply created symbolic links
for inconsistently spelled header files10 on our Linux build system.

Another issue with the revision 0.93 of the TPM v2 specification is that some
fragments of the support routines in part 4 are currently specific to Microsoft
Windows platforms, due to their use of Windows-specific system header files
such as winsock.h and windows.h and to their use of Microsoft C compiler
specific functions. The affected fragments in part 4 of the TPM v2 specification
reside in section “D” which defines a remote-procedure call (RPC) interface for
TPM simulation. A simple workaround for these issues is to manually provide
“stub” winsock.h and windows.h header files on the Linux build-system, which
emulate the Windows-specific calls using POSIX and BSD socket APIs.

For our further experiments we decided to completely discard the RPC sim-
ulation interface discussed in the TPM v2 specification, in favor of a simpler
socket based interface: Our Linux TPM 2.0 software simulator exposes one TCP
port per TPM locality, which accepts raw TPM command and response blobs,
without adding any additional communication protocol overhead11.

Our work presented in this section produced a Linux executable of a TPM v2
software simulator. Our prototype passes simple TPM initialization and “PCR
read” type of use. Unfortunately, as software stacks and demo code for the TPM
v2 generation do not exist yet, we have not tested more complex functions,
yet. Our Linux software simulator utilizes TCP/IP sockets for communication
between the simulated Trusted Platform Module and its users. The communi-
cation protocol used by the Linux TPM 2.0 software emulator was intentionally
kept extremely simple: Each TPM locality is exposed through a separate TCP
port, which accepts raw TPM command and response blobs, without adding an
additional communication protocol overhead.

4 Towards a Hardware TPM v2 Simulation Platform

In general hardware TPMs do not expose publicly accessible debug interfaces,
such as JTAG ports, due to security reasons. This lack of simple means to debug
the TPM itself complicates development and testing of TPM software in its

10 e.g. tpmError.h → TpmError.h.
11 On transport layer this approach is compatible with IBM’s TPM v1.2 software em-

ulator found at http://ibmswtpm.sourceforge.net/

http://ibmswtpm.sourceforge.net/

112 M. Pirker and J. Winter

native target environment. There is a gap between what can be simulated with
an easy to debug TPM software simulator and what can be debugged on an
actual hardware platform with a TPM. This gap especially becomes evident
when working with trusted bootloaders and similar types of low-level trusted
software.

Based upon the results of the TPM v2 software simulator, we started to
develop a prototype TPM v2 hardware simulator platform on top of a Xilinx
FPGA evaluation board. This hardware simulator platform is intended to be
usable as “in-system” substitute for a real hardware TPM, thereby closing the
gap between debugging trusted applications with a pure software simulation
of the TPM and testing the same programs on a hard-to-debug commercial
hardware TPM.

Developer Debug Platform

Ethernet or JTAG
(TPM debug access) LPC or I²C interface

TPM Hardware Simulator
(substitute for TPM)

Target Platform
(original TPM removed)

Fig. 1. Setup of the TPM v2 hardware simulator

Figure 1 illustrates the overall system architecture of our in-system TPM
simulator prototype. Communication with the target system is established using
the target’s native TPM communication interface. For current desktop PCs and
notebooks this implies that the simulator platform needs to support the Low-Pin-
Count (LPC) bus [3] variant of the TPM TIS 1.2 interface [6]. Recent variants
of version 1.2 TPMs exist with alternative physical communication interfaces,
such as Inter-IC (I2C) busses or serial peripheral (SPI) busses, which are suitable
for use on mobile and embedded devices, like smartphones or even embedded
microcontrollers. 12

Access to the internals of the in-system TPM simulator is possible via an
TCP/IP based Ethernet interface as well as via a JTAG debug access port. The
Ethernet interface of the in-system simulator is fully compatible with the soft-
ware TPM simulation platform discussed earlier. The JTAG debug-access port
allows remote debugging of the soft-core processor running the TPM firmware,
enabling single-stepping of (failing) TPM commands.

4.1 Prototyping Results

The initial prototype implementation of our in-system TPM simulator was done
on a Xilinx Spartan 3AN Starter Kit. This development board provides relatively

12 Recent Linux kernels already support I2C based TPMs from multiple vendors (e.g.
[5], [2]).

Semi-automated Prototyping of a TPM v2 Software 113

large volatile and non-volatile memory resources. Due to the large amount of
resources available on the FPGA board chosen for our prototype, we decided not
to focus on accurate modelling of the resource contraints found on a (production)
hardware TPM. Instead, our aim was to create an embedded SoC platform,
which is able to run the semi-automatically extracted software TPM simulator
discussed earlier as debuggable in-system emulation of a TPM v2 module. The
hardware design running inside the Xilinx XC3S700AN FPGA is based on a 32-
bit Xilinx MicroBlaze soft-core processor, with standard peripherals including
a serial UART, an I2C controller, a DRAM controller and two SPI controllers
for interfacing with non-volatile flash memory. Additionally, our SoC includes a
PC-compatible Low-Pin-Count (LPC) bus slave controller, based on our earlier
work discussed in [11].

On the firmware side, we use the Xilinx Xilkernel microkernel and the open-
source lwIP TCP/IP stack to provide basic POSIX-style operating system ser-
vices and a BSD sockets compatible network API. Cryptography support is real-
ized using a stripped down version of the OpenSSL cryptography library, which
just includes the ciphers and hash algorithms used in the TPM v2 simulator.
On top of this runtime environment, we reuse the extracted TPM v2 software
simulator discussed earlier.

The total uncompressed size of the firmware code for the hardware TPM sim-
ulator is currently between 950 KiB and 1 MiB. With simple data-compression
the firmware binary can be reduced to approximately 600-650 KiB. This allows
us to fit the FPGA bitstream, a small bootloader and the compressed TPM
simulator firmware into the on-chip flash of the FPGA. Non-volatile storage is
currently held in a small serial EEPROM outside the FPGA, to reduce wear-out
of the FPGA’s on-chip flash memory.

At the time of this writing, the network and the I2C interface to our software
TPM simulator are fully functional, allowing our in-system simulator to be used
as TPM emulator replacement and as model of an embedded TPM v2. The
hardware part of the simulator’s LPC bus interface is operational and we are in
progress of finishing the TPM 1.2 TIS-style protocol implementation.

5 Conclusion and Outlook

In this paper, we showed how information in the TPM v2 specification can be
extracted with minimal human intervention. Section 3 outlines the process which
was used by us to assemble a working TPM v2 software simulator, using only
open source tools. Based on the results of a working software emulator, we con-
tributed a working proof-of-concept prototype of a hardware TPM v2 simulator.
Consequently, we conclude that it is possible to discover and experiment with
the TPM v2 generation without further delay.

Design and development of a support software stack for the TPM v2 as well as
hardware and software simulation of a dynamic root of trust remain interesting
open topics and motivate further research.

114 M. Pirker and J. Winter

Acknowledgements. We thank the anonymous reviewers for their helpful feed-
back on the paper.

This work has been supported by the European Commission through project
FP7-ICT-SEPIA, grant agreement number 257433, project FP7-ICT-STANCE,
grant agreement number 317753, and project DALIA of the AAL joint pro-
gramme.

References

1. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (2009)

2. Huewe, P.: char/tpm: Add new driver for Infineon I2C TIS TPM (February 21,
2011), LKML article archived at:
http://article.gmane.org/gmane.linux.kernel/1103300

3. Intel: Intel Low Pin Count (LPC) Interface Specification, revision 1.1. (August
2002), http://www.intel.com/design/chipsets/industry/25128901.pdf

4. Martin, A.: The ten page introduction to trusted computing. Tech. Rep. RR-08-11,
OUCL (December 2008)

5. Morav, D.: TPM Nuvoton I2C driver, kernel 2.6.35 (August 9, 2010), LKML article
archived at: http://article.gmane.org/gmane.linux.kernel/1020890

6. Trusted Computing Group: TCG PC Client Specific TPM Interface Specifica-
tion (TIS), version 1.2 FINAL. For TPM Family 1.2; Level 2 (July 11, 2005),
http://www.trustedcomputinggroup.org/

7. Trusted Computing Group: TCG Software Stack Specification (2007),
http://www.trustedcomputinggroup.org/resources/

tcg software stack tss specification

8. Trusted Computing Group: TCG TPM Specification Version 1.x (2007),
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

9. Trusted Computing Group: Do You Know? A Few Notes on Trusted Computing
Out in the World (2011),
http://www.trustedcomputinggroup.org/community/2011/03/

do you know a few notes on trusted computing out in the world

10. Trusted Computing Group: Trusted Platform Module Library Family 2.0, Level 00
Revision 00.93 (2012),
http://www.trustedcomputinggroup.org/resources/

trusted platform module specifications in public review

11. Winter, J., Dietrich, K.: A hijacker’s guide to communication interfaces of the
trusted platform module. Comput. Math. Appl. 65(5), 748–761 (2013),
http://dx.doi.org/10.1016/j.camwa.2012.06.018

http://article.gmane.org/gmane.linux.kernel/1103300
http://www.intel.com/design/chipsets/industry/25128901.pdf
http://article.gmane.org/gmane.linux.kernel/1020890
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/community/2011/03/do_you_know_a_few_notes_on_trusted_computing_out_in_the_world
http://www.trustedcomputinggroup.org/community/2011/03/do_you_know_a_few_notes_on_trusted_computing_out_in_the_world
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_specifications_in_public_review
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_specifications_in_public_review
http://dx.doi.org/10.1016/j.camwa.2012.06.018

Tapping and Tripping with NFC

Sandeep Tamrakar1 and Jan-Erik Ekberg2

1 Aalto University School of Science, Finland
sandeep.tamrakar@aalto.fi

2 Nokia Research Center, Radio Systems Laboratory, Finland
jan-erik.ekberg@nokia.com

Abstract. In public transport ticketing, the tap-in / tap-out user expe-
rience is an established metaphor since contactless NFC cards were in-
troduced as travel cards some ten years ago. In our solution fixed smart
cards at train station are tapped by NFC-enabled mobile phones of users.
By leveraging the phones’ communication capabilities, a possible embed-
ded trusted execution environment (TEE) and the user interface, we have
constructed a secure solution for so-called non-gated ticketing, where end
user devices produce and report ticketing evidence under the threat of
inspection. This is technically quite different from the traditional model
where a certified, secure reader is tapped by a passive card. Learnings
from a public ticketing trial conducted in the Port Washington branch of
the LIRR train network in New York is presented along with an overview
of the NFC protocols used in that trial. We also discuss extensions to the
protocol with the goal to enable ticketing also for NFC phones without
TEE support.

1 Introduction

All over the world, transport ticketing has for years been implemented using
proximity technologies, increasingly using the ISO / IEC 14443 [12] contactless
card standard. Protocols like Mifare1 developed by NXP semiconductors allow
contactless memory cards to be used as secure tokens or travel cards. A travel
card used as a ticket can convey the identity of a user, the validity period of the
ticket, the balance available in the ticket and other ticketing attributes such as
valid region, discount group etc.

Mifare-powered ticketing systems have proven to be very usable in prac-
tice, despite some vulnerabilities as mentioned in [9,8,4]. However, Mifare-based
schemes do require that the ticket readers which communicate with the travel
cards have access to the secret keys of the card issuer, making the readers a
security-critical part of the ticketing system setup. Thus, these systems do not
easily scale to implementations where the cards are not communicating with the
trusted, certified readers.

A more open approach that is applicable to ticketing is defined in the Open
Payment initiative from the Smart Card Alliance [15]. In their architecture, each

1 http://mifare.net

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 115–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mifare.net

116 S. Tamrakar and J.-E. Ekberg

Fig. 1. System architecture

traveler is represented by a travel account in a server cloud. While traveling, only
the identity of a user is verified using credentials stored e.g. in a travel card.
In this approach, the ticketing and fare calculation operations can be totally
separated from the evidence collected at the traveling endpoints. A very tempting
variation of this system is to use a contactless credit card for identity verification,
possibly allowing the user to travel with his card in many independent transport
systems around the world.

An account-based ticketing system is technically easy to arrange in gated
transport, where the transport end points are controlled via physical gates, e.g.
as in the London Underground. We assume that these gates are equipped with a
contactless reader that can verify the identity of a user and potentially consult
a back-end cloud in real-time to perform all the necessary validation before
allowing the user to travel. In our architecture, depicted in Figure 1, we extend
this identity-based ticketing model2 to non-gated transport such as S-Bahn in
Berlin, where the travel tickets are not verified at the station gates. In non-gated
transport, travelers are requested to perform certain transport-ticketing related
functions on their own accord under the threat of sporadically occurring ticket
inspection and system penalties imposed on dishonest travelers. We leverage
the mobile phone as an NFC reader as well as its security and communication
capabilities towards the back-end cloud in a model where the contactless smart
cards are no longer used as end-user credentials, but as proof of location — i.e.
identifying where (and partially when) the transport customer enters and exits
the transport system.

This paper extends our previous work on non-gated transport [7] which was
later publicly trialed with more than 100 participants in New York in 2012.
Based on the ticketing data collected in the trial we can now confirm some of

2 The public transport community uses the term identity-based for a ticketing system,
where a travel account is assigned to each user and the identity of the user is ver-
ified at a transport station gate before allowing the user to travel. This does not
necessarily imply the use of identity-based encryption.

Tapping and Tripping with NFC 117

our assumptions regarding system properties, transport user behavior as well as
report on some of the data collected in participant interviews. This is the first
contribution of this paper.

Additionally, our work on the protocols for the ticketing system has continued
with a re-design for NFC-enabled phones where an embedded, programmable
trusted execution environment (TEE) is unavailable or practically unaccessible.
The design upgrades accommodate such open devices in the ticketing system
without significantly changing the risk model of fare collection and auditing or
inducing unnecessary liability for the travelers. This is a second contribution of
this paper.

In Section 2, we explore related work in the general domain of identity veri-
fication with NFC-enabled phones. Section 3 outlines the security protocol used
in the trial, which is a part of previously published work. Section 4 presents
the trial results. The protocol extensions for open devices are presented in
Section 5, along with a brief security analysis. Section 6 provides implementa-
tion details and measurements for the extended protocol on an Android phone.
Section 7 gives the acknowledgments and finally conclusions in Section 8 end the
paper.

2 Related Work

A prototype application developed by RFID lab of the University of Rome [10]
implements a virtual transport ticket applet stored in a secure environment of
an NFC-enabled mobile phone. A ticket can be purchased over SMS using a Java
MIDlet application that interacts with the ticket applet running in the secure
environment. Before traveling, the ticket information is transmitted over NFC
to a ticket reader, which validates the ticket. A similar user-centric ticketing
approach is proposed by Chaumette et. al. [3]. They present an architecture
for event ticketing using NFC-enabled mobile phones that use SIMs as secure
elements. Both of these systems work in online as well as partially offline modes,
but require dedicated reading terminals.

A work by Derler et. al. [5] focuses on the anonymity of NFC ticketing in order
to protect the privacy of a ticket holder. In their model, a ticket can be verified
without divulging the identity of a user. This reduces the risk of an attacker pro-
filing user’s travel based on eavesdropped tap events. The Smart Card Alliance
promotes an open payment system using an account-based architecture [15] for
public transport systems, where the account information is verified by a ticket
reader and forwarded to a back-end server. The back-end accumulates these
records and later charges the account holder for transport system use.

The abovementioned systems use a secure element on a mobile phone to store
the ticketing credentials. Dmitrienko et. al. [6] implement a software-based access
token on mobile phones, where the software domains are isolated from each
other using TrustDroid [2]. The above contributions neither discuss a complete
ticketing system nor consider non-gated ticketing.

118 S. Tamrakar and J.-E. Ekberg

����������������	����
�����%�&�
������

��	�%�������������&��

��������
�������������������

���
�����

 ��������

������

��	�%�������������&��
 ����������

��	�%�������������&��

Fig. 2. An overview of gated ticketing protocol

3 Our First Ticketing Protocol

Our public-transport ticketing protocols that form the starting point for this
work have been reported in [7]. In short, we built both gated and non-gated
transport ticketing for mobile phones with a built-in TEE and NFC commu-
nication primitives. The protocol for gated transport, depicted in Figure 2 is
a straight-forward challenge-response design. A user touches his device to the
reader attached to a transport-station gate. The reader then initiates a session
by sending a challenge to the user device. The challenge contains a nonce and
the identity of the reader or the station. Upon receiving the challenge, the user
device immediately sends back its ticketing certificate issued by the back-end
server (or CA) and subsequently signs the challenge with its ticketing keys in-
side its TEE. The signature over the challenge is also returned to the reader.
The reader is equipped with the public key of the back-end server (or CA), and
it validates the certificate. From it the reader also extracts the public key infor-
mation of the user device in order to validate the signature on the challenge. If
all the verifications succeed, the station gate is opened.

For non-gated transport, our system is built to satisfy the following goals and
user interaction patterns:

R1. The location, time, identity of a traveler and needed cryptographic evidence
shall form a tuple that defines the trip end-points and the traveler in a
reliable and non-repudiable manner,

R2. Trip end-points, e.g. touch points at bus stops, can be equipped with con-
tactless smart cards, but not with gates or contactless devices that require
continuous power supply or back-end connectivity.

R3. The mobile phone cannot be assumed to be connected to a back-end cloud
infrastructure in real-time, i.e. the system must be designed to operate in
a partially offline manner.

R4. The activity of a traveler with a touch point shall be modeled as ’tap’, i.e.
a traveler taps his phone to a touch point at a bus stop before begining a
trip, and taps another touch point when he ends his trip at another bus
stop.

R5. Travelers might be subjected to random ticket inspection, i.e. protocols
must be designed to support this property.

Tapping and Tripping with NFC 119

��'��*'�����'�����'���	�+,
���.'/'�*6'�����7�'��
��	8+,
���.'���	�+,
���.'/'�*6'�����7'����87�'�
���������'���������8'�/�������6�
�

���8'����'����	�+��8'����87�
��	8+,���.'�����'�9'����8:���8'��
�������������8'���	�+��8'����877��

��;����+���7�

������������+���7�
+�� ����������7���<���	�+��8'����87�

����������

*'�����'���	�+,
���.'�/'�*6'�����7�� �����==�

��	�+,
���.'/'�*6'�����7��

��	8+,
���.'���	�+,
���.'/'�*6'�����7'����87��

����:����+���7� *��

���������;���������
�����;������

����'���	�>+��'����87'������

��� ��?�

��� ��>�

��� ��@�

�

����'���	�>+��'����87�

���������;���������+��7�
�����;������

+��!!7'�9�

��� ��9�

�����<���	�+��8'����87'���8'���	�+��	�+��8'����87'���87E�����8�<�/,�"�F#���.'���� ����'����F!������6��

���8==�

Fig. 3. An overview of non-gated ticketing protocol

Our solution is based on signed challenges produced by the TEEs, where each
signature also includes a TEE-specific counter. A sign and increment command
monotonically increases the counter. Future TEE counter update and signature
operations are limited by an authenticated release of the counter window signed
by the back-end cloud. This limits the amount of taps that a single user device
can perform before being forced to report evidence to the back-end cloud in
order to continue tapping. The same TEE logic is used both in the TEE of user
devices and in the contactless smart card at touch points. However, the counter
window in the contactless cards is not used — touch-point counter values are
used to determine the order of tapping that the touch point is involved in, not
to enforce reporting.

A complete non-gated ticketing protocol executes in three phases as depicted
in the Figure 3. A user deviceX may enter phase 0 any time after the completion
of the last ticketing event. This phase prepares the user device for the next
ticketing event. In this phase, the user device X reads the TEE counter state
and retrieves a counter commitment Sigk(idX , ctrX), for the latest counter value.
The TEE also returns other data which is used as part of ticket inspection.

When the user taps his device X to a touch point R as shown in the Figure 8,
the user device enters phase 1. In this phase, the device sends its latest counter
commitment Sigk(idx, ctrx) obtained from phase 0 as a challenge to the touch
point. In return, the touch point sends back its device certificate T ickCertR

120 S. Tamrakar and J.-E. Ekberg

as well as a signature SigR that binds its own counter ctrR to the challenge.
Additionally, the touch point R also returns some auxiliary data A∗ that needs
to be reported to the back-end server along with the terminal signature for
verification. The challenges sent to the touch points are the commitments of
the user device. These commitments can be later used by the back-end cloud to
statistically infer the device that sent the challenge.

The signature Sigk(idx, ctrx) cannot be resolved without the knowledge of the
key k and the value of ctrx remains fresh each time it is retrieved. Therefore, we
can assume that the identity of device X remains unknown to the entities other
than the protocol participants. The user device X can determine the identity of
a touch point from its certificate and validate the signature in order to protect
against the interaction with rogue touch points.

In phase 2, the device X re-invokes its TEE and issues the sign and incre-
ment command with the response received from the touch point in phase 1 as
a challenge. This operation binds the device identity and the current state of
its counter to the identity and the counter state of the touch point in a non-
repudiable manner.

The user device enters phase 3 immediately after completing phase 2. In phase
3, the device collects all the data generated or gathered from phases 0 - 2 and
sends them to the back-end using a server-authenticated TLS channel. Addi-
tionally, the device also sends its estimation of the time that has passed between
phase 1 and the first message of phase 3. In order to validate a transaction,
the back-end identifies both the device X and the touch point R involved in the
transaction. After validation, the back-end returns a release commitment for the
counter of the device X . Without the release commitment from the back-end,
the TEE of the device will eventually exhaust its counter window and refuse to
sign any further taps. This mechanism forces the user to report tap evidence in
phase 3. Additionally, the back-end will also return to the user device necessary
information for ticket inspection.

Phase 3 requires network connectivity to the back-end cloud. In some cases
this phase can be significantly delayed e.g. due to poor network coverage. To
improve on this delay problem, we also store challenges (i.e. commitments) re-
ceived from the user devices in the touch-point cards. Each stored challenge is
probabilistically selected and cryptographically bound to at least two later in-
vocations of phase 1 interaction (with some other user device). Similarly, every
user device that taps a touch point is forced to relay two stored challenges from
previous taps back to the back-end cloud in addition to the response for its
own challenge. This provides a back channel of tap records, which can be used
for security auditing and even fare calculation while waiting for the device that
originated the tap to report its evidence.

A discussion on other system features, like enrolment, auditing, ticket ver-
ification as well as a protocol security analysis was presented in our previous
work [7].

Tapping and Tripping with NFC 121

4 MTA/LIRR Mobile-Ticketing Trial

The mobile-ticketing trial was carried out in four phases from December 2011
to June 2012. The duration of the first three trials was about a week, where 20
employees from the Metropolitan Transport Authority (MTA) New York par-
ticipated. The primary objective of these three trials was to test the system,
improve it and add new features based on the feedback received from the par-
ticipants. The final trial was carried out over a period of four weeks along the
Port Washington Branch of Long Island Railway Road (LIRR). A total of 110
registered customers of MTA / LIRR with an annual subscription completed the
trial.

The primary objective of the trial was to understand the user acceptance
of mobile ticketing in non-gated transport and to learn the pattern of their
ticket use. Particularly, we were interested to know the tapping behavior of
participants; tap-in begins a trip and tap-out completes the trip. These tap
events were reported to our back-end server. We wanted to know exactly how
many participants complete their trips by tapping out. If the participants forgot
to tap out within 3 hours, from the start of their trip, the application was
designed to send a trip expiry message to the back-end server and notify the
participants accordingly. We also wanted to learn about the connectivity to the
back-end server from the mobile phones used in the trial, e.g. how soon a mobile
phone reported a tap.

4.1 Tags in Trial

The final trial was carried out at 14 stations along the Port Washington Branch
of LIRR. During initial testing, we found that the NFC operating distance for
SmartMX tags with our protocol, using the chosen trial phones, was less than
2 cm whereas the corresponding distance for Mifare Classic tags was 4 cm. The
more exact alignment of the antennas needed with the SmartMX tags compared
to the Mifare tags was perceived to reduce the user experience. Therefore, Mifare
tags were chosen as the primary tags during the trial and the SmartMX tags
were left in only for protocol testing and reference.

A total of 105 Mifare classic tags were placed at the stations along with 10
SmartMX tags which were placed at only 5 stations. Each Mifare Classic tag
stored a Station ID, corresponding to the station at which the tag was placed,
as an NDEF message. During tapping the Station ID along with the Unique
Identity (UID) 3 of the tag was collected as a tap record. In case of SmartMX
tags, the challenge sent by the phone, the response returned by the tag and other
context related information were collected as the tap record. The tap record was
then cryptographically signed inside the TEE of the phone before being sent it
to the back-end server.

3 UID: a fixed 4 or 7 bytes identity that is assigned to each NFC tag at the time of
manufacture.

122 S. Tamrakar and J.-E. Ekberg

4.2 Ticketing Application

A ticketing application designed for the trial was integrated as an extension to
the Nokia Public transport application 4 and was installed in NFC-enabled Nokia
603 phones used in the trial. The phones were then provided to the participants.
An interface to register participants to the back-end server was also included in
the application. During registration, necessary ticketing credentials were enrolled
into the TEE of the mobile phone. In Nokia 603 phones, we used the On-board
Credential (ObC) [13] system to execute the credential algorithms in isolation
from the operating system. We enrolled the TEE algorithms and secrets to ObC
from the ticketing application using ObC APIs. After successful enrolment, the
participants were ready to start their trips by tapping tags installed at the
stations. Additionally, a ticket inspection application was provided to the MTA
ticket inspectors. The inspection application was capable of interacting with the
participants’ ticketing applications over peer-to-peer mode of NFC in order to
validate the tap-in event of a trip. The protocol used to validate tickets during
ticket inspection has been reported in our previous work [7]. The participants
were randomly inspected during the trial.

At the request of the MTA, an additional feature termed as Checkout was
added, which allowed the participants to select any station used in the trial as
a manual checkout station. In the ticketing application, a button that allowed
manual checkout appeared one hour after the beginning of a trip and the feature
was disabled along with the trip-expired event or if the participant selected a
checkout station.

Each tap was immediately reported to the back-end server. However, if the
network was unavailable at the time of the tap then the ticketing application
periodically checked the network status and reported the taps to the server as
soon as possible. Using the tap records, we were able to determine the start and
the end points of a trip and associate appropriate ticket fare to the trip. However,
no actual cost was associated to any trips travelled by trial participants.

4.3 Trial Results

Over the period of four weeks, 3166 complete trips were recorded with an av-
erage of around 29 trips per participant. Based on the number of trips made
by the participants, we found that 80% of the participants used their ticketing
application to make a single trip on a daily basis. 16% of the participants were
using the ticketing application actively, i.e. for at least 20 trips. The remaining
4% of the participants were using the ticketing application less frequently, i.e.
less than 10 complete trips, during the trial period. We also found that almost
90% of the trips were completed by a proper tapping out at a station. Around
2.4% of the trips were completed using the manual checkout feature and the
remaining 7.4% of the trips were automatically expired.

Figure 4, shows that around 67% of the taps were reported immediately and
more than 80% of the tap records were reported on the same day. The tap

4 http://store.ovi.com/content/237984

http://store.ovi.com/content/237984

Tapping and Tripping with NFC 123

Fig. 4. Tap reporting time Fig. 5. Categorization of the participants
based on their tap reporting

reporting allowed the back-end cloud to monitor the transport system with high
accuracy. For example, a near real-time system usage statistic as depicted in
Figure 6 could be constructed for the non-gated transport.

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
ap

s

Time of Day

Tap In
Tap Out

Fig. 6. 24h traveling statistic

We categorized the participants according to their tap reporting behavior as
depicted in Figure 5. The median tap reporting time among the travelers in
the active category was 109 seconds. As explained in Section 3, we designed
the touch-point smart cards / SmartMX tags in such a way that they add old
challenges from previous travelers to the currently tapping phone to be returned
to the back-end cloud together with the current tap evidence. The impact of
this system can be significantly increased if we add the tap reporting activity of
travelers to the transport certificate and use this information within a SmartMX
tag to assign tap evidences related to the least active travelers to be piggybacked
by the most active travelers tapping the tag. Unfortunately, we also learned that
trial participants on average had to tap SmartMX tags at least twice to achieve
the successful tap event. This may be attributed to the mobile phone antenna
not being ideally suited to power up the SmartMX cryptographic operations. In
real deployments a 50% failure rate is of course not acceptable, and either the
power transfer from phone needs to be improved or the energy consumption of
SmartMX cards must be optimized.

124 S. Tamrakar and J.-E. Ekberg

5 Ticketing System Upgrade

The results in Section 4 show that the assumption of not having continuous
back-end connectivity is reasonable. Even in the LIRR train system that op-
erates completely over ground, only 35% of the devices were well-connected to
the Internet while traveling. Around 15% of the evidence was reported by the
travelers more than 24 hours after the travel occurred. Another insight is that
the travelers seem to accept and remember to tap out after traveling — in the
non-gated trial 90% of the trips were properly tapped out even though there was
no stated penalty imposed for not tapping out. For non-roaming customers the
back-end connectivity cost is likely not an issue. Already in 2010, a published
report from mobiThinking [14] indicates that in the U.S. the penetration of flat-
rate data plans (29%) was higher than the smartphone penetration (27%), so it
is safe to assume that virtually all NFC smartphone are on fixed data plans and
reporting the tap evidence back to the server has no marginal monetary cost.

On the other hand, very few NFC-enabled phones today include a
programmable secure or trusted environment. Since we must assume that the
users cannot be mandated to upgrade their existing NFC-enabled phones in real
ticketing deployment, a protocol variant that decreases the dependency on user
device security is needed.

The learning from the trial forms the basis of a ticketing system upgrade that
enables the use of NFC-enabled mobile phones that do not have a programmable
TEE. For this re-design, we revisit the system assumptions of the original non-
gated system in the following manner:

1. The user device / mobile phone is not trustworthy. A virus or the traveler
himself potentially has access to all the code and secrets in the phone, and
may report on these secrets over the Internet.

2. We increase the expectation for the capability of the phone to connect to
a back-end cloud. We will design the revised protocol around a time period
of t minutes. A traveler must connect his device to the back-end cloud and
receive “real-time” tokens at most t minutes before traveling.

Our main incentive for upgrading the ticketing system for open devices is to
alleviate the risk of attacks potentially directed against the travelers with open
devices. Since our system is Id-based, the main threat is the misuse of identities,
i.e. a liability concern for the travelers.

We assume that the main protocols and functions presented in Section 3 still
apply to open devices. These devices will still perform the same steps of enrol-
ment, certificate renewal, signing touch-point smart-card responses and receiving
authenticated release commitments for the device-specific counter. Compared to
a device with a TEE, the trustworthiness of the open device is assumed to be
weaker. The only operation that is partially directed against the traveler not
reporting taps to the back-end is the requirement for counter release commit-
ments. For open devices, we augment this functionality with a requirement to
fetch the challenge for the touch-point smart cards in near-real time from the

Tapping and Tripping with NFC 125

��J��J��
J�������K�

��������	
N��J�����J������Q���
�����J�

����������J���
�������������������
�������J����J��

����J�

��J�������

���������������

���������������

���J�������
�������J����

���

����������J��K�

������������K�

����������J��V�

������������V�
��J��J��
J�������V�

���������������
�� �����!J�������
"�������#�����!�

	��N$"%Q�
&����
$�#����'���

�N(�W�����
������)����������J�����*XQ�

��J��J�������

N�������!�Q���

&�(���J��J�������
N+����������Q�

�������&�����,�����

-��J��

-����
�����������	�
���

��"..Y)���������������*��

/���������J�

0����J����
��!!���
�����N���Q�
��,��

N-%&12Q3�
������������	
N��J������Q���
N-4	&Q3�
���	
N��J�����J������Q����
����������������J�

1�,�J���

��J��������
,J���������!�

&���������
,�����

�,�J�����
�����

�����)&--*��
�������������
������J��
������&����
,����J���
���+������
���������
�������5�J�

���
������J���

�

����������J��Z�

�N�(�W������V�
���������)����������J�����*XQ�

����	
N��J������Q����

�
�����������	�����

���N(�W�����
�����������)����������J�����*XQ�

�����������	����
��"..Y)����������J�����*��

�N(�W������V��
�����)����������J�����*XQ�

�N(�W�����
�����)����������J�����*XQ�

�����)���������������*�

��	���������	��

Fig. 7. Ticketing - insecure terminals

back-end cloud. In this manner, we still force the traveler’s phone to periodically
interact with the back-end cloud in the non-gated transport. This new interac-
tion can also be protected by validating user credentials, e.g. a PIN, to further
complicate the system infiltration required to mount any successful attack.

Furthermore, we add some new attributes to the transport certificates issued
by the back-end infrastructure to open devices. We augment the touch-point
smart card logic with new auditing features that increase the probability of
catching identity theft in non-gated transport and we also add a feature to make
tail-gating attacks5 more difficult.

Figure 7 shows the overall additions done to the system. The new data struc-
tures are as follows:

1. A reverse hash-chain attribute is added to the transport certificate, signed
by the server trust root and bound to an account of a traveler. The reverse
hash-chain is split into run lengths of m elements (m = 2 in Figure 7). The
actual elements (tokens) of the hash chain are retrieved m at a time by the
mobile phone of the traveler before traveling. The token retrieval is possibly
subject to user authorization for improved end-user protection.

2. A monotonically increasing time value is added to the system, and main-
tained by the back-end cloud. The time value is updated e.g. once a second,

5 A tailgating attack is where a customer intentionally throws a valid ticket back over
the gate to let a friend defeat the physical access control of the gate.

126 S. Tamrakar and J.-E. Ekberg

and is consistent across a single transport system. This time value will be
signed by the server distributing the hash-chain elements and be crypto-
graphically bound to the last token from the set of m tokens in the hash
chain, i.e. the one that is to be spent first, on system entry.

3. All touch-point smart cards are augmented with a time-dependent Bloom
filter[1] which is maintained individually by every single smart card. This is
in addition to the statistically returned challenges of earlier travelers. Like
the statistically selected earlier challenges, the Bloom filter is also returned
to the back-end cloud through the tapping client. Cryptographic binding of
the filter to the response forces the end-user device that taps the touch-point
card to return the filter along with the challenge-response to complete a valid
transaction report. A time awareness within each card is built based on the
entry tap-time commitments by the back-end, i.e. the reference time may be
lagging for touch-point cards that are rarely used.

The extensions for the ticketing system operate according to the message flows
outlined in Figure 7. The touch-point smart cards now include distinct operations
for entry vs. exit — intermediate taps, if supported, can be modeled according
to the exit template.

The entry operation with the touch-point smart card includes the validation
of the transport certificate, and that the entry token maps to the hash-chain
root. The entry operation will also validate that the time bound to the entry
token is e.g. at most t = 900 (15 minutes) earlier than the last time seen by
the smart card. If all validations succeed, the smart card will return a response
to the end-user device that includes not only the signed challenges but also
a verification ticket bound to the entry token value. This ticket can later be
validated by all other smart cards in the system. Furthermore, the entry token
value will be added to a Bloom filter in the card that is periodically emptied, i.e.
it contains only entry taps accumulated during a t-minute period. The Bloom
filter is a very efficient data structure for this kind of aggregation, since filters
for many smart cards can be trivially combined in the server, and a search for
possible double-spending of entry taps among all smart cards can be performed
efficiently.

During exit, a touch-point smart card does not accept a tap operation with-
out a matching system entry commitment returned by some other smart card
in the transport system. An exit token must also be in the same hash chain
as the entry token. These mechanisms alleviate identity theft, since an NFC
eavesdropper may get the entry tap and the smart card signature, but not the
exit token. Whenever tokens are retrieved with NFC eavesdropping or network-
based attacks, the extra use of the token will trigger double-spending auditing
mechanisms.

The traveler’s incentive for reporting back evidence in the revised system is
different from the protocols that use TEEs. In the latter case, the phone will
force the traveler to report back on the threat of becoming dysfunctional, and
all signatures are signed with keys that reside in the TEE. In the former case,

Tapping and Tripping with NFC 127

the blocking mechanism relies on the conditional reception of the tokens from
the server and the assumption that reporting of travel conducted based on those
tokens must be performed before the retrieval of the next set of tokens. Token
retrieval with missing submitted evidence should by default be considered to
represent the maximum fare of any trip that can be made on the system. In
this way, the user is always incentivized to report the evidence correctly and
promptly. Timely evidence feedback also benefits the user by improving the
auditing mechanisms for catching double-spending.

Based on the Bloom-filter contents, and the knowledge of tokens active at a
given time (the only condition by which they are accepted at touch-point smart
cards), every card returns, on every tap, a statistical representation of the re-
cent entry taps at the touch-point card that is being tapped. This information
is channeled by the mobile phones to the back-end cloud. With the assumption
that at least 50-70% of phones report back (their own taps) almost immediately,
it is easy enough in the back-end cloud to aggregate the Bloom filters and pin-
point double-spending occurring in the transport system - since all tokens are
generated in the back-end cloud, full information of their contents and validity
(in terms of t) is known to the back-end.

5.1 Brief Security Analysis of the Added Features

A variant of our baseline non-gated ticketing protocol has been formally analyzed
in the Ph.D dissertation by Enyang Huang [11]. For this work, we assume that
the phones, in addition to the augmentation, operate the default signing scheme
already deployed. Thus a replay attack entails both stealing the longer term
signature key from a phone, capturing the token over the air (and replaying it) or
alternatively mounting a harvesting attack using a real-time virus in the attacked
phone. We can identify the following threat categories and corresponding ways
the described solution mitigates these issues:

1. An attacker has learned the long-term secrets of a victim. If the attacker
copies the entry code off the air, he can likely in a non-gated environment
produce a tap and a smart card response that will withstand at least cur-
sory ticket inspection. However, the system will catch double-spending by
aggregation and inspection of the touch-point card Bloom filters. In a gated
system, entry duplicates are likely caught immediately and even access may
be denied for either the attacker or the correct traveler. With token copies
retrieved by eavesdropping the NFC interface, the attacker cannot exit a
gated system if he does not follow the victim like a shadow.

2. Any copying of the short-lived tokens is valid only for entry during the stated
system allowance period t. In a gated transport this is an absolute measure,
but old copies will also be caught at ticket verification in a non-gated system
and by touch-point cards in case the use of the cards has advanced its notion
of time past the time constraint of the token copy.

128 S. Tamrakar and J.-E. Ekberg

3. The attacker travels using a complete copy of all ticketing data in the original
traveler’s phone 6. This means that the attacker will report all travels to the
back-end just like the original traveler would do. Based on the protocol and
its secrets, there is no way of differentiating the attacker from the original
traveler since we assume that the attacker has full access to the mobile phone
of the original traveler. However, double-spending mechanisms will notice
parallel usage quickly, and in gated transport one of the two phones may even
be denied system access or exit. In any case, the fraud is quickly unearthed,
and appropriate measures can be taken. For example, while fetching a fresh
token in non-gated transport, the back-end cloud may require additional
out-of-band user authentication or verification of one-time-PIN sent to the
traveler via a separate channel such as SMS.

4. The attacker travels using the identity of a traveler, but does not report
anything to the back-end if ticket verification is not encountered. In this case,
the smart card filters will provide information to the auditing server about
non-reported taps. Further, tap information becomes available as part of the
back-channel from smart cards to the server through other tapping travelers.
Using this mechanism, or by the attacker encountering ticket verification, the
system will get information of an attacked identity.

5. A traveler may collaborate with an associate and make a copy of his entry
tap to his associate. The associate then taps out at a nearby station while the
traveler continues his trip. Later, the associate sends the exit-tap information
back to the traveler, which the traveler submits to the back-end cloud after
he completes his trip. In this way, a traveler pays for only a short distance
trip fare while actually traveling a longer distance.
The probability of spotting such an attack relies on the number of honest
travelers who report their tap-evidence immediately. As each reported tap
carries evidence of the two earlier taps made at the same touch point, the
back-end cloud may receive the information about the dishonest traveler’s
exit tap made at short distance station before he actually completes his
trip. During ticket inspection, such fraud can be identified provided that the
inspection device consults the back-end during ticket verification. In case of
a TEE implementation the current state of the device’s counter commitment
will always reveal the early tap out to an inspector.

6. A widespread software attack, where a vast number of phones are infected as
a botnet and, for example, one trip from each victim is used by the attacker,
will be impossible to protect against with the above assumptions. To alleviate
this kind of attack some other reactive security mechanism, for example a
virus checker, needs to be deployed.

The protocol additions for open devices put in place several separate mechanisms
to protect both the traveler and the system against undue fraud and misplaced
liability. Nevertheless, when deployed in a mass-market scenario, there is a clear

6 All needed information is only available for copying at most t seconds before trav-
eling because of the requirement to fetch fresh tokens before traveling, all needed
information is only available after the tokens have been fetched.

Tapping and Tripping with NFC 129

threat that widespread attacks can cause significant disturbances in the per-
ception of the ticketing system by travelers, since an attacker can easily cause
denial-of-service and cases where many kinds of plausible undeniability may sur-
face. Clearly, a system where the traveler’s phone is equipped with a TEE is the
more user-friendly choice.

6 Implementation and Measurements

We have used Google Nexus S phone running Android 4.1.1, Jelly Bean, to im-
plement our non-gated protocol on the phones without TEE support. Although
Google Nexus S has an embedded secure element (SE), an API to access the
SE is not included in the publicly available SDK [6]. We have implemented the
mobile-ticketing application on the phone using Android SDK with level 14 APIs.
The touch-point smart cards implemented using SmartMX tags were upgraded
with the protocol addition described in Section 5. Figure 8 shows an example of
the touch-point with a SmartMX tag used in the trial. The application on the
phone uses NFC reader / writer mode to communicate with the SmartMX tags
using Android NFC IsoDep class APIs.

The application reported on in this work retrieves two elements of a hash chain
from the server at a time. Therefore the phone can be used twice to interact with
the touch-point tags before a new token is required. In other words, a phone can
be used for a single journey beginning with a tap-in event and terminating with
a tap-out event. Additionally, the token has been generated in such a way that
it is valid for the tap-in event only during the first 15 minutes after the token
was received. Figure 9 shows the mobile-ticketing application used in the trial
running on Nokia 603 phone and the application with the revised protocol for
open devices running on Nexus S phone.

Table 1 presents the measurements of average execution times for different
SmartMX operations measured from the Nokia 603 with a TEE (as used in
the trial) and the Nexus S phone without TEE support. The Nokia 603 and

Fig. 8. touch-point used
in the trial

Fig. 9. Mobile-ticketing application running on
Nokia 603 and Nexus S

130 S. Tamrakar and J.-E. Ekberg

Table 1. Time measurements of SmartMX operations in non-gated protocol

Platform Initialize and Challenge Total
read certificate Response

Nokia 603 45 ms 212 ms 305 ms

Nexus S 55 ms 718 ms 820 ms

the SmartMX tag run the baseline protocol intended for devices with a TEE.
The Nexus S interacts with the SmartMX tag using the revised protocol for
open devices. The measurements do not include the wake-up time taken by the
operation systems to indicate the NFC touch event to the application. The new
protocol additions increase the amount of SmartMX tag operations which is
visible as the 500 milliseconds (ms) increase in the challenge response time. The
table also shows that the NFC data exchange speed in Nokia 603 Symbian phone
is slightly faster than Android Nexus S phone.

7 Conclusions

The research question how to achieve a workable ticketing solution for NFC
phones can be seen as the task to minimize fraud opportunity balancing be-
tween networked-based auditing and security mechanisms which can be lever-
aged in contemporary end-user devices. Requirements stemming from the target
transport system and end-user usability must be considered non-negotiable.

In this paper, we studied approaches for using NFC phones with limited plat-
form security in a ticketing system. Likewise, we presented mechanisms by which
the fare collection properties of the system can be upheld with insecure devices.
We noticed the importance of categorizing users based on their tap reporting be-
havior and using this information to accelerate the reporting time of tap events
to the back-end cloud, thereby improving the auditing accuracy. Speedy identifi-
cation of misbehavior, such as double-spending attempts, minimizes the liability
consequences for the traveler in an identity-based ticketing system.

We also reported on a big-scale trial in a real transport system with more
than 100 participants. A user-study conducted at the end of the four-week trial
in New York in the summer of 2012 gave very promising feedback and a moti-
vation to continue exploring this field: 42% of the participants felt that a smart
phone was the preferred user credential for transport ticketing, compared to only
24% in favor of a smart card or payment card. The perceived comfort level of
the participants of this system was also surprisingly high considering that this
was a first for most participants — 64% of the travelers were pleased with using
the phone as a “travel token” compared to only 11% that were not satisfied with
the solution. We believe that this level of user acceptance indicates that ticket-
ing with NFC phones may grow to become a “killer use case” for mobile phone
NFC use.

Tapping and Tripping with NFC 131

Acknowledgements. The referenced field trial was conducted as a collabora-
tion between MTA in New York and the Nokia Location and Commerce business
unit. Without the hard work of Peter Preuss, Justus Brown, Jerome Beaurepaire,
Andreas Graf from Nokia L&C, and the technical expertise and contacts of Jukka
Virtanen and Jarkko Sevanto the trial would never have seen the light of day.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

2. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., Shastry, B.: Prac-
tical and lightweight domain isolation on android. In: Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
2011, pp. 51–62. ACM, New York (2011)

3. Chaumette, S., Dubernet, D., Ouoba, J., Siira, E., Tuikka, T.: Architecture and
comparison of two different user-centric NFC-enabled event ticketing approaches.
In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART
2011. LNCS, vol. 6869, pp. 165–177. Springer, Heidelberg (2011)

4. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A practical attack on the
MIFARE classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

5. Derler, D., Potzmader, K., Winter, J., Dietrich, K.: Anonymous ticketing for NFC-
enabled mobile phones. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011.
LNCS, vol. 7222, pp. 66–83. Springer, Heidelberg (2012)

6. Dmitrienko, A., Sadeghi, A.-R., Tamrakar, S., Wachsmann, C.: SmartTokens: Dele-
gable access control with NFC-enabled smartphones. In: Katzenbeisser, S., Weippl,
E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS,
vol. 7344, pp. 219–238. Springer, Heidelberg (2012)

7. Ekberg, J.-E., Tamrakar, S.: Mass transit ticketing with NFC mobile phones. In:
Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol. 7222, pp. 48–65.
Springer, Heidelberg (2012)

8. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

9. Garcia, F., van Rossum, P., Verdult, R., Schreur, R.W.: Wirelessly pickpocketing a
mifare classic card. In: IEEE Symposium on Security and Privacy, pp. 3–15 (2009)

10. Ghiron, S.L., Sposato, S., Medaglia, C.M., Moroni, A.: Nfc ticketing: A prototype
and usability test of an nfc-based virtual ticketing application. In: First Interna-
tional Workshop on Near Field Communication, NFC 2009, pp. 45–50 (February
2009)

11. Huang, E.: Automated Security Analysis of Payment Protocols. Ph. D. Thesis,
Massachusetts Institute of Technology, Dept. of Civil and Environmental Engi-
neering (2012)

12. ISO/IEC 14443: Identification cards – Contactless integrated circuit cards – Prox-
imity cards. ISO, Geneva, Switzerland (2008)

13. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: ASIACCS 2009: Proceedings of the 4th International Sym-
posium on Information, Computer, and Communications Security, pp. 104–115.
ACM, New York (2009)

132 S. Tamrakar and J.-E. Ekberg

14. mobiThinking: Global mobile statistics 2012 part b: Mobile web; mobile broadband
penetration; 3g/4g subscribers and networks,
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/b

(accessed: February 2013)
15. Smart Card Alliance: Transit and contactless open payments: An emerging ap-

proach for fare collection. A Smart Card Alliance Transportation Council White
Paper (November 2011), http://www.smartcardalliance.org/resources/pdf/
Open Payments WP 110811.pdf (accessed: February 2013)

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/b
http://www.smartcardalliance.org/resources/pdf/Open_Payments_WP_110811.pdf
http://www.smartcardalliance.org/resources/pdf/Open_Payments_WP_110811.pdf

TEEM: A User-Oriented Trusted Mobile Device

for Multi-platform Security Applications

Wei Feng1, Dengguo Feng1, Ge Wei2, Yu Qin1,
Qianying Zhang1, and Dexian Chang1,3

1 Institute of Software Chinese Academy of Sciences
2 GUANGDONG KAMFU Information & Technology CO., LTD

3 Zhengzhou Institute of Information Science and Technology
vonwaist@gmail.com

Abstract. Trusted Computing (TC) can improve the security of var-
ious computing platforms. However, as new computing devices emerge
and application scenarios increase, current trusted computing technology
cannot satisfy various new demands. For example, mobile and embedded
platforms may lack security components of trusted computing, users may
need a portable trusted module[13] for multiple desktop machines, and
users may hope to customize their own security features for new applica-
tions. This paper presents TEEM, a system that achieves these demands
by designing a mobile-based portable TC module. TEEM is built on the
general mobile devices of users, and its running environment can be pro-
tected by the secure features of embedded CPUs. For desktop machines,
the mobile device with TEEM can act as a trusted computing module
with USB bus. Finally, we have implemented TEEM using an ARM SoC
platform and evaluated the performance of TEEM.

1 Introduction

People are performing safety-critical computations, and collecting or storing con-
fidential data in a wide variety of computing devices, such as the traditional
desktop or server machines and the currently popular smartphones or tablets.
Unfortunately, these devices are usually not trustworthy, which will compromise
users’ safety and privacy in many security applications. Trusted computing has
been proposed as a promising approach to enhance the security of various com-
puting devices. For desktop PCs, secure chips like Trusted Platform Module
(TPM)[1] or Trusted Cryptography Module (TCM)[2–4] can be used. For server
machines, it usually isolates a single execution environment using a Virtual Ma-
chine Manager. For mobile and embedded devices, many methods are proposed
to establish trust, such as TI M-Shield technology[5], ARM TrustZone [6], and
TCG’s Mobile Trusted Module (MTM) specification[7].

However, to the best of our knowledge, no method supports to provide trusted
computing function for multiple computing platforms and meet their security
requirements. Firstly, methods designed for desktop machines usually do not
fit the needs of mobile devices, and vice versa. There are several reasons for
this[22]: (1)Desktop machines are often x86-based, but most mobile devices are

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 133–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 W. Feng et al.

ARM-based. (2)Mobile devices are usually limited in computing resources and
storage spaces compared to desktop machines. Furthermore, even in the desktop
platforms, the TC demands are increasing. For instance, a portable TC module
is needed to achieve user-based attestation in [13]. Portable Trusted Module
(PTM)[13, 14] is proposed to support multiple desktop platforms, but cannot
serve mobile devices. To achieve multi-platform property, the TC module is
usually bound to a user rather than a device.

Another problem with trusted computing is about flexibility. It needs to add
four new TPM commands for TPM chip to support Secure Function Evalua-
tion (SFE) and LBS applications[8]. Aaraj[9] proposes the use of Elliptic Curve
Cryptography (ECC) as a replacement for the RSA algorithm in order to re-
duce the performance overheads without compromising security. Authorisation
session protocols (like OIAP and OSAP) of TPM are vulnerable to dictionary
attacks and may need be updated to new SKAP protocol[21]. TPM 2.0[10] has
just been published, and it includes updates to TPM commands and adds sup-
port for new algorithms. Thus it is inevitable for a TC module to support these
extension, customization or update needs, but we have no permission to modify
an actual hardware TPM/TCM chip which is controlled by its manufacturer.

In this paper, we address these problems by presenting the design and im-
plementation of TEEM, a Trusted Execution Environment Module that can
provide flexible trusted computing functions for multiple platforms. TEEM is
user-oriented and satisfies various new demands, like the low overheads of mo-
bile platforms and the portability of desktop platforms. TEEM is configurable
in TC functions, which supports the extension and update of TC commands,
protocols, algorithms and modules. Thus, it can meet various experimental and
customization needs. We also implement a prototype of TEEM using a general
ARM SoC development board Real210[11]. Finally, we evaluate the overheads
imposed by TEEM and compare the performance of TEEM with two actual
hardware chips (a TPM 1.2 chip and a TCM chip).

The rest of the paper is organized as follows. First, we present our motivation
for TEEM and related work in Section 2. Then, we give the TEEM architecture
in Section 3. Next, we present the implementation and evaluation in Section 4.
Finally, Section 5 concludes the paper and discusses our future work.

2 Motivation and Related Work

TEEM is inspired by a large body of related work, including portable trusted
module (PTM) and trusted computing on mobile and embedded system.

Portable Trusted Module. General TPM/TCM chips (also called Integrated
Trusted Module) are attached to the motherboard of a trusted platform via
a Low Pin Count (LPC) interface. Intel [12] first introduced PTM in 2002,
which can be attached to the system by means of a USB connector. Later, many
researchers analyzed the advantages of PTM. The idea of PTM makes the TC
module flexible and portable enough to be used in different platforms. In TCG
TPM scenario[13], one TPM is bound to one computing device and several users

TEEM: Trusted Execution Environment Module 135

use one TPM. But in PTM scenario[13], one PTM is bound to one user and
several computing devices use one PTM. In [13], authors have implemented a
PTM based on USB Key. Surya [14] has also successfully designed, built and
demonstrated a PTM solution based on an actual TPM chip. Now one user
usually has two types of computing platforms: desktop machines and mobile
devices. Since we aim to design a general TC module that can serve multiple
platforms, PTM is a good choice. However, there are two drawbacks with PTM:
(1)It needs user to buy an additional specialized USB device (e.g. a USB key
with TPM) and increases user’s purchase burden; (2)PTM is mainly designed
for desktop machines, and mobile devices may not benefit from PTM. To solve
these problems, we design and implement TEEM (our PTM) based on mobile
devices rather than specific USB devices. Users often have owned these mobile
devices and don’t need to buy an additional USB device. Moreover, built on
mobile devices, TEEM can also provide TC functions for mobile applications
and is really a multiplatform-capable TC module.

Trusted Computing on Mobile and Embedded System. With the suc-
cess of TPMs/TCMs in desktop computers, the idea of trusted computing has
been extended to mobile and embedded devices. The Mobile Trusted Module
(MTM)[7] is a specification for mobile platform, which provides APIs for se-
cure storage and attestation, but does not by itself provide an isolated execu-
tion environment for secure code. Thus, the implementation of MTMs relies on
the security features of mobile CPUs or some onboard smart cards. Winter[18]
merged MTMs concepts with ARM TrustZone to build an open Linux-based
embedded trusted computing platform. Dietrich[19] gave a MTM design using a
JavaCard applet loaded on an on-board smart card. Nokia[20] also implemented
a remote owner’s MRTM logic on a Nokia N96 platform with the TI M-shield.
To enable mobile trusted applications, TEEM includes the secure features of
MTM. Its running can be protected by strongly isolation mechanism of ARM
TrustZone. Its protected capabilities can be established by implementing the
required commands, algorithms, protocols and modules as software components
on the mobile device. Only via a software update, TEEM can be ported to any
TrustZone-enabled mobile or embedded platforms.

3 TEEM Architecture

TEEM is a user-oriented trusted computing module, which is easy to carry and
should be able to serve both the mobile devices and desktop machines. Figure 1
illustrates the deployment of TEEM and its relationship with various computing
devices. Each user has two types of computing devices: mobile devices (smart-
phone, tablet, etc.) and desktop machines(PC, laptop, server, etc.). TEEM is
deployed in the secure world (SW) of user’s mobile device. The secure world
is an isolated execution environment, which can be provided by the secure fea-
tures of embedded CPUs (e.g. ARM TrustZone). TEEM necessarily relies on
and invokes OS code, so a small secure kernel is included in the secure world.
The TEEM deployed in the SW contains the necessary protected capabilities
of trusted computing. The mobile applications in the normal world (NW) can

136 W. Feng et al.

Mobile Devices Desktop Machines
USB

Hardware (Embedded CPU, Mini-USB)

Normal Operating
System

Mobile Applications

Secure Operating
System

TEEM

Normal World (NW) Secure World (SW)

Hardware (USB interface)

Operating System (Host
Linux or Windows)

Applications

User

Host

Fig. 1. TEEM deployment and Various Computing Platforms supported by TEEM

use the trusted functions of TEEM. In addition, the mobile device with TEEM
can be plugged into any desktop machine via a USB cable. In this case, the
mobile device with TEEM can be called TEEM device, which is bound to one
user and can be used by multiple desktop platforms. Therefore, TEEM device is
a Portable Trusted Module (PTM) solution with USB bus.

Though our high-level design is simple, we still need to overcome three main
challenges: 1)to make the TC functions of TEEM flexible and configurable, 2)to
establish a communication channel between the mobile applications in the NW
and the TEEM in the SW, and 3)to establish a communication channel between
the host applications and the TEEM device. To address these challenges, we:
1)divide TEEM into several independent functional components and provide a
configuration and management GUI interface for it, 2)use the secure monitor
call (SMC) instruction and secure procedure call (SPC) method in TLR[22] to
enable communication between NW and SW, and 3)adopt the Universal Serial
Bus (USB) mechanism to enable communication between the TEEM device and
desktop machine. Thus we divide the system into three main parts (Figure 2):
TEEM components, the communication components between SW and NW, and
the communication components between SW and host.

TEEM Components. The typical functions of TEEM should include crypto-
graphic capacity, communication capacity andTC-processing capacity. Therefore,
TEEM itself consists of three independent components:(1)TC-Daemon is used
to implement the communication capacity, which is responsible for listening for
incoming TC command request, calling a correct TC module to handle the re-
quest and sending the replies to the requestor. (2)TC modules implement the TC-
processing capacity, which are responsible for handling TC request and producing
TC response. TC modules consist of multiple modules and each module follows a
certain standard. For each module, it supports to add new commands and use dif-
ferent protocols and cryptographic algorithms. (3)Cryptographic library provides
cryptographic capacity. Different TC modules often rely on different algorithms.
New algorithms can be added into the library and the algorithm extension also
supports localization, like SM2, SM3 and SMS4[2]in China.

TEEM: Trusted Execution Environment Module 137

ARM TrustZone Extension, Mini-USB

Normal World (NW)

Secure World (SW)

Host
 (Windows or Linux)

USB cable

SW-Driver MiniUSB-Driver

SW-Library MiniUSB-Daemon

TC-Daemon

TPM Module

TCM Module

MTM Module

...
TC

 Modules

RSA

ECC,SM2

SHA,SM3

SMS4, ...
Cryptogr

-aphic
Library

NW-Driver (or TC_dev)

NW-Tddl

Mobile Trusted
Software Library

Mobile
Secure

Applications
TC-GUI

X86, USB

USB-Driver (or TC_dev)

USBhost-Tddl

Desktop Trusted
Software Library

Desktop
Secure

Applications
TC-GUI

H
ar

dw
ar

e
K

er
ne

l
 M

od
e

U
se

r
M

od
e

TC Request TC Response

TEEM

Fig. 2. Three main parts: TEEM components (green background), the communication
components between SW and NW (lightgreen background), and the communication
components between SW and host (orange background)

Communication Components between SW and NW. We propose to de-
sign two kernel-mode drivers: NW-Driver and SW-Driver. The drivers are re-
sponsible for implementing the ARM TrustZone context switch in/out of secure
mode by using the secure procedure call (SPC) method in TLR[22]. NW-Driver
is also responsible for providing a Trusted Computing device driver (TC dev in
Figure 2). SW-Library is used to hand off the appropriate input/output data
from/to the SW-Driver, and acts as the bridge between SW-Driver and TC-
Daemon. NW-Tddl provides a standardized interface for connecting to TC dev.
Mobile Trusted Software Library is based on NW-Tddl and provides an easy-to-
use programming environment for mobile secure applications.

Communication Components between SW and Host. We have designed
four components: the MiniUSB-Driver and USB-Driver in the kernel mode, and
the MiniUSB-Daemon and USBhost-Tddl in the user mode. The MiniUSB-
Driver can talk over a USB cable to the USB-Driver on a host PC and makes the
mobile device look like a USB-based TC module. The MiniUSB-Daemon running
in the SW is responsible for listening on the MiniUSB-Driver for incoming TC
requests, forwarding the requests to TC-Daemon, receiving the corresponding
responses from TC-Daemon and returning them to MiniUSB-Driver. The USB-
Driver identifies the mobile device and establishes a channel with the MiniUSB-
driver, and also provides a TC dev for host applications. The USBhost-Tddl and
Desktop Trusted Software Library have the same functions as the NW-Tddl and
Mobile Trusted Software Library, respectively.

Finally, we design a TC-GUI to set (or get) the status of TEEM and test some
key TC commands. The TC-GUI is designed to be based on a cross-platform UI
development framework, thus it can run on the host and can also be ported to
run on the mobile device.

138 W. Feng et al.

4 Implementation and Evaluation

We use an ARM development board Real210[11] to implement the TEEM pro-
totype. Real210 is designed around a Samsung S5PV210 SoC (based on ARM
Cortex-A8) and includes TrustZone support. As technical details about how to
use TrustZone of the S5PV210 SoC are not available to us, we implement all com-
ponents in the default world of the Real210 at present. TEEM implementation is
based on the open-source TPM/MTM emulator[15]. For flexibility, we modified
the emulator to support more TC modules (like TCM module) and new algo-
rithms (like SM2, SM3, SMS4). For usability, the specific TC commands should
be handled by the correct TC modules. Thus, emulator was changed to handle
command request according to its type (TPM or TCM ,etc.). The total changes
were 4000 lines of C/C++ code.

For USB communication, We adopted the gadget serial driver and CDC/ACM
driver1. The gadget serial driver talks over USB to a CDC/ACM driver running
on a host PC. By designing TDDL library based on these drivers, the host can
communicate with the Real210 as if it was using a USB-based TC chip. The USB
communication components consisted of 924 lines of C code. To use TEEM, we
adopted the libtpm[16], a C/C++ interface to the TPM, developed by IBM.
We modified the libtpm to support TCM. We also changed the I/O interfaces of
libtpm to use our USB mechanism. The modified version is called libteem, which
is used as trusted software library. We used the QT2 to develop the TC Graphical
User Interface (TC-GUI). The modification to libtpm consisted of 1000 lines of
C, and TC-GUI was 1300 lines of C/C++.

Figure 3 shows TEEM prototype based on Real210. Figure 4 describes the
experimental environment using the prototype. The Windows host is a desk-
top x86 machine running Windows XP. It is equipped with a 2.4GHz Intel(R)
Core(TM)2 Duo CPU, 3GB memory and several USB host interfaces. The Linux
host is a VMware Virtual Machine running Ubuntu Linux system, which is as-
signed with 512MB memory and one-core CPU from the Windows host. The
hosts and Real210 are connected via a USB cable.

Using the prototype system, we first evaluate the execution time of TEEM
commands when various commands are called respectively by Real210 itself,
the Windows host and the Linux host. Table 1 shows the execution time of
TEEM commands. Some commands (e.g. Seal, CreateWrapKey, etc.) involve
cryptographic operations or keys, and we all adopt 2048-bit RSA algorithm.
Then, the performances of TEEM with different algorithms are compared with
two actual hardware chips, including an actual TPM 1.2 hardware chip3, and an
actual TCM hardware chip4. The results is reported in Table 2. RSA and SM2
are public-key algorithms. SMS4 is a symmetric-key algorithm. For the TPM

1 http://www.thesycon.de/eng/usb_cdcacm.shtml#demo
2 http://qt.digia.com/Product/
3 The host for the chip is IBM ThinkCentre M52 81114, and the TPM chip conforms
to the TPM 1.2 standard of TCG.

4 The host for the chip is Lenovo ThinkCentre M4000t, and the TCM chip conforms
to the TCM specification of State Cryptography Administration.

http://www.thesycon.de/eng/usb_cdcacm.shtml#demo
http://qt.digia.com/Product/

TEEM: Trusted Execution Environment Module 139

Fig. 3. The Real210 board with USB con-
nected to the host

Real210 with TEEM

USB

Windows Host

Linux Host

USB

Fig. 4. Experiment Environment

Table 1. Execution Time of TEEM commands (R: Real210, WH: Windows Host, LH:
Linux Host, Req/Resp: data size of Command Request/Response)

TEEM Commands R (ms) WH (ms) LH (ms) Req (bytes) Resp (bytes)

Takeownership 3193 3926 3472 624 354

ReadPubEK 31.8 187 20.2-90 30 314

CreateKey 4432 4406 3928 146 610

LoadKey 611 655 439-983 618 55

EvictKey 1.9 62.5 31-547 14 10

GetPubKey 5.7 250 458 59 335

Sign 83 343 217-955 83 311

UnBind 84 375 167 319 66

GetRandom 3.9 78 25-700 14 1038

PcrRead 3.3 62.5 14.2 14 30

PcrExtend 3.2 62.5 15.7 34 30

Quote 86 359 167 84 400

Seal 11 288 116 142 363

Unseal 89 453 169 416 107

MakeIdentity 3240 3593 4337 187 911

ActivateIdentity 111 421 526 364 132

chip and TEEM-RSA, we use 2048-bit RSA algorithm. For the TCM chip and
TEEM-SM2, we use 256-bit SM2 algorithm. For TEEM-SMS4, we use 128-bit
SMS4 algorithm. All performance measurements for TPM and TCM have been
done by calling TSS interface. All measurements for TEEM have been done by
calling libteem interface. Therefore, the overheads for the TSS and libteem are
included in the execution time.

Analysis. The execution time of TEEM commands is very stable on Real210.
Most commands, like Sign, UnBind, Quote, Seal and Unseal, cost only less than
100ms. The Takeownership and CreateKey commands (not frequently used) may
take several minutes. However, the execution time for host is not always sta-
ble. For example, the GetRandom command for Linux host can take only 25ms
sometimes, but may increase to 700ms at other times. We discuss that possible

140 W. Feng et al.

Table 2. Performance Comparison between actual TPM/TCM chips and TEEM

Commands TPM TCM TEEM-RSA TEEM-SM2 TEEM-SMS4

CreateKey 407ms 704ms 4432ms 174ms 12ms

LoadKey 781ms 438ms 611ms 170ms 10.7ms

Sign 609ms 625ms 83ms 176ms n/a

Bind or Encrypt 63ms 15ms 3.5ms 315ms 7.0ms

UnBind or Decrypt 625ms 891ms 84ms 302ms 7.1ms

factors include USB communication, VMware Virtual Machine and kernel mod-
ules. Although the time for host is not stable, most commands take only less
than 200ms, which is accepted for most secure applications. Thus, TEEM is an
efficient solution for multiple platforms. Table 2 shows that TEEM running on
Real210 is faster than the actual TPM/TCM chips. This is caused by stronger
CPU in Real210 than the coprocessor in TPM/TCM.

5 Conclusion and Future Work

This paper presents a general-purpose trusted computing module TEEM, which
can provide flexible trusted computing functions for multiple platforms. For mo-
bile platforms, user can use TEEM only via a software update. For desktop
platforms, user can connect the carry-on TEEM device to the desktop host us-
ing a USB cable. We have also implemented and evaluated a basic prototype
of TEEM based on Real210. For future work, we will experiment with ARM
TrustZone on the Real210 development board and further improve the TEEM
prototype. We also consider to add and implement TPM 2.0 module based on
TEEM prototype. Based on TEEM, we also consider to develop and implement
some specific trusted applications.

Acknowledgments. This work has been supported by the National Natural
Science Foundation of China (under grants No.91118006 and No.61202414) and
the National 973 Program of China (under grants No.2013CB338003). This work
has also been supported by Project of ”Trusted Terminal System development
and Terminal Product Industrialization for Self-help tax service” (under grants
No.2011BY100042).We would also like to thank Xiaobo Chu, Li Xi and Bo Yang
for their help to develop the prototype system.

References

1. Trusted Computing Group. Trusted platform module main specification. Version
1.2, Revision 103 (2007)

2. State Cryptography Administration. Functionality and Interface Specification of
Cryptographic Support Platform for Trusted Computing (2007)

3. Feng, D., Qin, Y.: Research on Attestation Method for Trust Computing Environ-
ment. Chinese Journal of Computers (2008)

TEEM: Trusted Execution Environment Module 141

4. Feng, D., Qin, Y.: A property-based attestation protocol for TCM. Science China
Information Sciences (March 2010)

5. Azema, J., Fayad, G.: M-Shield mobile security: Makeing wireless secure. Texas
Instruments WhitePaper (June 2008)

6. ARM Limited. ARM Security Technology: Building a Secure System using Trust-
Zone Technology. ARM Technical White Paper (2009)

7. TCG Mobile Phone Working Group. TCG mobile trusted module specification.
Version 1.0, Revision 7.02 (April 2010)

8. Tate, S.R., Vishwanathan, R.: General Secure Function Evaluation using standard
trusted computing hardware. In: PST 2011: International Conference on Privacy,
Security and Trust, July 19-21, pp. 221–228 (2011)

9. Aaraj, N., Raghunathan, A., Ravi, S., Jha, A.K.: Energy and Execution Time
Analysis of a Software-based Trusted Platform Module. In: Proceedings of the
Conference on Design, Automation and Test in Europe. IEEE (2007)

10. Trusted Computing Group. Trusted Platform Module Library Part 1-4, Family
”2.0” Level 00 Revision 00.93

11. Real210, http://www.realarm.cn/pic/?78_490.html
12. Intel. Mobile Platform Vision Guide for 2003 (September 2002)
13. Zhang, D., Han, Z., Yan, G.: A Portable TPM Based on USB Key. In: Proceedings

of the 17th ACM Conference on Computer and Communications Security, New
York, NY, USA (2010)

14. Nepal, S., Zic, J., Liu, D., Jang, J.: Trusted Computing Platform in Your Pocket. In:
EUC 2010: Proceedings of the 2010 IEEE/IFIP International Conference on Em-
bedded and Ubiquitous Computing, pp. 812–817. IEEE Computer Society, Wash-
ington, DC (2010)

15. Strasser, M.: TPM Emulator, http://tpm-emulator.berlios.de
16. Software TPM Introduction(IBM), http://ibmswtpm.sourceforge.net
17. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.M.: Trustworthy

Execution on Mobile Devices: What Security Properties Can My Mobile Platform
Give Me? In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M.,
Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 159–178. Springer, Heidelberg
(2012)

18. Winter, J.: Trusted computing building blocks for embedded linux-based ARM
trustzone platforms. In: Proceedings of the 3rd ACMWorkshop on Scalable Trusted
Computing, Alexandria, Virginia, USA, October 31 (2008)

19. Dietrich, K.: An integrated architecture for trusted computing for java enabled
embedded devices. In: Proceedings of the 2007 ACM Workshop on Scalable Trusted
Computing, Alexandria, Virginia, USA, November 02 (2007)

20. Ekberg, J.-E., Bugiel, S.: Trust in a small package: minimized MRTM software
implementation for mobile secure environments. In: STC 2009: Proceedings of the
2009 ACM Workshop on Scalable Trusted Computing, ACM, NY (2009)

21. Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation data
in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983,
pp. 201–216. Springer, Heidelberg (2010)

22. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Trusted language runtime (TLR):
enabling trusted applications on smartphones. In: HotMobile 2011: Proceedings of
the 12th Workshop on Mobile Computing Systems and Applications, pp. 21–26.
ACM, New York (2011)

http://www.realarm.cn/pic/?78_490.html
http://tpm-emulator.berlios.de
http://ibmswtpm.sourceforge.net

TRUMP: A Trusted Mobile Platform

for Self-management of Chronic Illness
in Rural Areas

Chris Burnett1, Peter Edwards1, Timothy J. Norman1, Liang Chen1,
Yogachandran Rahulamathavan2, Mariesha Jaffray1, and Edoardo Pignotti1

1 dot.rural Digital Economy Research Hub�, University of Aberdeen, Aberdeen,
United Kingdom

{cburnett,p.edwards,t.j.norman,l.chen,m.jaffray}@abdn.ac.uk
2 Information Security Group, School of Engineering and Mathematical Science,

City University London, London, U.K.
yogachandran.rahulamathavan.1@city.ac.uk

Abstract. Disease self-management interventions have the potential to
greatly benefit both sufferers of chronic illnesses and healthcare providers
in rural areas. In this paper, we discuss our vision for a trusted platform
for delivering self-management interventions in rural areas of the UK
and India using second-generation mobile devices, and outline the key
trust and privacy challenges in realising such an infrastructure. We illus-
trate our discussion with an example depression intervention scenario,
highlighting some progress to date, and our plans towards realising this
architecture.

1 Introduction

Chronic illnesses, such as diabetes and depression, pose a difficult problem for
healthcare providers, requiring a substantial allocation of clinical resources over
a prolonged period. This problem is made worse in rural settings, with popula-
tions often spread out over large areas, and limited clinical resources situated
beyond convenient reach of patients. Unconventional and ad-hoc healthcare ar-
rangements, such as mobile clinics, can result in sporadic and inconsistent care. A
patient’s medical record may be fragmented, with different clinicians and health
workers holding different pieces of information relevant to their own areas of
expertise.

A growing body of evidence suggest that changes in lifestyle or behaviour
can help alleviate symptoms of some chronic conditions [6,14]. This has lead to
the development of self-management behavioural interventions [13] which can
empower patients to conveniently manage their own symptoms, while allowing
healthcare providers to allocate their resources more effectively. Rural areas in

� This research is supported by the award made by the RCUK Digital Econ-
omy and Energy programmes to the TRUMP UK-India project; award reference:
EP/J00068X/1.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 142–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

TRUMP: A Trusted Mobile Platform 143

particular stand to gain from the deployment of interventions which, for exam-
ple, reduce the necessity for patients and clinicians to make long and frequent
journeys, and allow greater numbers of chronic patients to be easily monitored
by fewer clinicians.

In rural India, Internet-enabled mobile phones are becoming more common,
making mobile phones an attractive platform for the deployment of such inter-
ventions [3]. The TRUMP (TRusted Mobile Platform) project1 seeks to investi-
gate some of the key issues surrounding the deployment of trustworthy platforms
which support self-management interventions on mobile devices, particularly in
rural areas of India and the UK. In particular, we are investigating the issues of
trust and privacy which arise when medical data is generated and shared among
individuals involved in an intervention.

While this paper discusses our vision of a general-purpose trustworthy plat-
form for mobile healthcare interventions, we are also investigating the specific
privacy and trust requirements of users in rural UK and India, for both de-
pression and diabetes self-management, which will inform the development and
evaluation of a prototype platform. To this end, the TRUMP project comprises
clinical experts with experience of the deployment of interventions for depression
and diabetes. As privacy and trust attitudes are inherently culturally dependant,
the TRUMP project also includes anthropoplogical expertise in order to identify
cultural differences in requirements.

In the remainder of this paper, we discuss mobile phone-based interventions
for sufferers of depression, with particular focus on trust and privacy issues.
We then outline some of our ongoing work towards a trusted platform for these
interventions, and potential future directions.

2 Mobile Interventions

Self-management interventions typically comprise sequences of activities, to be
carried out at specific times by various parties. For example, an intervention
may require the patient to carry out some exercises, and then perform some
self-reporting steps to allow progress to be monitored by a clinician. Interven-
tions may employ complex information flows which require (possibly sensitive)
information to be shared between participants, such as patients, clinicians, phar-
macists, family members and support groups. The effectiveness of these interven-
tions depends not only on the patient’s compliance, but also on the acceptance
of the intervention’s information-sharing requirements by all involved parties.

Mobile phones provide an ideal platform for the delivery of such interven-
tions. Easily carried by a patient, they can display context-relevant advice and
prompts, and allow information to be conveniently transferred between patients
and clinicians over a network connection, or via SMS2 messages. Modern mobile
phones are often equipped with web browsers, have (limited) on-board storage

1 http://www.trump-india-uk.org/
2 Short Message Service, allows messages of up to 140 characters to be sent between
devices.

http://www.trump-india-uk.org/

144 C. Burnett et al.

and can take often advantage of built-in or external sensors, such as heart-rate
monitors, GPS receivers and pedometers, to augment self-reported feedback.

In rural areas however, neither smartphones, nor the infrastructure required
to support them, may be particularly widespread. Connectivity and available
bandwidth may vary between regions. Therefore, mobile interventions for rural
areas must be capable of operating opportunistically in uncertain and changing
network environments.

Example Intervention. Studies have shown that exercise can have an anti-
depressive effect [6], and can help address the symptoms of depression. It is also
known that patients who are prescribed courses of anti-depressive medicine often
fail to adhere to or complete the course [9]. Reasons for this may include illness,
patient characteristics, side effects and the nature of the doctor-patient relation-
ship. Many healthcare interventions have been designed specifically to improve
adherence to anti-depressant medication by improving symptom monitoring, us-
ing compliance aids and recently developed combinations of interventions which
also encourage physical exercise.

Consider an intervention which aims to: (1) improve compliance with the pre-
scribed medication regime and (2) increase the patient’s level of daily exercise
activity. The intervention involves a patient and doctor in a sequence of steps
(Figure 1). In addition, actions may be performed automatically by the plat-
form itself, according to rules which fire when certain conditions are met. These
could include prompts, such as reminding the patient to continue with the course
of medication and advising about daily exercise targets, and monitoring activ-
ities, such as prompting the patient to complete a mental health questionnaire
(e.g. PHQ-9 [5]), and notifying the doctor to review the feedback. Based on the
feedback from the patient, the doctor can take a more active role by provid-
ing custom messages, or modifying the intervention, for example, by changing
the daily exercise targets. In order to help with monitoring compliance, modern
mobile devices equipped with GPS technology, could be employed in tracking
patients and ensuring that their self-reported feedback is consistent with sensor
feedback from the device.

3 Aspects of a Trustworthy Platform

Fostering and maintaining user trust in the platform is crucial in maximising the
effectiveness of interventions. Without trust, users may not be willing to provide
accurate information to the system, or use it at all. Here, we discuss key trust
and privacy issues associated with our platform.

3.1 Security and Privacy

For the platform to operate ethically (for example, to protect patient confiden-
tiality) it must ensure that sensitive data is secured from unauthorised access,
both in storage and in transit. In an intervention, a patient may generate and

TRUMP: A Trusted Mobile Platform 145

Initial Briefing

GP Weekly
Briefing

Medication Prompt

Exercise Prompt
Record Heart Rate

Data

PHQ9
Prompt

GP Weekly
Debriefing

Repeat: Weekly

Final Debriefing

Fig. 1. Example depression intervention workflow

store their own healthcare information in a personally controlled medical record
(PCHR) [4], part or all of which may reside on the mobile device at any time, and
could be compromised should the phone be lost or stolen. Ensuring timely and
appropriate access to sensitive medical information, while preventing malicious
access, is therefore a key challenge in the deployment of our platform.

Cryptographic Techniques. To this end, we are investigating lightweight
cryptographic protocols capable of providing an appropriate level of security
while operating on legacy mobile devices [16]. Attribute-based encryption (ABE)
allows data to be encrypted in such a way that it can only be accessed by individ-
uals holding certain attributes, or complex combinations thereof. Different parts
of a personal medical record can be encrypted according to different privacy poli-
cies; for example, a nurse may be able to decrypt general health information, but
only a doctor with a given specialisation can decrypt more sensitive information.
The existing ABE schemes in healthcare requires highly capable mobile devices
at user-end [8]. Hence we are investigating low complexity cryptographic primi-
tives where substantial amount of computational and communication overhead
off-loaded to semi-trusted servers [7]. In ABE scheme complexity at user-end

146 C. Burnett et al.

increases with number of attributes user enforces with each message, hence it
would be appropriate to incorporate risk aware access control within ABE. Com-
bining risk aware access control with ABE requires incorporation of integer com-
parison protocol within conventional ABE and it is under consideration.

Risk-Aware Access Control. While cryptographic techniques provide a means
to protect private information from unauthorised users, they introduce the risk
that critical information may not be available to certain key actors (in, for ex-
ample, a medical emergency) due to overly-strict attribute-based access control
or privacy policies. Therefore, we employ a more permissive model in our plat-
form. Risk Aware Access Control (RAAC) [2] considers the risk involved when
a requestor tries to access some information. If the risk is deemed too high to
permit access, RAAC attempts to apply rules which mitigate the risk (risk mit-
igation strategies), for example, by imposing obligations on the requestor. Users
are assigned budgets which limit the amount of unfulfilled obligations they can
take on. Requestors may be required to discharge obligations before, or after,
the access is allowed.

Currently, we are investigating integrating computational trust models to-
gether with RAAC to allow dynamic computation of risk levels given the trust
(i.e. prior behaviour, reputation, and observable features) in the requestor. This
TRAAC (Trust and Risk Aware Access Control) can then influence the partic-
ular encryption strategy taken by ABE mechanism. For instance, accesses that
are considered less risky can be implemented by encrypting the data in question
with a general attribute, such as HospitalStaff, while more risky accesses can
be made to require a specific set of attributes, such as HospitalStaff, Specialist,
Oncologist to decrypt.

Policies. These techniques require that the platform enable all participants in
an intervention to express their privacy preferences in machine-readable formats.
Policies express the actions that can, must or must not be taken with regards to
some information items, expressed in policy languages (e.g. OWL-POLAR [12]).
While patients may wish to employ strict privacy controls, this has the poten-
tial to render interventions infeasible. For example, policies may prohibit the
gathering and sharing of information critical to an intervention’s success. We
consider an intervention feasible if it does not require any information transfers
which violate the participants’ policies. Given a set of policies and a specification
of an intervention’s information flows, it is possible to automatically determine
whether an intervention is feasible. If it is not, a set of conflict resolutions can
be computed which specify how to modify the policies or information flows so
that the intervention is feasible [15]. Participants can then negotiate to find the
most acceptable resolution which allows the intervention to proceed.

3.2 Trust and Transparency

Trust, however, is about more than simply securing sensitive information from
attackers. Trust in an artefact increases when the artefact behaves as expected.

TRUMP: A Trusted Mobile Platform 147

While the trust that a user places in the system is typically more difficult to
define and quantify than purely computational notions of trust, it is critical in
our system to maintain user compliance with an intervention. If users do not
trust the system, it is unlikely that the intervention will be successful.

Trust in the System. In order to build this trust, it is essential that the
behaviour of the system be made as transparent and clear to users as possible.
Central to this is the maintenance of rich metadata, or provenance [10], about
data created and consumed during an intervention. For example, the provenance
record for a piece of information may include all the processes and decisions
involved in its production, as well as contextual data from sensors, such as time,
location, heart rate, weather conditions, and so on. This is necessary to permit
all participants to effectively audit the behaviour of the system.

Trust may also be engendered by increasing the perceived predictability of the
system to the user. Patients may be reluctant to provide accurate information
at monitoring points due to uncertainty about the consequences of doing so. For
example, consider an intervention where a late response at a particular stage by a
patient will generate an automatic obligation on the doctor to investigate. Since
our interventions are specified in a workflow language, it is possible to keep users
advised about such potential future workflow states the workflow execution may
take, in response to their input (or lack thereof). While such functionality would
help our platform to appear more transparent to users, these alerting behaviours
could also be regulated by policies if required by the intervention.

Trust Assertions. On the other hand, trust is also an important issue for clin-
icians charged with making critical decisions in an intervention, who must be
able to place a degree of trust in the data generated by the patient on a mobile
device. To support this, the platform should enable the formation of trust asser-
tions about other participants, or the information they produce. Such assertions
could take the form trusts(userA, userB,weeklyReportDeadline, 0.79), which
states that userA ascribes userB a trust value of 0.79, representing (for exam-
ple) the probability with which userA, in her experience, expects that userB
will submit a weekly report by the deadline. However, assertions could also be
generalised or stereotypical [1]. For example, a particular user userA may have
a low degree of trust in any General Practitioner submitting the weekly report
on time (e.g. trusts(userA,GeneralPractitioner, weeklyReportDeadline, 0.2)).
Similarly, a trust assertion could involve two such “stereotypes”, representing
some biased behaviour in the system. For example, Nurses may be more reliable
when completing certain tasks from Specialists than from General Practitioners:

trusts(GeneralPractitioner,Nurse, weeklyReportDeadline, 0.7)

trusts(Specialist,Nurse, weeklyReportDeadline, 0.84)

148 C. Burnett et al.

These trust assertions represent the trust placed in users by the system, as com-
puted by a computational trust model (see [11] for a comprehensive review),
and represent their reliability in fulfilling their roles. These assessments can be
formed in a number of ways. For example, reliability of self-reported exercise
statistics could be assessed by comparison with heart rate data. Past reporting
behaviour, as well as information from other sources, can be used to make as-
sertions about the reliability of information provided by patients in the future.
Similarly, trust assertions could be formed about any actor in the intervention.
However, these processes must be made transparent to all users

Such assertions are crucial during both instantiation and execution phases of
interventions. When an intervention begins, concrete individuals will be assigned
to particular roles, and specific details will be added (locations of meetings, dead-
lines for tasks, etc.). At this stage, these assertions allow the trustworthiness of
available candidates to be considered when deciding which actors should play
which roles, given their past performance. As interventions are executed, a mon-
itoring mechanism updates these trust assertions as new observations are made.
Rules can be specified which alert users when the trustworthiness of certain
actors changes, or drops below a particular threshold, perhaps indicating that
some repair activity may be necessary (e.g. replacing the actor). This is partic-
ularly important in dynamic and ad-hoc organisational arrangements frequently
found in rural areas with limited access to consistent levels of human or financial
resources.

4 Architecture

An overview of our architecture is presented in Figure 2. Since our focus lies
with the trust and workflow components, we are investigating off-the-shelf, open-
source PCHR software which implements this functionality (Part 1, Figure 2),
of which Indivo3 is a prominent example.

A workflow enactment module (2) is necessary to coordinate execution of the
intervention represented in a workflow language [10]. At present, we are inves-
tigating the use of the open BPMN4 language (Business Process Model and
Notation). One benefit of adopting this language is the availability of graphical
tools for authoring and executing workflows, such as the jBPM (http://www.
jboss.org/jbpm/) engine. This facilitates mutual understanding of the inter-
vention and its state among its various stakeholders. User and workflow actions
are policed by our policy module (2), which enforces user- and system-level
policies, and provides conflict-resolution services. A trust module (3) produces
trust assertions based on the past behaviours of participants according to the
intervention workflow. This is supported by a provenance module (4) which an-
notates data as required to produce trust assertions. Finally, the security layer
(5) provides lightweight authentication and encryption services for the layers
below.

3 http://indivohealth.org/
4 http://www.bpmn.org

http://www.jboss.org/jbpm/
http://www.jboss.org/jbpm/
http://indivohealth.org/
http://www.bpmn.org

TRUMP: A Trusted Mobile Platform 149

Intervention Workflow Enactment

Communications/Networking

HCI/
Interface

Sensing
Interface

Mobile Device Logic

HCI/Interface

Web/Desktop Logic

External Data Interface

Federation Layer

Policy Module

Security Layer

Patients / CliniciansEnvironment External Data Sources

Trust Assessment
Module

Personally Controlled
Health Record

Personally Controlled Health Record

Intervention Workflow Enactment

Communications/Networking

User
Interface

Sensing
Interface

Mobile Device Logic

User Interface

Web/Desktop Logic

External Data Interface

Federation Layer

Policy Module

Security Layer

Trust Assessment
Module

Provenance

Personally Controlled Health Record1

2

3 4 5

6

Fig. 2. TRUMP platform architecture overview

5 Conclusion and Future Work

In this paper, we have outlined our vision of a general architecture for the deploy-
ment of mobile or web-based self-management interventions for chronic illnesses,
giving specific attention to the key trust and privacy issues. Rural environments
present a challenging domain for these interventions, but also present an opportu-
nity for positive transformational impact; for example, effective self-management
interventions could help to reduce the load and cost placed on already overbur-
dened rural healthcare resources. These platforms must be demonstrably secure,
transparent and privacy-preserving. The next phase of the project will bring
together clinical, anthropological and computer science expertise, together with
various user groups, in a participatory design process. This will gather require-
ments and attitudes from various user groups (e.g. doctors and patients), in-
forming the design of the mobile intervention and its user-facing aspects, and in
turn the kinds of trust-preserving behaviours that the underlying platform will
need to support. This will be followed by pilot studies which will investigate the
effectiveness of mobile interventions deployed on our platform, for example, in
terms of compliance, perceived trustworthiness and improving user attitudes.

150 C. Burnett et al.

References

1. Burnett, C., Norman, T.J., Sycara, K.: Bootstrapping trust evaluations through
stereotypes. In: Proc. 9th International Conference on Autonomous Agents and
Multiagent Systems, vol. 1, pp. 241–248. International Foundation for Autonomous
Agents and Multiagent Systems (2010)

2. Chen, L., Crampton, J., Kollingbaum, M.J., Norman, T.J.: Obligations in risk-
aware access control. In: Proc. 2012 Tenth Annual International Conference on
Privacy, Security and Trust, PST 2012, pp. 145–152. IEEE Computer Society,
Washington, DC (2012)

3. Ganesan, M., Prashant, S., Pushpa, V., Janakiraman, N.: The use of mobile phone
as a tool for capturing patient data in southern rural Tamil Nadu, India. J. Health
Informatics in Developing Countries, 219–227 (2011)

4. Halamka, J.D., Mandl, K.D., Tang, P.C.: Early experiences with personal health
records. J. American Medical Informatics Association 15(1), 1–7 (2008)

5. Kroenke, K., Spitzer, R.L., Williams, J.B.W.: The PHQ-9. J. General Internal
Medicine 16(9), 606–613 (2001)

6. Lawlor, D.A., Hopker, S.W.: The effectiveness of exercise as an intervention in
the management of depression: systematic review and meta-regression analysis of
randomised controlled trials. BMJ 322(7289), 763 (2001)

7. Li, F., Rahulamathavan, Y., Phan, R.C.W., Rajarajan, M.: Low complexity multi-
authority attribute based encryption scheme for mobile cloud computing. In: Proc.
IEEE Int’l Symposium on Mobile Cloud, Computing and Service Engineering
(IEEE MobileCloud 2013), San Francisco. IEEE (March 2013)

8. Narayan, S., Gagne, M., Safavi-Naini, R.: Privacy preserving ehr system using
attribute-based infrastructure. In: Proc. 2010 ACMWorkshop on Cloud Computing
Security Workshop. ACM (2010)

9. Pampallona, S., Bollini, P., Tibaldi, G., Kupelnick, B., Munizza, C.: Patient ad-
herence in the treatment of depression. The British Journal of Psychiatry 180(2),
104–109 (2002)

10. Pignotti, E., Edwards, P., Preece, A., Gotts, N., Polhill, G.: Enhancing workflow
with a semantic description of scientific intent. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 644–658.
Springer, Heidelberg (2008)

11. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: a review. Artificial Intelligence Review, 1–25 (2012)

12. Şensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.: OWL-POLAR: Seman-
tic policies for agent reasoning. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika,
P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 679–695. Springer, Heidelberg (2010)

13. Bodenheimer, T., Lorig, K., Holman, H., Grumbach, K.: Patient self-management
of chronic disease in primary care. J. American Medical Assoc. 288(19), 2469–2475
(2002)

14. Thomas, C., Day,C.P., Trenell, M.I.: Lifestyle interventions for the treatment of non-
alcoholic fatty liver disease in adults: A systematic review. Journal of Hepatology
(2011)

15. Vasconcelos, W., Kollingbaum, M.J., Norman, T.J.: Resolving conflict and inconsis-
tency in norm-regulated virtual organizations. In: Proc. of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, p. 91. ACM (2007)

16. Weerasinghe, D., Muttukrishnan, R.: Secure trust delegation for sharing patient
medical records in a mobile environment. In: 2011 7th International Conference
on Wireless Communications, Networking and Mobile Computing (WiCOM), pp.
1–4. IEEE (2011)

First-Class Labels:
Using Information Flow to Debug Security Holes�

Eric Hennigan, Christoph Kerschbaumer, Stefan Brunthaler,
Per Larsen, and Michael Franz

University of California, Irvine
{eric.hennigan,ckerschb,s.brunthaler,perl,franz}@uci.edu

Abstract. We present a system of first-class labels that assists web
authors in assessing and diagnosing vulnerabilities in web applications,
focusing their attention on flows of information specific to their appli-
cation. Using first-class labels, web developers can directly manipulate
labels and express security policies within JavaScript itself, leveraging
their existing knowledge to improve the quality of their applications. In-
troducing first-class labels incurs no additional overhead over the imple-
mentation of information flow in a JavaScript Virtual Machine, making
it suitable for use in a security testing environment even for applications
that execute large amounts of JavaScript code.

1 Motivation

The JavaScript programming language has become indispensable for Web 2.0
applications and powers almost all of today’s banking and electronic commerce
sites. These organizations regularly use JavaScript to process sensitive informa-
tion, such as credit card numbers and user credentials. The ability to perform
client-side processing has facilitated the adoption of interactive pages, while si-
multaneously introducing a new code injection attack vector known as Cross
Site Scripting (XSS). Within the web browser, the JavaScript execution model
allows objects from different domains to reference each other. This architectural
weakness gives adversaries the ability to gain access to sensitive data held within
the browser and manipulated by a page’s code.

Currently, web sites rely on the browser enforced Same Origin Policy [14],
which limits interactions between different domains, with the intent of separat-
ing content from different providers. This restriction applies to separate pages
� This material is based upon work partially supported by the Defense Advanced Re-

search Projects Agency (DARPA) under contract No. D11PC20024, by the National
Science Foundation (NSF) under grant No. CCF-1117162, and by a gift from Google.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA) or its Contracting Agent, the U.S.
Department of the Interior, National Business Center, Acquisition Services Direc-
torate, Sierra Vista Branch, the National Science Foundation, or any other agency
of the U.S. Government.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 151–168, 2013.
© Springer-Verlag Berlin Heidelberg 2013

152 E. Hennigan et al.

and iframe’s, but does not prevent method and memory access when the host
page includes a third party script, such as the JQuery library or a syndicated
advertisement. The lack of isolation between scripts from separate origins that
execute on the same web page, threatens the privacy of all web users.

Other systems implementing information flow within a web browser [9,10,13]
attempt to perform fully automatic labeling, with no feedback from the devel-
oper. Because privacy concerns are application specific, we present an alternative
approach that additionally provides developers with the ability to selectively fo-
cus on specific information flows within their web application. Without domain
knowledge, fully automatic frameworks detect and report information flows, such
as requests from content distribution servers, that application developers would
prefer to disregard.

Based on our experience, we think that information flow tracking shows more
promise as a web application security debugging tool, if it can help the developer
focus only on flows relevant to an XSS vulnerability. We achieve this goal by
extending an existing information flow tracking browser with a system of first-
class labels that developers can use to inspect their application. By selectively
tagging only those variables considered security sensitive, developers can focus
their attention on flows of specific information, and avoid sifting through the
morass of reports generated by automated tracking systems. We envision web
developers using the first-class labeling system as part of a testing environment
to answer common auditing questions: “Does this sensitive data ever influence a
network request?” and “What values does this object influence?”

After presenting the threat posed by attackers (Section 2), we establish in-
formation flow terminology (Section 3) to clarify the capabilities of the under-
lying tracking engine on which we base our work. We then introduce details of
the supporting information flow framework (Section 4) relevant to the following
contributions:

• We extend JavaScript’s syntax and semantics (Section 5) introducing a re-
flective FlowLabelObject and new labelof operator.

• To the best of our knowledge, we are the first to provide a first-class labeling
system within JavaScript (Section 6) that allows developers to selectively
tag application specific sensitive information from a webpage and compose
security policies in JavaScript.

• We demonstrate the utility of the first-class labeling system by showing an
attack that aims to exfiltrate sensitive user information and a JavaScript-
specified network policy that stops the attack (Section 6.3).

We evaluate (Section 7) our first-class labeling system demonstrating that it
maintains performance, resists JavaScript-level attacks against itself while ex-
posing underlying security data structures, and provides a mechanism that the
web developer can effectively use to debug security holes in a web application.

First-Class Labels: Using Information Flow to Debug Security Holes 153

2 The Attacker’s Threat

Throughout this work, we assume that the attacker has already injected code
into the developer’s web application. The attacker exploits an XSS vulnerability
to inject code in the developer’s web application, supplying a JavaScript payload
via an included advertisement, mashup content, or library, or via an unsanitized
form or URL. Although we limit the attack payload to JavaScript, we assume
that its origin does not make it distinguishable from the rest of the web appli-
cation’s JavaScript codebase. The attacker also has publicly-facing knowledge
about the application, obtained by visiting and interacting with the application
and observing its behavior, which can be used to craft the payload. We also
assume that the attacker controls their own web server.

These abilities combine to pose an information leak threat. The code injected
into the web application executes with the full abilities of that application. The
attacker crafts the payload to exfiltrate application sensitive information, such
as personal login credentials, text the user enters into forms, or anything the
web application displays to a visitor. The pilfered information leaves the appli-
cation as part of a resource request submitted to the attacker controlled server,
circumventing the Same Origin Policy.

For a typical example, exfiltration code embeds the sensitive data into a URL
and attaches that URL to the src attribute of a payload generated img element.
The web browser automatically issues a GET request for the image targeting
the attacker controlled server. The attacker then reviews server request logs to
harvest the exfiltrated information.

2.1 The Developer’s Response

Knowing that the origin of attacker code does not reliably distinguish it from the
rest of the web application, we focus on the malicious behavior of any code within
the application. Indeed, an information leak might be the unintended result of
a careless or uninformed application developer, rather than an attacker.

In response to this threat, a security-conscious developer tests their applica-
tion in a web browser that monitors the flows of information within the appli-
cation. To assist the developer in focusing their debugging attention on specific
pieces of sensitive data within the application, we present a labeling system as a
first-class language construct. Without leaving JavaScript, the developer creates
a label and applies it to the sensitive data, tagging it with a unique identifier.
The underlying information flow engine tracks the interaction of application (and
injected) code with this sensitive data, ensuring that exfiltration code does not
drop the label.

We present a mechanism that allows the developer to write a network monitor
using JavaScript, so that they may observe a leak of information tagged as
sensitive. The developer implements their own network monitor logic to inspect
the labels of all resource requests, enabling the detection and debugging of an
information leak.

154 E. Hennigan et al.

Table 1. Terminology of Information Flows

Category Descriptor Example Flow Required Analysis

Explicit
Direct b = a a ⇒ b Dataflow

Indirect b = foo(_, a, _)
c = bar(_, b, _)

a ⇒ c Dataflow (transitive)

Implicit

Direct

if (a)
b = 1

else
b = 0

a ⇒ b Control Flow (dynamic)

Indirect

c = true
if (a)

b = false
if (b)

c = false

a ⇒ c Control Flow (static)

3 Information Flow Terminology

Previous research in the field of information flow applied to dynamic languages
reveals a need for clarifying terminology that goes beyond the basic categories
introduced by Denning and Denning [5]. We follow this trend by extending the
established categories with easy-to-remember descriptors. We intend for the ter-
minology introduced here to bring clarity and precision to the research describing
information flow systems, especially research targeting dynamic languages. The
more refined terminology allows us to characterize the capabilities of the in-
formation flow tracking engine (Section 4) which supports the first class label
system introduced in this paper (Section 6).

3.1 Explicit Information Flows

An explicit flow occurs as a result of a dataflow dependence. Table 1 breaks
this category down into two descriptors: direct, corresponding to an immediate
dependence, and indirect, corresponding to a transitive dependence.

Explicit Direct Flows occur when a value is influenced as a result of direct
data transfer, such as an assignment. A simple single-statement, intra-procedural
dataflow analysis can identify these flows. Subexpressions involving more than
one argument also have a direct explicit information flow from all argument val-
ues to the operator’s resulting value. Any labeling or tagging framework that
tracks security type information across direct explicit flows includes basic se-
mantic rules for label propagation in each of the language’s operators.

Explicit Indirect Flows occur as the transitive closure of direct flows.
Identification of indirect flows requires more powerful multi-statement or inter-
procedural dataflow analysis. The code example for indirect flows in Table 1
shows the transitive nature of this analysis via a functional dependence between

First-Class Labels: Using Information Flow to Debug Security Holes 155

values. This paper preserves the use of the term “indirect” as originally defined
by Denning and Denning [5].

3.2 Implicit Information Flow

An implicit flow occurs as a result of a control-flow dependence. Table 1 breaks
this category down into to descriptors: direct, corresponding to a runtime de-
pendence, and indirect, corresponding to a static dependence.

Implicit Direct Flows occur when a value depends on a previously taken
control-flow branch at runtime. Identification of this dependence requires a
tracked program counter and a recorded history of control-flow branches taken
during program execution. Presently, systems that track the program counter
to propagate dependence information are known as “dynamic information flow
tracking” systems.

Implicit Indirect Flows occur when a value depends on a control-flow
branch not taken during program execution. Identification of this dependence
requires a static analysis prior to program execution. Because the dependence
follows code paths not taken at runtime, these flows are notoriously difficult
to detect in dynamic programming languages. Unfortunately, even static lan-
guages include features, such as object polymorphism and reference returning
functions, which make the receiver of an assignment or method call unknown
at compile time. Dynamic programming languages, such as JavaScript, include
first-class functions, runtime field lookup along prototype chains, and the ability
to load additional code at runtime via eval. These features prohibit even a run-
time analysis from identifying all the values possibly influenced in all alternative
control-flow branches.

4 Supporting Framework

The framework which supports the first-class labeling system presented in this
paper implements dynamic information flow as part of the JavaScript Virtual Ma-
chine (VM). Any viable information flow system within a web browser must
support runtime creation and application of labels because security principals rep-
resented on a web page do not become known to the browser and JavaScript VM
until a user visits the page. Every JavaScript value carries a label representing an
element from the finite powerset lattice over principals. The VM conservatively
labels the result of every operation with the union (join) of the labels of its inputs,
monotonically moving up the lattice of security principals. To prevent attack code
from removing or downgrading the labels applied to values tracked by the VM,
the labeling framework does not currently provide a mechanism for declassifica-
tion (i.e., it does not expose an intersection (meet) operation).

4.1 Storage of Security Principals and Labels

The underlying labeling framework allows any JavaScript value to be used as a
security principal. Our first-class labeling system merely exposes this ability as

156 E. Hennigan et al.

FlowLabelRegistry mapping
"example.com" 0001
"pwd" 0010
"ad.com" 0100

"example.com"
0001

"pwd"
0010

"ad.com"
0100

"example.com"
 "pwd"
0011

"example.com"
 "ad.com"
0101

"pwd"
 "ad.com"
0110

"example.com"
 "pwd"
 "ad.com"
0111

Fig. 1. The FlowLabelRegistry mapping three JavaScript strings used as security
principals to unique bit positions. These principals form a lattice of security labels,
represented as bit vectors.

a concise labeling API to the JavaScript developer. As we shall see (Section 6),
the ability to use any JavaScript value as a principal gives web authors enough
power to represent security principals as a native part of an application’s code.

The supporting information flow VM interns every JavaScript value used
as a security principal in the FlowLabelRegistry, mapping it to a unique
bit position. Figure 1 depicts the interning of three JavaScript string objects,
"example.com", "pwd", and "ad.com", each representing a security principal in
the FlowLabelRegistry. To minimize the attack surface on the system itself,
our first-class extensions (Section 5) do not make this data structure accessible
to the JavaScript programmer.

As shown in Figure 1, the mapping held by the FlowLabelRegistry allows a
bit vector to represent each security label. The supporting VM attaches to every
JavaScript value a security label, representing an element from a powerset lattice
over security principals. Current implementation of the underlying information
flow framework does not support more than 64 unique principals. However, we
have not found this to be a problem in practice (Section 7).

4.2 Label Propagation

Our labeling system rests atop a pre-existing, JavaScript information flow VM
that provides every JavaScript primitive and object reference with a security
label. The supporting VM propagates labels through data flows and maintains a
shadow stack of labels attached to the program counter [8] that tracks influence
through control-flow transfers taken at runtime. These mechanisms allow it to
track up to implicit direct information flow (as defined in Section 3).

Performing information flow tracking at the VM level allows the supporting
framework to avoid potential attacks on the tracking system itself. This design
reduces the attack surface compared to JavaScript rewriting systems [4, 9].

Exposing the underlying framework through our first-class labeling system
might create a new attack surface (targeting the underlying label framework

First-Class Labels: Using Information Flow to Debug Security Holes 157

itself) meant to be hidden by design. As a result of this concern, we chose
not to support declassification through our first-class labeling system. Both the
JavaScript developer and any potential JavaScript attack code can only create,
apply, and inspect labels, but cannot remove them.

1 function sniffPassword (pw) {
2 var spw = "";
3 for (var i = 0; i < pw.length; i++) {
4 switch(pw[i]) {
5 case ’a’: spw += ’a’; break;
6 case ’b’: spw += ’b’; break;
7 ... // other characters elided
8 }
9 }

10 return spw;
11 }

Listing 1.1. Password sniffing via implicit direct information flow.

Listing 1.1 gives an example of an attacker provided function which attempts
to drop any label attached to the argument pw. The existing label framework
can track the control-flow dependence of the return variable (spw) on the ar-
gument (pw) at both the loop condition (pw.length) and the switch condition
(pw[i]). By performing such tracking, the returning variable spw subsumes the
same set of principals as the incoming function argument pw. The tracking and
propagation engine prevents the attacker from dropping labels through implicit
direct information leaks in exfiltration code.

4.3 Information Flow in the Browser

Our first-class labeling system resides in a web browser that consists of a hosted
JavaScript VM and additional subsystems for information storage, rendering,
document description, and network communication. These other subsystems rep-
resent covert channels through which an attacker may communicate information.
Currently, the supporting framework automatically applies labels to dynamically
loaded code and resources according to the site of origin.

In addition to storing visible page elements, the Document Object Model
(DOM) allows creation of invisible elements within the document that can be
used to store and communicate information. The supporting framework prop-
agates labels to HTML elements and attributes within the DOM so that an
attacker cannot use it as a channel to remove labels.

The information flow tracking web browser also contains a network monitor
that observes the labels on all network traffic: dynamic requests for remote re-
sources such as images and stylesheets, HTTP GET and POST methods for
forms, and XmlHttpRequest for AJAX. Our first-class labeling system presents
to the web developer a mechanism for registering JavaScript functions which
implements network monitor logic, enabling the developer to inspect labels at-
tached to resource requests and thereby discover information leaks.

158 E. Hennigan et al.

5 Design and Implementation of First-Class Labels

Before discussing the first-class label interface that a JavaScript developer uses
to hook into the supporting information flow framework, we first give details
explaining the extensions and modifications necessary to support labels as first-
class JavaScript objects.

5.1 Reflecting Labels into JavaScript

The supporting framework contains a FlowLabelRegistry that maps primitive
values and JavaScript objects used as principals to a position within a bit vector
label. By holding a reference to every JavaScript object (within the standard
heap) used as a principal, the FlowLabelRegistry keeps it alive during garbage
collection. Because of the limited number of principals which can exist within the
system (Section 4.1) the FlowLabelRegistry does not release any principals.

Our first-class labeling system reflects the underlying labels into the JavaScript
language, as native JavaScript objects, via a FlowLabelObject wrapper. When
reflected into JavaScript as FlowLabelObject instances, security labels can them-
selves be labeled and can also act as security principals, just like any other
JavaScript value. Additionally, they are callable objects, providing an interface
to apply the internally stored label onto any given argument value. In the in-
terest of clarity, we do not use any examples that exhibit the inherent recursive
nature of the first-class labeling system.

FlowLabel Prototype

+ 〚toString〛
+ 〚construct〛
+ join
+ subsumes

FlowLabelObject

+ 〚call〛

-〚prototype〛

Fig. 2. UML class diagram of the first-class labeling system. Our system introduces the
FlowLabel prototype constructor, and FlowLabelObject instances. As in the ECMA [6]
language standard, 〚•〛 indicates implementation internal methods.

Our first-class labeling system also introduces a singleton FlowLabel pro-
totype, which both holds methods common to all FlowLabelObject instances
and provides an interface through which the JavaScript developer can construct
FlowLabelObjects. Figure 2 uses UML to depict the relationship between the
FlowLabel prototype singleton and FlowLabelObject instances.

First-Class Labels: Using Information Flow to Debug Security Holes 159

5.2 JavaScript Syntax Extension to Retrieve Labels

Our first-class labeling system implements a small change to the JavaScript
language permitting JavaScript code to retrieve a label from a given value. We
introduce the keyword labelof, as a new case in the UnaryExpression grammar
rule of the ECMA [6] language standard. Figure 3 presents the entire grammar
rule, including our new language keyword.

UnaryExpression:
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
– UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression
labelof UnaryExpression

Fig. 3. Modified JavaScript grammar rule for UnaryExpression. Our first-class labeling
system introduces the labelof keyword.

5.3 Network Hook in the Web Browser

To permit the enforcement of policies written in JavaScript, we make one ad-
ditional change to the web browser hosted JavaScript environment. Our first
class labeling system exposes the underlying network monitor through a func-
tion, registerSendMonitor(fn) on the hosted navigator object. Using this
feature, the web developer can phrase application specific security policies con-
cerning allowed network communication as a JavaScript function within the web
application itself. Once registered, these functions act as network monitors that
inspect the payload of all resource requests before being sent over the network.

6 Using First-Class Labels

We design the first-class labeling system and its JavaScript API according to
the functional programming paradigm, with the purpose of making it easier
for web developers to adopt. The first-class labeling system contains one minor
syntax change to the JavaScript grammar, introducing the new labelof operator
and keyword. The system also extends the hosted environment (not the ECMA
specification) with a new built-in FlowLabel prototype constructor object that
holds methods for label composition (join) and comparison (subsumes). Labels
take the form of native built-in FlowLabelObject instances, and behave with the

160 E. Hennigan et al.

same semantics as any other JavaScript object. Our first-class labeling system
makes a minimal set of changes necessary to expose the underlying information
flow framework.

We show how our framework detects and prevents information leakage that
might occur due to a script injection attack. In the following examples we show
output of our system at the JavaScript console. All statements executed by the
console begin with a ‘>’. The console describes the resulting value in two parts:
the value itself and the label attached to that value.

6.1 Label Creation

Our system introduces a FlowLabel prototype singleton to the JavaScript en-
vironment hosted by the web browser. This object implements the internal
〚construct〛 method so that JavaScript code may create first-class label ob-
jects. The web developer may choose any valid JavaScript value to act as a
security principal, and pass that value into the constructor. After interning the
provided value in the underlying framework’s FlowLabelRegistry, the construc-
tor returns a FlowLabelObject instance. Interning the principals allows unique
identification of labels held by FlowLabelObject instances. In the interest of
avoiding attacks on the labeling system itself, our system does not provide pro-
grammatic access to the FlowLabelRegistry.

1 > pwdLabel = new FlowLabel ("pwd");
2 [FlowLabelObject pwd] [FlowLabel example.com]

Listing 1.2. Creating a Label Object.

Listing 1.2 shows a web developer creating a label using the JavaScript string,
"pwd", as a security principal. The underlying information flow framework auto-
matically applies a label to every resource representing its domain of origin. Con-
sequently, the resulting FlowLabelObject instance returned from the construc-
tor itself carries a label representing the origin of this code snippet: example.com.

6.2 Label Application

The FlowLabelObject instance acts as a first-class wrapper object around an
internal bit-vector representation of a security label. The FlowLabelObject in-
stance also implements the internal 〚call〛 method, so that the security label
may be attached to other JavaScript values, When the FlowLabelObject functor
is passed a value, it unions that value’s current label with its internally stored
label and returns the result.

3 > pass = "24 sk09nk12 ";
4 24 sk09nk12 [FlowLabel example.com]
5 > pass = pwdLabel (pass);
6 24 sk09nk12 [FlowLabel pwd , example .com]

Listing 1.3. Applying a Label to a JavaScript Value.

example.com

First-Class Labels: Using Information Flow to Debug Security Holes 161

Listing 1.3 shows the JavaScript developer applying the password label con-
structed previously (Listing 1.2), pwdLabel, to a string, pass. After label appli-
cation, the resulting password string carries a label describing both the domain
of origin, example.com, and the password security principal, "pwd".

6.3 Label Retrieval and Comparison

We now assume that the attacker injects code using sniffPassword (Listing 1.1)
in an attempt to drop the label of the user’s password. Because the underlying
framework tracks labels inter- and intra-procedurally with respect to both data
and implicit direct control flows (Section 4.2), the label on the resulting sniffed
password carries both the attacker’s principal and the user’s password principal.
Our first-class labeling system exposes the network object to JavaScript, allowing
interception of the information leak at the time of a network request.

1 navigator .registerSendMonitor (
2 function (method , url , payload) {
3 if (method == ’GET’) {
4 var lab = new FlowLabel ("example .com");
5 lab = lab.join (new FlowLabel ("pwd"));
6

7 if (! lab.subsumes (labelof url))
8 log(url + " has unexpected label");
9 if (! lab.subsumes (labelof payload))

10 log(payload + " has unexpected label");
11 }
12 // other types of network request elided
13 return true ;
14 });

Listing 1.4. Developer Provided Network Monitor Function.

Suspecting a possible information leak, the web developer implements a net-
work monitoring logic in a JavaScript method, and registers it through the
navigator.registerSendMonitor method. When the attack code attempts to
communicate the pilfered information over the network, our labeling system first
executes all registered monitors (in registration order) to determine if the request
conforms to the developer-specified policy.

Listing 1.4 shows an example networkmonitor that takes advantage of the labels
automatically applied by the underlying information flow framework. On Line 4,
the developer creates a label representing the security principal, example.com. The
FlowLabelRegistry’s interning of principals ensures that any labels created in
this monitor function exactly match the same labels created elsewhere.

Through prototype-based inheritance, all FlowLabelObject instances have a
join method that returns a new FlowLabelObject instance representing the
union of its argument FlowLabelObject instances. On Line 5 of Listing 1.4,
the developer joins the security principal example.com with "pwd" to compose

example.com
example.com
example.com

162 E. Hennigan et al.

together existing labels into a single label representing the union of all principals
the developer wishes to allow in an HTTP GET request.

Information flow propagation within the VM labels each new value with the
join of the labels of the arguments used to construct that value. Consequently, la-
bel propagation naturally results in values labeled with more than one principal,
even when the original program only seeded a few values, each with a single prin-
cipal. In response to this phenomenon, our developer uses the subsumes method
(Line 7 and Line 9 of Listing 1.4) to check that the label of the request is a subset
of all allowed principals. Although our first-class label wrappers also permit strict
equality comparison (JavaScript operator ===) between two FlowLabelObject
instances, we strongly encourage using the subsumes relation for expressing secu-
rity policy constraints using subsets of principals. This practice allows catching
all values with labels below the given upper bound (supremum).

Our labeling extension introduces the labelof operator so that JavaScript
code can retrieve labels attached to variables for inspection and application.
On Line 7 and Line 9 of Listing 1.4, the developer uses this operator to obtain
the label attached to the target request url, and network payload. Because
the underlying framework propagates labels following data flows, the resulting
FlowLabelObject instance returned from labelof operator is itself labeled with
the union of the provided argument and current program counter. If desired, the
developer may use the resulting FlowLabelObject instance to label other values.

In the example shown in Listing 1.4, the developer constructs a label over the
password principal, "pwd", at two different code locations: once to label the user’s
input and again in the network monitor. This practice causes no problem for our
system, because the FlowLabelRegistry interns principals, allowing our system
to consider identical, two FlowLabelObject instances constructed in different
code locations but with equivalent JavaScript values.

7 Evaluation

To evaluate the effectiveness of our system for security debugging we examine
four dimensions:

Performance. We show that underlying information flow framework is fast
compared to other work and argue that the first-class labeling system intro-
duces negligible overhead.

Completeness. The labeling system inherits the code coverage of the support-
ing information flow framework.

Security. We argue that the labeling system revealed to the JavaScript pro-
grammer does not present a new attack surface in any significant way.

Usability. We demonstrate how developers can use the system to debug security
vulnerabilities in their web applications.

We evaluate the effectiveness of our system as a web application security debug-
ging tool. We measure the robustness and performance of the underlying labeling
framework, demonstrating that even sites with large libraries of JavaScript code

First-Class Labels: Using Information Flow to Debug Security Holes 163

present no execution difficulties. We also use the first-class labeling system to
find and debug an XSS vulnerability.

7.1 Performance

The supporting framework, termed FlowCore, modifies WebKit’s JavaScript en-
gine JavaScriptCore (version 1.4.2) to attach labels to every value. Additionally,
it contains data structures relevant for mapping label bits within a label to do-
mains (the FlowLabelRegistry) and for propagating implicit direct information
flow dependencies. To evaluate the costs imposed by FlowCore, we test it against
an unmodified JavaScriptCore of the same version.

Because FlowCore implements tracking only in the interpreter, we execute
both JavaScript engines with just-in-time compilation disabled. A dual Quad
Core Intel Xeon 2.80 GHz with 9.8 GiB RAM running Ubuntu 11.10 executes all
benchmarks (at niceness level -20). We choose to use the SunSpider [17] bench-
mark suite because its status as the standard benchmark suite for JavaScript
makes it suitable for comparisons to other work. SunSpider includes test cases
that cover common web practices, such as encryption and text manipulation.
This benchmark test provides a measure of the baseline overhead involved in
maintaining information flow data structures and propagating labels.

3d 1.93

access 1.98

bitops 2.11

controlflow 3.20

crypto 2.18

date 2.01

math 1.94

regexp 1.05

string 1.62

mean 1.77

0 50 100 150 200 250

FlowCore
JavaScriptCore

Time (ms)

Facto
r

 D

iffe
rence

Fig. 4. SunSpider Benchmark results: JavaScriptCore vs. FlowCore.

Figure 4 reveals overall execution speed of JavaScript benchmark results: the
mean execution time of FlowCore is 158.33 ms whereas the mean execution time
of JavaScriptCore is 89.44 ms. The SunSpider benchmark does not contain first-
class labeling operations, so the overall 77% slowdown represents the overhead
incurred by the supporting framework’s implementation of label propagation. In
comparison, other information flow approaches [10] introduce a 150% slowdown
making programs two to three times slower.

164 E. Hennigan et al.

The VM stores labels as bit vectors attached to values and performs label
propagation via bitwise-or. This representation ensures that first-class label ob-
jects are only present when explicitly constructed (new FlowLabel) or retrieved
(labelof) by the developer. As a result, the introduction of the first-class la-
beling system into the hosted environment incurs no additional runtime per-
formance overhead compared to a fully automatic labeling system. We do not
evaluate the performance impact of the network hook, because it is insignificant
within a debugging environment and the developer has the power to implement
any monitor function they desire.

The performance of the underlying labeling framework implies that even sites
with large amounts of JavaScript code execute without noticeable slowdown.
To test whether the information flow tracking framework causes a noticeable
performance decrease, we visited (and logged into) JavaScript intensive sites,
such as Facebook, GMail, Google Maps, Bing, GitHub and Cloud9 IDE. These
sites do not make use of the first-class labeling system introduced in this paper.
However, user interaction proves that the performance overhead of the labeling
framework does not introduce any usability issues.

7.2 Completeness

To verify that the underlying framework does not introduce any runtime bugs
when interpreting either machine-generated or human-written JavaScript found
in the wild, we automated the visiting of all sites in the Alex Top 500 [1]. This
webcrawler injects code into each page, to perform two actions: (1) attach a
network monitor and (2) fill out and submit the first form on the page using
data labeled with an identifying principal. The injected monitor verifies that the
submitted form generates a request containing the identifying principal.

Not only do we verify the label propagation engine against code in the wild,
but we also use the first-class labeling system to develop a suite of unit test
cases for ensuring the semantic correctness of the underlying labeling frame-
work. Without first-class labels, we would be far less confident of the semantic
correctness of the underlying framework’s implementation of label propagation.

7.3 Security

The underlying framework, FlowCore, generates, at runtime, new security princi-
pals for every unique label generated by the developer and new domain encoun-
tered by the web browser. Introduction of runtime principals requires mutation of
the FlowLabelRegistry. By design, FlowCore does not support declassification,
preventing a communication channel via the labeling framework itself.

Our first-class labeling system exposes, to the web application and any in-
jected code, a JavaScript API for creating and applying labels to JavaScript
values. This exposure represents a new attack surface that might allow an at-
tacker to target the labeling framework. However, we envision the web developer
using the first-class labeling system only in a testing environment, where it pro-
vides no benefit to the attacker. Nevertheless, the lack of declassification means

First-Class Labels: Using Information Flow to Debug Security Holes 165

that the attacker-injected code cannot drop labels applied by the developer for
debugging purposes.

Finally, our system allows registration of many monitor functions, through a
JavaScript interface accessible by code injected into the web application. Our
labeling system evaluates all monitor functions registered, in registration order.
The developer-supplied monitor function always executes, even if the attacker’s
injected code happens to register a different monitor function first.

7.4 Utility as a Debugging Tool

To evaluate our first-class labeling system as a tool for testing web applications
and discovering security vulnerabilities, we create a web page that contains a
user login form. Acting as a malicious developer, we insert code into the page,
which uses the sniffPassword label dropping code prior to exfiltrating the form
contents to a second server via both an XmlHttpRequest and as part of an
img.src URL. Acting as a security researcher, we mirror the page and add
labeling code that applies a tag to the form’s DOM node and a network monitor
function that checks for the unique tag. Visiting the mirrored page successfully
triggers the monitor function, alerting us to the exfiltration. WebKit’s developer
tools assisted us with finding the portion of the page responsible for generating
the image request.

For a more realistic example, we attempt a similar attack using a mirrored
ebay.com page obtained from XSSed [11], this time targeting the site’s cookie.
This page loads content from several different sources, and contains an XSS vul-
nerability that we exploit to inject the exfiltration code. Because the underlying
framework automatically labels the cookie with the domain of origin, we did not
need to insert labeling code. Instead, we find it sufficient to implement a network
monitor that checks only whether data sent to an origin does not contain third-
party principals. This monitor detected the exfiltration of the cookie (labeled
with ebay.com) being sent to a server other than ebay.com. Again, WebKit’s
developer tools assisted us with pinpointing the JavaScript code responsible for
the request.

8 Related Work

Developer Accessible Labels: To the best of our knowledge, no other work in-
corporates a first-class labeling system into a dynamically typed programming
language. This feature allows the developer to construct label objects, apply
them to label other program values, compose them together, and use them as
part of natively programmed policy functions.

Myers et al. [15] introduce a security-type system that allows annotation of
Java types with confidentiality labels that refer to variables of the dependent
type label [16]. Java does not represent types as first-class entities, but the Jif
programmer does have the ability to use the labeling features to program func-
tions with statically type-checked information flow properties. Our work provides
a similar, but simpler, labeling system for the dynamically-typed JavaScript.

ebay.com
ebay.com
ebay.com

166 E. Hennigan et al.

Li and Zdancewic [12] present a security sublanguage that expresses and en-
forces information-flow policies in Haskell. Their implementation supports dy-
namic security lattices, run-time code privileges, and declassification without
modifications to Haskell itself. The type-checking proceeds in two stages: (1)
checking and compilation of the base language followed by (2) checking of the
secure computations at runtime just prior to execution of programs written in the
sublanguage. In contrast, our work presents extensions to an existing JavaScript
environment and does not require rewriting of existing programs into a secure
sublanguage.

JavaScript Information Flow Systems: Other research on language-based infor-
mation flow specific to JavaScript relies on automatic labeling frameworks that
seek to provide end-users with secure browsers and minimize developer. Our sys-
tem seeks to leverage web developer domain knowledge about their application
as part of a security testing environment.

Vogt et al. [18] modify Firefox’s JavaScript engine, SpiderMonkey, to moni-
tor the flow of sensitive information using a combination of static and dynamic
analysis. Before execution, their modified VM statically analyzes each function
via abstract interpretation to detect and mark implicit information flows. Their
framework automatically taints objects provided by the browser (e.g., Document,
History, Window, and form elements) and enforces information flows according
to the Same Origin Policy. Our supporting framework also automatically labels
dynamically loaded code according to the Same Origin Policy, but our contribu-
tion of first-class labels allows the developer to specify security policies specific
to their application in native JavaScript.

Just et al. [10] modify the JavaScriptCore VM in WebKit to perform informa-
tion flow tracking for eval, break, continue, and other control-flow structures.
Our supporting framework achieves the same analysis with better performance
due to difference in implementation details. This work moves beyond implemen-
tation of an information flow tracking engine to reflect portions of the labeling
engine into the JavaScript environment, to enable targeted security debugging.

Chugh et al. [4] attack the problem of dynamically loaded JavaScript by us-
ing staged information flow. Their approach statically computes an information
flow graph for all available code, leaving holes where code might appear at run-
time, and subjecting dynamically loaded code to the same analysis as soon as
it becomes available. They also introduce a new policy language to the existing
babel of languages used for web development. In contrast, our supporting frame-
work avoids delaying code execution and shifts analysis of information flows to
runtime and enables the developer to write policies in JavaScript itself.

Jang et al. [9] employ a JavaScript rewriting-based information flow engine to
document 43 cases of history sniffing within the Alexa [1] Global Top 50,000 sites.
In contrast, our supporting framework performs label propagation in the VM,
increasing performance and preventing attackers from subverting the system.

Type-Checking JavaScript for Information Flow: Many researchers give type sys-
tems intended to analyze JavaScript programs for information flow security.

First-Class Labels: Using Information Flow to Debug Security Holes 167

Austin and Flannagan, in conjunction with Mozilla, promote sparse labeling
techniques intended to decrease memory overhead and increase performance [2]
and provide a formal semantics for partially leaked information [3]. Hedin and
Sabelfeld [7] provide Coq-verified formal rules that cover object semantics, higher-
order functions, exceptions, and dynamic code evaluation, powerful enough to
support DOM functionality. Efforts along this line of research typically cover a
core of the JavaScript specification, and have not seen wide-spread adoption. We
forgo formalized verification in a practical effort to target adoption of our work
by developers focused on security debugging rather than end users.

JavaScript Language Policies: Meyerovich and Livshits introduce an aspect ori-
ented framework, named ConScript [13] that supports weaving specific secu-
rity policies with existing web applications. Using their framework, web authors
wrap application code with security monitors specified in JavaScript. Their sys-
tem supports aspect wrapper functions around arbitrary code, while we focus
on monitoring network traffic. An aspect oriented approach cannot detect and
prevent information leaks that occur due to control-flow transfers as exhibited
in Listing 1.1.

9 Conclusion

We present to the JavaScript developer a first-class labeling system that exposes
an underlying information flow framework. Developers can use their domain
knowledge to label JavaScript values within their application and construct net-
work monitor policies that selectively ignore automatically applied labels. Our
labeling system provides dynamic creation of security principals, supporting the
common practice of loading code and resources from many different domains in
web applications.

We introduce a new built-in FlowLabelObject class, which the developer uses
to selectively label JavaScript values. The developer creates FlowLabelObject
instances using existing JavaScript values as security principals or by composi-
tion with other FlowLabelObject instances via the lattice join method. The
subsumesmethod allows comparison of all FlowLabelObject instances reporting
their subset relation within the label lattice. Together with the ability to retrieve
labels attached to values via the new built-in labelof operator, our system gives
the developer the means to implement security policies in JavaScript.

The first-class labeling system introduces no additional slowdown beyond that
of an information flow VM, enabling its use in a testing environment for sites
that have large amounts of JavaScript code. By leveraging their domain knowl-
edge and existing JavaScript experience, developers can focus on identifying and
debugging application specific information flows. First-class labels allow develop-
ers to improve the security of their applications by writing policies in JavaScript
that selectively ignore the high quantity of reports produced by automatically
attached labels.

168 E. Hennigan et al.

References
1. Alexa: Alexa Global Top Sites (2012), http://www.alexa.com/topsites (checked:

February 2013)
2. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:

Proceedings of the ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, pp. 113–124. ACM (2009)

3. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Programming Languages and Anal-
ysis for Security, pp. 1–12. ACM (2010)

4. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for JavaS-
ript. In: PLDI 2009: Programming Language Design and Implementation, pp. 50–
62. ACM (2009)

5. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM, 236–243 (1976)

6. ECMA International: Standard ECMA-262. The ECMAScript language specifica-
tion (2009),
http://www.ecma-international.org/publications/standards/Ecma-262.html
(checked: February 2013)

7. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:
Proceedings of the Computer Security Foundations Symposium, pp. 3–18 (2012)

8. Hennigan, E., Kerschbaumer, C., Brunthaler, S., Franz, M.: Tracking information
flow for dynamically typed programming languages by instruction set extension.
Tech. rep., University of California Irvine (2011),
http://ssllab.org/~nsf/files/tr_instruction_set_extension.pdf

9. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in JavaScript web applications. In: CCS 2010: Com-
puter and Communications Security, pp. 270–283. ACM (2010)

10. Just, S., Cleary, A., Shirley, B., Hammer, C.: Information flow analysis for
JavaScript. In: PLASTIC 2011: Programming Language and Systems Technolo-
gies for Internet Clients, pp. 9–18. ACM (2011)

11. K.F., D.P.: XSS Attacks Information (2012), http://www.xssed.com/ (checked:
February 2013)

12. Li, P., Zdancewic, S.: Encoding information flow in haskell. In: 19th IEEE Com-
puter Security Foundations Workshop, p. 12. IEEE (2006)

13. Meyerovich, L.A., Livshits, B.: ConScript: Specifying and enforcing fine-grained se-
curity policies for JavaScript in the browser. In: SSP 2010: Symposium on Security
and Privacy, pp. 481–496 (2010)

14. Mozilla Foundation: Same origin policy for JavaScript (2008),
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
(checked: February 2013)

15. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow (2001), http://www.cs.cornell.edu/jif (checked: February 2013)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 5–19 (2003)

17. SunSpider: SunSpider JavaScript benchmark (2012),
http://www2.webkit.org/perf/sunspider-1.0/sunspider.html
(checked: February 2013)

18. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vigna, G.: Cross
site scripting prevention with dynamic data tainting and static analysis. In: NDSS
2007: Network and Distributed System Security Symposium (2007)

http://www.alexa.com/topsites
http://www.ecma-international.org/publications/standards/Ecma-262.html
http://ssllab.org/~nsf/files/tr_instruction_set_extension.pdf
http://www.xssed.com/
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.cs.cornell.edu/jif
http://www2.webkit.org/perf/sunspider-1.0/sunspider.html

A Framework for Evaluating Mobile App Repackaging
Detection Algorithms

Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu

The Pennsylvania State University
{hhuang,szhu}@cse.psu.edu, {pliu,dwu}@ist.psu.edu

Abstract. Because it is not hard to reverse engineer the Dalvik bytecode used
in the Dalvik virtual machine, Android application repackaging has become a
serious problem. With repackaging, a plagiarist can simply steal others’ code
violating the intellectual property of the developers. More seriously, after repack-
aging, popular apps can become the carriers of malware, adware or spy-ware for
wide spreading. To maintain a healthy app market, several detection algorithms
have been proposed recently, which can catch some types of repackaged apps
in various markets efficiently. However, they are generally lack of valid analysis
on their effectiveness. After analyzing these approaches, we find simple obfus-
cation techniques can potentially cause false negatives, because they change the
main characteristics or features of the apps that are used for similarity detections.
In practice, more sophisticated obfuscation techniques can be adopted (or have
already been performed) in the context of mobile apps. We envision this obfusca-
tion based repackaging will become a phenomenon due to the arms race between
repackaging and its detection. To this end, we propose a framework to evaluate
the obfuscation resilience of repackaging detection algorithms comprehensively.
Our evaluation framework is able to perform a set of obfuscation algorithms in
various forms on the Dalvik bytecode. Our results provide insights to help gauge
both broadness and depth of algorithms’ obfuscation resilience. We applied our
framework to conduct a comprehensive case study on AndroGuard, an Android
repackaging detector proposed in Black-hat 2011. Our experimental results have
demonstrated the effectiveness and stability of our framework.

Keywords: Mobile apps, reverse engineering, repackaging, obfuscation resilience,
malware.

1 Introduction

In the past years, mobile phone sales have grown extremely fast and Android [8] has
become the dominant of the mobile device market. This gives a burst of new applica-
tions pushed into the Android Market. In the end of 2012, the number of apps reached
700,000; however, Google provides little vetting on these apps to prevent it from pla-
giarism or malicious repackaging.

There are mainly two motivations for app repackaging. First, dishonest developers
may repackage others’ apps under their own names or embed different advertisements,
and then republish them to the app market to earn monetary profit. Second, malware
writers modify a popular app by inserting some malicious payload into the original

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 169–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 H. Huang et al.

program. The purpose is to take over mobile devices, steal users’ private information,
send premium SMS text messages stealthily, or purchase apps without users’ aware-
ness. They leverage the popularity of the original program to increase the propagation
of the malicious one. Both types of repackaging are severe threats to the app markets.
Even without consideration of code obfuscation, it has been found that about 5% to
13% of apps in third party app markets are the plagiarism of applications in the of-
ficial Android market [29]. Besides, according to a recent study [30], among the an-
alyzed 1260 malware samples, the authors found that 1083 of them (or 86.0%) were
repackaged versions of legitimate apps with malicious payloads, indicating repackag-
ing is a favorable vehicle for mobile malware propagation. However, as the commercial
motivation grows, nothing prevents plagiarizers and repackagers using code obfusca-
tion techniques to evade detection. Moreover, since users can download applications
from both official market Google Play and third party markets in different countries
(e.g., Anzhi, a big Chinese Android app market), the repackaging problem can appear
both inter- and intra- market, which increases the scale and challenge for repackaging
detection.

Due to the very large number of applications in the market and easiness for reverse
engineering and manipulation of Dalvik bytecode, several researchers have proposed
detection schemes based on static analysis on DEX file [29], [19], [23]. Static code
analysis based detection is more efficient than the dynamic ones. However, in practice,
sophisticated code obfuscations can be easily applied to evade static analysis based
detections [28], and such obfuscation techniques can be easily adapted to mobile appli-
cations scenario. When applied to mobile applications, they can greatly increase false-
negative rates of the existing detection algorithms. Moreover, in these works, manual
inspections are often used to check the false positives in their results. In general, all
the detection algorithms currently pay more attention to the computational efficiency
of their algorithms and are lack of a comprehensive analysis on algorithm accuracy.
Hence, they can be very vulnerable against obfuscation based repackaging.

In this work, we propose a framework to automate the evaluation of repackaging
detection algorithms against various obfuscation techniques. Our paper makes the fol-
lowing contributions:

1. We perform a survey study on the existing major repackaging detection algorithms,
their evaluation methods, and provide insights on their pros and cons;

2. We take the first step in this field to provide an evaluation framework to measure
the obfuscation resilience of detection algorithms;

3. We design our framework by gluing seamlessly all the bytecode conversion and
obfuscation tools together. The effectiveness and stability of current framework are
fully tested and evaluated;

4. To measure the obfuscation resilience of detection algorithms in a comprehensive
way, in our framework, we propose the notion of broadness and depth analysis.
We perform a case study with our tool on an open source detection algorithm An-
droGuard [20] from Blackhat 2011. Our evaluation results show that while Andro-
Guard demonstrates reasonable strength against many obfuscation techniques, it
is very vulnerable to obfuscation relevant to control flow manipulation performed

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 171

on the method granularity, and multiple obfuscations when combined can further
decrease its detection capability.

The remainder of the paper is structured as follows. Section 2 provides a study on a
number of obfuscation detection algorithms. According to our observation from the
study, an evaluation framework on the algorithms’ obfuscation resilience has been pro-
posed in Section 3. Section 4 describes the current setup of our framework. Then our
experimental result of using the framework to conduct one case study on AndroGuard
has been presented. We review related works in Section 5 and conclude with Section 6.

2 Study of Existing Repackaging Detection Algorithms

In this section, we first explain with a toy example how to conduct the Dalvik bytecode
manipulation. Then we perform a study on several recently proposed algorithms for
Android application repackaging detection, including Fuzzy Hashing based detection
[29], Program Dependence Graph (PDG) based detection [19] and Feature Hashing
based detection [23].

2.1 Background on Dalvik Bytecode

An Android application package is called .apk file, which must contain the program’s
Dalvik bytecode, resources and a XML manifest file. Each Android application is ini-
tially developed as a Java program. It is compiled into Dalvik bytecode, and then pack-
aged into the classes.dex file as a Dalvik EXecutable (DEX file) to be executed in

�������������������	
�����������
���	�������������
����������������������������
������������������������������� !��� ������"#�$��!%�	
&�'����� !��� ������"#�
�������(����"��%!������������
���������������"�����)��*���*�
������������������"
������+�������)�������� %�! ��,#�$�
������������,%�&����� !��� 	�����#����� !��� 	�����#'����� !��� 	�����#�
��
���������������
	������������	�����������
���	�
 ����
	��!�
��	���������
������������������������������� !��� ������"#�$��!%�	
&�'����� !��� ������"#�
�������(����"��%!�����������������
�������(������������-���� ����������""������!�������
�����!
�����������#��# ��
���������������"�����)��*���*�������
����$��(�����.���) � ����������""������!�������
�����!
�����������#��# � � ��
����%�������������"
������+���-���.�������� %�! ��,#�$�
�����������,%�&����� !��� 	�����#����� !��� 	�����#'����� !��� 	�����#�
����&��(�����)���.����������������""������!��
����������������#��#�
������	��������������'��(�
����)��(����������������-���""������!��
����������������#��#�
������	��������������'��(�

Fig. 1. An example of Dalvik bytecode manipulation

172 H. Huang et al.

Dalvik Virtual Machine (DVM) [2]. The whole compiling process includes two phases:
(1) Java code compiled into an intermediary representation (IR), the Java bytecode for-
mat, which produces a set of .class files; (2) the IR code is further compiled into Dalvik
bytecode by a utility called “dx tool”, which produces classes.dex, the DEX file.

During the reverse engineering process, a plagiarist first unpacks the .apk file of
the downloaded Android application and extracts the classes.dex file that includes the
actual bytecode for execution. Classes.dex can be dissembled by Baksmali [12] into
IR format. After manipulation and obfuscation, it is finally assembled back into an
updated classes.dex by Smali. Dalvik bytecode contains more semantic information
and provides a higher programming abstraction for the developer than machine code
instructions, (e.g., x86 assembly code). Therefore, it is easy for human analysis, reverse
engineering and manipulation.

In Figure 1, we show an example on semantic preserving manipulation of Dalvik
bytecode. The dissembled bytecode snippet is from the Skype app for Android platform,
and it is a representative function invocation. Similar code patterns can be identified
all over the program. We manipulate it by using extra virtual parameter registers v3
and v4. The corresponding output bytecode is shown in the lower part of Figure 1.
This code manipulation is semantic preserving, as the value in registers v1 and v2 are
moved into the two extra registers and restored after the execution of opcode [invoke-
interface]. The [invoke-interface] is executed using the extra virtual registers, instead
of v1 and v2 originally. All these manipulations have no side-effect on the current and
following context of the program that might use v1 and v2. The dissembled Dalvik
bytecode contains lots of similar function invocation code patterns, so this type of noise
instructions can be inserted with a very high frequency throughout the program.

2.2 Fuzzy Hashing Based Detection

In order to measure the similarity between plaintiff and repackaged applications, Droid-
MOSS [29] leverages specialized hashing technique, called fuzzy hashing. Instead of
computing a hash over the entire program instruction set, a hashing value is computed
for each local unit of opcode sequence of the classes.dex. It uses a reset point to split
long opcode sequences into small units and then concatenate all the hash values into a
whole. In this way, it can localize the modification caused by repackaging. Also, Droid-
MOSS focuses on instructions’ opcode part in order to be resilient against “oprand
string literal” based obfuscation. DroidMOSS can efficiently identify those pieces that
were not touched by the repackager and works well when code manipulation was only
performed at a few interesting points, e.g., hard coded URLs. For this particular type of
repackaging, DroidMOSS has a very high true positive rate.

Among all the detection algorithms we studied, only DroidMOSS has a measurement
on its false negative rate through experiments. Two major reasons were reported to lead
to potential false negatives. One is that some repackaging cases insert a large chunk of
code as noise into the original app and the other fact is that the incomplete white-list of
the ad libraries, which produces lots of noise into the opcode sequence. All the noise
can result in considerable difference in the final fingerprints.

In Figure 1, we demonstrate that adding extra semantic preserving noise opcodes is
not hard. For instance, if one performs the similar code manipulation frequently, the

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 173

concatenated hashing value in DroidMOSS can be changed dramatically. Since local
hashing value of code snippet unit [invoke-static → move-result-object → const-string
→ invoke-interface] and the corresponding manipulated opcode unit [invoke-static →
move-result-object→ move-object→ const-string→ move→ invoke-interface→ move
→ move-object] are very different, by concatenating all the different pieces into a final
hash result, the detection can be evaded. The reset points DroidMOSS they uses to split
the whole opcode sequence into small opcode units are semantically irrelevant, that is
not depending on basic blocks, or other semantic information of the program. Therefore,
the detection can be further evaded by carefully crafting the code manipulation pattern
and make the inserted opcode hit the predefined reset points. In this way, the overall
opcode structure of the fuzzy hashing computation is much modified, but the semantic
of the Dalvik bytecode is still preserved.

2.3 PDG Based Detection

In DNADroid [19], the dex file of Android application is converted to Jar through a
tool called dex2jar, so that they can leverage WALA [14] to compute the static data
dependency graph (DDG) of every method. DDG is considered as the main character-
istic of the apps for similarity comparison. DNADroid compares the DDGs within a
pre-computed cluster of Android apps using graph isomorphism based algorithms.

invoke-static {v1}

move-result-object v1

var v1

invoke-interface {v0, v1, v2}

var v1

const-string v2,

var v2

invoke-static {v1}

move-result-object v1

var v1

move-object v3, v1

var v1

invoke-interface {v0, v3, v4}

var v3

move-object v1, v3

var v3

const-string v2,

move v4, v2

var v2

var v4

move v2, v4

var v4

Fig. 2. The example of Data Dependency Graph (Top : original; Below : manipulated)

174 H. Huang et al.

Specifically, each vertex in a DDG is a bytecode instruction and each edge initiate
from one source instruction to one destination instruction. For example in Figure 2,
the instruction [move-object v3, v1] is considered as the source instruction for both
destination instructions [invoke-interface v0, v3, v4] and [move-object v3, v]. Since the
source assignment instruction (v3 := v1) has a side effect on a variable v3, and also that
v3 is used later in the following destination instructions, based on their algorithm, we
should link the source instruction to both destination instructions by outgoing edges.

In general, static DDG is resilient against several control flow obfuscations and noisy
code insertion attacks that do not modify the data dependency. However, the false pos-
itive rate is not evaluated. Indeed, some specific data dependency obfuscations can be
designed to evade this approach. Figure 1 shows the data dependency graphs of the toy
example in Figure 2 before and after code obfuscation. By comparison, we can observe
a dramatic change of data dependency relationship between instructions. This side-
effect free manipulation has the potential to evade the graph isomorphism algorithm
based detection.

2.4 Feature Hashing Based Detection

Juxtapp [23] is a code-reuse detection scheme based on feature hashing. Similar to
DNADroid, the unlabeled classes.dex files of apps are grouped based upon some
predefined criteria, to reduce the comparison overhead. k-grams of various opcode se-
quence patterns within each basic block of the program are considered as features. For
example, they choose 5-gram as a moving window of size 5, which moves within each
basic block to map and flag the features into a m bit vector. Then the bit vectors are
further combined into a feature metric to fingerprint each app. Juxtapp currently uses
various predefined opcode sequences as features. For instance, when [new-instance →
const-string projectSpinnerPos → invoke-direct → iget-object → invoke-static] ap-
peared in a particular basic block sequentially (with a window size of five), the corre-
sponding feature bit in the bit-vector indicating this opcode sequence feature is flagged
with one. This detection scheme is able to effectively detect various code reuse cases,
including piracy and code repackaging, malware existence, vulnerable code; however,
this work does not perform evaluation on the tool’s false negative rate.

By using the code manipulation shown in Figure 1, it can potentially destruct the
normal opcode pattern of Dalvik bytecode in a very dense fashion. The special features
of the program can be normalized by inserted instructions, creating lots of fake feature
bits. Both can lead to a high false negative rate of their detection algorithm. Note that
although Juxtapp can reduce the noise-injection caused false negatives by decreasing
the size of its sliding window for feature definition, this on the other hand reduce the
whole feature space and lead to more false positives. To the extreme, Juxtapp can choose
window size of one and use [new-instance] as one of the features. Then every basic
block unit from different apps will probably have this opcode appeared at least once.
Thus lots of similar feature metric can be produced for independently developed apps.

In general, we consider it will be very beneficial to tune Juxtapp against various
obfuscation techniques and find an optimal way to define the size of its sliding window
and the unique feature set.

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 175

3 Evaluation Framework

Our study indicates that while each detection algorithm excels at detecting some types
of repackaging efficiently and effectively, there is a lack of false negative analysis for
all of them. Given the huge number of Android apps in different markets and the easi-
ness in applying obfuscation techniques during repackaging, it becomes a very difficult
problem to ensure both efficiency and accuracy of the repackaging detection algorithms.
Therefore, we propose a general framework to help comprehensively evaluate the ob-
fuscation resilience of such algorithms. The outcome of evaluation based on our frame-
work can be used as a guidance to enhance the obfuscation-resilience of a detection
algorithm through, for example, fine tuning of parameters and adding/removing certain
heuristics.

��������������
����	
������
�������������

�������	
���
�
����
��

����	
��
�������
�
��
�
�	�����

�������	

������������	
��

���������
�
������������
������������

��
����������
�
	
�����	����

������������
�����
���
�

�����������
�����������

Fig. 3. A Framework for evaluating the obfuscation resilience of repackaging detection algo-
rithms

The proposed framework is illustrated in Figure 3, which contains three major com-
ponents. The first component is called Dalvik Bytecode Pre-processor, which dissem-
bles and transforms the Dalvik EXecutable (DEX) into an intermediary representation
(IR) code format. By using an IR format, code manipulation and obfuscation can be per-
formed easily. The second component is an IR Code Obfuscator, which works directly
on the output IR format of the original program. In the real world scenario, various
obfuscators can be applied in different ways by plagiarists to evade the detection. By
applying a set of obfuscation algorithms in various ways, the IR Code Obfuscator tries
to mimic the real-world obfuscation based repackaging process. Hence, this component
outputs a set of obfuscated versions from the original input dex file. During this pro-
cess, we must ensure all the code manipulation and obfuscation actions are semantics-
preserving transformations. After the obfuscation, the semantics equivalent IR code is
converted back into Dalvik bytecode by IR2Dex Repackager, so that it is compatible
with most detectors, which take dex files as input.

3.1 Dalvik Bytecode Pre-processor

The preprocessing phase performed on the Dalvik bytecode is to reverse it to an IR
code format, so that it can be further manipulated easily and directly. Several intermedi-
ary representation candidates can be leveraged, including smali format, Java bytecode
format or other similar representation, like Jasmin. In our current framework design,
we choose Java bytecode format as the IR, since a tool called Dare [25] can directly
translate the Dalvik bytecode into Java bytecode with a high success rate. In Android

176 H. Huang et al.

platform, the type information for some specific Java bytecode instructions used in Java
Virtual Machine is thrown away when dx tool compiles Java bytecode down to Dalvik
bytecode in Android platform. However, the missed type information is inferred by
Dare using strong constraint solving and backward slicing. The experiment in Dare
shows that the information incompleteness between the converted Dalvik bytecode and
Java bytecode is reduced to a tolerable rate. It achieves a total of 99% of verifiable
code on average for thousands of tested methods from various Android apps. We will
elaborate some interesting observations on using Dare in our experiments in Section 4.

3.2 IR Code Obfuscator

This component is designed to mimic the real world scenarios where a plagiarist makes
basic modifications or uses various obfuscation techniques for repackaging detection
evasion. Since our motivation is trying to provide a general evaluation framework, we
consider two pieces of information are very important to report. First is the broadness
analysis result, which shows the general weakness and strength for an evaluated detec-
tion algorithm against a broad range of obfuscation techniques. We decide to perform
obfuscation algorithms individually and collect a set of detection results for the test-
ing algorithm. This result will provide a wide range of analysis, to reveal the detec-
tion algorithm’s strength and weakness against each type of obfuscation algorithm. The
broadness analysis result provides insights to improve the detection algorithm. Second
is the depth analysis result, which shows the overall obfuscation resilience against deep
code manipulation by serializing a set of obfuscation techniques. In this analysis, the
detection algorithm is tested against repackaged applications that have been obfuscated
multiple times. For example, an application may be obfuscated by variable renaming,
followed by noise injection and/or control-flow flattening. With depth analysis, we can
test the robustness of detection algorithms against more sophisticated obfuscation at-
tacks.

Specifically, because there already exist some comprehensive obfuscation tools, such
as e.g., SandMarks [17] and Zelix KlassMaster [9], which target at Java bytecode, by
leveraging them we can save some engineering effort by avoiding the re-implementation
of a large set of obfuscation algorithms. The open source SandMarks is a very com-
prehensive tool, which implements 39 obfuscation algorithms. Klass- Master imple-
ments some control flow obfuscation techniques, making it a heavy duty obfuscator. We
currently take both as our candidate obfuscators. However, our IR code obfuscator is
not restricted to Java bytecode obfuscation tools. Whenever the obfuscation community
provides better tools for Dalvik bytecode obfuscation or other similar IR format obfus-
cation tools, we will try to include them in our framework. Therefore, our framework
can be incrementally updated for more comprehensive obfuscation resilience measure-
ment.

3.3 IR2Dex Repackager

In general, most detection algorithms take Dalvik bytecode of the Android program,
namely the dex file, as the initial input, based on the assumption that no availability of
source code. Therefore it is necessary to convert the obfuscated IR code back into the

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 177

dex file by the IR2Dex Repackager component. In this way, we can build a standard
framework, which is compatible for most detection algorithms that target Dalvik byte-
code. For this component, we currently leverage a solid tool named dx tool from the
Android platform.

An important criteria for the repackager component is that it must preserve the effects
of obfuscation performed on our IR code during the conversion. After analyzing the
source code [7] of dx tool, we find dx tool provides very little optimization, except for
some dead code removing and a few minor optimizations on register usage. We will
further discuss our analysis on the behavior of dx tool in Section 4, which indicates that
it satisfies the criteria for a repackager component.

3.4 Practical Concern

To the best of our knowledge, currently no repackaging detection algorithm is based
on dynamic analysis of Android applications. Due to the requirement of intensive user
interactions through the touch-based UI for Android OS, it becomes very hard to auto-
mate the input feeding process for dynamic analysis of applications from a large-scale
prospective. The other possible reason that static analysis is a better option is that a pla-
giarist can easily manipulate the GUI of an app and completely defeat dynamic based
detection algorithms. Hence, in our current framework we do not aim at guaranteeing
that obfuscated applications should be completely runnable. To make a repackaged ap-
plication completely runnable is only a must requirement for the plagiarists, so that it
can be published in the app market again. However, we relax this constraint in our eval-
uation framework so that we can provide a more comprehensive framework for static
analysis based detectors. In other words, our framework indeed offers advantages to the
attacker even if in reality he may not be able to apply these obfuscation algorithms eas-
ily. We consider the obfuscated classes.dex file from our evaluation framework valid
as long as it is the valid syntax of Dalvik bytecode, contains the equivalent program
semantics of the original one, and can be accepted by Dalvik bytecode dissemblers and
other static analysis tools. After all, if needed, our framework can be refined later to
produce completely runnable apps for dynamic analysis based repackaging detection
algorithms.

4 Experiment

In the framework setup, we choose SandMarks as the obfuscator component, which
has a comprehensive and powerful collection of obfuscation algorithms for Java byte-
code manipulation and all of these obfuscation techniques are well documented. It
meets the requirements from both the broadness and depth analysis aspects. Also, Dare
and dx tool are leveraged for bytecode reverse engineering and repackaging, respec-
tively. To fully automate the experiment, we write shell-scripts to glue the command-
line version of SandMarks and other components, Dare and dx tool together. Each
component’s output is fed into the next component as input and all the tasks in our
framework are then pipe-lined. Thereafter, we test the success rate of producing obfus-
cated dex files under various obfuscations and also conduct one case study with an open
source Android application repackaging detection tool, Androguard [20].

178 H. Huang et al.

4.1 Framework Setup

Preprocessing Android Applications. The preprocessing tool Dare that we currently
use is one of the most accurate Dex-to-Jar converter, as most of the converted code can
be verified by the Oracle Labs Maxine VM verifier [10]; however, some ambiguous type
inference problem cannot be completely solved even after performing the constraint
solving algorithms for ambiguous type inference. We relieve this problem by two pro-
cedures. First, we turn on the -c option from Dare, which leverages the optimization
provided by Soot [13] for the reversed Java bytecode. This step can help remove the
unnecessary Java bytecode and reduce the possibility of invalid bytecode instructions.
Second, we relax the strict type checking performed during the SandMarks prepro-
cessing phase by modifying the latest source code of SandMarks. After analyzing its
source code, we find the strict type checking is performed in SandMarks preprocess-
ing phase by using the BCEL libraries [15]. Therefore, after relaxing the type checking
from BCEL libraries, we are able to make SandMarks accept all the Jar files output
from Dare and run them through various obfuscation algorithms.

Applying Obfuscation Algorithms. For the broadness analysis, we try to perform
all the 39 obfuscation algorithms in SandMarks separately; however, some obfusca-
tion algorithms can not proceed successfully. For example, “Array Splitter”, “Array
Folder” and “Integer Array Splitter” are not able to complete. After further analysis,
we find it is because of the missing type information during the backward conversion
from Dalvik bytecode to Java bytecode.Dalvik bytecode does not contain the type in-
formation for the array relevant instructions. For instance, in DVM, it generally uses
“aget and aput” for both int and float arrays and “aget-wide and aput-wide” for both
long and double arrays. However, when trying to convert them into Java bytecode, the
above opcode “aget and aput” need to be type inferred and mapped into “iaload, ia-
store, faload and fastore” strictly. It is the same case for “aget-wide and aput-wide”,
which should be mapped to “laload, lastore, daload and dastore” strictly. Even after
Dare’s inference of the relevant ambiguous typing from program context by leveraging
strong constraint solving and backward slicing, it is still not able to resolve type ambi-
guity cases completely. In our work we do not solve this problem, as we consider this
is one of the fundamental limitation of the conversion from Dalvik bytecode into Java
bytecode. Fortunately, this does not hurt other obfuscation algorithms.

Another problem appears when trying to perform the depth analysis. Theoretically
speaking, it is possible to perform a series of obfuscation algorithms on a program
to obtain a deeply obfuscated program. However, some obfuscation algorithms can
cause conflicts, due to the limitations of their underlining implementation. Instead of
blindingly attempting various permutations of all the algorithms, we first group the ob-
fuscation algorithms into different categories, including Layout Obfuscation, Control
Obfuscation and Data Obfuscation, labeled in the score column of Table 4.2 as “L”,
“C” and “D”, respectively. Then based on the result of broadness analysis, we try
the combination among the most effective individual obfuscation algorithms from each
category, so as to maximize the overall effectiveness of multiple obfuscation techniques
while minimizing the opportunity of conflicts and the experiment space.

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 179

Table 1. The successful output benchmark for the framework

Dare Preprocessor SandMarks Obfuscator Android dx tool
input# output# input# output# input# output#
20.dex 20 .jar 20 .jar 720 .jar 720 .jar 720 .dex

100% 92.5% 100%

Total Successful Rate 92.5% = 100% * 92.5% * 100%

Framework Stability. Currently, we have comprehensively tested 20 Android appli-
cations downloaded from Android Official Market with 36 (out of 39) obfuscation al-
gorithms provided by SandMarks and output 36*20 obfuscated classes.dex files. As
discussed previously, three obfuscation algorithms that are relevant to array manipula-
tion cannot be performed completely. Both the Dare and dx tool components perform
well, except for few ambiguous type information cases caused by information loss in the
first pre-processing component. By gluing these three components together, we reach
a total success rate of 92.5% for the tested apps, which demonstrates the stability of
our framework on performing the broadness analysis. On the other hand, when apply-
ing blindingly various combinations of the obfuscation algorithms , SandMarks tends
to throw errors. After our grouping of relevant obfuscation techniques, we are able to
perform four interesting serialization of obfuscation with a high success rate. We will
provide detailed observations in Section 4.2.

4.2 Case Study

In order to test the effectiveness of our framework for evaluating obfuscation resilience,
we perform a case study with AndroGuard [20], which is an advanced Android ap-
plication repackaging detection algorithm presented in Blackhat 2011. It can directly
perform similarity comparison between a pair of classes.dex files from different apps.
AndroGuard describes the an Android application as regular expression string, which
can capture the control flow structure of the program very efficiently and effectively.
Then pair-wise comparisons on the method units between two similar applications are
conducted by leveraging the similarity distance computation algorithm based on Nor-
malized Compression Distance (NCD). Then based on the threshold specified in the
algorithms, AndroGuard can identify method relevant metric, including “new method”,
“diff method” and “match method”. The final similarity score is derived based on the
metric.

Applying Single Obfuscation Algorithm. We performed a Broadness analysis on
AndroGuard against all the obfuscation algorithms from SandMarks thoroughly us-
ing our framework. This analysis is performed in a control way, as each time only one
obfuscation is applied and results are collected. Therefore, we can pinpoint the exact
weakness of the repackaging detection algorithm. In Table 4.2, the algorithm columns
indicate the names of the obfuscation algorithms applied in our framework. For the
score column, we first use AndroGuard’s detection algorithm to compute the similar-
ity score of a pair of original/obfuscated classes.dex files of each Android application.

180 H. Huang et al.

Table 2. Average Similarity Score by AndroGuard for each Obfuscation Algorithm

Algorithm Score Algorithm Score

Non-obfuscated 1.00 (L)
Const Pool Reorder .92 (L) Split Classes .94 (L)

Static Method Bodies .88 (C) Class Encrypter .03 (D)
Method Merger .65 (C) Reorder Parameters .92 (D)

Interleave Methods .56 (C) Promote Prim Reg .92 (D)
Opaque Pred Insert .92 (C) Promote Prim Types .93 (D)

Branch Inverter .77 (C) Bludgeon Signatures .96 (D)
Rand Dead Code .92 (C) Objectify .83 (D)

Class Splitter .87 (C) Publicize Fields .91 (D)
Method Madness .43 (C) Field Assignment .86 (D)

Simple Opaque Pred .92 (C) Variable Reassign .85 (D)
Reorder Instructions .89 (C) ParamAlias .92 (D)

Buggy Code .67 (C) Boolean Splitter .85 (D)
Inliner .89 (C) String Encoder .87 (D)

Branch Insert .87 (C) Overload Names .91 (D)
Dynamic Inliner .84 (C) Duplicate Registers .89 (D)

Irreducibility .86 (C) Rename Registers .96 (D)
Opaque Branch Insert .85 (C) False Refactor .95 (D)

Exception Branch .81 (C) Merge Local Int .94 (D)

We then compute an average over all the score of the tested pairs of the 20 applica-
tions under the same obfuscation algorithm. Therefore, the average similarity score is
a good measurement on the average performance of AndroGuard against individual
obfuscation attack.

Applying Single Obfuscation Algorithm. In order to check the effect of the Dex2Jar
and Jar2Dex conversions on AndroGuard, we also use AndroGuard to compute the
similarity score for the original dex file and the “non-obfuscated” dex file that has
only been processed by Dare and dx tool.From Table 4.2, the entry “Non-obfuscated”
has the corresponding similarity score “1.00” from AndroGuard, which means it is
100% similar (the range of the similarity score is [0, 1]). This indicates that the two-
way conversions by Dare and dx tool can keep almost all the semantic information
of the code. Based on the classification in Collberg et al. [18], this transformation can
be categorized as Layout Obfuscation, we tag it as “L” in the corresponding score
column, as it touches very little semantic content of the code. All the other scores are
below “1.00”, which demonstrates that all the other obfuscation algorithms have more
or less effect on AndroGuard’s detection result.

The algorithms on the left side of the table have “C” tagged on the corresponding
scores, because they belong to the “control transformation” category, which tries to
obscure the control-flow of the code. The ones on the right side and tagged with “D”
belong to “data transformations”, which obscure the data structure used in the source

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 181

applications. Generally speaking, AndroGuard has better resilience to data structure
based obfuscations, since it does not take the detail data dependency or data structure
into account. However, the “Class Encrypter” obfuscator makes an exception in this
category, as this obfuscation reduces the similarity score to “.03”. By encrypting class
files and decrypting them at runtime, the “Class Encrypter” can completely change
the semantics of the string structure that AndroGuard uses to represent the Dalvik
bytecode.

The other obfuscation methods that have big impacts are “Method Merger”, “Inter-
leave Methods”, “Method Madness” and “Buggy Code”. To figure out the reason, we
analyze the source code of AndroGuard in the similarity comparison part. Basically, the
algorithm computes the Control Flow Graph (CFG) within each method, and represents
each CFG of each basic block by a predefined regular expression representation and
takes this string representation of each method as the core feature. By leveraging Nor-
malized Compression Distance (NCD) algorithm, they can aggregate the final score.
Since all the above four obfuscation algorithms are relevant to basic block and control
flow manipulation performed on the method granularity, they can reduce the chance
of repackaged apps being detected by their similarity measurement algorithm. Actu-
ally, these obfuscation algorithms directly obscure the core feature that AndroGuard
is trying to extract from the code for comparison and detection. From this result of the
broadness analysis, our framework is able to comprehensively measure the obfuscation
resilience of the detection algorithm and also pinpoints its weakness.

Serializing Multiple Obfuscation Algorithms. Practically, especially when detection
algorithms become more powerful, it is very possible that an attacker will try a com-
bination of various obfuscation algorithms. Therefore, our framework also wants to
mimic more complicated obfuscation behavior in the real world scenario. Besides the
broadness analysis performed on AndroGuard, we also perform advanced multiple-
obfuscation by serializing several algorithms for depth analysis. It is a deeper analysis
process on the obfuscation resilience of detection algorithms.

We test various combinations of the effective individual obfuscation based on the
result of broadness analysis. When trying various permutations, only some of them
can be performed successfully for the testing applications and the output obfuscated
DEX files can be accepted by AndroGuard. We analyze four interesting cases below:

1. [Method Merger ⇒ Method Madness ⇒ Interleave Methods]
Average Similarity Score and Obfuscation Time of 18 apps : 0.33 and 19 min;

2. [Objectify ⇒ Method Merger ⇒ Method Madness]
Average Similarity Score and Obfuscation Time of 19 apps : 0.26 and 16 min;

3. [Method Madness ⇒ Objectify ⇒ Variable Reassign]
Average Similarity Score and Obfuscation Time of 20 apps : 0.35 and 11 min;

4. [Variable Reassign ⇒ Boolean Splitter ⇒ Objectify]
Average Similarity Score and Obfuscation Time of 20 apps : 0.80 and 6 min;

We record the average similarity score computed by AndroGuard and the average total
time needed for the whole process of serializing three obfuscation algorithms. All the
test cases reduce the average similarity scores to a point which is lower than any the

182 H. Huang et al.

single obfuscation performed individually in the broadness analysis. The average total
time is the sum of the time for applying each obfuscation algorithm.

Case 1 leverages three heavy control transformation based obfuscations that tar-
get specifically at method level manipulations. We choose these top-three obfuscations
based on the broadness analysis result. This serialization further reduces the similarity
score down to a low point 0.33, which results in high false negatives in AndroGuard.
Generally, for AndroGuard, it will cause lots of false positives when setting the thresh-
old below 0.5 for the similarity score. This deep serialized obfuscation process requires
more time to perform, about 19 minutes on average for each application. Also there is
5% chance that the output dex file could not be accepted by AndroGuard, as 18 out of
20 can be successfully accepted by AndroGuard.

Case 2 is a serialization of one data transformation plus two control transforma-
tions. Based on the previous broadness analysis report, we try several combinations
with “Class Encrypter” as data transformation, and find no further decrease on the
similarity score. As “Class Encrypter” already brings the similarity score to a very
low level (0.03), the effects of other obfuscation algorithms cannot be directly reflected
in the score. Note all other possible obfuscations must be applied before “Class En-
crypter”, so that the actual effect of these obfuscations can be kept. “Objectify” is
another top data transformation based obfuscation, and we combine it with two top ob-
fuscation algorithms in the control transformation category, namely “Method Merger”
and “Method Madness”. This combination reduces similarity score to 0.26, which is
more effective than the combination of the three top control transformations in Case 1.
This is an indication that combining various obfuscations from different categories can
potentially produce more powerful obfuscations. Based on further analysis of the result
of Case 2, we find that using the obfuscations selected from different categories can
increase the number of methods that are considered not similar by AndroGuard be-
tween the original and obfuscated dex files. It is because the manipulations from differ-
ent obfuscation categories touch different parts of the code and produce the obfuscated
methods with less chance of overlapping with the original.

Case 3 serializes one control plus two data transformations, which also indicates
that obfuscations from different categories performs better. This two data obfuscations,
“Objectify” and “Variable Reassign” are only at a 0.8 level score when performed sep-
arately; however, after our serialization with the “Method Madness” on control trans-
formations, it performs well and even approximates the similarity score from case 1.
The whole transformation time is reduced to nearly half of the time spent in case 2 for
each application and we obtain a 100% success rate for output dex files by this serial-
ized obfuscation. All the 20 heavily obfuscated dex files are accepted by AndroGuard
successfully. The last case indicates by purely using the data transformation based ob-
fuscations. The average similarity score is further reduced but not as significant as case
2 and 3.

4.3 Discussions

Our experiment and case study demonstrate the effectiveness of our framework for
providing a comprehensive and deep measurement on the obfuscation resilience aspect
of a proposed repackaging detection algorithms. The broadness analysis measures the

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 183

obfuscation resilience of the detection algorithm comprehensively and points out its
exact strength and weakness. On the other hand, depth analysis can further attack the
detector under an advanced obfuscation scenario, which provides a better understanding
of its overall obfuscation resilience. We believe the insight from both analyses is helpful
to understand the detection algorithm and can serve as a guidance for its enhancement.

We use AndroGuard to perform the case study because it is currently the only pub-
licly available tool. However, the result from the case study can be applicable to all the
other detection algorithms. For example, the “Class Encrypter” obfuscation can prob-
ably have the same effect on other detection algorithms based on static code analysis.
Because it dramatically changes the original bytecode by encryption and only dynamic
decryption can help unpack the obfuscation. Hence, without adding special heuristic to
prevent this obfuscation, all the static code analysis based detection becomes ineffec-
tive. The case study result shows that AndroGuard is not very resilient against control
flow manipulation based obfuscation. However, we envision the opposite result will
probably be generated when using our framework to test DNADroid.

Since the obfuscation algorithms are performed on the intermediary format, the Java
bytecode, which are later converted into classes.dex by the dx tool on instruction level
granularity, one may wonder whether the obfuscation effect has been preserved. We
randomly pick and manually analyze outputs of all the 36 obfuscation algorithms and
the corresponding serialized ones. According to the corresponding explanations from
SandMarks, the effect of most control flow obfuscation and data obfuscation algo-
rithms are preserved. The obfuscator is based on semantic preserving obfuscations from
SandMarks. Moreover, the dx tool keeps the program’s semantic of the input Java
bytecode, and converts the Java bytecode instructions into semantic equivalent Dalvik
bytecode instructions based on the predefined transformation rules. Therefore, most
of the obfuscation effect on our intermediary representation is preserved in the output
classes.dex file.

We also confirm that some class level obfuscations, e.g., “Class Splitter” and “Split
Classes”, need some modifications in the AndroidManifest.xml file, so that relevant class
information will be updated accordingly. We suggest users to simply turn them off when
performing the evaluation, if their detection algorithms try to leverage the information
in the AndroidManifest.xml. For those which do not need the information from An-
droidManifest.xml, they can still obfuscate classes.dex by using the obfuscations in
class level.

5 Related Work

Android Application Reverse Engineering and Code Manipulation. Since Dalvik
bytecode contains more semantic information than machine code instructions, its re-
verse engineering and manipulation are also easier. Several tools, including Dex2jar
[4], ded [24] and Dare [25], can transform Dalvik bytecode to Java bytecode. Based
on the converted Java bytecode representation of dex files, many static analysis tools
on Java bytecode can be applied, e.g., WALA [14] and Soot [13]. In evaluation frame-
work, we also leverage this convenience to deploySandMarks [17] andKlassMaster
[9] in our obfuscator component. Smali/baksmali [12], the assembler/disassembler

184 H. Huang et al.

of classes.dex files, not only can reverse engineer Android applications but is able to
repackage the modified smali code back to Dalvik bytecode. Tools such as apktools
[1] integrate Smali/baksmali to help modify an application, sign with another devel-
oper key, and repackage it back into an apk file.

To counter reverse engineering, Android developers use obfuscation tools frequently
such as ProGuard [11], DexGuard [5] and dasho [3], to prevent the repackaging at the
initial stage. These obfuscation techniques rely on Java source code, Our evaluation
framework is trying to mimic the obfuscations performed by plagiarists, which is under
the assumption that there is no accessibility to Java source code.

Repackaging techniques can be leveraged to provide protection mechanisms, if used
in a proper way. Aurasium [27] reverse engineers and repackages the dex files to per-
form bytecode rewriting, so that protection code can be embedded into the Android
apps to specify policy enforcement within user-level sandboxing. In article [6], “Junk
byte injection”, a x86 architecture well-known obfuscation technique, is proved to be
applicable on Dalvik bytecode format to raise the bar of further malicious reverse engi-
neering on Dalvik bytecode.

Repackaging Detection and Evaluation. Paper [30] analyzes the evolution of the
Android malware and current status of the repackaging and obfuscation techniques that
have been used. We perform study from another prospective, that is trying to analyze
and measure the obfuscation resilience of repackaging detection algorithms in [29],
[19], [23].

Wang et al., [26] design a system call based software birthmark that represents the
unique characteristic of the run time behavior of a program, which can be used for
software theft detection. They measure their birthmark against various obfuscations
and also with different compiler setups. Jhi et al., [21] design a plagiarism detection
technique, which is resilient to various control and data obfuscation techniques. The
detection is based on an observation that some critical runtime values are hard to be re-
placed or eliminated by semantics preserving transformation techniques. They evaluate
the obfuscation resilience of the value-based method through SandMark, KlassMaster,
Thicket and Loco/Diablo.

The evaluation of the obfuscation techniques has been studied in [16], which assesses
how difficulty it is for an attacker to understand and modify obfuscated code through
controlled experiments involving human subjects. Karnick et al., [22] propose a stan-
dard measurement to analyze and evaluate the strength of obfuscation tools. An analyt-
ical metric is developed to quantify the performance of obfuscation in terms of potency,
resilience, and cost. Our work provides a general framework to measure the obfuscation
resilience of repackaging detection algorithms. We have evaluated our framework using
a case study on a real repackaging detection algorithm.

6 Conclusion

Due to the improved code manipulation techniques of code manipulation on Dalvik
bytecode, it is very important for repackaging detection algorithms to be obfuscation
resilient, so that more stealthy repackaging scenarios can be identified. In this work,

A Framework for Evaluating Mobile App Repackaging Detection Algorithms 185

we propose a framework to help evaluate the obfuscation resilience of detection algo-
rithms in terms of broadness and depth. The framework provides a uniform obfuscation
resilience measurement for all the obfuscation detection algorithms that are based on
static analysis of Dalvik bytecode. Our experiments have demonstrated that our frame-
work is stable to create obfuscated classes.dex for the broadness analysis and also is
able to serialize multiple obfuscations together to perform the depth analysis. Our study
on the serialization of multiple obfuscations from different categories provides some un-
derstanding on how to make a stronger obfuscation. Our case study on Androguard,
shows that our framework can effectively pinpoint the exact strength and weakness of
the detection algorithm. The outcome of evaluation based on our framework can be used
as a guidance to enhance the obfuscation-resilience of a detection algorithm through,
for example, fine tuning of parameters and adding/removing certain heuristics.

Acknowledgments. We would like to give special thanks to Professor Christian Coll-
berg for his help on using the SandMark tool and Damien Octeau’s detail clarification
on the Dare tool.

This work was partially supported by ARO W911NF-09-1-0525 (MURI), NSF CNS-
0905131, NSF CNS-0916469, NSF CNS-1223710, AFOSR W911-NF1210055 from
Liu, NSF CAREER 0643906 from Zhu and NSF Grant CNS-1223710 from Wu. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reect the views of the National Science
Foundation, Army Research Office or AFOSR.

References

1. Android Apktool: A tool for reengineering android apk files,
http://code.google.com/p/android-apktool/

2. Dalvik virtual machine: code and documentation,
http://code.google.com/p/dalvik/

3. Dasho, preemptive solutions, http://www.preemptive.com/products/dasho
4. Dex2jar, http://code.google.com/p/dex2jar/
5. Dexguard, http://www.saikoa.com/dexguard
6. Dexobf, http://dexlabs.org/blog/bytecode-obfuscation
7. Dx tool source code,

http://grepcode.com/file/repository.grepcode.com/java/
ext/com.google.android/android/4.1.2 r1/com/android/dx/ssa/

8. Gartner says android to command nearly half of worldwide smartphone operating system
market by year-end 2012,
http://www.gartner.com/it/page.jsp?id=1622614

9. Klassmaster, http://www.zelix.com/klassmaster/docs/index.html
10. Oracle Virtual Machine,

https://wikis.oracle.com/display/MaxineVM/Home/
11. ProGuard, http://proguard.sourceforge.net/
12. Smali/Baksmali, http://code.google.com/p/smali/
13. Soot: a Java optimization framework, http://www.sable.mcgill.ca/soot/
14. Wala, http://wala.sourceforge.net/wiki/index.php/

http://code.google.com/p/android-apktool/
http://code.google.com/p/dalvik/
http://www.preemptive.com/products/dasho
http://code.google.com/p/dex2jar/
http://www.saikoa.com/dexguard
http://dexlabs.org/blog/bytecode-obfuscation
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.1.2_r1/com/android/dx/ssa/
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/4.1.2_r1/com/android/dx/ssa/
http://www.gartner.com/it/page.jsp?id=1622614
http://www.zelix.com/klassmaster/docs/index.html
https://wikis.oracle.com/display/MaxineVM/Home/
http://proguard.sourceforge.net/
http://code.google.com/p/smali/
http://www.sable.mcgill.ca/soot/
http://wala.sourceforge.net/wiki/index.php/

186 H. Huang et al.

15. Byte code engineering library (bcel),
http://sourceforge.net/projects/javaclass/

16. Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.: To-
wards experimental evaluation of code obfuscation techniques. In: Proceedings of the 4th
ACM Workshop on Quality of Protection, QoP 2008, pp. 39–46. ACM, New York (2008),
http://doi.acm.org/10.1145/1456362.1456371

17. Collberg, C., Myles, G., Huntwork, A.: Sandmarks a tool for software protection research.
IEEE Security and Privacy 1(4), 40–49 (2003)

18. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech-
nical report (1997)

19. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applications on
android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

20. Desnos, A., Gueguen, G.: Android: From reversing to decompilation. In: Black Hat 2011,
Abu Dhabi (2011)

21. Jhi, Y.-C., Wang, X., Jia, X., Zhu, S., Liu, P., Wu, D.: Value-based program characterization
and its application to software plagiarism detection. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 756–765. ACM (2011)

22. Karnick, M., Macbride, J., Mcginnis, S., Tang, Y., Ramach, R.: A qualitative analysis of Java
obfuscation

23. Li, S.: Juxtapp: A scalable system for detecting code reuse among android applications.
Master’s thesis, EECS Department, University of California, Berkeley (May 2012),
http://www.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-111.html

24. Octeau, D., Enck, W., McDaniel, P.: The ded Decompiler. Technical Report NAS-TR-
0140-2010, Network and Security Research Center, Department of Computer Science and
Engineering, Pennsylvania State University, University Park, PA, USA (September 2010),
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf

25. Octeau, D., Jha, S., McDaniel, P.: Retargeting Android Applications to Java Bytecode. In:
Proceedings of the 20th International Symposium on the Foundations of Software Engineer-
ing (November 2012),
http://siis.cse.psu.edu/dare/papers/octeau-fse12.pdf

26. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Detecting software theft via system call based birth-
marks. In: Annual Computer Security Applications Conference, ACSAC 2009, pp. 149–158.
IEEE (2009)

27. Xu, R., Saıdi, H., Anderson, R.: Aurasium: Practical policy enforcement for android appli-
cations. In: Proceedings of the 21st USENIX Conference on Security (2012)

28. You, I., Yim, K.: Malware obfuscation techniques: A brief survey. In: Proceedings of the 2010
International Conference on Broadband, Wireless Computing, Communication and Applica-
tions (2010)

29. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applications in
third-party android marketplaces. In: Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY 2012, pp. 317–326. ACM, New York
(2012)

30. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: 2012
IEEE Symposium on Security and Privacy, SP, pp. 95–109. IEEE (2012)

http://sourceforge.net/projects/javaclass/
http://doi.acm.org/10.1145/1456362.1456371
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-111.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-111.html
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/dare/papers/octeau-fse12.pdf

Towards Precise and Efficient Information Flow

Control in Web Browsers�

Christoph Kerschbaumer, Eric Hennigan, Per Larsen,
Stefan Brunthaler, and Michael Franz

University of California, Irvine
{ckerschb,eric.hennigan,perl,s.brunthaler,franz}@uci.edu

Abstract. JavaScript (JS) has become the dominant programming lan-
guage of the Internet and powers virtually every web page. If an adver-
sary manages to inject malicious JS into a web page, confidential user
data such as credit card information and keystrokes may be exfiltrated
without the users knowledge.

We present a comprehensive approach to information flow security
that allows precise labeling of scripting-exposed browser subsystems: the
JS engine, the Document Object Model, and user generated events. Our
experiments show that our framework is precise and efficient, and detects
information exfiltration attempts by monitoring network requests.

1 Motivation

The JS programming language forms a key component in today’s web architec-
ture, especially in Web 2.0 applications which regularly use JS to handle sensitive
information, such as corporate customer accounts. The current web page archi-
tecture allows source and library code from different origins to share the same
execution context in a user’s browser. Attackers take advantage of this execution
model to gain access to a user’s private data using Cross Site Scripting (XSS).

XSS is a code injection attack that allows adversaries to execute code without
the user’s knowledge and consent. Without any observable difference in runtime
behavior, a malevolent script can exfiltrate keystrokes, or traverse the Document
Object Model (DOM) to exfiltrate all visible data on a web page. Vulnerability
studies consistently rank XSS highest in the list of the most mounted attacks
on web applications [1, 2]. A recent study [3] confirms the ubiquity of sensitive
user data exfiltration currently practiced on the Internet.

� This material is based upon work partially supported by the Defense Advanced Re-
search Projects Agency (DARPA) under contract No. D11PC20024, by the National
Science Foundation (NSF) under grant No. CCF-1117162, and by a gift from Google.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA) or its Contracting Agent, the U.S.
Department of the Interior, National Business Center, Acquisition Services Direc-
torate, Sierra Vista Branch, the National Science Foundation, or any other agency
of the U.S. Government.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 187–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 C. Kerschbaumer et al.

As a first line of defense, browsers implement the same origin policy (SOP)
that limits a script’s access to information. This policy allows scripts from the
same origin to access each other’s data and prevents access for scripts of different
origins. Regrettably, attackers can bypass the SOP, e.g., by exploiting a XSS
vulnerability of a web page, or by providing code, such as a library that is
integrated in the same JS execution context as the original page.

Tracking the flow of information in the user’s browser seeks to address the
limitations of the SOP. Unfortunately, previous work [4–7] either limits tracking
to a single bit of information, focuses solely on the JS engine or the DOM, or
introduces significant runtime overhead. These limitations make wide browser
adoption unlikely. Tracking only one bit of information leads to a high false
positive rate in Web 2.0 applications, where pages commonly use Content Dis-
tribution Networks (CDNs).

We take inspiration from all of these approaches and present a comprehensive
tracking framework (Section 3) that supports precise labeling for the dynamic
tracking of information flows within a browser, including: (1) the JS engine, (2)
the DOM, and (3) user generated events. We evaluate our system (Section 4)
showing that it satisfies the following properties: a) Secure: Our system can
stop information exfiltration attempts; in particular we show this by injecting
malicious code that performs a keylogging attack, and attempts to exfiltrate
HTML-form data. b) Precise: Our framework makes information flow tracking
feasible for Web 2.0 applications by supporting multi-domain label encoding.
We confirm this feasibility by visiting the Alexa Top 500 pages using our imple-
mented web crawler. c) Efficient: Our approach incurs an average overhead of
82.82% in the JS engine (on SunSpider benchmarks) and 5.43% in the DOM (on
Dromaeo benchmarks). Note, that the fastest dynamic information flow tracking
frameworks [5, 7] introduce overhead on the order of 200-300%.

2 Threat Model

Throughout this paper, we assume that attackers have two important abilities:
(1) attackers can operate their own hosts, and (2) can inject code in other web
pages. Code injection into other pages relies either on exploiting a XSS vul-
nerability of a page, or the ability of attackers to provide content for mashups,
advertisements, libraries, etc., which other sites include. The attacker’s abilities,
however, are limited to JS injection and attackers can neither intercept nor con-
trol network traffic. Our framework protects against several threats, including,
but not limited to:

Information Exfiltration Attacks: By sending a GET request to a server
under the attacker’s control, the attacker can exfiltrate information in the URL
of an image request: elem.src = "evil.com/pic.png?"+creditcard number;.
The attacker uses the request for the image as a channel to exfiltrate a user’s
credit card number as a payload in the GET request, when loading the image
from the server.

Towards Precise and Efficient Information Flow Control in Web Browsers 189

Keylogging Attacks: An attacker might also craft code that logs keystrokes
by registering an event handler: document.onkeypress = listenerFunction;.
Our framework can track the flow of information for generated events, and can
therefore also detect and prevent keylogging attacks.

3 Design and Implementation

We implement a framework, WIF (WebKit Information Flow), which extends
the WebKit browser (version 1.4.2) with support for dynamic tracking of infor-
mation flows. Several industrial strength desktop and mobile browsers use the
WebKit code, e.g., Google’s Chrome, or Apple’s Safari. To protect the informa-
tion accessible by an executing script, we use a labeling model that enforces the
memory semantics of a non-interference security policy [8].

DOMJS engine

user generated events

Network
MonitorDomainRegistrygood.com

other.com

evil.com

Fig. 1. Architecture of WIF

Our approach extends the browser’s JS engine with the ability to tag val-
ues with a security label indicating their originating domain. WIF introduces a
DomainRegistry (Figure 1) to manage these labels.

A single web page can incorporate data from several different domains, there-
fore we associate a unique label with each domain. In the JS engine, data and
objects originating from different domains may interact, creating values which
derive from more than one domain. To model this behavior, we take inspira-
tion from Myers’ decentralized label model [9] and represent security labels as a
lattice join over domains.

DomainRegistry: When the browser loads HTML or JS, it registers the code’s
domain of origin in the DomainRegistry before processing. The DomainRegistry
maps every domain to a unique bit in a 64 bit label. During execution, our
framework attaches these labels to new JS values and HTML-tokens based on
the origin. This design allows us to use efficient bit arithmetic for label join
(0001|0010=0011) operations that propagate labels.

Information Flow in the JS engine: As a foundation forWIF, we implement
information flow tracking within the JS engine using an approach similar to other
researchers [4, 3, 5].

190 C. Kerschbaumer et al.

We implement security labeling by extending every JS value from 64 to 128
bits, where the upper 64 bits represent the actual JS value and the lower 64
bits indicate the domain of ownership. For example, a simplified example of a
binary operation like c = a + b, where a comes a.com (mapped to 0001) and
b originates from b.com (mapped to 0010) would cause c to hold the value of
a + b in the upper 64 bits, and the labels of both, a and b (0001|0010=0011)
in the lower 64 bits.

This design lets us directly encode 63 different domains in one label. We
reserve the highest bit in the label to indicate that the direct encoding of 63
domains overflows. The overflow-bit indicates that the page incorporates code
from more than 63 different domains. In such a case, our system switches to a
slower label propagation mechanism, where the lower 63 bits become an integer
index into an array of labels. When visiting the Alexa Top 500 pages with our web
crawler, we discovered that pages, on average, include content from 12 different
domains.

Conventional static analysis techniques for information flow, such as those
developed for the Java-based Jif [10], are not directly applicable to dynamically
typed languages, such as JS. However, we adapt these techniques by introducing
a control-flow stack that manages labels for different security regions of a running
program. At runtime, the JS engine updates the label of the program counter at
every control flow branch and join within a program. The top of the control-flow
stack always contains the current security label of the program counter. Using
the control-flow stack, our system is able to track:

• Explicit Information Flows, which occur when some value explicitly depends
on another variable, e.g., var pub = secret;.

• Implicit Direct Information Flows, which occur when some value can be in-
ferred from the predicate of a branch in control flow, e.g., if (secret) {
pub = true;}. An attacker can gain information about the secret variable
by inspecting the value of the variable pub after execution of the if state-
ment. The handling of implicit direct information flows therefore requires
joining the label of the variable pub with the label of secret. The latter
assignment to pub occurs in a labeled (secure) region, which causes pub to
be tainted with the label of the current program counter.

We refer the reader to an accompanying technical report [11] for further details
about maintaining the control-flow stack.

Information Flow in the DOM: The DOM provides an interface that allows
JS in a web page to reference and modify HTML elements as if they were JS ob-
jects. For example, JS can dynamically change the src-attribute of an image so
that the image changes whenever the user’s cursor hovers over it. Malicious JS
can use the DOM as a communication channel to exfiltrate information present
within a web page. WIF prevents such exfiltration attempts by labeling DOM
objects based on the origin of their elements and attributes. During HTML pars-
ing, browsers build an internal tree representation of the DOM. Our framework

Towards Precise and Efficient Information Flow Control in Web Browsers 191

uses this phase to attach an initial label, indicating the domain of origin, on all
element and attribute nodes in the newly constructed DOM-tree.

JS code that calls document.write can force the tokenizer to pause and pro-
cess new markup content from the script, before continuing parsing the regular
page markup. WIF applies labels to HTML tokens so that tokens generated by
the call inherit the label of the script, while regular markup inherits the label of
the page.

JS can make use of different syntactical variants to assign a value to an HTML
attribute in the DOM, e.g., element.name = value;. Internally, all the different
variants dispatch to a function, setAttribute. We extend the argument list to
include a label, which supports precise labeling, even for custom attributes avail-
able in HTML5. Performing labeling solely on attributes in the DOM, however,
does not provide a complete solution. For example, a call to the innerHTML prop-
erty of a div-element that returns only plain text of the displayed data without
a label. To contain dynamically calculated properties, such as innerHTML and
value, WIF modifies these functions to apply the label of the DOM element to
the data before returning it to the JS engine.

User Events: In a web browser, the execution context for every script corre-
sponds to the domain of that document. Whenever JS code triggers an event,
WIF handles this event similar to a control-flow branch. It creates a new security
region for handling the event, and joins the PC-label (top of the control-flow
stack) with the label of the execution context. Once the event handler has fin-
ished execution, our framework restores the browser’s previous state. Using this
technique, our framework attaches a label to user generated JS events.

Network Monitor: At every network request, WIF checks whether the label of
the URL-string matches the server domain in the network request. To do so, WIF
extracts the domain of the GET request and looks up the corresponding 64-bit
label in the DomainRegistry. Then WIF checks whether the 64 bit label of the
URL-string matches the 64 bit label of the domain of that URL. Based on the
result of an XOR operation on the two labels, our system decides whether the
request is allowed.

Policy: We consider inequality of labels (0011 �= 0001) to be a privacy vio-
lating information flow. When WIF detects such a violating flow, it records the
event and notifies the user.

4 Evaluation

Security Evaluation: To verify that WIF is able to detect information exfiltra-
tion attempts, we inject custom exploit code into ten mirrored web pages with
known XSS vulnerabilities. To find such web pages, we use XSSed (xssed.com),
which provides the largest online archive of XSS vulnerable web sites, listing
more than 45,000 web pages, including government pages, and pages in the
Alexa Top 100 world wide. We inject malicious code that exfiltrates all keys

xssed.com

192 C. Kerschbaumer et al.

pressed by a user into a mirrored vulnerable web page of amazon.com. This
mirrored page pulls and integrates code from eight different origins on the In-
ternet. Our framework successfully detects the attempt to exfiltrate logged keys,
HTML-form data, and other exfiltration attempts.

Web Crawler Statistics: To perform a quantitative evaluation of our sys-
tem, we implement a web crawler that automatically visits the Alexa Top 500
(alexa.com) web pages and stays on each web page for 60 seconds. To simulate
user interaction, we equip this web crawler with the ability to fill out HTML-
forms and submit the first available form. We found information flows across
domain boundaries on 433 of the 500 visited web pages. This frequency empha-
sizes the importance of providing an opportunity to retrace the flow of informa-
tion in a user’s browser. The following statistics show a snapshot of consistently
changing web pages, taken on December 24th, 2012.

Table 1. Overall findings when browsing the Alexa Top 500 pages

Distinct Content Providers 3,061
Violating Information Flows 8,764
Flows labeled with one domain 5,947
Flows labeled with more than one domain 2,817

Distinct Content Providers: As shown in Table 1, the Alexa Top 500 pages
include content from a total of 3,061 distinct domains on the Internet. Verifi-
cation and proof that all these content suppliers are benign and trustworthy
is not available. A recent study [12] shows that web sites expand their “circle
of trust” by introducing about 45% new JS inclusions each year. This trend
encourages our efforts, because hacking just one of those inclusions gives
immediate access to sensitive user data.

Statistics about information flow violations:When visiting the Alexa Top
500 pages we detect a total of 8,764 information flow violations (Table 1)
which target a total of 1,384 distinct domains on the Internet. Our precise
labeling reveals interacting domains that cause an information flow violation.
We found that 2,817 out of the detected 8,764 violating information flows
have more than one domain encoded in their label. One such information flow
violation was found on t-online.de, where information was labeled with
domains of t-online.de, stats.t-online.de, im.banner.t-online.de,
imagesrv.adition.com, ad2.adfarm1.adition.com. Using such a multi-
domain labeling strategy allows our system to clearly identify CDNs, like
e.g., stats.t-online.de.

When crawling the Alexa Top 500 pages, our network monitor also re-
ported a flow, where information was labeled with more than one domain, to
the hardcoded IP-address 124.17.1.253. We used the service of whois.net
and discovered that China Science & Technology Network owns the IP-
address. Put differently, this IP-address might belong to almost anyone in

amazon.com
alexa.com
t-online.de
t-online.de
stats.t-online.de
im.banner.t-online.de
imagesrv.adition.com
ad2.adfarm1.adition.com
stats.t-online.de
124.17.1.253
whois.net

Towards Precise and Efficient Information Flow Control in Web Browsers 193

China, benign or malicious. Manual inspection of payloads in such network
requests is almost impossible, because information is often encoded in a
highly obfuscated manner.

This result lets us conclude that only web site authors are able to provide
information about permitted flows. Defining a policy of permitted flows and
tracking the flow of information in a user’s browser therefore seems the most
promising approach to prevent information exfiltration attacks.

Performance Evaluation: We execute all benchmarks on a dual Quad Core
Intel Xeon E5462 2.80 GHz with 9.8 GB RAM running Ubuntu 11.10 (kernel
3.2.0) using gcc-4.6.3, where we use nice -n -20 to minimize operating system
scheduler effects.

1

1.025

1.05

1.075

1.1

1.125

attrib
utes

modific
ation

query

traversal

geomatric
 mean

Dromaeo Benchmark

Fa
ct

or
 S

lo
w

do
w

n

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

3d−cube

3d−morph

3d−raytra
ce

access−binary−tre
es

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitw
ise−and

bitops−nsieve−bits

contro
lflo

w−recursive

crypto−aes

crypto−md5

crypto−sha1

date−form
at−tofte

date−form
at−xparb

math−cordic

math−partia
l−sums

math−spectra
l−norm

regexp−dna

strin
g−base64

strin
g−fasta

strin
g−tagcloud

strin
g−unpack−code

strin
g−validate−input

geomatric
 mean

SunSpider Benchmark

Fa
ct

or
 S

lo
w

do
w

n

SunSpider Benchmark Dromaeo Benchmark

Fig. 2. left: Detailed JS engine performance impact per SunSpider benchmark, right:
Detailed DOM performance impact per Dromaeo benchmark (both normalized by We-
bKit’s JS interpreter, JavaScriptCore).

Figure 2 (left) shows the results for executing the SunSpider benchmarks us-
ing WIF. Our system has an average slowdown factor of 1.8×, or 82.82% when
normalized to WebKit’s original JS interpreter, JavaScriptCore. WIF intro-
duces this overhead in the JS engine because it propagates labels for all created
and modified JS values during execution of an application. To the best of our
knowledge, the fastest information flow tracking systems run two to three times
slower with tracking enabled [5, 7], which indicates that our implementation is
substantially faster.

The results of the DOM benchmarks in Figure 2 (right) show that WIF in-
troduces an average overhead of 5.43%, on Dromaeo benchmarks. This overhead
is due to WIF managing not only the attribute value in the DOM, but also the
corresponding label.

194 C. Kerschbaumer et al.

Current Limitations, Discussion and Future Work: Our system does
not yet handle implicit indirect information flows, where information can be
inferred by inspecting values in the non-executed path. The efficient handling of
such flows still remains an open research question.

Currently, consumer browsers do not support any kind of information flow
control to provide security against information exfiltration attacks. We believe
that the introduced overhead for tracking the flow of information is the major
obstacle for widespread adoption. We have shown that labeling the DOM intro-
duces only around 5% overhead. To the best of our knowledge there is no just-
in-time (JIT) compiler that performs information flow tracking for interpreted
languages, such as JS. Other information flow tracking systems also integrate
their tracking mechanisms in the JS interpreter (cf. [4, 7, 5]). Comparing the
performance of our tracking framework against WebKit’s JIT compiler reveals
that our system introduces a slowdown of 6.3×, or 536.48% (the JavaScriptCore
interpreter itself introduces an overhead of 3.5×, or 248.14%, compared to it’s
JIT compiler). We are planning on exploring the performance impact of dynamic
information flow tracking using a JIT.

Showing the tradeoff between security and performance, the reader might
remember the introduction of Address Space Layout Randomization, which after
years of research finally found deployment in real world systems because the
introduced overhead became negligible compared to the security gain.

5 Related Work

Vogt et al. [4] presents work closely related to ours. This pioneering work shows
the practicality of using information flow control to enforce JS security. In con-
trast, they only use one bit as label information whereas our approach allows
multi-domain labeling. Unfortunately they do not provide performance numbers
which would make comparison to other work more comprehensive. Just et al. [5]
presents an information flow framework improving on the results of Vogt et al [4].
They also use a stack for labeling secure regions of a program, but solely focus
on the JS engine. Russo et al. [6] provides a mechanism for tracking informa-
tion flow within dynamic tree structures. This work, in contrast, solely discusses
information flow tracking in the DOM.

De Groef et al. [7] presents a system that uses secure multi-execution to en-
force information control security in web browsers. Even though their approach
presents a general mechanism for enforcing information flow control, their ap-
proach introduces substantial overhead. This is due to the nature of secure-multi-
execution, which requires them to execute JS up to 2n times, for n domains.

Hedin and Sabelfeld [13] present a dynamic type system that ensures infor-
mation flow control for a core of JS. They do not provide an implementation but
address the challenge of tracking the flow of information for objects, higher-order
functions, exceptions, arrays as well as JS’s API to the DOM.

Towards Precise and Efficient Information Flow Control in Web Browsers 195

6 Conclusion

We have presented a framework for the dynamic tracking of information flows
across scripting exposed subsystems of a browser that allows precise labeling
of values. To achieve this objective we added a DomainRegistry to the browser,
modified the underlying JS engine and APIs to handle DOM and user events. We
demonstrated that our framework is (1) able to detect information exfiltration
attempts, (2) allows precise statistics about domains involved in an information
flow violation, and (3) lowers performance overhead down to 83%. Thus, our sys-
tem provides a major step towards precise and efficient information flow control
in web browsers.

References

1. OWASP: The open web application security project, https://www.owasp.org/
2. Microsoft: Microsoft security intelligence report, vol. 13 (2012),

http://www.microsoft.com/security/sir/default.aspx

3. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in JavaScript web applications. In: Proceedings of the
Conference on Computer and Communications Security, pp. 270–283. ACM (2010)

4. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vigna, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: Proceed-
ings of Annual Network and Distributed System Security Symposium (2007)

5. Just, S., Cleary, A., Shirley, B., Hammer, C.: Information flow analysis for
JavaScript. In: Proceedings of the ACM International Workshop on Programming
Language and Systems Technologies for Internet Clients, pp. 9–18. ACM (2011)

6. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking information flow in dynamic tree
structures. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
86–103. Springer, Heidelberg (2009)

7. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser
with flexible and precise information flow control. In: Proceedings of the ACM
Conference on Computer and Communications Security. ACM (2012)

8. Goguen, J., Meseguer, J.: Security policies and security models. In: Proceedings of
IEEE Symposium on Security and Privacy. IEEE (1982)

9. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology 9, 410–442 (2000)

10. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow (2001), http://www.cs.cornell.edu/jif

11. Hennigan, E., Kerschbaumer, C., Brunthaler, S., Franz, M.: Tracking information
flow for dynamically typed programming languages by instruction set extension.
Technical report, University of California Irvine (2011)

12. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You are what you include: Large-scale evaluation of
remote javascript inclusions. In: Proceedings of the Conference on Computer and
Communications Security. ACM (2012)

13. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:
Proceedings of the Computer Security Foundations Symposium, pp. 3–18 (2012)

https://www.owasp.org/
http://www.microsoft.com/security/sir/default.aspx
http://www.cs.cornell.edu/jif

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 196–204, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Granddaughter Beware! An Intergenerational Case
Study of Managing Trust Issues in the Use of Facebook

Ann Light1 and Lizzie Coles-Kemp2,∗

1 Northumbria University School of Design, Newcastle upon Tyne, NE1 8ST, UK
ann.light@northumbria.ac.uk

2 Royal Holloway University of London, Egham, TW200EX
lizzie.coles-kemp@rhul.ac.uk

Abstract. We offer a qualitative analysis of on-line safety practices and expec-
tations in a community setting to look at trust practices that contribute to the
complexity of information behaviors in the use of social media. Staging an en-
counter between local families by bringing together grandmothers and grand-
daughters at a workshop, we interrogate resulting discussions to understand
how information practices are deployed to perform and interpret social identity.
The analysis reveals the importance of trust practices and in particular, shows
the tension between inward-looking and outward-looking behavior and how dif-
ferent perspectives on trust influence the manner in which communities work to
protect members and police alternative uses of Facebook. In doing so, we add to
knowledge about on-line safety and trust practices and the roles that families
and tools play in supporting, enforcing and augmenting these practices.

Keywords: identity, norms, Facebook, social media, privacy, trust practices.

1 Introduction

The workshop discussed below forms part of the VOME research project, which uses
qualitative social research to ground the development of tools to support information-
al privacy and consent decision-making [5]. The workshop was set up to explore how
a community of internet users regards social media as part of their identity and how
this influences their actions with respect to trust, safety and privacy online.

The workshop ran in northern England in July 2011 and brought together grand-
mothers and granddaughters through a community center that sits at the heart of activi-
ty in an area classified as economically deprived. Barnard-Wills and Ashenden [1] had
shown there are tensions between generational perspectives on identity which come to
the fore in institutional settings, including the family. Previous work on the project had
also influenced the research: some of the user experience evaluations of on-line regis-
tration had found grandmothers influencing grand-daughters in their internet use, in
particular over personal information disclosure practices and social networking.

∗ Corresponding author.

 Granddaughter Beware! An Intergenerational Case Study of Managing Trust Issues 197

During these studies, stories emerged of grandmothers using social networking sites
together with granddaughters as a social activity and supporting granddaughters in
relationship problems that cropped up in using social networking. (The same pattern,
however, did not emerge with other intergenerational pairings.) In designing the next
stage of the research, the team sought room for differing views and interpretations
of technology to emerge and gave a chance for these family members to show each
other - and reflect upon - how they mediate their relationships using technology.

1.1 Related Work

Information practices are situated phenomena, shaped by their contexts. Nissenbaum
[14] highlights the need for the consideration of privacy contexts in privacy-
enhancing technology design. Dourish and Anderson [6] and Stutzman and Kramer-
Duffield [19] have written on ‘contextual information practice’ [19], following
Dourish and Anderson’s insights that security and privacy practices, which contribute
to the creation and maintenance of social identities, are culturally informed, performa-
tive and collectively achieved (see also [7]). Further, the ways that identity is per-
formed and interpreted (and our beliefs about the way that identity is constituted)
have become significant in the design of digital tools as we design more tools that
directly impact on identity and our sense of self [11]. This is not to say that issues of
social identity were not relevant to design before (e.g. Reeves and Nass [17]), but new
trends are bringing complex identity issues to the fore, which go beyond technical
data protection and which require an understanding of the complex range of informa-
tion practices [5, 13, 16,] that are deployed to perform and interpret our identities.

Digital technology is moving into intimate spaces of domestic life and mediates
many of our relationships as well as providing means to represent our lives and organ-
ize our personal business: Odom, Zimmerman, and Forlizzi [15] describe how digital
objects in family homes help children of divorcees achieve a sense of belonging;
Hodkinson and Lincoln [8] discuss young people’s individually owned and controlled
territory online, equating it with the privacy of the bedroom; Miller [12] shows a
diversifying use of Facebook, noting how Facebook can work to make up for a
restricted social life. This takes us beyond the notion of identity as a credential for
controlling access to data and links it to an emotional and representative side that can
inform discussions of trust and safety more fully. In this paper, we examine one social
system for what it can tell us about trust and safety perceptions and practices in a
tight-knit community with sharply demarcated uses of social media such as Facebook.

2 Details of the Identity Workshop

This paper draws on analysis of experiences of a workshop set up to explore dynam-
ics between granddaughters and grandmothers using social media in a tight communi-
ty setting.

The workshop involved six granddaughters (GDs) and six grandmothers (GMs). It
was staged in a northern English town where local granddaughter/grandmother pairs
were recruited through a community center. Preliminary work had already identified

198 A. Light and L. Coles-Kemp

that there were close family pairings and internet active family members. Participants
self-selected on criteria given to the center leaders, with a stress on relations not indi-
vidual characteristics. Given the personal nature of perceptions of identity and the
practices that are used to perform and interpret identity, it was important that the
group was small enough for participants to feel comfortable to speak about sensitive
issues. To support this aspect, the workshop was run at the community center, which
was familiar to all participants.

As it turned out, the participants were all known to each other from daily life in the
community, coming from a small area where social mobility is low. For instance, all
the GDs had been to the same school. Each pair was part of what would be classed as
a “close” family unit; while the GDs defined themselves as very fond of their GMs
and identified as part of the community. All the GDs (16-24) used social networking
sites; they were immersed internet users.

The GMs were aged 55+ and four of the six GMs were great-grandmothers. They
included a mix of active social networkers and those without accounts for any social
networks. One GM used social networking to keep contact with relatives in Australia.
Two of the others used the Internet for email and on-line shopping. Those who did not
use Facebook directly had experience of family who uses social networks. Each was
interested in interaction with their GDs and her friends. The relationships with their
granddaughters varied, although all took an active role in their GDs’ lives and could
report acting as a “safety valve” when GD relations with her mother became tense.

2.1 Planned Interactions

Only a small amount of formal intervention was planned into the workshop so that
emphasis would be on emergent discussion and reflection. The event was facilitated
by a community leader and a VOME researcher. The workshop began with an intro-
duction to VOME research and the process for the day. This explained that VOME’s
work is on personal information control, but didn’t develop the theme. Events were
videoed by someone from the community group who was known to the majority of
the participants. Before lunch, individuals and pairs from the group showed each oth-
er how they used social networking; after lunch they worked in pairs.

A few specific structuring elements were included, to focus the work and initiate
discussion. During the morning’s “show and tell” sessions, while someone used the
big screen in the room to show their activities, the group was encouraged to discuss
issues that arose and write down thoughts and reflections. Then a summary session
was run before lunch and objectives were set for the afternoon. In the afternoon, the
GD/GM pairs were mixed up. Each GD was tasked with showing their “new” GM
what they did on-line and also to show GMs how to search on the internet, find in-
formation and look at websites of interest. During all these activities, there was little
direction given from the facilitation team. However, the facilitators did pick up on
issues, press participants to develop points and widen the discussion to hear others’
voices on a topic. In other words, with some focusing, the topics spoken about and the
way that discussion developed emerged from the activities of sharing and showing.

 Granddaughter Beware! An Intergenerational Case Study of Managing Trust Issues 199

2.2 Designing the Methodology

Drawing on traditions of emergent investigation (e.g. [2],[10]), an open-ended process
was used in the workshop to allow identity to be performed. We sought to encourage
participants to express themselves in their own language and allow themes to come
and go. But, further, room for sensitive and controversial issues to arise was built in
(and made ‘safe’ as possible by the presence of a familiar community worker, a famil-
iar space and so on). Indeed, the device of putting members of close families together
for so long with so much freedom of topic in a reflective mode was to stimulate en-
counters – with ideas and with each other. Tensions that arose were explored reflec-
tively: neither cultivated, nor ignored.

The form contrasts with most design research workshops, where a purpose is ex-
plicit, more activity is scheduled and relations between participants are less important
than focus on an outcome. Instead, here, the motive was to explore issues the group
found important when together. The approach did not seek to simulate the situated-
ness of ethnography, yet it is situated in existing relations. In one respect, it is natural-
ly occurring: the event took place in the lives of six families in a center they use; they
showed each other normal activities; normal relations were lived out. In another, it is
contrived: a staging that fueled reflection and encouraged debate [3]. In other words,
the research team deliberately under-determined the process, and, in assembling a
carefully chosen set of social roles (though not selecting the people stepping into
them), issues of identity and relations played out, while shared activity and communi-
ty processes joined the topic of media use for contemplation.

The team took the recorded video of the day and watched it repeatedly, as advo-
cated by Knoblauch et al [9]. We looked particularly for tensions – in our expecta-
tions, in the use of tools, in group relations, in family pairs – and how they were ma-
naged. Were they new or well worn? Was there friction, working around the issue, or
acceptance? How did actions and attitudes bear on what was happening with the
tools?

This search for friction points is distinct from looking for problems to solve or de-
sign opportunities, but it may be a precursor. We put emphasis on this earlier phase as
it is the point where we formed an analysis of identity issues that challenged tradi-
tional thinking about trust, privacy and online safety practices and attitudes.

In the next sections, we give a flavor of the insights that emerged, though, for the
sake of clarity and brevity, we only share our most relevant findings.

3 Emergent Interactions

Facebook (FB) dominated: in the morning, one GD/GM pair showed how they used it
and then further GDs showed their presence on it. Later, one GM who did not use it
was set up with an account and ‘friend’ requests were sent. In general, the GMs were
less digitally literate, but more socially skilled and led commentary and questioning of
social media uses by the GDs. Two striking behaviors will be raised here.

1) The interaction between GMs and GDs suggests that using FB may be a com-
munal activity offline as well as across cyberspace. One GD/GM pair showed how
they play online games, using FB together in the same physical space, often sharing

200 A. Light and L. Coles-Kemp

the computer. Interestingly, the GD has access to and uses the GM’s username and
password for both FB and email. However, this is not reciprocal; the GM has chosen
to give control to the GD. The GM informed the group that she shares her details with
her GD, not out of ignorance but out of feelings of intimacy; her GD, however, does
not share her log-on details because of feelings of identity and autonomy. This is
counter to expected use but cannot be linked to simple lack of understanding or digital
literacy as the GM displays both. Instead, we observed a social space where GM and
GD play together with their own rules of access and where co-use and users who are
traditionally classified as “non-users” influence trust, privacy and safety practices.

2) From the “show and tell” sessions, it was evident that five of the six GDs popu-
lated their FB ‘friends’ primarily with family and people they knew from the imme-
diate community. This pattern was replicated when setting up a FB account for one of
the GMs: all the ‘friend’ requests (22) that popped up during the day came from
members of the family or from families connected to the family in the near locality.
When undertaking paired activities later, further examples emerged of how social
media acts as entertainment for co-located and/or hardly separated friends. As one GD
said: "It means I can keep in touch with my mates without going out" and another: "I
am really shy, but using social networking gives me the chance to be able to talk to
anyone.... I don’t know what else we would do if we didn’t have the internet." (How-
ever, by ‘anyone’ she meant people she already knows in the neighborhood.) FB was
seen as something to do, offering a range of pastime activities. Key to use was socia-
lizing with ‘friends’ on FB who were also friends in the locality, i.e. already part of
the community in which the GDs lived. It was clear that the networks they used on-
line reproduced the social network around them, remained fairly homogenous and
reflected a lifestyle centered on home and surrounding area, where trust relationships
are primarily built off-line and those relationships are mirrored on-line.

However, for one GD, the patterns of engagement were very different. For her,
going online and using FB was a means to meet people outside the community. This
woman is classed as a ‘vulnerable’ young adult and whilst holding down a job and
being an active member of the community, she is not part of the set who socialize as
the other five do. In fact, she sees FB as her chance to engage with people from out-
side the tight networks in which she lives and in which her status as different is
played back to her. This very different use led to conflicting views.

We will describe this encounter in detail since it illustrates well the relationship be-
tween design, identity, trust, social relations and peer pressure. (For ease of descrip-
tion in the following narrative, we call this GD ‘Lisa’.)

3.1 An Open and Shut Case

During Lisa’s description of her social practices, a tension emerged regarding the
interpretation of her privacy settings. FB provides the means to set choices of who can
see your profile and your postings: it can be ‘friends’, ‘friends of friends’, chosen
networks or ‘everyone’. (Between the workshop and writing this paper, FB changed
the label for "Everyone" to "Public"). For those who regarded FB as entertainment
within the community in which they lived, setting the privacy to ‘friends’ or other

 Granddaughter Beware! An Intergenerational Case Study of Managing Trust Issues 201

selected groups was regarded as a sensible safety measure. With this inward-looking
behavior, trust is a prerequisite for disclosing personal information. They might not
all follow this policy, but they nevertheless viewed it as reasonable and wise. Every-
one they talked to on FB was known to them and knew more about them than they
ever posted on FB, so FB privacy was seen as irrelevant locally. But strangers were
unwelcome and ‘everyone’ represented strangers. For Lisa, who used FB as a means
to reach beyond the community in which she lived, the ‘everyone’ setting was neces-
sary and Lisa’s outward-looking behavior demonstrates that trust is not a prerequisite
for disclosing personal information. Her day routinely involved checking to see if she
had been ‘friended’ by anyone new and her ‘friends’ were not known to her before
such an approach. She saw the ‘everyone’ setting as entirely reasonable.

When people heard her privacy settings, the social pressure on Lisa to change them
was evident and she was lectured by another GD. Even though not all the other FB
users in the group had restricted access to their FB postings, it was an expectation that
the privacy settings would be understood in a particular way (i.e. a local norm). It was
the insistence by Lisa that, for her purposes, the ‘everyone’ setting was most desira-
ble, which caused the tension. This tension was illuminating as an example of how
Lisa resists norms in the group and puts herself outside what is deemed acceptable
behavior, possibly motivating her search for company who accepts different values.

It also offers an example of how a group may operate with expected stances in so-
cial networking, even if they do not always act on them, and how this carries through
into their information practices - trust and safety management can be situated offline
as well as in the online interactions this offline network supports. By working with
such a closed circle, the researchers were able to see this play out as a dominant sub-
set of connections. In a more heterogeneous set of ‘friends’, such stances would be
less apparent and have less purchase (as Stutzman and Kramer-Duffield [19] note
about reach and expectation).

And, more particularly of interest here, it points to the different understandings of
trust and the varying privacy and security-related needs among the young women.

The five GDs were primarily using FB to connect with people in their community
and as a social and entertainment outlet. It could be argued that their needs and values
put them at less risk socially because the lack of privacy at community level – both on
and off FB – works to keep them accounted for. Everyone in the community knows
their business; no one outside it cares to know it – trust is a local phenomenon that
does not reach into a wider world. Nonetheless, aspects of privacy do emerge: the GD
who does not reciprocally share log-in details with her GM (behavior which is custo-
marily about security and protection of ID data) refuses to share as a matter of auton-
omy, not because she distrusts her GM.

It is concern for safety that comes up as the principal drawback with Lisa’s beha-
vior. This throws the focus back on the technology, rather than social mechanisms,
largely because Lisa’s position in the group has already violated the protective norms
that operate within it and so people do not know her business. This is apparent - they
are dismayed at her use of FB as well as her privacy settings, though the two revela-
tions emerge together and are related. Lisa, the isolated granddaughter, uses FB as her
route out of the community; the need for privacy is different; the support from the

202 A. Light and L. Coles-Kemp

community, more fragile. In her case, using FB is about hiding certain aspects of her
identity and accentuating others, which cannot be performed within her geographical
community. Using the ‘everyone’ setting and exposing information to others is part of
interacting online and she wants strangers to see her news updates and other postings.
If there is risk in this disclosure, she is unmoved, explaining it as a trade-off for great-
er virtual mobility, and if there is a risk to her person, which is the far more severe
threat that the rest of the group has begun to consider, then it only becomes real if she
contemplates meeting the strangers she ‘friends’. In this way she reconciles risks -
and the greatest risk for her remains that social isolation, which use of FB mitigates.
This moment of conflict in the group reflects the different values in using FB:

1. as a tool within a co-located community, and
2. as a tool for an individual wanting to move beyond a co-located community.

Using the tool within the community, there is support provided at community level
for users’ wellbeing and the tools’ controls are subverted to be replaced, or aug-
mented, by social gatekeeping practices at another point in the negotiation of appro-
priate behavior. This provides a set of very different priorities to those of someone
who uses FB to reach out of their immediate community, where privacy, security and
safety are screen-based choices, though not necessarily informed by the factors that
motivated the design of the controls. For instance, Lisa does not see broadcasting to
public channels in FB as related to privacy. It is the potential to make new friends that
motivates her and that inevitably entails some information disclosure and exchange.

4 Learning about Social Media Use

By taking a performative view of identity [4, 11], the research team was able to con-
ceive of a workshop in which making space for roles and identities to play out was
more important than setting specific goal-directed activities and so designed an event
to stress social and dynamic aspects. Room was given over for people to question
themselves and others about what they do, making good use of existing social rela-
tions in the group. This ‘spaceful’ technique did not rule that tensions should occur,
but gave a chance for the questioning of practices and motivations. Focusing on iden-
tity as a shared emergent phenomenon allowed us to consider the information practic-
es and values in the group. It helped reveal that not only were understandings of pri-
vacy, security and safety different from those embedded in most privacy and security
management systems, but that two different social systems were operating at odds
with each other. In fact, there were signs that the presence of the tightly knit group,
dealing socially with eventualities, actually made the risks greater for Lisa as she
operated alone, outside the social support system and divergently from it.

4.1 Different Priorities Require Different Designs

Though the incident with Lisa was brief, it gave insight into using social media and
the expectations operating in the group. In Lisa, the team was reminded of Miller’s
[11] study of a person using FB to compensate for a restricted social world; thereby

 Granddaughter Beware! An Intergenerational Case Study of Managing Trust Issues 203

troubling relations with her physically close community and invoking strong reactions
in those upholding ‘normal’ behavior. However, Lisa was not trying to violate norms
or navigate privacy. She was trying to perform her chosen identity with the tools
available to her, clearly showing that, for her, trust was not a precursor to disclosing
personal information. No amount of education about privacy, cautioning about stran-
gers or designing out disclosure will alter her position, unless it also meets her need
for friends and safety. Therefore, interventions to support Lisa in performing her
identity require a different shape to those used to support the rest of the group.

4.2 The Challenges for Designing in Trust

As we have already indicated, identifying the principal zone of gatekeeping and in-
formation negotiation as diffused through the community, rather than at the interface
to the software, destabilizes models of privacy. This opens the way to think about
personal information control, not as an off-line or on-line concept but as socially ne-
gotiated1. The practices we witnessed are not based on misconception of privacy or a
cheating of the rules (such as the use of lying [7]). The concept of protecting data is
clearly second to concerns about trusting strangers in other matters.

More significantly, as the group explored its priorities it revealed two quite polar
contexts of use, both of which trouble conventional wisdom. In one, a tight-knit
world, non-users co-manage tools and information flows. Much of the group’s think-
ing about FB and how to behave on it emanates from off-line grandmothers who are
worldlier than their granddaughters. These women are abreast of new trends, but
choose their relation to them. This is most intriguingly captured in the GM who uses
FB only to play with her GD as a co-user. With the insight that experience of use does
not necessarily come from using (see also Sambasivan et al [18]), it offers a new slant
on digital inclusion and our understanding of older people’s use of technology. At the
moment, these co-users are in the shadows and invisible to the technology, but per-
haps one day they will have their own side-cars to travel in.

The other narrative considered here leads straight to matters of identity, belonging
and beyond. We had played out before us the tension between privacy and expression
and the way that social norms about protection and ‘right’ behavior can be oppressive
for individuals who must travel virtually to find their kin. Although we analyzed this
here through exploring a tension in one small group, it points to a far wider issue that
most of us instinctively acknowledge. This trade-off is implicit in much usage but not
so apparent in the design of the technologies we use.

5 Conclusion and Future Work

As the examples here show, designing to support social networking practices requires
technologies for users with different trust perceptions and needs. Online sociality may
be based on trust, but it is an interaction of trust and self-expression, problematizing
existing discourses around information disclosure. A further insight is the amount of
interaction taking place off-line within social groups around the tools. This points to

1 [19] and [6] point to other aspects of the social negotiations that manage disclosure.

204 A. Light and L. Coles-Kemp

potential to develop technologies that support co-use and make space for the role and
influence of the non-user. As governments move to a service delivery position of
“digital by default”, future work will use these insights to research non- and co-use
and to inform the design of spaceful software interfaces that can incorporate different
on- and off-line interventions designed to support trust practices.

References

1. Barnard-Wills, D., Ashenden, D.: Public sector engagement with online identity manage-
ment. Identity in the Information Society, 1–18 (2010)

2. Belk, R., Wallendorf, M., Sherry Jnr, J.F.: The Sacred and the Profane in Consumer Beha-
vior: Theodicy on the Odyssey. J. Consumer Research 16(1), 1–38 (1989)

3. Binder, T.: Why Design:Labs? In: NORDES 2007, 2nd Nordic Design Research Confe-
rence, Konstfack, Stockholm (May 2007)

4. Butler, J.: Gender Trouble: Feminism and the Subversion of Identity. Routledge, NY
(1990)

5. Coles-Kemp, L., Kani-Zabihi, E.: Practice Makes Perfect: Motivating confident on-line
privacy protection practices. In: IEEE International Conference on Social Computing
(2011)

6. Dourish, P., Anderson, K.: Collective Information Practice: Exploring Privacy and Securi-
ty as Social and Cultural Phenomena. J. HCI 21(3), 319–342 (2006)

7. Dourish, P., Bell, G.: Divining a Digital Future: Mess and Mythology in Ubiquitous Com-
puting. MIT (2011)

8. Hodkinson, P., Lincoln, S.: Online Journals as Virtual Bedrooms?’ In Young: Nordic
Journal of Youth Research (2008)

9. Knoblauch, H., Schnettler, B., Raab, J., Soeffner, H. (eds.): Video Analysis: Methodology
and Methods. Peter Lang (2006)

10. Light, A.: Adding Method to Meaning: a technique for exploring peoples’ experience with
digital products. Behaviour & Information Technology 25(2), 175–187 (2006)

11. Light, A.: HCI as heterodoxy: Technologies of Identity and the Queering of Interaction
Design. IwC 23(5) (2011)

12. Miller, D.: Tales from Facebook. Polity Press (2011)
13. NISA: To Log or Not to Log? – Risk and Benefits of Life-Logging Applications (2011),

http://www.enisa.europa.eu/activities/risk-management/
emerging-and-future-risk/deliverables/life-logging-
risk-assessment (retrieved)

14. Nissenbaum, H.: Privacy in context: Technology, policy, and the integrity of social life.
Stanford Law Books (2009)

15. Odom, W., Zimmerman, J., Forlizzi, J.: Designing for Dynamic Family Structures: Di-
vorced Families and Interactive Systems. In: Proc. DIS 2010, pp. 151–160 (2010)

16. O’Hara, K.: Transparent government, not transparent citizens: a report on privacy and
transparency for the Cabinet Office. London, GB, Cabinet Office (2011)

17. Reeves, B., Nass, C.: The Media Equation: How People Treat Computers, Television, and
New Media Like Real People and Places. CUP, Cambridge (1996)

18. Sambasivan, N., Cutrell, E., Toyama, K., Nardi, B.A.: Intermediated technology use in de-
veloping communities. In: Proc. CHI 2010 (2010)

19. Stutzman, F., Kramer-Duffield, J.: Friends Only: Examining a Privacy-Enhancing Beha-
vior in Facebook. In: Proc. CHI 2010 (2010)

Contextualized Web Warnings, and How They

Cause Distrust

Steffen Bartsch1, Melanie Volkamer1,
Heike Theuerling2, and Fatih Karayumak3

1 CASED, TU Darmstadt
Hochschulstraße 10, 64289 Darmstadt, Germany
{steffen.bartsch,melanie.volkamer}@cased.de

2 IAD, TU Darmstadt
Petersenstr. 30, 64287 Darmstadt, Germany

h.theuerling@iad.tu-darmstadt.de
3 Cyber Security Institute, TUBITAK BILGEM

41470 Gebze / Kocaeli, Turkey
fatih.karayumak@tubitak.gov.tr

Abstract. Current warnings in Web browsers are difficult to understand
for lay users. We address this problem through more concrete warning
content by contextualizing the warning – for example, taking the user’s
current intention into account in order to name concrete consequences.
To explore the practical value of contextualization and potential obsta-
cles, we conduct a behavioral study with 36 participants who we either
confront with contextualized or with standard warning content while
they solve Web browsing tasks. We also collect exploratory data in a
posterior card-sorting exercise and interview. We deduce a higher under-
standing of the risks of proceeding from the exploratory data. Moreover,
we identify conflicting effects from contextualization, including distrust
in the content, and formulate recommendations for effective contextual-
ized warning content.

1 Introduction

Warnings in Web browsing are an example of how difficult it is to craft effective
security interventions. A plethora of studies (e.g. on certificate warnings: Sun-
shine et al. [19]) have shown that current warnings are ineffective at influencing
the behavior of users for two main reasons: First, because of habituation effects
from the frequent unhelpful warnings in non-critical situations [2]. Second, be-
cause of the technical language that prevents users from understanding the risks
of proceeding – that is, how likely it is that an adverse event occurs and what
the personal consequences are [6,8,13]. We thus not only need to prevent the
occurrence of warnings in uncritical situations, but also make the warnings un-
derstandable so that the infrequent warnings will enable users to take informed
decisions about proceeding based on the actual risks involved.

One proposal to solve the problem with the understanding of the risks is to
move away from traditional approaches to warnings as described by Wogalter

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 205–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

206 S. Bartsch et al.

[20]: generic hazard warnings with static texts and symbols for a broad audi-
ence. Instead, we follow earlier proposals to contextualize security interventions
and thereby increase their concreteness [7,4]. The idea is to employ additional
information on the context (e.g. user intention) so as to generate more concrete
warnings – for example, by mentioning specific consequences, such as credit-card
fraud in case of online shopping – and therefore make it easier for users to relate
to and understand the risk of proceeding.

Since contextualization has been primarily studied technically for warnings
up to now – for example, on how to acquire the available context information
[7] –, we address the practical value of contextualization in this paper. The goal
of this work is to test whether contextualization is more effective in increasing
the understanding of the risks and in influencing behavior than traditional con-
tent, and to explore how to craft effective contextualized warning content. We
developed contextualized warning content based on a pre-study with lay and
expert users. We then conducted a between-subject study with 36 participants
who were confronted with warnings either showing the contextualized content
or content from existing warnings while solving realistic tasks in a lab environ-
ment. In addition to the participants’ reaction to the warnings, we also collected
qualitative data from a posterior card sorting of the warnings and a posterior
interview. Our main contributions are:

1. We show a positive effect from contextualization on how concretely partici-
pants assess the risks of proceeding;

2. We demonstrate how confounding factors, such as visual stimuli that imply
severity, can dominate the effect of contextualization in real-world settings;

3. We identify complexities related to contextualization, including distrust in
the warning content due to its concreteness;

4. We derive recommendations of how to craft effective contextualized content.

2 Prior Research on the Content of Web Browser
Warnings

Bravo-Lillo et al. [6] showed empirically that warnings are not understood –
for example, due to technical terminology. Improved warning content may help,
though: Biddle et al. [5] found that their reformulated warnings made users more
responsive to different levels of connection security. More specifically, Downs et
al. [8] showed that phishing warnings are more often ignored if the threats and
consequences are unknown. Furthermore, Kauer et al. [13] found that individuals
are more likely to heed warnings if they perceive personal consequences. However,
when Krol et al. [14] confronted users with either a very generic warning or one
with more specific consequences, they found no significant difference in behavior.

To warn in an adequate form and achieve the necessary impact, De Keukelaere
et al. [7] proposed to adapt the intervention to the context; they found improve-
ments from considering the security risk and prior actions of the user. In this
paper, we follow a related approach, the Framework for Contextualized Inter-
ventions (FOCI), which supports the systematic development of contextualized

Contextualized Web Warnings, and How They Cause Distrust 207

security interventions [4]. The framework targets two aspects: first, whether,
when, and in which form the intervention appears (intervention strategy, e.g.
active as a warning or passive as a symbol), and, second, what content it con-
veys (e.g. technical threats or personal consequences). This paper focuses on the
content aspect.

3 Pre-study: How Expert and Lay Users Assess Web
Risks

From prior work, it remains unclear, what contextualized content helps users
in understanding the risks of proceeding. To guide our choice of content in the
main study of this paper, we explored what is missing for users to understand
the risks. Prior literature showed that expert and lay users differ in how they
assess risks and that experts are more likely to have a sufficient understanding
[3]. Thus, we analyzed the difference between expert and lay users in how they
assess risks of Web browsing.

3.1 Study Design

We recruited seven lay and seven expert users from personal contacts for a
card-sorting exercise. Their task was to sort Web site screenshots into stacks
of similarly perceived consequences if their personal account was compromised.
Our goal was to motivate participants to talk about factors that influence their
categorization. We asked expert and lay users to imagine that they have user
accounts at 67 Web sites (selected from the Alexa.com Top-500 most-visited
Web sites in Germany for diversity), which were presented to them as the cards
to be sorted in the form of printed DIN-A5 screenshots of the pages (“picture
sorting”: giving visual clues [17, p. 83]). Expert users (age avg. 37 yrs., min 28,
max 52) covered a broad span of participants professionally related to security,
including at least two each of system administrators, security researchers, and
security consultants. Lay users (age avg. 23 yrs., min 22, max 25) were without
professional relation to security, but covered a broad span of self-assessed PC
expertise from receiving help with computer problems to providing help, even
with difficult problems.

3.2 Analysis

We qualitatively analyzed the transcribed recordings of the card-sorting exercise.
We inductively developed codes for the risk concepts that participants used
to assess risks. These concepts differed between arguments based on the type
or function of the page (e.g. activity “Shopping”, institution “Bank”, content
“Information”) and risk-related factors (affected data “Contacts”, Consequence
“Financial loss”, adversary activity “Hacker accesses my account”). We also
found a difference in how concrete these arguments were (e.g. for consequences
“I’ll lose money from my account” vs. “This somehow affects my finances”).

208 S. Bartsch et al.

Table 1. Primary concepts used in the categorization of Web sites

Argument Examples Lay Expert p < 0.05

Type of page Activity “Shopping” 225 58% 134 38% Yes
Risk factor Consequence “Financial loss” 172 45% 236 67% Yes

Total 385 354

3.3 Experts Focus More on Consequences and Adversary Activities

Expert and lay users significantly differ in their argumentation as shown in
Table 11. Experts more frequently used the risk-factor arguments, particularly
the specific consequence and the adversary activity, than lay users. Lay users,
in contrast, more often relied on the Type-of-page factors of a Web site with-
out explicitly considering risk factors – for example, only the possible activities
(“Eventim, that’s where one may buy, order tickets”). Table 2 shows how the
risk factors break down into different risk concepts. When lay users discussed
risks, they less often mentioned consequences and adversary activities. Our hy-
pothesis for warning content thus is to emphasize these factors for lay users to
help them to better understand the risks of proceeding.

Table 2. Frequency of different risk concepts and their concreteness

Risk concept Lay Expert p < 0.05

Data-related 101 59% 126 53% No
Concrete data 41 24% 86 36% No

Consequence 63 37% 148 63% Yes
Concrete consequence 34 20% 112 47% Yes

Adversary activity 75 44% 148 63% Yes
Concrete activity 22 13% 114 48% Yes

Further risk factors 90 52% 142 60% No
Concrete risk factor 3 2% 65 28% Yes

3.4 Experts Are More Concrete

Not only did lay users less often discuss risk factors than experts; when they
did, they did so less concretely. Experts rather formulated concrete adversary
activities (“modifies my preferences”) and named the concrete consequence or
affected personal data (“bank account data put there”), and the concrete evalua-
tion of specific risk factors (“I will find out quickly”), instead of only mentioning
solely a general risk level such as “I’d classify it as comparatively bad” when
categorizing Web sites (cf. concreteness in Table 2).

1 We applied a Welch Two Sample t-test on the individuals’ proportions and noted in
the last column for which proportion the differences between expert and lay users
are significant, i.e. the null hypothesis was rejected because of p < 0.05.

Contextualized Web Warnings, and How They Cause Distrust 209

4 Research Hypotheses

The findings from the pre-study indicate that it is helpful for lay users if we em-
phasize adversary activities and consequences, and we are thereby more concrete
with respect to the current situation. This is further supported by literature on
risk communication: According to Rothman and Kiviniemi [16] concrete risks
are more successful in creating awareness and influencing behavior in health risk
communication: Consequences (symptoms) that are easier to picture increase
the awareness, as do testimonials of affected individuals when there is an iden-
tification with those. Cognitive psychology indicates that it is important that
people are able to “simulate” or imagine the antecedents and consequences of
risks [12]. As previously noted, Kauer et al. [13] found that individuals are less
likely to ignore warnings when they perceive personal risks, corresponding to the
experience from medical risk communication. Overall, as depicted in Figure 1,
we thus expect that contextualization of the content and thereby including con-
crete risks according to the situation will increase the understanding of risks
and thus the motivation to behave securely.

Fig. 1. Model underlying the research hypothesis

In this paper, we apply this model to study the behavior of participants when
confronted with different warnings, that is, whether they follow the recommen-
dation of the warning and leave the Web site (comply) or whether they proceed
with their task on the Web site. While prior studies [14] have found that the
habituation effect dominates the effect of different content, we assume that our
more intensively improved content should influence the behavior of the partici-
pants. Accordingly, our first hypothesis is:

H1 The participants who are confronted with the contextualized content
more frequently comply with warnings than those with standard content

When the change in behavior is due to better understanding of the risks, we
expect that this change in whether to comply (the warning effect) occurs dif-
ferently depending on the objective risk of the individual situation [13], despite
potential confounds, such as additional visual stimuli:

H2 The relation between the warning effect and the objective risk is
stronger for warnings with contextualized content than for standard con-
tent

210 S. Bartsch et al.

Moreover, the difference in understanding should not only show in the behavior,
but also when asked to consciously assess the criticality of the situation (warning
perception):

H3 The relation between the warning perception and the objective risk
is stronger for warnings with contextualized content than for standard
content

Lastly, since we hypothesize that better understanding is related to perceiving
risks concretely, we expect participants to also emphasize concrete aspects in
their risk assessment depending on the type of warning:

H4 Participants who are confronted with the contextualized content assess
the risks of proceeding more concretely than those with standard content

5 Research Method

Our study has two goals: first, testing the effectiveness of contextualized con-
tent in warnings in behavior (H1–2) and in conscious assessment (H3–4), and,
second, exploring how to optimally contextualize content. To generate realistic
behavioral results, we confront 36 participants either with warnings with con-
textualized or standard content while they solve twelve realistic Web-browsing
tasks. Moreover, we collected and analyzed posterior qualitative data.

5.1 Study Design Overview

The between-subjects study on warnings with contextualized or standard con-
tent consisted of two main parts. In the first, behavioral, part, participants solved
twelve tasks and were interrupted with warnings in five of these, representing
situations of different levels of objective risks. Due to the technical complexity
of integrating the different warnings in the Web browsing tasks, the study was
conducted in our usability lab on a study laptop. In the second, explanatory,
part, participants conducted a card-sorting exercise of screenshots of the warn-
ing scenarios, explaining their reasoning, and were interviewed on the risks of
proceeding in each situation.

No IRB consent was required as all university criteria for studies without
explicit IRB consent were met. For privacy reasons, the screening data that
included personal identification (name was optional, but an email address was
required for experiment logistics) was separated from the screening data used
later for demographics. After the end of the first part of the study, the partici-
pants were informed about the actual goal of the study.

5.2 Instruments: Warnings with Contextualized and Standard
Content

We created prototypes of warnings with contextualized and standard content for
five scenarios of different objective risk levels for the study. We redesigned both

Contextualized Web Warnings, and How They Cause Distrust 211

Table 3. Scenarios with technical threat, estimated likelihood of attack (L), and the
estimated severity of likely consequences (S)

Scenario Activity Technical threat Data at risk Highlighted
properties

L S

Bank Log in to online
banking

Self-signed cer-
tificate

Banking cre-
dentials

Identity High High

Shop Pay with credit
card

Unprotected con-
nection

Payment
credentials

Identity, confi-
dentiality

Med High

OSN Register for
OSN

Unprotected con-
nection, negative
reputation

Personal
data

Identity, con-
fidentiality,
trustworthiness

Med Med

Insurance Request quote
for insurance

Self-signed cer-
tificate

Health data Identity, confi-
dentiality

Med Med

Information Find flight cost Negative reputa-
tion

Travel desti-
nation

TrustworthinessMed Low

types of warnings to have the same “newness” effect for both types of warnings
[18]. For standard content, we reused and adapted the content from warnings
from Mozilla Firefox 3 and Web of trust 1.4.8. For the contextualized content,
we followed the insights of how lay and expert users differ in risk assessment (cf.
Section 3). Since we recruited only lay users, we included concrete information
on the risks of proceeding.

We crafted the scenarios with warnings to represent a wide range of objective
risks to enable a within-subject comparison of participants’ behavior regard-
ing different levels of risks. The scenarios, listed in Table 3, include self-signed
certificates, unencrypted connections, and negative reputation for the activities
banking, shopping, social networking (OSN), requesting an insurance quote, and
information seeking for flights.

A translated version of the warning with contextualized content for the bank-
ing scenario is shown in Figure 2. The warning with the contextualized content
was developed in an iterative process that included eliciting the concrete risk as-
pects to mention, expert consultations, and user feedback on the warning design
and content. The version employed in the study included:

1. the user intention – “entering account number and PIN” in the banking
scenario;

2. a warning headline with an indication of the attack probability – “probably
an attack”;

3. the potential personal consequences from proceeding – “attackers could plun-
der your account”. From the potential consequences to name, we selected
those appropriate for the situation that were most often mentioned in the
pre-study;

4. boxes with concrete and transparent indications whether and how three
main security properties of the situation (identity of Web site provider,

212 S. Bartsch et al.

Fig. 2. Translated example warning with contextualized content

confidentiality of connection, trustworthiness of Web site provider)2 are up-
held. Each box included a short description of how the security property
affects the user when proceeding. The boxes with threatened properties are
highlighted (shown in Table 3) as a confound to explore how such visual
stimuli interact with the effects of contextualization.

5.3 Procedure

After an initial introduction that included the priming as a Web-browsing us-
ability study – to counter a potential unrealistic focus on the warnings –, the
experimenter informed the participants that they would need to complete twelve
tasks (cf. Section 5.2). To counter the effect that participants may feel an un-
realistic urge to complete the given task in the lab setting [18], we offered an
alternative: filling out a “usability problems” form for the study, which required
the participants to enter a carefully selected amount (3 lines) of information
on a separate sheet of paper. In this way, participants would not perceive the
alternative as an easy way to get around the tasks.

Each task described a problem related to the overarching theme of travelling
and gave instructions, including an address of a Web site, to solve it. Where it
was necessary to enter data, such as credentials, the instructions also included
these. To reduce the confounding effects of using a stranger’s laptop and personal
data, the experimenter presented himself as student whose personal credentials
and laptop were used in the study. As part of completing the task, each task
either caused a warning to appear or not (warning or dummy task, respectively).
To prevent the participant from noticing the actual intent of the study early on,

2 We identified these properties by analyzing an extensive list of threats in Web brows-
ing and how these can be addressed through security properties. This approach to
content presentation follows Biddle et al. [5].

Contextualized Web Warnings, and How They Cause Distrust 213

Fig. 3. Example warning with standard content as screenshot (original German
content)

one to three dummy tasks occurred between the warning tasks. We organized the
warning tasks in one of two fixed orders to cancel out effects from the order, either
starting with the most or least critical scenario, banking or flight information,
respectively.

In the second part of the study, the experimenter revealed the actual goal of
the study to the participants and instructed them to read the warnings again. To
further explore their perception of the risks in the warning tasks, participants
were asked to carry out a card-sorting exercise with printouts of the warning
scenarios (Web site screenshot with warning overlayed, as shown in Figure 3),
sorting them by criticality and commenting on their reasoning. The experimenter
further asked the participants to explain for each warning what they thought
why the warning appeared and what the potential consequences of proceeding
would have been.

The audio was recorded for the entire study.

5.4 Participant Recruitment

We targeted lay users with the warning content so that we excluded participants
with security-related professional or study background. We advertised for the

214 S. Bartsch et al.

Table 4. Participant demographics

Group Contextualized Standard

Female 11 11
Male 7 7
Mean age (stddev) 26.3 (4.1) 24.8 (2.6)
Mean PC knowledge 63.9 (20.0) 51.0 (22.5)

study as one on usability problems with Web browsing using posters at public
places (local supermarkets, bus stops), direct dissemination of a similar flyer to
people on and off-campus and through email to non-technical students’ mailing
lists. We offered EUR 10 compensation for participation. Potential participants
had to complete an online screening survey, including demographics, their pro-
fessional/study background, and PC skills. From those, we selected participants
and randomly assigned them to the two groups, but arranged for gender balance.
The demographics of the two groups are shown in Table 4.

5.5 Data Collection and Analysis

To test the hypotheses, we collected quantitative and qualitative data from the
study. Quantitative data consisted of:

1. Which warnings participants complied with from the experimenter’s notes
(for H1–2)

2. The order of the warnings from the card-sorting exercise (H3)

Qualitative data was collected through the audio recordings, which were tran-
scribed for analysis. In particular, we analyzed the qualitative data for

1. How participants reasoned about risks while conducting the card-sorting
exercise and while answering the interview questions (H4)

2. Further comments on the appearance and content of the warnings

For both aspects, we coded the qualitative data, a method that has been suc-
cessfully employed in HCI research [1]. We inductively developed codes by first
applying “open coding”, then “selective coding” from Grounded Theory [11].
To analyze the participants’ reasoning about risks, we identified different risk
concepts that participants used – for example, whether they referred to the af-
fected data, consequences, technical threats, adversary activities, or abstractly
as “this is a dangerous situation”. For comments on the warning, we identified
the categories design, content, understanding, and doubts. One researcher as-
signed a total of 823 codes (625 on risks, 198 on warnings) to 733 quotes in the
transcripts. For coding reliability, a second researcher independently coded six
of the transcripts as suggested by [15], showing a good overlap.

Contextualized Web Warnings, and How They Cause Distrust 215

Table 5. Overview of average compliance with warnings relative to all warnings for
both groups

Group Contextualized Standard
n n

Average compliance 18 46% 18 17%

Female 11 35% 11 15%
Male 7 63% 7 20%

Low PC knowledge 2 40% 4 30%
Med. PC knowledge 10 50% 9 18%
High PC knowledge 6 40% 5 4%

6 Results

6.1 H1–3: The Effectiveness of Contextualization

We recorded the compliance of the participants with each warning while com-
pleting the tasks to test H1:

H1 The participants who are confronted with the contextualized content
more frequently comply with warnings than those with standard content

H1 was confirmed, since the participants with contextualized content signifi-
cantly (Fisher’s exact test for the distribution of compliance count, p = 0.04)
more often complied with the warnings than the group with the standard warn-
ing (shown in Table 5 as overall relative compliance). We saw similar trends for
different demographic groups. Since the self-reported PC knowledge should rep-
resent the self-confidence of participants with respect to interacting with PCs
and people feeling insecure tend to comply with warnings [14], it is not sur-
prising that lower knowledge scores seem to correlate with higher compliance,
particularly for the standard warnings.

We further hypothesized that participants can better differentiate between
the different risk levels by measuring their compliance to the warning as the
warning effect:

H2 The relation between the warning effect and the objective risk is
stronger for warnings with contextualized content than for standard con-
tent

This hypothesis cannot be confirmed by our results. We even see a contrary effect
as shown in Figure 4: The participants with the standard warnings, who needed
to deduce the risk level from the scenario and the technical threat, showed a
general trend that corresponds to the objective risk level (supporting the findings
from Kauer et al. [13]). However, this was not the case for the contextual-warning
group. If the group with the contextualized warnings had better understood the
situation, the trend should have been more pronounced. Instead, the shop and
OSN scenarios caused more compliance than expected from the relative risk level.

216 S. Bartsch et al.

Fig. 4. Average compliance by scenario for both groups, with the number of highlighted
boxes in contextualized warnings

A likely explanation is that our implanted confound, the number of highlighted
boxes, strongly influenced the decision to comply. This result shows that content
can be easily dominated by other factors, in line with the results of Krol et al. [14].

We not only expected the behavior to more closely correspond to the objec-
tive risk levels, but also tested how participants perceived the warnings when
instructed to read them carefully. We conducted the posterior card-sorting ex-
ercise for this hypothesis:

H3 The relation between the warning perception and the objective risk
is stronger for warnings with contextualized content than for standard
content

In the card-sorting exercise, the order of the contextual group corresponded only
slightly better with the objective risk than the control group (particularly for
the bank and flight scenarios; see Table 6 that shows the mean sort order).
This is supported by the lower standard deviation (in brackets in the table) for
the most and least critical scenarios; the contextual group produced less spread
in the sorting than the standard-content group. Moreover, the bump from the
highlighted threats is not present in the card-sorting results, where users were
instructed to actually read the warning, further supporting the notion that the
bump in the behavior was caused by the implanted confound.

6.2 H4: Participants’ Assessment of the Risks

We instructed the participants to think aloud while sorting the warnings after
completing the tasks, and, in addition, asked them to state the reasons for each
warning’s occurrence and what could have been the consequences of proceeding
in each situation.

H4 Participants who are confronted with the contextualized content assess
the risks of proceeding more concretely than those with standard content

Contextualized Web Warnings, and How They Cause Distrust 217

Table 6. Average sorting position for the warning scenarios, 1 being most, 5 least risky
(with standard deviation)

Group Contextualized Standard

Bank 1.3 (1.1) 1.7 (1.8)
Shop 2.1 (0.9) 2.1 (1.9)
Insurance 3.2 (1.9) 2.9 (1.8)
OSN 3.8 (1.7) 3.9 (1.6)
Information 4.6 (1.8) 4.3 (2.3)

We coded how participants mentioned or reasoned about risk in the transcripts,
differentiating between different concepts of risks. In Table 73, we report the
occurrence of the different concepts relative to the total quantity of risk-related
codes for the two groups in the study. While the contextualized and the standard-
content groups similarly often mentioned the affected data as a risk consid-
eration, the context group more often mentioned consequences (in particular,
concrete consequences, such as property-related, like losing money) and adver-
sary activities, such as how an adversary would access their account4. In contrast,
the standard-content group more often resorted to problematic consequence con-
cepts, such as abstract “something bad will happen”; more technical aspects,
such as the missing encryption; and more abstract reasoning, such as “this is a
dangerous situation”5. As elaborated in Section 4, we expect that more concrete
concepts are more “natural” and thus more understandable for lay users that
we recruited the participants for. Accordingly, we conclude from the reported
frequencies of risk concepts that the contextual warnings were more understand-
able. We will verify this aspect in future work.

6.3 Further Findings on the Contextualization.

The participants mentioned further aspects on the warnings that relate to the
content of the warning and its contextualization.

“Too Much Text”. Five participants who were confronted with the contex-
tualized warnings mentioned in the posterior interview that there was too much
content or too small text in the warning. However, several also stated that all
the information given was necessary.

3 p values of a Welch Two Sample t-test on the participants’ proportions for each risk
concept are noted in the last column.

4 We also checked whether participants only directly reproduced (reading aloud) the
content of the warning. This was not the case. Due to the interview situation, all
participants formulated their own statements. Moreover, the majority at least para-
phrased the content – for example, for property-related consequences, participants
used different terms in 77% of the cases.

5 In contrast to abstract consequences, abstract risk reasoning does not point to any
consequences at all.

218 S. Bartsch et al.

Table 7. Risk concepts mentioned by participants relative to the total number of
mentioned risks, including different types of consequences mentioned

Group Contextualized Standard p
Example n n

Risk 354 271

Data Payment credentials 81 23% 61 23% 0.98
Adversary activity “Accesses account” 79 22% 25 9% < 0.001
Consequences Financial loss 120 34% 75 28% 0.065
Mitigation Enter fake data 9 3% 8 3% 0.77
Technical “Missing encryption” 33 9% 65 24% < 0.001
Context “Unknown site” 9 3% 12 4% 0.28
Abstract “Seems dangerous” 10 3% 24 9% < 0.01
Other 13 4% 1 0%

Consequences 120 34% 75 28%
Annoyance Spam 5 1% 11 4% 0.049
Property Loose money 78 22% 28 10% < 0.001
Problematic Unknown, misconception. . . 11 3% 32 12% < 0.001
Other 26 7% 4 1%

Prior Partial Knowledge and Experiences. Due to our recruitment strat-
egy, none of the participants was a security expert. However, eleven participants
referred to their prior partial knowledge on risks or prior adverse experiences at
some point in the risk assessment. While this knowledge helped in the assessment
of the risks, its absence in the majority of cases also demonstrated the lack of
reliability of warnings if their understanding requires prior knowledge to deduce
consequences. Moreover, prior general knowledge also caused the speculation on
and misconceptions of consequences as seen in the above analysis of mentioned
risk concepts. One effect was that the availability heuristic led participants to
assume less severe consequences.

Risk Attitudes. Participants differed in what consequences they considered
relevant for them. For example, one participant mentioned that it would be more
interesting to mention that pictures from the OSN account would be reused than
id theft.

Trust in the Warning. In several cases, statements of the participants re-
vealed distrust in the warning, particularly for the contextualized warnings. For
example:

“But I found this strange because an employer must not access my data,
really. . . because everything would need to be passed on and registered
and that cannot be true!” (T2)

The distrust either related to whether the described attack could take place, as
in this quote (4 cases); to the stated consequences (8); or to the basis of the

Contextualized Web Warnings, and How They Cause Distrust 219

risk assessment, such as user ratings (13). All of these aspects were originally
included in the warning content to increase the warning’s concreteness.

7 Discussion

7.1 Challenges of Drawing Attention to Warning Content

While we show that the contextualized warnings significantly more often caused
participants to comply with the warning, our findings also support the notion
that it is difficult to draw people’s attention to the content of warnings in real-
world scenarios (cf. [14]). We assume that habituation, lack of helpful infor-
mation, and time pressure provide strong incentives for people not to expend
enough cognitive effort on a warning to completely grasp its content. Having a
combined behavioral/explanatory study allowed us to underscore the previously
reported discrepancies between near-practice situations and offline consideration
of warnings [18], furthering the point that warnings always need to be tested in
carefully crafted, realistic study designs as ours.

7.2 Contextualization Helps in Risk Assessment – and in
Understanding the Risk

However, independent of the problems with creating attention for the warning
content and with motivating users to consider the content, the content needs
to be optimally understandable. Concerning this goal, we find, based on the
qualitative data, that participants reasoned about risks more concretely and less
technically or abstractly than the control group (cf. Section 6.2). In particular,
the reasoning depended to a lesser degree on the prior knowledge about threats
or prior personal experiences of adverse events. Since experts in our pre-study
were similarly more concrete in their risk assessments than lay users, we see the
changed reasoning as an indication that contextualized content caused a better
understanding of the risk of proceeding. Our findings thus extend prior research
– for example, by Kauer et al. [13] – that showed personal consequences as more
effective in warnings.

7.3 Building Trust in Contextualized Warnings

Moreover, we identified problems that participants encountered due to the con-
textualization of the content in Section 6.3, particularly related to trust in the
warning. The complex interrelation between user characteristics (such as ex-
pertise), the concreteness of content, understanding, and trust in the warning
warrants a closer look at the problems and how we can address them. Focusing
on the results from the explanatory part of the study (card sorting and inter-
view), we need to extend the model from Section 4 that our hypotheses were
based upon. The extension of the model in Figure 5 shows how the concreteness
of the warning content has – for some participants – negative effects. One such
effect is distrust as shown in the quote in Section 6.3.

220 S. Bartsch et al.

Understanding
of risks

Understanding
from

concreteness

Expertise,
experiences and

risk attitudes

Understanding from
relation to prior knowledge

Concrete risks
(Affected data,

adversary action,
consequences,

technical details)
Distrust from

lack of
understanding

Higher stated
motivation

from understanding

(Perceived)
imprecision /
exaggeration

Distrust from
doubts and
confusion

Conflict of concrete
risks with expertise

or attitudes

Imprecision
due to

concreteness

Motivation
to behave
securely

Distrust in
warning
content

Lower stated
motivation

from distrust

Motivation
from adverse
experiences

Reduced likelihood
of reading from

text length

Fig. 5. The effects of concreteness and contextualization (edges represent effects; green
for positive, red negative)

Specifically, the extended model still describes how mentioning concrete risks
(affected data, consequences, . . .) leads to a higher level of understanding of the
risks from proceeding and thereby motivate users to follow the recommendation
laid out in the warning content (Motivation to behave securely). Our results in-
dicate that the expertise, prior experiences, and risk attitudes of the user play
an important role in the understanding and the motivation. However, the ex-
tended model now also shows that concreteness leads to distrust of the warning
content if the more concrete information is not understood (Understanding of
risks) or if (perceived) imprecision or exaggeration in the content raises doubts.
For example, depending on which risks are considered problematic by the partic-
ipant (risk attitudes ; e.g. only financial consequences, not so much social-privacy
consequences), mentioned consequences were considered exaggerated. Conflicts
of the content with the user’s expertise can have similar effects. From the par-
ticipant’s comments in the study, we expect that distrust will also reduce the
motivation to follow the recommendation from the warning content.

Thus, our results indicate several negative side effects from the content’s
concreteness. We conclude that to realize the positive effects of increased con-
creteness without compromising on other factors (e.g. the trust in the warning
content), individualization for the user is necessary: For instance, people with
higher expertise need different content – for example, less concrete consequences,
so as to not raise doubts about the given information – than people with lower
expertise.

Contextualized Web Warnings, and How They Cause Distrust 221

While it has been found before that trust plays an important role in the
behavior of users when confronted with security-critical situations, prior research
has focused on the trust in the Web site [10,21,9]. Krol et al. [14] also mentioned
as one conclusion of their study that the trust in the warning needs to be restored,
but they addressed the habituation effects from over-frequent warnings in non-
critical situations. Our results and the derived model go beyond those findings
by addressing the trust in the warning as affected by the warning content.

The extended model is foremost based on the qualitative and subjective data
from a relatively small sample of 36 participants. Therefore, the extended model
should primarily serve as a hypothesis for further studies on the contextualization
of content with larger and more representative samples that we are planning as
future work, particularly on the individualization of warnings between lay users.

Acknowledgments. We thank Michaela Kauer and Christoph Seikel for their
support on designing and conducting the pre-study. The work presented in this
paper is supported by funds of the Federal Ministry of Food, Agriculture and
Consumer Protection (BMELV) based on a decision of the Parliament of the
Federal Republic of Germany via the Federal Office for Agriculture and Food
(BLE) under the innovation support programme.

References

1. Adams, A., Lunt, P., Cairns, P.: A qualitative approach to HCI research. Cambridge
Univ. Press, Cambridge (2008)

2. Amer, T., Maris, J.: Signal Words and Signal Icons in Application Control and
Information Technology Exception Messages – Hazard Matching and Habituation
Effects. Tech. Rep. 06-05, Nothern Arizona University (2006)

3. Asgharpour, F., Liu, D., Camp, L.J.: Mental Models of Computer Security Risks.
In: WEIS 2007: Workshop on the Economics of Information Security (2007)

4. Bartsch, S., Volkamer, M.: Towards the Systematic Development of Contextualised
Security Interventions. In: Proceedings of Designing Interactive Secure Systems,
BCS HCI 2012. BLIC (2012)

5. Biddle, R., van Oorschot, P.C., Patrick, A.S., Sobey, J., Whalen, T.: Browser inter-
faces and extended validation SSL certificates: an empirical study. In: Proceedings
of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 19–30.
ACM, New York (2009)

6. Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improving
Computer Security Dialogs. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949,
pp. 18–35. Springer, Heidelberg (2011),
http://www.springerlink.com/content/q551210n08h16970

7. De Keukelaere, F., Yoshihama, S., Trent, S., Zhang, Y., Luo, L., Zurko, M.E.:
Adaptive Security Dialogs for Improved Security Behavior of Users. In: Gross,
T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler,
M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 510–523. Springer, Heidelberg
(2009)

http://www.springerlink.com/content/q551210n08h16970

222 S. Bartsch et al.

8. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility
to phishing. In: SOUPS 2006: Proceedings of the Second Symposium on Usable
Privacy and Security, pp. 79–90. ACM, New York (2006)

9. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of
the effectiveness of web browser phishing warnings. In: CHI 2008: Proceeding of
the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing
Systems (2008)

10. Fogg, B.J., Marshall, J., Laraki, O., Osipovich, A., Varma, C., Fang, N., Paul, J.,
Rangnekar, A., Shon, J., Swani, P., Treinen, M.: What makes Web sites credible?:
a report on a large quantitative study. In: CHI 2001. ACM, New York (2001)

11. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Transaction (1967)

12. Kahneman, D., Tversky, A.: The simulation heuristic. Cambridge University Press,
Cambridge (1982)

13. Kauer, M., Pfeiffer, T., Volkamer, M., Theuerling, H., Bruder, R.: It is not about
the design – it is about the content! Making warnings more efficient by commu-
nicating risks appropriately. In: GI SICHERHEIT 2012 Sicherheit – Schutz und
Zuverlässigkeit (2012)

14. Krol, K., Moroz, M., Sasse, M.: Don’t work. Can’t work? Why it’s time to rethink
security warnings. In: 7th International Conference on Risk and Security of Internet
and Systems (CRiSIS), pp. 1–8 (October 2012)

15. Lazar, J., Feng, J.H., Hochheiser, H.: Research methods in human-computer inter-
action. Wiley (2010)

16. Rothman, A.J., Kiviniemi, M.T.: Treating People With Information: an Analysis
and Review of Approaches to Communicating Health Risk Information. J. Natl.
Cancer Inst. Monogr. (25) (1999)

17. Rugg, G., McGeorge, P.: The sorting techniques: a tutorial paper on card sorts,
picture sorts and item sorts. Expert Systems 14(2), 80–93 (1997)

18. Sotirakopoulos, A., Hawkey, K., Beznosov, K.: On the challenges in usable security
lab studies: lessons learned from replicating a study on SSL warnings. In: SOUPS
2011: Proceedings of the 7th Symposium on Usable Privacy and Security. ACM,
New York (2011)

19. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying Wolf: An
Empirical Study of SSL Warning Effectiveness. In: USENIX Security 2009 (2009)

20. Wogalter, M.S.: Handbook of warnings. Routledge (2006)
21. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing

attacks? In: CHI 2006: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 601–610. ACM, New York (2006)

All In: Targeting Trustworthiness for Special Needs
User Groups in the Internet of Things

Marc Busch1, Christina Hochleitner1, Mario Lorenz2, Trenton Schulz3,
Manfred Tscheligi1,4, and Eckhart Wittstock2

1 CURE—Center for Usability Research & Engineering, Businesspark MARXIMUM,
Modecenterstraße 17 / Gebäude 2, 1110 Vienna, Austria

2 Chemnitz University of Technology, 09107 Chemnitz, Germany
3 Norwegian Computing Center, P.O. Box 114 Blindern, NO-0314, Oslo Norway

4 ICT&S Center, University of Salzburg, Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria
http://www.cure.at, http://www.tu-chemnitz.de, http://www.nr.no,

http://www.icts.sbg.ac.at

Abstract. We showcase how privacy, security, and trust requirements of peo-
ple with mental and physical disabilities can be integrated in the development
of smart home applications and devices. We present our chosen process leading
to trustworthy design of a smart medicine cabinet that informs about potential
privacy and security risks along with helping users manage their life.

1 Introduction

The Internet of Things (IoT) is an umbrella term describing the integration of ubiquitous
technology in the users’ environments [1], e.g., in form of sensors or embedded comput-
ing systems. Our research on IoT particularly focuses on the inclusion of technologies
in the users’ homes. Many IoT applications target persons with special needs or older
adults living at home independently through the usage of assistive technologies [2] or
welfare technology, such as intelligent medicine cabinets. Although the design of these
applications often caters to the needs of these particular user groups, significant aspects,
such as security, privacy and trust are not in the center of research yet. Nevertheless,
these topics are important when looking at users with limited physical and mental ca-
pacities, such as patients with dementia. These patients depend on reliable information
systems that facilitate their daily life. Therefore this paper will describe the creation
process of a smart medicine cabinet designed for older adults that respects and informs
about potential privacy and security issues. We enhance the user-centered design pro-
cess by using method triangulation (focus groups, personas, quantitative, and qualitative
evaluations) tailored to the factors privacy and trust in an Internet of Things-context.

The paper is arranged as follows: in Section 2, we examine current literature on the
development of smart medicine cabinets and lack of inclusion of trust in the process
and the final product. Section 3 documents the devolpment and evaluation of our intel-
ligent medicine cabinet that is hypothesized to be trustworthy. This includes require-
ments engineering, designing the prototypes, and evaluating them in a virtual reality
(VR) environment. Section 4 describes the further development to the final prototype.
Finally, Section 5 concludes our described design approach for trustworthy interfaces
and presents opportunities for future work.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 223–231, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.cure.at
http://www.tu-chemnitz.de
http://www.nr.no
http://www.icts.sbg.ac.at

224 M. Busch et al.

2 Smart Medicine Cabinet and Trust

Since 2000, several applications and devices have been introduced that answer require-
ments of users with special needs for medical assistance remotely and through care-
givers [3–5]. These applications rely on similar principles: the information needs to be
understandable for older adults [6], the application should prevent incorrect intake [6],
and remind older adults of scheduled medicine intake [6–8]. With the tendency to net-
work these devices and applications and to connect them to the pharmacy or doctor’s
office [5], concerns of privacy and security arise. Literature mainly focuses on privacy in
ubiquitous environments [9] and information needs of older users [10, 11], but few ap-
proaches include the factors needed to safeguard the user’s privacy and evoke trust [12].
We have incorporated existing literature and research to create and evaluate a trustwor-
thy medicine cabinet for older adults. This information is modified and adapted from lit-
erature and user-centered design to iteratively target the particular needs of older adults.

We see trust as a consequence of provided privacy and security information, it is
important to create a unified understanding of trust within the development and design
team. Trust has different definitions depending on the field of study (e.g., interpersonal
trust or system trust). In our case, we are conducting research on the users’ perceived
trust in a system (i.e., system trust). That is, whether a user trusts the objects in the IoT
environment. To aid in examining user trust in the IoT, we use the definition proposed
by Dobelt et al. [13]: A user’s confidence in an entity’s reliability, including that user’s
acceptance of vulnerability in a potentially risky situation.

3 Development and Evaluation

Our research goal is to examine the development of trustworthy systems and trustwor-
thiness feedback for informing users about threats and providing information about se-
curity and privacy. Our approach is to provide a usable and intuitive solution that caters
to the requirements of users with special needs in IoT environments. The developed and
described intelligent medicine cabinet is part of a smart home scenario that contains dif-
ferent objects that communicate and help to make certain tasks simpler. One of these
functions is to remind the person in the home about other tasks. The smart home can
also be helpful for caregivers as it allows them to know if something is wrong and pro-
vides a better overview to support the person in the home. The medicine cabinet helps
older adults with their day-to-day lives by reminding them to take their medicine and
ordering new prescriptions. This raises trust issues for both, the caregivers and the older
adults in the home. Below, we outline our special needs groups-centered design process
leading to a trustworthy medicine cabinet. The process itself follows a user-centered
design approach and includes methods such as personas, end-user research and itera-
tive design and evaluation phases. To particularly target older adults as well as trust in
IoT systems, the methods have been adapted to focus especially on the chosen target
group. Therefore all activities brought a main focus to older users, ranging from fo-
cus groups with participation of older persons and caretakers to evaluations with older
adults. Therefore the used methods and material, as well as instructions and information
provided had to be useful and understandable by this particular target group.

All In: Targeting Trustworthiness for Special Needs User Groups 225

3.1 Personas

We followed the method outlined by Pruitt and Adlin [14] for constructing personas in
order to approach the design of the medicine cabinet with the main focus on the user.
Therefore we collected relevant literature as well as statistics and user opinions in re-
gards to medicine cabinets, IoT and the users’ understanding and needs towards privacy,
security and trust. To make sure that our personas included people with disabilities, we
specifically targeted people with vision impairment and dyslexia, but also included the
needs of an older adult, who was beginning to suffer from dementia [15]. Among our
personas, the first one is Paul, our older persona who has started developing early de-
mentia. Paul’s grandson, Fredrik, sometimes helps him. Fredrik is a technology early
adopter, but has dyslexia and normally skips reading manuals. Paul’s son, David, is very
concerned that the smart house works properly and that Paul receives good care, even
when he cannot be there. Another persona is Anna, who works in customer support
and has 20% normal vision. During development and evaluation, we ensured the focus
on the target groups by recruiting participants that fit into the representative personas
profiles. This is an advancement from the normal use of personas to ensure inclusion of
our target groups’ requirements.

In addition, we applied tactics similar to Pruitt and Grudin [16] for keeping the per-
sonas active throughout the process. Each partner took control of one persona for pro-
viding that persona’s perspective. Each month, a persona would send a story to let us
know about some issue in their daily life and keep us aware of the persona’s needs.
We would also receive small gifts (e.g., candy and memory sticks with pictures of the
personas on them) that would remind us to keep the personas in our thoughts.

3.2 Understanding Trust in the IoT

In addition to the literature-based research, we conducted focus groups with samples
that have been chosen according to the features of the personas to understand privacy
and security practices in an IoT-context. This led to a deeper understanding of how trust
can be incorporated into the design of a medicine cabinet. It also helped to check if our
personas and real users have similar issues.

We conducted five two-hour focus groups with six to eight participants each in two
different countries. Two of the focus groups involved people with different levels of
visual impairment. The other focus groups involved older adults and persons taking care
of people with disabilities (e.g., caregivers or family members). Besides the discussion
from the groups, each focus group also included a questionnaire gathering participants’
demographics and their general privacy concerns.

One of the first issues was explaining the concept of the IoT to the focus group
participants. Even though the concept has been around for a while in the research com-
munity, we found it not to be very mainstream. After giving examples of items that can
be considered things in the IoT and how they communicate, we pointed out that one
thing that needs to be considered is that many of the objects would act independently
and potentially transfer information without a user knowing about it. Once participants
understood the IoT concept, they were able to focus on the trust issues.

226 M. Busch et al.

In particular, older users as well as caretakers were asked about their or the person
in their care’s opinion on security and trust issues in connection to new technology
and issues they encounter when using technology. Thus, they provided input and con-
cerns for our target groups, e.g., concerning secure transmission or mental and physical
capabilities of users to interact with the cabinet.

Participants were concerned about what information would be disclosed and who
would have access to their data. There was also skepticism to the medical cabinet in
and of itself. How would it know which medicine should be taken at which time? How
would it know that someone had actually taken their medicine and not cheated some-
how? Some also felt that the whole concept of identifying themselves to the cabinet
seemed too complicated. Some participants were also concerned about practical is-
sues addressing trust in the system’s functionality, e.g., how the cabinet would work
if there were no electricity. Another participant pointed out that a smart medicine cabi-
net may reduce uncertainty of some of the issues that exist now: for example, a doctor’s
bad handwriting can have a real effect on a prescription and not remembering to take
medicine or taking too much medicine can be a fatal mistake.

When discussing the impact of security and privacy violations for the cabinet, par-
ticipants mentioned consequences connected to targeted advertisements, image loss,
tampering with their medication, and loss or increase of insurance. It was desirable to
restrict access to the participants’ medical records. At the same time, a system convey-
ing privacy and security information seemed helpful to them. This system should allow
the participants to know what was going on (system transparency) and make the cabinet
more trustworthy. One of the participants pointed out that for people who have dementia
it is important to have routines and not change things much, so a new medicine cabinet,
as well as the feedback provided needs to be learned beforehand.

The focus groups led to the definition of privacy and trust issues participants discov-
ered for the medicine cabinet. These issues were then summarized in end-user-based
requirements that formed the basis for the development of the interaction workflows,
the software, and hardware prototypes.

3.3 The Interface Approach

The interfaces for the medicine cabinet were designed based on the requirements elicited
in the focus groups and with the end-users in form of personas (mainly, Paul) in mind.
Furthermore, relevant literature on trustworthy interface design [17] and existing litera-
ture in this field was taken into account [6]. For example, we considered the principles
outlined by Siegemund et al. [1] and adopted similar ones. Additionally, the interfaces
are based on principles from the Android Design Guidelines [18]. Thus, we have in-
cluded the needs of older adults in regards to trust and respected requirements towards
usable and intuitive interfaces.

We addressed three interface design issues to create a trustworthy medical cabinet:
(a) Screen elements and screen estate to answer the needs of older adults [17]—clear
and self-explanatory interface elements, readable font size, clear visual design.
(b) Transparent privacy and security information, including interpretations of the in-
formation [12]—understandable, non-technical and brief explanations, clear statements
of consequences and recommendations, known paradigms. (c) Multimodal feedback

All In: Targeting Trustworthiness for Special Needs User Groups 227

Fig. 1. Prototype user interfaces for the medicine cabinet (left) and smartphone (right)

(audio, visual, and tactile) for better recognition of feedback by different target groups
(older adults, dyslexic, and visually impaired) [2]—acoustic reminder for taking
medicine, haptic feedback for communicating the system’s trustworthiness state, using
text-to-speech functionalities.

A detailed explanation of the trustworthy interface prototyping approach, in partic-
ular issue (a), is described by Hochleitner et al. [17] and comprises clear instructions
as well as information on what data is being disclosed, to whom, and for what purpose.
In addition, the initial prototypes made use of icons to convey this information (see
examples in Fig. 1).

3.4 Simulation and Evaluation in Virtual Reality Environments

As part of our iterative process, the scenarios and initial prototypes of the medicine
cabinet were evaluated before we invested the cost in creating fully functional proto-
types. We did this by using virtual reality to create a simulated smart home that included
the smart medicine cabinet [19]. Participants navigated through the environment using

Fig. 2. A user evaluating the medicine cabinet in VR

228 M. Busch et al.

a Wii Balance Board and performed tasks using a tablet computer they were holding
(Fig. 2). The tablet computer would present information that would normally be shown
on touch-screens in the environment (e.g., on the intelligent medicine cabinet).

One of the tasks involved receiving a reminder for taking medicine. The participants
would navigate to the medicine cabinet and use the tablet to identify themselves, take
their medicine, and renew a prescription. Participants were also confronted with the
privacy and security information shown in Fig. 1 during this process and asked about
the perceived trust in this situation.

We recruited participants that were representative of our personas, particularly Paul.
Since it is difficult for people suffering dementia to provide reliable feedback (e.g.,
dementia-induced short-term memory loss during the repeated recognition and usage
of the system), we again recruited older adults and people that took care of people with
dementia. These participants could provide valuable feedback for the target group since
they take care of older adults or people with dementia and had detailed knowledge of
older adults’ physical and mental capabilities in terms of new technologies.

Older persons that were recruited for the evaluation mostly thought that the smart
home setting was a good idea and appreciated the support given by the medical cabinet.
Some were reluctant in relying on a machine for medication, being afraid of system
failures and power outages. The provided feedback was rated to be trust inducing be-
cause of information provided about the medicine, the functionality of the medical cab-
inet, the availability of security information and the efficient interaction. Generally, the
trustworthiness feedback was consciously noticed by less than half of the participants,
who valued the information on the process, especially about the drug store where the
medicine was purchased. Furthermore participants indicated to be more alert to feed-
back on positive aspects to foster trust, not on negative aspects (risks, warnings).

Apart from the trust and privacy issues, the design of the user interfaces posed an is-
sue. Many found the smaller displays difficult to read or to concentrate on the reading.
The people who substituted for the target group with dementia stated that their patients
would not be able to concentrate enough to go through the whole information. Further,
most of the older adults had only limited understanding of the underlying technical
procedures and consequently had problems interpreting the technical information that
was given. They were also missing a history-function to see what medicine they have
taken within the last few days. Yet, some of the participants realized that they should
be thinking about security and privacy issues once they were presented with such in-
formation when refilling the prescription. More information about security parameters
seemed to cause more concern. Generally, the possibilities to configure the transmit-
ted information was appreciated. Further and more detailed information can be found
in [20].

4 The Final Prototype

As the VR evaluations revealed several weaknesses in feedback, the interfaces were
further developed to fulfill Paul’s need for privacy and security information. To create
a coherent physical setup, we decided to convert the displayed information from land-
scape (Fig. 1) to portrait mode (Fig. 3). This also made it possible to arrange larger lists
of information (e.g., medicine to be taken) on the screen and employ larger font styles.

All In: Targeting Trustworthiness for Special Needs User Groups 229

Fig. 3. The final prototype of the medicine cabinet

The final medicine cabinet guides Paul through three scenarios: taking medicine
as scheduled, unscheduled medicine intake, and taking along needed medicine when
he leaves his house. Paul can also reorder medicine directly from the cabinet when
medicine begins to get low. With this task, privacy—what data and who receives the
data—and security information—how the data is sent—are displayed to Paul.

As part of the feedback from the VR evaluations, we eliminated the icons, as they
showed no positive effect on the perceived trust of the target group. Instead, we fo-
cused on providing clear instructions and recommendations based on known interface
paradigms, such as progress bars. This information is color-coded (green for high se-
curity and privacy to red for low security and privacy) for better recognition. We also
provide positional information so that people with red-green colorblindness can see at
a glance the information as well, and have included text-to-speech information that can
be picked up by screen readers on tablets and smart phones. These changes are targeted
at assisting users with special needs to make decisions about their privacy and secu-
rity. Therefore, Paul is able to decide on either trusting the system and the perscriptions
(based on the displayed information and provided recommendations) or not to trust the
medicine cabinet (implying that he will get the medicine by himself or through care-
takers). An example of the newer user interface on the smartphone is shown in Fig. 4.
In addition, we developed hardware prototypes of the medicine cabinet (Fig. 3). These
prototypes will be tested in the next round of real world and VR evaluations.

5 Conclusion and Future Work

We have adapted a user-centered design process focusing on the needs of users with
disabilities to design a medicine cabinet that they can trust. To do so, we have applied
and adapted user-centered design methods such as personas and iterative development
to target the particular requirements of users with disabilities. The process ensured that
the focus on the users (i.e., older adults) was kept and their advice was frequently con-
sulted. The result of this process is a trustworthy interface for a medicine cabinet with
design elements particularly targeted at users with beginning dementia. The medicine
cabinet as well as its components have been subject to evaluations and have been con-
sidered understandable and usable during preliminary evaluations.

230 M. Busch et al.

Fig. 4. Near final prototype of color-coded feedback and security bar on a mobile screen

Our adapted user-centered design process worked well for this development and
showed how important it was to include users with special needs in the design pro-
cess. It also shows some challenges when using this process. For example, it is very
difficult to directly include people with dementia in activities like focus groups. It is
important in that case to either find people that understand the needs of people with
dementia or organizations that help people who have dementia. User organizations that
represent people with different disabilities are also a valuable place to recruit people to
inform the design of a system or evaluate it.

In our next evaluation, we plan to include people with dyslexia or impaired vision
to see how well they can use the cabinet and how trustworthy it is perceived by them.
We plan on using the results to publish guidelines about how best to present security
information to people regardless of their disabilities. That way everyone can have a
trustworthy experience in the IoT.

Acknowledgments. This research is funded as part of the uTRUSTit project. The
uTRUSTit project is funded by the EU FP7 program (Grant agreement no: 258360).

References

1. Siegemund, F., Floerkemeier, C., Vogt, H.: The value of handhelds in smart environments.
Personal and Ubiquitous Computing 9(2), 69–80 (2004)

2. Salces, F.J.S., Baskett, M., Llewellyn-Jones, D., England, D.: Ambient Interfaces for Elderly
People at Home. In: Cai, Y., Abascal, J. (eds.) Ambient Intelligence in Everyday Life. LNCS
(LNAI), vol. 3864, pp. 256–284. Springer, Heidelberg (2006)

3. Wan, D.: Magic Medicine Cabinet: A Situated Portal for Consumer Healthcare. In: Gellersen,
H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 352–355. Springer, Heidelberg (1999)

4. Calabretto, J.P., Warren, J., Darzanos, K., Fry, B.: Building Common Ground for Communi-
cation Between Patients and Community Pharmacists with an Internet Medicine Cabinet. In:
Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pp.
2087–2094. IEEE Comput. Soc.

All In: Targeting Trustworthiness for Special Needs User Groups 231

5. Palen, L., Aaløkke, S.: Of pill boxes and piano benches. In: Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work - CSCW 2006, p. 79.
ACM Press, New York (2006)

6. Khan, D.U., Siek, K.A., Meyers, J., Haverhals, L.M., Cali, S., Ross, S.E.: Designing a per-
sonal health application for older adults to manage medications. In: Proceedings of the ACM
International Conference on Health Informatics - IHI 2010, p. 849. ACM Press, New York
(2010)

7. López-Nores, M., Blanco-Fernández, Y., Pazos-Arias, J.J., García-Duque, J.: The iCabiNET
system: Harnessing Electronic Health Record standards from domestic and mobile devices
to support better medication adherence. Computer Standards & Interfaces 34(1), 109–116
(2012)

8. Tsai, P.-H., Shih, C.-S., Liu, J.W.-S.: Mobile Reminder for Flexible and Safe Medication
Schedule for Home Users. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part III, HCII
2011. LNCS, vol. 6763, pp. 107–116. Springer, Heidelberg (2011)

9. Konomi, S., Nam, C.S.: Supporting Collaborative Privacy-Observant Information Sharing
Using RFID-Tagged Objects. Advances in Human-Computer Interaction 2009, 1–13 (2009)

10. Godfrey, M., Johnson, O.: Digital circles of support: Meeting the information needs of older
people. Computers in Human Behavior 25, 633–642 (2009)

11. Liao, Q.V., Fu, W.T.: Age differences in credibility judgment of online health information.
In: Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics -
IHI 2012, p. 353. ACM Press, New York (2012)

12. Ho, G., Wheatley, D., Scialfa, C.T.: Age differences in trust and reliance of a medication
management system. Interacting with Computers 17, 690–710 (2005)

13. Döbelt, S., Busch, M., Hochleitner, C.: Defining, Understanding, Explaining TRUST within
the uTRUSTit Project. Technical report, CURE, Vienna, Austria (2012)

14. Pruitt, J., Adlin, T.: The Persona Lifecycle. Morgan Kaufmann, San Francisco (2006)
15. Schulz, T., Skeide Fuglerud, K.: Creating Personas with Disabilities. In: Miesenberger, K.,

Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part II. LNCS, vol. 7383, pp. 145–
152. Springer, Heidelberg (2012)

16. Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proc. of the 2003 Conference on
Designing for User Experiences. ACM, San Francisco (2003)

17. Hochleitner, C., Graf, C., Unger, D., Tscheligi, M.: Making Devices Trustworthy: Security
and Trust Feedback in the Internet of Things. In: Fourth International Workshop on Security
and Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU), Newcastle,
UK (2012)

18. The Android Open Source Project: Android Developer Guidelines (2013)
19. Wittstock, V., Lorenz, M., Wittstock, E., Pürzel, F.: A Framework for User Tests in a Virtual

Environment. In: Bebis, G., et al. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 358–367.
Springer, Heidelberg (2012)

20. Busch, M., Döbelt, S., Hochleitner, C., Wolkerstorfer, P., Schulz, T., Fuglerud, K.S., Tjøs-
theim, I., Pürzel, F., Wittstock, E., Dumortier, J., Vandezande, N.: uTRUSTit Deliverable
D6.2. Design Iteration I: Evaluation Report. Technical report, CURE–Center for Usability
Research and Engineering (2012)

Trust Domains: An Algebraic, Logical,
and Utility-Theoretic Approach

Gabrielle Anderson, Matthew Collinson, and David Pym

University of Aberdeen
Scotland, U.K.

{g.a.anderson,matthew.collinson,d.j.pym}@abdn.ac.uk

Abstract. Complex systems of interacting agents are ubiquitous in the highly
interconnected, information-rich ecosystems upon which the world is more-or-
less wholly dependent. Within these systems, it is often necessary for an agent,
or a group of agents, such as a business, to establish within a given ecosystem
a trusted group, or a region of trust. Building on an established mathematical
systems modelling framework — based on process algebra, logic, and stochastic
methods — we give a characterization of such ‘trust domains’ that employs log-
ical assertions of the properties required for trust and utility-theoretic constraints
on the cost of establishing compliance with those properties. We develop the es-
sential meta-theory and give a range of examples.

1 Introduction

Complex systems of interacting agents are ubiquitous in the highly interconnected,
information-rich ecosystems upon which the world is more-or-less wholly dependent.
Within these systems, it is often necessary for an agent, or a group of agents, such as a
business, to establish within a given ecosystem a trusted group, or a region of trust.

In this paper, we are concerned with characterizing such ‘trust domains’ within a
mathematical systems modelling framework. Developing the modelling framework de-
veloped in [6], and initial ideas about trust domains presented in [3], we provide a char-
acterization that employs logic — in order to determine the properties that an agent, or
group of agents, must satisfy in order to be trusted — and utility — in order to determine
and limit the cost of establishing compliance with these properties.

The key components of the framework are the following: first, a resource-sensitive
process algebra, within which the decision-theoretic notion of utility is used to estab-
lish the relative cost of different choices; second, a corresponding, resource-sensitive
modal logic of processes; and third, a conceptual notion of trust domain, characterized
using our algebraic, logical, and utility-theoretic tools, that encapsulates the intuitions
described above.

In Section 2, we discuss our motivation in modelling ‘trust domains’, giving a pre-
cise, but informal, introduction to the concept. In Section 3, we provide the neces-
sary conceptual background to our systems modelling approach and, in Section 4, we
give a mathematical formulation of a weighted (costed) process algebra that provides a
suitable basis for modelling systems and decision-making about choices within them.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 232–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 233

In Section 5, we describe the associated modal, substructural logic. Cost modalities play
a key role in describing trust domains. In Section 6, we return first, in the light of our
mathematical set-up, to the definition of trust domains, and proceed to discuss a range
of examples. In Section 7, we discuss some directions for further research.

2 Trust Domains

�
�

��

�
�

�������

�������

�������

�

���

������
���

���

���

���
���

Fig. 1. Iso-utilities and Trust Domains

In systems of interacting agents, an
individual or group of agents may
establish a part of the system, or
a collection of agents within the
system, that it trusts. Similarly, a
system’s designer or manager might es-
tablish a collection of parts of the sys-
tem such that, within any given part,
the agents trust one another. We shall
refer to such a part of the system,
or such a collection of agents, as a
‘trust domain’. This term is used in
the Trusted Computing Project (www.
trustedcomputing.org.uk), the
Open Trusted Computing consortium
(www.opentc.net), and the ‘Trust Domains’ project (www.hpl.hp.com/
research/cloud security/TrustDomains.eps). The literature on models
of trust is very large and cannot be surveyed in this short article, but a good survey with
a relevant perspective for us is [18].

In this section, we consider informally how an agent might decide which part of its
system, or which agents within the system, to trust. We propose a characterization of
a trust domain for a given agent within a given system that has two components. First,
a logical assertion that expresses the properties that must be possessed by any trusted
agent. Second, a cost bound that limits the extent to which the system around the agent
can be trusted; that is, the agent will trust only those parts of the system that can be
reached or observed within a given expenditure of resource. The intended situation is
depicted schematically in Figure 1. This picture is intended to be understood in the
context of the classical model of distributed systems (see, for example, [7,6]) in which
processes (here, agents) execute relative to collections of resources, located at specified
places within the system. The system is understood as residing within an environment
from which events are incident upon it and to which it exports events [7,6].

Here the agent, E, may be given one of two different choices of cost function, KE .
If KE = K , then F is not within E’s trust domain at either the K1 or K2 levels. If,
however, KE = L, then F is within E’s trust domain at the L2, but not at the L1 level.
Agent F ’s cost function, M , includes agent G at the M2 level, but not at the M1 level
(M1 < M2). F ′ is in no-one’s domain at any of the given levels of cost.

Examples of the propositions that might be associated with a trust domain include
access control assertions, such those as described in [2,1,6] (and references therein).

www.trustedcomputing.org.uk
www.trustedcomputing.org.uk
www.opentc.net
www.hpl.hp.com/research/cloud_security/TrustDomains.eps
www.hpl.hp.com/research/cloud_security/TrustDomains.eps

234 G. Anderson, M. Collinson, and D. Pym

We make use of logical cost modalities, that place bounds on the cost that is acceptable
for a given agent. This formalizes the above notion of levels of trust.

In Section 6, we consider three examples of trust domains, illustrating different as-
pects of their form and use. Our focus here is on modelling decision-making about trust
in situations inspired by corporate environments.

1. Establishing Boundaries. In a dock, the harbour master and the captain of an in-
bound ship must determine at what point responsibility for navigating the ship
should pass between them: The captain must trust the harbour master with the care
of the ship and the harbour master must trust the captain to navigate the dock safely.

2. Contract Choices. In the management of mergers & acquisitions, the deal team
must establish valuations of the principals. This requires access to highly confiden-
tial information, and the deal team may need to outsource specialized parts of the
valuation, so that is a risk that confidential data may be lost. Who should be trusted
by the deal team? And with what information?

3. Information Provenance. When establishing data-sharing arrangements, the prove-
nance of the evidence used to assess, say, the reliability of the outsourced service
provider is of critical importance. How does an agent decide to trust that evidence?

The examples are not intended to cover all of the interesting issues: they are illustrative.
We aim to provide a modelling framework within which this notion of trust domain

can be established and shown capable of handling substantial examples, encompassing
a variety of situations. We begin with a mathematical treatment of distributed systems,
including an account of how agents’ choices are modelled.

3 Systems Modelling and Decision-Making

The classical model of distributed systems, such as described in [7], provides the con-
ceptual inspiration for our modelling framework, which builds on [6,3]. First, a model
resides within an environment; that is, the part of the system not modelled in explicit
structural detailed. The interaction between the model of interest and its environment
is captured mathematically using stochastic processes to provide occurrences of events.
Second, the structural components of a model can be described as follows:

– Location: locations are the places within (and, indeed, outwith) the system at which
resources reside; locations can be logical or physical;

– Resource: resources are the building blocks of the system’s services; they can, for
example, be consumed, created, and moved between locations by processes;

– Process: processes deliver services within and outwith the system, manipulating the
resources that are distributed around the system’s logical and physical locations;
they interact with the system’s environment.

Mathematically, our treatment of process is based on Milner’s synchronous calculus of
communicating systems (SCCS) [15], as developed as a basis for systems modelling
in [6]; note that asynchronous calculi can be encoded within synchronous calculi [15].
The key idea is that locations, resources, and processes co-evolve, according to a judge-
ment L,R,E

a−→ L′, R′, E′, which is read as ‘the process E, using resources R at

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 235

locations L, performs action a and so becomes the process E′ that is able to evolve us-
ing resources R′ at locations L′ ’. For simplicity of presentation, and with little loss of
generality for our present purposes, we suppress locations in the remainder of this pre-
sentation, though make informal use of them in our examples, in Section 6. The reader
might think of them either as implicitly present, or consider them to be rolled up into
the definition of resources (see [6] for relevant technical support).

This judgement is defined using a structural operational semantics, such as in the
definition of SCCS [15,6]. Three mathematical details are important. First, actions
are required to form a commutative monoid (a and b combine to form ab). Second,
resources are assumed to form a preordered partial commutative resource monoid,
R = (R,�, ◦, e), in which resource elements R1, R2 ∈ R can be combined, using the
monoid operation to form R1 ◦ R2 (with unit e) or compared, R1 � R2, say, using the
preorder. The structure of the monoid is subject to some coherence conditions [17,6]. A
key example of a monoid of resources is given by the natural numbers (with 0), with ad-
dition as the monoid operation and less-than-or-equals as the order: (N,≤,+, 0). Third,
the relationship between actions and resources must be specified using a modification
function that specifies the effect of performing an action a on a resource element R: that
is, μ : (a,R) �→ R′. Modification functions must satisfy some (mild) coherence con-
ditions relating the monoid structure of actions and the monoidal structure of resources
(details may be found in [6]). This treatment of resource just as in bunched logic [17]
and in various versions of separation logic [19] and, for brevity, we refrain from further
rehearsing its justification here.

With this set-up, the operational semantics, in its basic form, admits rules such as

R,E
a−→ R′, E′ S, F

b−→ S′, F ′

R ◦ S,E × F
ab−→ R′ ◦ S′, E′ × F ′

and
R,Ei

a−→ R′, E′
i

R,E1 + E2
a−→ R′, E′

i

(i = 1, 2)

giving, respectively, concurrent product and simple non-deterministic choice.
In determining the extent of trust domains, agents do not, however, make simple non-

deterministic choices. Rather, they make choices according to their (situated, or located)
preferences. Accordingly, we must set up a version of the approach sketch above that
captures a suitable representation of preference-driven choice.

Many process calculi include a form of prioritized sum, for example [20]. In priori-
tized sums, say w ·a : E+w′ · b : F , with w > w′, the option a : E is always preferred
in any context in which both a and b are available (which they may not be, because of
restriction operations). By contrast, we argue that an agent, even with the same potential
choice of actions, should be permitted to associate different costs to the same options,
dependent on its situation and the properties of the agents with which it is interacting.
To this end we make use of cost-dependent choice (or simply sum)

∑
u
Ei, in which

an agent has a choice between alternatives Ei, and its preference is codified by the cost
function u. Cost is used as in utility theory to encompass uplift for revenue; that is, as
in loss. Cost functions map from a resource-process pair to rational numbers.

As we wish to model agents whose preferences differ dependent on their situation,
the cost ascribed to the different possible choices at a choice point must not rely on those
potential choices alone. For example, if the choice R, a :E+u b :F (here we use an infix
notation) occurs within a wider context R ◦S, (a :E+u b :F)×G, then the preferences

236 G. Anderson, M. Collinson, and D. Pym

in the given context are determined by the cost calculations o = u(R ◦ S, a :E × G)
and p = u(R ◦ S, b :F ×G). If the first summand is chosen then we annotate the cost o
on the evolution arrow and, if the second is chosen, then we annotate p on the evolution
arrow. An occurrence of the same choice R, a :E +u b : F within a different context,
such as R ◦ T, (a :E +u b :F) × H with G �= H or S �= T , may have different cost
calculations and associated costs.

Along with the concept of a process algebra with costs comes an associated modal
logic. Just as in [3,6], the logic admits the usual classical (or, if preferred, intuitionistic)
propositional connectives, as well as thus usual ‘separating’ or ‘resource-sensitive’ mul-
tiplicatives from bunched logic [17], as in [6], and action modalities, as in Hennessy–
Milner logic [10,9,16].

Critically in our present setting, it also admits weighted, or cost, modalities. Utility-
based decision-making for ordinal preferences can be incorporated into a process-theo-
retic setting [3]. Standard economic reasons (particularly moves towards uncertain out-
comes) require the further development of this to cardinal utility, and we embark upon
such a task in this paper. The possibility connectives 〈≤ n〉φ and 〈> n〉φ denote that
there exists an evolution whose cost m is, respectively, less than or equal to, or greater
than, n, where the resulting state (or continuation) satisfies φ. The necessity connectives
[≤ n] and [> n] denote, respectively, that in all evolutions whose cost m is less than or
equal to, or greater than, n, where the resulting state satisfies φ. Thus, a logical prop-
erty of a trust domain that is guarded by a sequence of choices has an associated cost
capturing the associated agent’s preferences and determining which choice is made.

4 A Process Algebra with Contextual Costs

Section 3 describes our conceptual formulation of system models and the associated
model of decision-making. We now establish the necessary mathematical set-up. Re-
lated work, based on Milner’s π-calculus, is in [8].

In order to consider the different situations or contexts that a given process trusts, we
wish to consider how a process values its options dependent on the context in which it
occurs. As such, the sub-evolutions of a composite process may not be independent of
each other. This is in contrast with typical process calculi, where the behaviour of a com-
posite process is usually defined in terms of the behaviours of its sub-processes alone.

To see how this works, consider a choice R, a :E +u b : F that occurs as part of a
wider model R ◦ S, (a :E +u b :F)×G. When a choice is made we annotate the cost n
of the chosen summand on the evolution (e.g., R, a : E +u b : F ==⇒n R′, a : E). As
these costs depend on the context, then the evolution needs to know what this context
is. We henceforth annotate the context in which a process is evolved on the underside
of the evolution arrow (e.g., R, a : E +u b : F =====⇒

S,[]×G

n R′, a : E), where [] denotes

the hole into which a : E +u b : F may be substituted to regain the complete system
(a : E +u b : F)×G, and S are the resources allocated to G. In addition, any choices
in []×G will make use of the process that is substituted into the hole []. We therefore
annotate the process that is substituted, into the process being evolved, on top of the

evolution arrow; for example, S, []×G
R,a:E+ub:F
========⇒

m

S′, []×G′.

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 237

In essence, the judgement for evolution for processes with cost of the form

C
C2==⇒
C1

n

C′ (1)

denotes how a context C, that exists in a system that can be decomposed as C1(C(C2)),
evolves in terms of its choices. We refer to C as the (primary) context, C1 as the outer
context, and C2 as the substituted, or inner context. Intuitively this denotes the evolution
of one part, C, of an entire system, C1(C(C2)). In order to reason compositionally, we
wish to be able to describe the evolution of C independently and structurally. As choices
take account of context, this is not possible. The semantics of choice, however, makes
use of just the definition of the inner and outer context, disregarding their structure. So
we do not need to make use of the structure of C1 and C2, as we do with C, but need
only record their definitions, for reference at choice points. They are therefore annotated
on the evolution arrow, but are not evolved in that relation.

We now describe the theoretical set-up in detail. Assume a set U of symbols, called
formal costs, with a distinguished element 0U , called the neutral cost. Processes are
generated by the grammar

E ::= 1 | [] | a : E |
∑
i∈I

u
Ei | E × E. (2)

These are really process contexts: the term [] is a hole into which other processes may
be substituted. For this work, it turns out to be convenient to develop contexts as first-
class citizens rather than merely meta-theoretic tools.

The choice
∑
i∈I

u
Ei is the key construct: it describes situations in which an agent has

a choice between alternatives Ei indexed by a i ∈ I , and its preference (in a larger
context) is codified by the cost u ∈ U . The infix operator E +u F may be used for
binary sums, and the subscript u may be dropped when u = 0U . The zero process 0 is
defined to be the sum indexed by the empty set and the neutral cost. The zero process,
unit process 1, and synchronous products E×F are well-known in process calculus, as
are prefixes a : E, where a ∈ Act. Assume, for each formal cost u ∈ U , an associated,
real-valued cost function u : Cont −→ R [13] that fixes an interpretation for each
formal symbol u ∈ U . The identically zero function is associated with 0U . Henceforth,
we do not distinguish between formal costs and their costs functions.

A processE is well-formed if it contains at most one hole and that hole is not guarded
by action prefixes. The process E is closed if it has no holes and open otherwise. Let
PCont be the set of all well-formed processes, PCCont be the set of all closed well
formed processes, and POCont be the set of all open well-formed processes. Let R be
a resource monoid and μ be a fixed modification function, as defined in Section 3.
Define the products of sets Cont = R × PCont, CCont = R × PCCont and
OCont = R × POCont. The letter C is reserved for contexts. Define C∅ = e, [].
Brackets will be freely used to disambiguate both processes and contexts. For C =
R,E, the notational abuses C × F = R, (E × F) and C +u F = R, (E +u F) will
sometimes be used. Substitution in processes, E(F), replaces all occurrences of [] in
E with F ; for example, (([] +u E) × G)(F) = (F +u E) × G. Substitution of con-
texts C1(C2), where C1 = R,E and C2 = S, F , is defined as follows: if E is open,

238 G. Anderson, M. Collinson, and D. Pym

R,1
C2−−→
C1

1

R,1
(TICK)

R, a : E
C2−−→
C1

a

μ(a,R), E
(PREFIX)

C2
(e,1)−−−→
C1

a

C′
2

e, []
C2−−→
C1

1

e, []
(HOLE)

(S×)
R,E

C2−−→
C3

a

R′, E′ S, F
C2−−→
C4

b

S′, F ′

R ◦ S,E × F
C2−−→
C1

ab

R′ ◦ S′, E′ × F ′
(PROD)

Fig. 2. Action Operational Semantics

R,1
C2==⇒
C1

0

R,1
(TICKW)

R, a : E
C2==⇒
C1

0

R, a : E
(PREFIXW)

C2
(e,1)
===⇒

C1

n

C′
2

e, []
C2==⇒
C1

0

e, []
(HOLEW)

n = u(C1(R,Ei(C2)))

R,
∑
I

u
Ei

C2==⇒
C1

n

R,Ei

(SUMW) (S×)
R,E

C2==⇒
C3

o

R,E′ S, F
C2==⇒
C4

p

S, F ′

R ◦ S,E × F
C2==⇒
C1

o+p

R ◦ S,E′ × F ′
(PRODW)

Fig. 3. Operational Semantics of Cost

then C1(C2) = R ◦ S,E(F), where E(F) is process substitution; if E is closed, then
C1(C2) = C1.

Developing the formulation sketched above, we separate the operational semantics
into two dimensions: the evolution system for performing actions (Figure 2) and the
evolution system for determining the cost of possible choices (Figure 3), as in [20],
and building on [3]. Overall, the evolution sequences for the calculus are interleavings
of the two dimensions. The operational semantics for performing actions is defined in
Figure 2. The unit process always ticks, effecting no change. The prefix process evolves
via its head action. The hole rule is a technical one used to terminate evolution deriva-
tions of open contexts. An important feature of this system is that contextual informa-
tion about conclusions is propagated up to premisses. In the product case, information
about each premiss is propagated up from the conclusion to the other premiss, so that
derivations of transitions occur in context. This is effected by the side-condition (S×)
is which states that C3 = C1((S, F (C2))× []) and C4 = C1((R,E(C2))× []).

The operational semantics for determining the cost of possible choices, as defined
in Figure 3, is used to determine the cost of a given set of choices of a process. A
neutral cost is given to tick, prefix, and hole processes, as they contain no choices. The
sum process

∑
I

u
Ei represents a preference-based choice by the agent: it evolves to

one of its summands, annotating the value of that summand in the wider context on the
evolution arrow, according to its cost function u. A special case of the sum is for the

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 239

zero process 0, which never evolves. The product evolves two processes synchronously
in parallel, according to the decomposition of the associated resources, and annotates
the sum of the sub-processes’ costs on the evolution arrow. This approach to combining
costs, and the value given to tick or prefix processes, is one possible design decision,
and will be considered more fully in future work. We make use of the abbreviation

C
n

==⇒ C′ and C
a−→ C′ to denote C

e,1
==⇒
e,[]

n

C′ and C
e,1−−→
e,[]

a

C′, respectively.

To demonstrate how contextual decisions can be utilized in modelling, we give a
simple example (inspired by [5]). Consider a banker who has a presentation (for a client,
that includes confidential business data) on a USB drive. The banker may chose to
access the drive or not, depending on the situation. The banker is modelled as a process

Banker = present : Banker′ +uB idleB : Banker′, (3)

where uB represents its costs. The banker may be willing to access the presentation
when visiting a client, on the assumption that the client’s network is firewalled, so
making the document safe from attack. In order to do so, however, the banker must
be given access to a computer by the client. The client is modelled as

Client = logIn : Client′ + idleC : Client′, (4)

which, for simplicity, makes a non-deterministic choice between logging the guest in
and idling. The interaction between the banker and the client is a form of joint ac-
cess control (i.e., both agents must grant access), in which the banker cannot show the
presentation without having been logged in, and the client cannot see the presentation
unless the banker accesses it. If the banker’s cost function is uB , then we have

uB(CC(R, idleB :Banker′))=0.3 uB(CC(R, present :Banker′))=0.1. (5)

and the banker would prefer to present the work. Here, where CC is the client context,
the banker can access the presentation with a low cost

R,Banker
e,1
==⇒
CC

0.1

R, present : Banker′
present−−−−−→R,Banker′. (6)

In a different situation — here, a different context — the banker may have different
costs associated with the possible choices. Consider a home computer, compromised
by an attacker who wants to steal the presentation, but cannot do so unless the banker
accesses it from the USB stick. The attacker is modelled as

Attacker = steal : Attacker′ + idleA : Attacker′ (7)

In this situation, the banker prefers to idle than to work on the presentation.

uB(CA(R, idleB :Banker′))=0.2 uB(CA(R, present :Banker′))=0.6. (8)

and the banker has a much higher cost, due to the increased risk of the data being stolen,
when performing the present action

240 G. Anderson, M. Collinson, and D. Pym

R,Banker
e,1
==⇒
CA

0.6

R, present : Banker′
present−−−−−→ R,Banker′. (9)

Were we reasoning about the decisions that the banker would make, we could easily
argue that the document would not be accessed from home, as the banker’s cost for
doing so is so high. Indeed, we could straightforwardly implement this by introducing
a restriction operator to the language to filter choices above/below a given cost bound.

A fundamental aspect of process calculus is the ability to reason equationally about
behavioural equivalence of processes [15]. We now adapt these notions to suit the cal-
culus above, which incorporates ideas from [6].

The bisimilarity (or bisimulation) relation ∼ ⊆ PCont × PCont is the largest
binary relation such that, if E ∼ F , then for all a ∈ Act, for all R,R′, S, T ∈ R, and
for all G,H, I, J ∈ PCont with G ∼ I and H ∼ J , then

1. for all E′ ∈ PCont, if R,E
T,H−−−→
S,G

a

R′, E′, then there is F ′ such that R,F
T,J−−→
S,I

a

R′, F ′ andE′ ∼ F ′, and ifR,E
T,H
===⇒
S,G

n

R,E, then there is F ′ such that R,F
T,J
==⇒
S,I

n

R,F ′ and E′ ∼ F ′, and

2. for all F ′ ∈ PCont, if R,F
T,J−−→
S,I

a

R′, F ′, then there is E′ such that R,E
T,H−−−→
S,G

a

R′, E′ and E′ ∼ F ′, and if R,F ==⇒ [S, I]T, JnR,F ′, then there is E′ such that

R,E
T,H
===⇒
S,G

n

R,E′ and E′ ∼ F ′.

The union of any set of relations that satisfy these two conditions also satisfies these
conditions, so the largest such relation is well-defined. Define ∼ ⊆ Cont × Cont by:
if E ∼ F then R,E ∼ R,F for all R ∈ R and E,F ∈ Cont.

Definition 1. A cost function, u, respects bisimilarity if, for all C1, C2 ∈ Cont, C1 ∼
C2 implies u(C1) = u(C2).

That is, behaviourally equivalent (bisimilar) states are required to be indistinguishable
by u. Note that the cost reductions ⇒n used in the definition of bisimulation do not
necessarily use cost functions to determine the cost n, as the base case reduction rules
for tick, prefix, and hole processes all output a constant zero cost. The set U of utilities
respects bisimilarity if every u ∈ U respects bisimilarity. Any real-valued function
defined on the quotient Cont/ ∼ defines a cost that respects bisimilarity. Henceforth
cost functions are assumed to respect bisimilarity. We can show that if bisimilar contexts
are substituted into each other, then the result is bisimilar:

Proposition 1. If E ∼ G and F ∼ H then E(F) ∼ G(H).

All proofs are omitted in this short paper.
With this result, we can obtain a key property for reasoning compositionally.

Theorem 1 (Bisimulation Congruence). The relation ∼ is a congruence. It is reflex-
ive, symmetric and transitive, and for all a,E, F,G with E ∼ F , and all families
(Ei)i∈I , (Fi∈I)I with Ei ∼ Fi for all i ∈ I , a : E ∼ a : F , E × G ∼ F × G, and∑
i∈I

u
Ei ∼

∑
i∈I

u
Fi.

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 241

In order to reason equationally about processes, it is also useful to establish various
algebraic properties concerning parallel composition and choice. We derive these below,
for our calculus. We use the binary version of sum here in order to aid comprehension,
but finite choices between sets of processes work straightforwardly.

Proposition 2 (Algebraic Properties). (1) E +u F ∼ F +u E; (2) E × 0 ∼ 0; (3)
E × 1 ∼ E; (4) E × F ∼ F × E; and (5) E × (F ×G) ∼ (E × F)×G.

5 A Cost-Sensitive Modal Logic

We now introduce a cost-sensitive modal logic of system properties. The semantics is
given using a satisfaction relation

C |=C′ φ, (10)

where C is a closed context, C′ is an open context, and φ is a formula of a (Hennessy–
Milner-style) modal logic of processes: this may be read ‘the primary context C satisfies
φ in the surrounding context C′’ (cf. (1)). The context C may satisfy different logical
propositions, perhaps even negations of each other, when placed in different surround-
ing contexts; an example of this is below. Context-sensitive logics have been studied
previously [14,4]. The structural nature of processes and resources provides a semantic
framework in which such logics seem particularly natural.

The propositions of the logic are defined by the grammar

φ ::= p | ⊥ | � | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ | 〈a〉φ | [a]φ | I | φ ∗ φ | φ −−∗ φ |
〈≤ n〉φ | [≤ n]φ | 〈> n〉φ | [> n]φ,

(11)
where p ranges over atomic propositions, a over actions, and n over rational numbers.
The symbols for propositions for truth, falsehood, negation and (additive) conjunction,
disjunction, and implication are standard. The (additive) modal connectives are 〈a〉 and
[a]. The connectives I , ∗, and−−∗ are the multiplicative unit, conjunction, and implication,
respectively. The (cost) modal connectives are 〈≤ n〉, [≤ n], 〈> n〉, [> n], and denote
possible and necessary modal bounds on costed evolutions.

The interpretation of cost modalities is straightforward. The possibility connectives
〈≤ n〉φ and 〈> n〉φ denote that there exists an evolution whose cost m is less than
or equal to, or greater than, n, respectively, where the resulting state satisfies φ. The
necessity connectives [≤ n] and [> n] denote that in all evolutions whose cost m is less
than or equal to, or greater than, n, respectively, where the resulting state satisfies φ.
The satisfaction relation for cost modalities is specified in Figure 4, with the satisfaction
relation for additive formulae specified in Figure 5, and that for multiplicative formulae
specified in Figure 6.

We describe the interpretation with an example: recall the model of the banker’s
context dependent preferences and choices (cf. (3-9)). In the client context, the banker
has a low-cost choice of 0.1 (cf. 6), but in the attacker context all its possible evolutions

242 G. Anderson, M. Collinson, and D. Pym

C1 |=C2 〈≤ n〉φ iff there are C′
1, C

′
2,m, o such that C1

e,1
==⇒
C2

m

C′
1

and C2
C1==⇒
C∅

o

C′
2, and m ≤ n and C′

1 |=C′
2
φ

C1 |=C2 [≤ n]φ iff for all C′
1, C

′
2,m, o such that if C1

e,1
==⇒
C2

m

C′
1 and

C2
C1==⇒
C∅

o

C′
2 and m ≤ n, then C′

1 |=C′
2
φ

C1 |=C2 〈> n〉φ iff there are C′
1, C

′
2,m, o such that C1

e,1
==⇒
C2

m

C′
1

and C2
C1==⇒
C∅

o

C′
2, and m > n and C′

1 |=C′
2
φ

C1 |=C2 [> n]φ iff for all C′
1, C

′
2,m, o such that if C1

e,1
==⇒
C2

m

C′
1 and

C2
C1==⇒
C∅

o

C′
2 and m > n, then C′

1 |=C′
2
φ

Fig. 4. Interpretation of Propositional Cost Modalities

are of higher cost of 0.2 and 0.6, respectively (cf. 9). Hence we can show that the banker
process has different logical properties in different contexts

R,Banker |=CC 〈≤ 0.1〉� R,Banker |=CA ¬(〈≤ 0.1〉�), (12)

where � is a formula that is true for all processes in all contexts.
The standard interpretation of Hennessy–Milner logics uses the relation specified by

the operational semantics as a Kripke structure to support the modal connectives. In
our work, the operational semantics is more complex: a context occurs, and evolves
alongside an outer context. Therefore, when we consider whether C1 |=C2 〈≤ n〉φ
holds, we have to consider whether there are evolutions of the form C1

e,1
==⇒
C2

m

C′
1 and

C2
C1==⇒
C∅

o

C′
2 such that C′

1 |=C′
2
φ and m ≤ n. The occurrence of the tick process and

the empty context ensure that no extraneous contextual information is introduced into
the evolutions of interest. Other modal operators are interpreted similarly.

A valuation, V , is a function that maps each atomic proposition to a ∼-closed set
of closed contexts. In the interpretation of atoms, the surrounding context is wrapped
around the primary context, and the valuation of the atom consulted to see if it contains
this compound context. This is what makes our logic context-sensitive. �, ⊥, ¬, ∧, ∨,
and → are all interpreted (essentially) classically. The interpretation of the multiplica-
tive connectives here is similar to that for the logic MBI in [6].

Recall again the example of the banker who decides which actions to take in different
contexts (3-9). In a situation that consists of a client (context CC), the banker can access
the presentation with low cost, but in a situation that consists of an attacker (contextCA)
the banker accessing the presentation has a high cost; that is,

RB, Banker |=CC〈≤ 0.3〉〈present〉� and RB, Banker |=CA¬(〈≤ 0.3〉〈present〉�).
(13)

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 243

C |=C′ p iff C′(C) ∈ V(p)
C |=C′ ⊥ never
C |=C′ � always
C |=C′ ¬φ iff C �|=C′ φ
C |=C′ φ ∧ ψ iff C |=C′ φ and C |=C′ ψ
C |=C′ φ ∨ ψ iff C |=C′ φ or C |=C′ ψ
C |=C′ φ → ψ iff C |=C′ φ implies C |=C′ ψ

C1 |=C2 〈a〉φ iff there are C′
1, C′

2, b such that if C1
e,1−−→
C2

a

C′
1and C2

C1−−→
C∅

b

C′
2,

then C′
1 |=C′

2
φ

C1 |=C2 [a]φ iff for all C′
1, C′

2, b such that if C1
e,1−−→
C2

a

C′
1 and C2

C1−−→
C∅

b

C′
2,

then C′
1 |=C′

2
φ

Fig. 5. Interpretation of Additive Propositional Formulae

R,E |=C′ I iff R = e and E ∼ 1
R,E |=C′ φ ∗ ψ iff there are S, T , F , G such that R = S ◦ T , E ∼ F ×G, and

S, F |=C′(T,[]×G) φ and T,G |=C′(S,F×[]) ψ
R,E |=C′ φ−−∗ ψ iff for all S, F such that R ◦ S is defined and S, F |=C′ φ,

R ◦ S,E × F |=C′ ψ

Fig. 6. Interpretation of Multiplicative Propositional Formulae

Hence, in different contexts the process satisfies different propositions that, moreover,
would be inconsistent over the same context.

If we make use of real value quantification we can recover optimality properties
about the least or most costly choices, as in [3]. For example, we could state that the
most costly option has logical property φ as ∃x.[> x]⊥ ∧ 〈≤ x〉φ ∧ ¬[> x]¬φ, using
standard techniques to define equality with inequalities and negation. This could be
used to reason about a scheduler’s possible options.

Behaviourally equivalent processes are also logically equivalent (they satisfy the
same logical properties). This is half of the Hennessy–Milner property [10,9].

Theorem 2. If C1 |=C2 φ, and C1 ∼ C3, and C2 ∼ C4, then C3 |=C4 φ.

Hence, bisimilar processes can be used interchangeably within a larger system, without
changing the logical properties of the larger system.

It is unclear whether a useful converse can be obtained, for the given bisimulation
relation. With restrictions on the available fragments of the logic, and a different (local)
equivalence relation, however, it is possible to obtain a converse [3]. The local equiv-
alence, however, fails to be a congruence, and as such its usefulness is limited. It is a
strictly local reasoning tool.

The logic might also be enriched to handle expected cost [13]. Quantitative path-
based logical properties of Markov Chains are studied in [11]: they support reasoning

244 G. Anderson, M. Collinson, and D. Pym

about complex notions such as average utility with a given time discount, but do not
provide compositionality results over model structures. A more extensive study of such
extensions is future work.

In game-theoretic approaches to security, the notion of a level of security is impor-
tant. That is, if a defender chooses to perform some defensive action: then all possible
attacks have a high cost for the attacker. With preference modalities we can make state-
ments relevant to security levels. To see this, consider the proposition

φ−−∗ [< n][d](¬〈a〉�), (14)

This proposition states that any attacker that is characterized by φ, when a defensive
action is effected, there is no possible choice to attack that incurs a cost less than bound
n (we hold the costs of the defender constant). The multiplicative implication operator
permits us to reason about composition within arbitrary processes, and hence of the
efficacy of defensive measures relative to an arbitrary (partially) described attacker.
The interaction between multiplicative implication and cost operators is surprisingly
powerful, and can be used to describe the intuitive description of trust domains [3].

6 Trust Domains Revisited

In Section 2, Given different preference functions and different bounds, a given agent
may decide to trust different agents. We now formalize that definition, and provide a
selection of examples that demonstrate how trust domains can model natural problems.

In [3], trust domains are defined relatively informally, in terms of an agent E that is
considering what to trust, a logical property ψ that denotes some goal property for the
agent, and a cost bound n. A trust domain then consists of the set of contexts into which
the agent can be substituted, where the entire system can evolve to some other system
that satisfies the goal property, and the cost of the evaluation, is within the cost bound
n.

Here, using a cost modality, we define a trust domain as

TD((R,E), φ, ψ, n) = {S, F |S, F �C∅ φ and R ◦ S,E × F �C∅ 〈≤ n〉ψ}, (15)

where φ limits the agents being considered with, for example, some locality condition.
Recall that multiplicative implication is valid when, for any context that fulfils the

left hand side of the implication, if it is composed with the current agent, then the joint
system fulfils the right hand side of the implication. In essence, a trust domain is the
collection of such contexts, for the logical property φ−−∗〈≤ n〉ψ interpreted with respect
to the agent R,E that is doing the trusting.

We now turn to the three examples from Section 2 in order to illustrate these ideas.

Establishing Boundaries. We consider how a harbour master and a ship’s captain
establish an appropriate point at which to transfer control of the ship between them.
In attempting to establish a boundary between the parts of a system controlled by co-
evolving agents, use must be made of the agents’ preferences. We must consider both
agents with ‘fixed’ preferences, which do depend on the context structure, such as heavy

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 245

seas, but not on the cost functions of other agents in the system, and agents with ‘vari-
able’ preferences, depending on the cost functions of other agents in the system.

Upon approach the harbour, the process Capt can either move forward under the
ship’s own propulsion, wait out at sea, or transfer control to a tug (operated by the
harbour master). The forward action takes a token representing the ship one location
closer to the port. The wait action idles. The transfer action transfers control to a tug.
The process Capt′ then defers to the tug (idles).

Capt = forw : Capt+u 1.Capt+u transf contr : 1. (16)

The cost function u encodes the captain’s preferences with respect to the environment.
The captain wants to hand over to the harbour master as soon as possible (e.g., for
insurance reasons) and will transfer control as soon as the harbour master is willing

for all R,C.u(C(R, transf contr : 1)) = 0.1. (17)

In each location, from the high seas onwards, the captain will have a preference as to
whether to continue moving forwards or to wait at that location for a tug. This prefer-
ence will depend on the context; in heavier seas, the captain will wait for a tug further
out. Consider a sequence of locations: Ocean → L1 → L2 → Harbour. Let sloc refer
to the presence of the ship at location loc. We define that in calm seas that the captain
is willing to take the ship as far as L2 and then will wait; that is, for all R, E,

u((R, sL1), forw : Capt× E) = 0.3
u((R, sL1), 1 : Capt× E) = 0.7

u((R, sL2), forw : Capt× E) = 0.7
u((R, sL2), 1 : Capt× E) = 0.3,

(18)

where R doesn’t include rough. However, in rough seas the captain prefers to wait at
both L1 and L2; that is, for all E,R and all loc ∈ {L1, L2}

u((R, sloc, rough), forw : Capt× E) = 0.7
u((R, sloc, rough), 1 : Capt× E) = 0.3.

(19)

The harbour master may then choose to wait or to have the tug take control of the ship:

Master = 1 : Master +v acpt contr : Master′ Master′ = tow : Master′ (20)

The harbour master wants to take control of incoming ships as late as possible so as
to have the highest throughput (less time spent on each ship means the same number of
tugs can get more ships through), but no later than location L2. If the captain refuses to
come further in, the harbour master will compromise and send a tug further out. This
calls for a more complex cost function, one that depends on the decisions of the captain

v(R,E) = 0.3 if u(R,E) < u(R,F) v(R,E) = 0.7 if u(R,E) ≥ u(R,F)
(21)

v(R, acpt contr : Master × Capt) = 0.5, (22)

246 G. Anderson, M. Collinson, and D. Pym

for all R, where E = wait :Master × Capt and F = forw : Capt × Master. The
harbour master chooses to wait control if the captain is willing to continue forwards,
and accepts control over waiting if the captain is not. Evidently there is game theoretic
analysis to be done here, which will be considered in future work.

The trust domain can be evidenced as follows below (using location informally). The
goal property is for the tug to attach to the ship (and thereafter to pull it into the harbour).
This can be done at either position L1 or position L2. In calm seas, the captain’s cost
judgement will permit the making of the connection at either position L1 or positionL2,
while the harbour master will only permit it at L2. In stormy seas, however, the captain’s
cost judgement permits the connection only at L1, and the harbour master will apply
different preferences in order to make the connection at L1. Note the combination of
logical properties (tug connection) and cost properties (intersection of cost boundaries
of two different actors).

Contract Choices. We consider a mergers and acquisitions (M&A) deal team. One
goal of such a team is to provide valuations of companies that are under consideration
for mergers or acquisitions. The task requires access to very confidential details of the
company being valued. Often the deal team will contract out specialized aspects of the
valuation to external specialists. These contractors may have varying level of security
infrastructure. One of the key risks in company valuation is data loss, and the risk is
exacerbated when information is shared outside the deal group to external contractors.

Consider a scenario in which the M&A deal team has two potential contractors. The
first contractor is a smaller firm that is more specialized, but as it is smaller has a less
secure IT infrastructure. The M&A deal team could get a better service (e.g., more
efficient, with more accurate valuation, etc.) from using this firm, but incurs more risk
of data loss. The second contractor is a large firm that is more generalized, and has a
more secure IT infrastructure.

We model each contractor as a process that can provide a valuation (either specialized
or general) or idle. The specialized contractor, in addition, has the possibility of leaking
information. We make use of the resource datagen to denote data when it is sent to
the general contractor, and dataspec to denote data when it is sent to the specialized
contractor. Both the valuation actions and the leak action require the appropriate data
resource, and are not enabled when the resource is absent. These actions ensure mutual
exclusion. The general and specific contractors, respectively, are modelled as

Contrgen = gen val : Contr′gen + 1 : Contrgen
Contrspec = spec val : Contr′spec + leak : Contrspec + 1 : Contrspec.

(23)

In this example, we are concerned with the choices that the deal team can make and are
more interested in what the respective contractors can do, rather than why they do.

We model the deal team as a process that chooses between the two firms (or idles),
and then proceeds to receive a valuation from the chosen contractor.

Deal = enbl spec : Deal′ +u enbl gen : Deal′ +u 1 : Deal. (24)

The enbl spec action produces the dataspec resource, which enables the specialized
contractor to produce a valuation, and the enbl gen action produces the datagen

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 247

resource, which enables the generalized contractor to produce a valuation. The whole
system is then defined as

e,Deal× Contrgen × Contrspec. (25)

We define the deal team’s cost function u as:

u(e, Contrgen × Contrspec × enbl spec : Deal′) = 0.7
u(e, Contrgen × Contrspec × enbl gen : Deal′) = 0.3
u(e, Contrgen × Contrspec × 1 : Deal) = 0.

(26)

We can consider a trust domain based on the logical property 〈gen val〉�∨〈spec val〉�,
which denotes that an evaluation (specialized or general) is provided. If we were to
define a cost bound of 0.5, for example, then the general contractor would be chosen
but not the specialized one, as they both provide the required service, but there is too
much risk associated with the specialized contractor.

Information Provenance. One issue of particular importance, when making decisions
about data sharing arrangements, is the provenance of the evidence used by the con-
tracting company. In particular, the evidence can be categorized as verifiable, or can be
taken ‘on trust’ (perhaps due to a history of positive interaction). The level of evidence
required by a decision-maker can be mitigated using technical and social mechanisms,
such as use of virtual machines (as in Contract Choices) and external certification (e.g.,
ISO27000 security certification). We can then consider what risks and costs can occur,
given a choice of how much verifiable evidence will be required, and how much can be
taken on trust (in the presence of some mitigating mechanisms).

Consider two different contractors, which a bank can choose to employ. Contractor
A is safer, and can leaks can only occur in one way; we model this by saying that the
leakA action is only enabled by resource r1. Contractor D is a little less safe, and its
leaks can occur in one of two ways; we model this by saying that the leakD action is
enabled by either of the leak pathways, modelled as resources p1 and p2. We then make
use of different pieces evidence, which provide different guarantees. We consider two
pieces of ‘trust’ evidence, the first (t1) that rules out the first type of leaks (modelled
by the fact that p1 ◦ t1 ↑), and the second (t2) that rules out the second type of leaks
(modelled by the fact that p2 ◦ t2 ↑). We also consider a piece of ‘verifiable’ evidence
v, that rules out both types of leaks (modelled by the fact that p1 ◦ v ↑ and p2 ◦ v ↑).

We model the bank as a process that chooses between two contractors

Bank = BA +u BD BA = chooseA : 1 BD = chooseD : 1. (27)

the ‘chooseA’ (resp. ‘chooseD’) action creates a token cA (resp. cD) that enables con-
tractor A (resp. D) to proceed. We model the contractors as processes that can accept a
contract token and then proceed to either provide a leak or possibly leak some data

A = acptA.(report : A′+0 leakA : A′) D = acptD.(report : D′+0 leakD : D′). (28)

The report actions are the same in both cases, but ‘leak’ actions are different for each
process. In contractor A the leak can only occur by the first pathway, which is modelled

248 G. Anderson, M. Collinson, and D. Pym

by the ‘leakA’ action being enabled only by the resource p1. In contractor D, however,
the leak can occur by either of the pathways, which is modelled by the ‘leakD’ action
being enabled both by the resource p1 and by the resource p2.

We then consider different ways the the bank can value, and make use of, the evi-
dence to which it has access. Consider one possible valuation

u(v,BA ×A) = u(v,BD ×D) = 0.1
u(t1, BA ×A) = u(t1, BD ×D) = 0.4

u(t2, BA ×A) = u(t2, BD ×D) = 0.6.

(29)
Here, the scenario where verifiable evidence can be obtained, to the effect that no leaks
will occur (modelled as the fact that the resource v is present), has the least risk, with
a cost of 0.1. The scenario where trusted evidence can be obtained to the effect that the
first type of leak will not occur (modelled as the fact that the resource t1 is present)
is the next most risky, with a cost of 0.4. The scenario in which trusted evidence can
be obtained that the second type of leak will not occur (modelled as the fact that the
resource t2 is present) is most risky, with a cost of 0.6.

Given this valuation we can show that errors can occur, even below the rather gen-
erous cost bound of 0.5. As the banker expects the cost of company D at 0.4, in the
presence of trust guarantee t1, it is possible to show that at least one of the two leak
actions occurs within the cost bounds

e,BA+uBD ��C∅ (p∧φ)−−∗ ([chooseA] [< 0.5][leakA]⊥ ∧ [chooseD] [< 0.5][leakD]⊥),
(30)

where p is a proposition that denotes the presence of resource t1 and φ limits the pro-
cesses under consideration, to be put in parallel with, to either contractorA or contractor
D, modulo bisimulation.

Consider a slightly more nuanced valuation of the provenance of pieces of evidence.
Perhaps, through experience, the bank comes to realize that the first trusted property t1
is not quite so effective an indicator with respect to the second contractor. We can then
define a different cost function, v, which assigns more risk to t1 for the contractor D

v(v,BD ×A) = u′(v,BD ×D) = 0.1 v(t1, BD ×A) = 0.4
v(t1, BD ×D) = 0.5 v(t2, BD ×A) = u′(t2, BD ×D) = 0.6.

(31)

With this new costing, no leaks can occur within the given cost bounds:

e,BA+vBD�C∅ (p∧φ)−−∗ ([chooseA] [< 0.5][leakA]⊥ ∧ [chooseD] [< 0.5][leakD]⊥).
(32)

7 Further Work

Further work includes extending the calculus to include probabilistic evolution and ex-
pected cost [13], thereby enriching the notion of trust domain with the ability to accom-
modate stochastic environments. Although we have given some quite rich examples, it
remains for us to explore a meta-theoretically more systematic collection of composi-
tional and structural properties. This work begins with an exploration of the transitivity
of trust domains — suppose that agent B is within agent A’s trust domain, and that

Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach 249

agent C is within B’s trust domain: how does A decide whether to trust C (e.g., in
supply chains, or in outsourcing)? — and would also include a more careful distinc-
tion between intensional (as in the harbour) and extensional (as in M&A) formulations
of trust domains. This work would also consider how to do substitution within trust
domains in a way that preserved the selected set of contexts. One approach would be
to make use of Theorem 2, which would permit us to substitute bisimilar agents and
preserve the goal properties that define the trust domain.

It would also be interesting to consider whether the (pre)sheaf-theoretic semantics
considered by Winskel [12] can be adapted to our calculus.

References

1. Abadi, M.: Logic in access control. In: Proc. LICS 2003, pp. 228–233. IEEE (2003)
2. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in dis-

tributed systems. ACM Trans. Prog. Langs. Sys. 15(4), 706–734 (1993)
3. Anderson, G., Collinson, M., Pym, D.: Utility-based Decision-making in Distributed Systems

Modelling. In: Schipper, B.C. (ed.) Proc. 14th TARK, Chennai (2013), Computing Research
Repository (CoRR): http://arxiv.org/corr/home ISBN: 978-0-615-74716-3

4. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. CUP (1997)
5. Beautement, A., Coles, R., Griffin, J., Ioannidis, C., Monahan, B., Pym, D., Sasse, A., Won-

ham, M.: Modelling the Human and Technological Costs and Benefits of USB Memory Stick
Security. In: Johnson, M.E. (ed.) Managing Information Risk and the Economics of Security,
pp. 141–163. Springer (2008)

6. Collinson, M., Monahan, B., Pym, D.: A Discipline of Mathematical Systems Modelling.
College Publications (2012)

7. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design, 3rd
edn. Addison Wesley (2000)

8. Hennessy, M.: A calculus for costed computations. Logical Methods in Computer Sci-
ence 7(1), paper 9 (2011), doi:10.2168/LMCS-7(1:7)2011

9. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of
the ACM 32(1), 137–161 (1985)

10. Hennessy, M., Plotkin, G.: On observing nondeterminism and concurrency. In: de Bakker,
J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–308. Springer, Heidelberg
(1980)

11. Jamroga, W.: A temporal logic for Markov chains. In: Proc. AAMAS 2008, pp. 607–704.
ACM Digital Library (2008)

12. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Compu-
tation 127(2), 164–185 (1996)

13. Keeney, R., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs.
Wiley (1976)

14. McCarthy, J.: Formalizing context. In: IJCAI, pp. 555–562 (1993)
15. Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comp. Sci. 25(3), 267–310

(1983)
16. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
17. O’Hearn, P., Pym, D.: The logic of bunched implications. Bulletin of Symbolic Logic 5(2),

215–244 (1999)
18. Ramchurn, S., Huynh, D., Jennings, N.: Trust in multi-agent systems. The Knowledge Engi-

neering Review 19(1), 1–25 (2004)
19. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Proc. 17th

LICS, pp. 55–74. IEEE (2002)
20. Tofts, C.: Processes with probability, priority and time. Formal Aspects of Computing 6(5),

536–564 (1994)

http://arxiv.org/corr/home

“Fairly Truthful”: The Impact of Perceived

Effort, Fairness, Relevance, and Sensitivity
on Personal Data Disclosure

Miguel Malheiros1, Sören Preibusch2, and M. Angela Sasse1

1 University College London, Information Security Research Group
Gower Street, WC1E 6BT, London, UK
{m.malheiros,a.sasse}@cs.ucl.ac.uk

2 Microsoft Research, 21 Station Road, CB1 2FB, Cambridge, UK
spr@microsoft.com

Abstract. While personal data is a source of competitive advantage,
businesses should consider the potential reaction of individuals to cer-
tain types of data requests. Privacy research has identified some factors
that impact privacy perceptions, but these have not yet been linked to
actual disclosure behaviour. We describe a field-experiment investigat-
ing the effect of different factors on online disclosure behaviour. 2720
US participants were invited to participate in an Amazon Mechanical
Turk survey advertised as a marketing study for a credit card company.
Participants were asked to disclose several items of personal data. In
a follow-up UCL branded survey, a subset (N=1851) of the same par-
ticipants rated how they perceived the effort, fairness, relevance, and
sensitivity of the first phase personal data requests and how truthful
their answers had been. Findings show that fairness has a consistent and
significant effect on the disclosure and truthfulness of data items such
as weekly spending or occupation. Partial support was found for the
effect of effort and sensitivity. Privacy researchers are advised to take
into account the under-investigated fairness construct in their research.
Businesses should focus on non-sensitive data items which are perceived
as fair in the context they are collected; otherwise they risk obtaining
low-quality or incomplete data from their customers.

Keywords: personal data disclosure, privacy, effort, fairness, relevance,
sensitivity.

1 Managing Disclosure of Personal Data

Customers’ personal data is seen as a source of competitive advantage by busi-
nesses in the information society. The low-cost of storage technologies and the in-
creased efficiency with which large quantities of data can be transferred between
systems and analysed have removed most economic disincentives for widespread
data gathering efforts. At the same time, the potential benefits realisable through
the processing of these data, such as better customer targeting, personalised ser-
vice, or risk management, contribute to create a seemingly very attractive value

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 250–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Determinants of Personal Data Disclosure 251

proposition for companies. Left out of this equation, however, is the potential
negative impact of customers’ behaviour when dealing with requests for their
personal data that, for some reason, are deemed too unappealing to comply
with. Individuals value their personal data and, if they do not consider truthful
disclosure advantageous to them, they may engage in privacy protection be-
haviours such as withdrawal from the data collection interaction or omission or
falsification of data. These behaviours can thus represent lost business opportu-
nities or a lowering of the quality of customer data held, both of which constitute
adverse economic effects for the business.

When individuals disclose their personal data to an organisation in exchange
for some product or service they are engaging in a social contract; while the ben-
efits of this contract are higher then the costs they will continue engaged [9,27].
Thus, even interactions that pose privacy risks may be accepted by individuals
looking to realise a gain bigger than the perceived privacy cost [12]. In particular,
several studies have shown that individuals are willing to trade their personal
data for economic benefits such as money rewards (e.g., [4,11,14,15,19]). If the
rewards are not considered worth the cost of disclosure, individuals may engage
in privacy protection behaviours by either withholding [32] or falsifying personal
data [10, 22]. This can be interpreted as an attempt to minimise the costs of
disclosure while still obtaining the reward. However, it is unclear how prevalent
privacy protection behaviours are, or what combination of factors trigger them.

Previous privacy research has identified several factors that affect how indi-
viduals perceive the collection and use of their personal data.

Sensitivity. Individuals do not see all personal data as equally sensitive. Typi-
cally, more personally defining or identifying items, such as social security num-
ber [26], financial data [29] or medical data [1] are perceived as more sensitive;
however, sensitivity assessments can vary with the situation [2]. Collection, stor-
age, and use of more sensitive items are associated with feelings of discomfort [1]
and perceptions of privacy invasion [35, 36]. Consequently, individuals are more
likely to omit or falsify [23, 26] data they consider sensitive.

Perceived Relevance. The same data request can seem more or less acceptable,
depending on the context where disclosure occurs. Being asked about cases of
cancer in the family during a doctor’s appointment is considered relevant, but
if one was asked the same question when applying for a store’s loyalty card it
would be considered irrelevant and inappropriate. Relevance of a data request is
related to the perceived data needs of the receiver in that context and whether
the expected usage of the data is perceived as legitimate [17,24]. Lower relevance
or legitimacy of a data request is associated with a higher privacy cost [3] and
feelings of privacy invasion [8, 36]. Lower perceived relevance of a data request
has not been associated with privacy protection behaviours.

Perceived Fairness. Perceived fairness of a data requests describes the individ-
ual’s belief that data being collected will be used for the purpose communicated
by the data receiver, and in an ethical manner [9]. Past research has shown that

252 M. Malheiros, S. Preibusch, and M.A. Sasse

when individuals believe that their personal data will be processed fairly they
perceive data practices in a more positive manner [23]. Beyond privacy, perceived
fairness has been associated with customer satisfaction and higher perceived ser-
vice quality [9]. No research has been done on the effect of perceived fairness of
data requests on disclosure behaviour. Horne et al. [18] explored the impact of
the perceived difference between the value obtained by an individual and the
data receiver and lying and found no effect.

Data Receiver. It is widely accepted that individuals’ perceptions of data prac-
tices involving their personal details depend on the organisation with whom
they are interacting [34]. However, this relationship between comfort with the
data practice and organisation is not linear. While individuals usually feel more
comfortable disclosing personal data to organisations with whom they have an
existing and trusted relationship [1], such as an employer [35, 36], such is not
the case when the data portrays the individual in a bad light. Negative data
increases sensitivity when shared with close data receivers [2, 25].

Data Usage. The purpose of the data collection and the perceived use that
organisation will make of their data affects individuals’ privacy perceptions [1,
29]. One of the main concerns refers to secondary data use, where data that was
collected in one context and for one purpose is then used to achieve a completely
different goal [2,8]. Another concern is that data is used in a way that harms the
individual who disclosed it. The potential negative consequences of a disclosure
can make individuals reticent to part with their personal data or make them
perceive a data practice as invasive [25, 29, 35].

Effort. In addition to privacy costs there are other costs associated with disclo-
sure, such as the effort involved in answering data requests. If a data request is
difficult to answer [3] or a larger number of data items are requested [19, 28],
individuals will perceive the interaction as more costly. The higher the perceived
effort the more likely an individual is to withhold data [19].

Privacy Protection Behaviours in Web Forms. Previous work has shown that
consumers resist to data collection via forms: Among German Web users, 25%
state they have entered false data into forms [6], half of whom have faked their
name or age. Unease with the amount of data collected is the main driver for
users to falsify their information, followed by the attempt to escape unsolicited
advertising. Faking is also observed on online social networks, in particular for
younger users, although with overall lower prevalence [5]. In a survey among
active social media US consumers, 88% indicated to intentionally have left in-
formation out or entered incorrect information when creating a new account
at a Website—an increase by 12 percentage points compared to the previous
year [21].

Contribution. While some of the factors above have been linked to privacy con-
cerns, not all have been linked to actual privacy behaviour. Making the connec-
tion to privacy behaviour is important because past research has shown that

Determinants of Personal Data Disclosure 253

stated privacy concern may not correspond to privacy behaviour [23, 33]. In-
dividuals taking part in research often exhibit a social desirability bias when
answering questions about personal data collection manifesting higher concerns
than what their behaviour suggests. Thus, observation of actual disclosure be-
haviour in contextualised scenarios is a more reliable indicator than self-reported
privacy attitudes. In this paper, we describe an online field-experiment on the
impact of perceived effort, fairness, relevance, and sensitivity of a data request
on the decision to answer the request and truthfulness of answer. We believe this
is the first large-scale experimental study to quantify the impact of four factors
on disclosure decision and disclosure truthfulness. We also test the impact of
reciprocity, materialism, and privacy concern on amount of data disclosed.

Paper Structure. We outline our experimental hypotheses in Section 2. In Sec-
tion 3 we describe our 2-phase experimental design and provide reliability statis-
tics for the scales used. We report and discuss our sample composition, item
disclosure rates by treatment, and the effect of the different factors on disclo-
sure and truthfulness in Section 4. Section 5 presents our conclusions on the
implications of our study for research and practice, limitations of our work, and
directions for future research.

2 Experimental Hypotheses

Based on the analysis of past research on privacy perceptions (see Section 1), we
hypothesise that some factors related to how individuals perceive data requests
will influence the way they chose to respond to them. For our analysis we chose
two factors which have been linked to disclosure behaviour: sensitivity and effort;
and two which, to our knowledge, have only been linked to privacy attitudes:
perceived relevance and fairness. We measure two different variables regarding
disclosure: disclosure decision (binary variable) and self-reported truthfulness of
answer (4-level scale).

We predict sensitivity and effort will have a negative effect on disclosure and
truthfulness and that perceived relevance and fairness will have a positive effect
on disclosure and truthfulness:

H1a: Perceived effort of a request for a data item has a negative effect on
decision to disclose that item.

H1b: Perceived fairness of a request for a data item has a positive effect on
decision to disclose that item.

H1c: Perceived relevance of a request for a data item has a positive effect on
decision to disclose that item.

H1d: Perceived sensitivity of a request for a data item has a negative effect
on decision to disclose that item.

254 M. Malheiros, S. Preibusch, and M.A. Sasse

H2a: Perceived effort of a request for a data item has a negative effect on the
truthfulness of the corresponding answer.

H2b: Perceived fairness of a request for a data item has a positive effect on
the truthfulness of the corresponding answer.

H2c: Perceived relevance of a request for a data item has a positive effect on
the truthfulness of the corresponding answer.

H2d: Perceived sensitivity of a request for a data item has a negative effect
on the truthfulness of the corresponding answer.

We further hypothesise that reciprocity and materialism will affect amount of
disclosure, but not privacy concern as measured by Westin’s index:

H3a: Reciprocal individuals disclose more data than non-reciprocal individu-
als.

H3b: Individuals more concerned about privacy do not disclose less data than
individuals less concerned about privacy.

H3c: More materialistic individuals disclose less data to minimise privacy cost
and maximise value of answering.

3 Experiment Methodology

3.1 Phase 1: The Platixx Web Form

In early 2013, 2720 US participants were invited through the crowdsourcing
platform Amazon Mechanical Turk (mTurk) to participate in a “short survey
[with] fast approval”. The term “survey”, commonly found on mTurk, was used
although the study is indeed an experiment: participants had to disclose items
of personal data rather that stating their willingness to do so. The experiment
therefore uncovers actual willingness to disclose rather than self-professed pref-
erences.

The experiment design closely follows an earlier study on voluntary data dis-
closure [30]. The materials were also pre-tested on 20 participants before the
main deployment. A Web form with 5, 10, or 15 questions was given to the
participants, depending on treatment. Some of the questions clearly relate to a
banking context (e.g., income, debt situation, spending, number of credit cards),
others are plausible indicators of social and demographic status (e.g., age, gen-
der, marital status, health, education). Some questions are uncommon in bank-
ing context, such as the number of relatives who died during the childhood or the

Determinants of Personal Data Disclosure 255

duration of the longest relationship. However, these factors have been found to
be potentially good predictors of credit-worthiness [20].

In accordance with the mTurk guidelines, highly sensitive questions or ques-
tions asking for identifying personal details were not included. The order of the
questions was not randomised but constant; treatments with fewer questions
were truncated not to include all the items.

Across all treatments, there were also two extra mandatory check questions (6
and 7) which tested whether participants had read the instructions properly. The
mandatoriness of the other questions varied by treatment, with the other 5, 10, or
15 questions being mandatory as well. If there were mandatory questions, these
were always at the beginning of the form and any optional ones towards the end.
The instructions, displayed at the top of the form, were adjusted accordingly.
There was no visual indicator of mandatoriness (such as starring or highlighting)
and the blocks of questions were not separated. All questions were answered using
free text fields. There was no warning if some mandatory items had been omitted
or if the answer did not match the required format (e.g., no input validation for
date of birth).

In total, a 3 × 4 full triangular design with 9 treatments was run, covering
all combinations of question count (X = 5, 10, 15) and subset cardinality of
mandatory items (Y = 0, 5, 10, 15)—excluding the check questions from now
onwards. Throughout the remainder of the paper, the following short-hand will
be used to refer to the different treatments: qXmY, where X is the total number
of questions and Y is the number of mandatory questions amongst those.1

The Web form was framed as a preparation for the launch of a new credit
card product—the Platixx Card. To gauge the potential interest in this new
scheme, Platixx would ask participants to complete a one-page online survey.
Using a professionally designed logo and colour scheme, all materials, including
the Website URL, were prominently branded as Platixx, a fictitious banking
provider.

Participants received 20, 40 or 60 US cents for submitting the form in treat-
ments q5, q10 and q15 respectively. This payment acts as a show-up fee and
increased linearly in question count. All participants were paid regardless of
whether or not they had complied with the instructions or answered the check
questions correctly. As stated in the instructions, no extra payments were made
for voluntary over-disclosure. Multiple participation was prevented.

3.2 Phase 2: The UCL Follow-Up Questionnaire

After submitting their Web form, participants were invited to a follow-up ques-
tionnaire to investigate personality traits, demographics and privacy preferences.
Checks were in place to make sure that this questionnaire could only be taken

1 For instance, treatment q5m0 said: “Please provide some information about yourself.
Questions 6 to 7 are mandatory. All other fields are optional. There is no bonus for
this HIT.” whereas treatment q10m10 said: “Please provide some information about
yourself. Questions 1 to 12 are mandatory. There is no bonus for this HIT.”.

256 M. Malheiros, S. Preibusch, and M.A. Sasse

Fig. 1. Screenshot of the Platixx Web form in phase 1, treatment q15m0

by those who had participated in the first phase (Section 3.1). Two days after
the initial invitation, one reminder was sent to those who had not yet taken the
follow-up. Across all treatments, a 79% of all phase 1 participants also completed
the follow-up survey.

Determinants of Personal Data Disclosure 257

The follow-up was soliciting critical feedback regarding phase 1, including par-
ticipants’ admission to have lied on some questions. To avoid participants giving
socially desirable answers, there was a break in the administering party: the
follow-up questionnaire was branded as a research study by UCL. The colour
scheme and logo differed markedly from the first phase. The purpose was to
build trust to induce respondents to answer truthfully. Furthermore, partici-
pants were assured that their answers would be kept confidential, and not shared
with Platixx. This assurance was re-iterated during the questionnaire whenever
sensitive demographic details were solicited, including income, age and gender.

For each question participants had been asked in phase 1 they were asked
to rate the perceived effort involved in answering (Cronbach’s alpha across all
items was α = 0.91), its fairness (α = 0.88), its relevance (α = 0.84), and how
truthfully they had answered the question (α = 0.95). For 36 general items
sensitivity ratings (i.e.: level of comfort with disclosure) were collected (α =
0.84). Out of these 36 items, 8 closely matched items collected in phase 1 of the
study. An average of the perceived sensitivity of these 36 items was used as a
measure of privacy concern, with higher sensitivity averages corresponding to
higher levels of concern.

Personality traits were investigated using instruments with established relia-
bility. For measuring materialistic values, the validated 18-item Richins-Dawson
scale was used [31]. Reliability was good (Cronbach’s alpha α = 0.89). Reci-
procity was measured on a 6-item, 7-point Likert scale [13] (α = 0.60). Privacy
attitudes were assessed using the 3-item Westin scale [16], which binned partic-
ipants into three groups (α = 0.70). Using the original terminology, 41% were
classified as “privacy fundamentalists”, 48% as “privacy pragmatists” and 11% as
“privacy unconcerned”. According to this segmentation, the participants would
have been much more concerned about data protection issues than the general
public. Owing to its brevity and its prior use in similar studies, the Westin scale
was chosen despite its methodological shortcomings.

3.3 Ethical Approval

Both phases of this study were granted permission to be conducted after going
through the university’s ethical review process.

3.4 Data Processing and Coding

All answers were manually coded by a single skilled rater into three categories:
provided, not provided or refusal. Examples of refusals are: ”A lady doesn’t reveal
her age” or simply nonsense text. Additional data coding was done for some
input fields, such as date of birth. In the following analysis, only participants
who answered both check questions correctly will be included.

4 Results and Discussion

Across all treatments, there are 2360 valid participants, 1851 of whom also com-
pleted the follow-up questionnaire. Table 1 summarises the sub-sample sizes for

258 M. Malheiros, S. Preibusch, and M.A. Sasse

the different treatments. Explicit refusals to answer and omissions were coded
together, so that, for each participant, an item was considered either disclosed
or not-disclosed. Based on the information provided in the follow-up, the mean
age of participants was 30 years (range from 17 to 80). For 1477 participants,
both date of birth from the first phase and age from the follow-up were disclosed
and were compared. For 1164 participants (78.8%) there was no discrepancy
between the two. Mean discrepancy was 3.43 years. 41% of respondents were
women, 59% men according to the follow-up. Less than 1% refused to reveal
their gender. For 641 participants there was also gender data available from the
first phase questionnaire. When comparing the two gender disclosures only 17
participants (2.7%) disclosed different genders in the first phase and follow-up

4.1 Focus on q15 Treatments

As shown in the top half of Table 1, there is an overriding effect of items being
mandatory on disclosure rates. While we plan to explore the mandatory vs.
optional relationship with disclosure behaviour in a future publication, in this
paper we focus on the effect of perceived fairness, relevance, sensitivity, and
effort. Our disclosure analysis here is of the q15m0 treatment, where answers to
all data requests are optional. We focus on q15m0 as opposed to q5m0 or q10m0
because it offers a wider range of data items to analyse and identify differences.
When investigating the effect of the different factors on truthfulness (Section
4.5), we use all q15 treatments as we do not expect mandatory vs. optional to
have an overriding effect. When reporting descriptive statistics for the ratings of
perceived fairness, relevance, effort, and sensitivity of data items (Section 4.3)
we use data from all nine treatments for the same reason.

4.2 Effect of Personality Traits on Disclosure

We regressed the number of items disclosed by participant on their normalised
scores for reciprocity and materialism andWestin category (coded as two dummy
binary variables: fundamentalist and pragmatist). We found that only reciprocity
was a significant predictor (β = 0.175, p < 0.05) of number of items disclosed.
Whether the participant was a fundamentalist (β = 0.014, n.s.) or pragmatist
(β = 0.053, n.s.), and level of materialism (β = 0.048, n.s.) were not significant
predictors. The overall model fit was R2 = 0.042.

Reciprocity did have a significant and positive effect on disclosure with more
reciprocal participants disclosing more data. Since all the data requests were
optional and a reward would be offered unconditionally, it is possible more re-
ciprocal participants felt more obliged to disclose data. The absence of effect of
Westin category on behaviour was expected, as there is little evidence that this
scale is a good predictor of privacy behaviour and attitudes (see, for example, [7]).
The data supports both H3a and H3b. It was expected that participants who
scored higher in the materialism scale would be less likely to disclose data to
maximise the value of answering the survey (they would have received a full

Determinants of Personal Data Disclosure 259

payment even if no personal data was disclosed), but that was not the case.
H3c was not supported.

We also regressed number of items disclosed on age and gender but found no
significant effect of either variable. Finally, we also regressed the same outcome
variable on the average perceived sensitivity across 36 items measured on a 5 level
scale by itself. We found it to be a significant predictor (β = −3.212, p < 0.01).
The overall fit of this model was R2 = 0.056. This finding suggests that gathering
perceived sensitivity ratings across a range of personal data items is a better
measure of privacy concern and a better predictor of disclosure behaviour than
privacy indices such as Westin’s.

4.3 Perceived Effort, Fairness, Relevance, and Sensitivity of Data
Requests

The bottom half of Table 1 summarises the average perceived effort, fairness,
and relavance ratings for all questions across all treatments. All items have neg-
ative effort ratings, indicating a perceived low level of effort when answering the
questions. Gender, children count, and marital status were considered the easiest
questions to answer, which makes intuitive sense since these questions do not
seem to imply any calculations or memory effort. Weekly spending, childhood
deaths, and monthly income were considered the hardest questions to answer.
While weekly spending and childhood deaths do require participants to recall
past events and make some calculations, monthly income should, in theory, be
easy to recall. It is possible that some participants do not receive their salaries
monthly, so have to compute the value to answer the question. In any case, no
questions were considered difficult to answer.

Childhood deaths, relationship max length, and good health were perceived
as the most unfair questions. The first two, in particular, were perceived quite
negatively. One possible explanation is that it may be difficult for participants
to understand how these items will be used, and to imagine a fair use of such
data. First name, occupation, and monthly income were considered the fairest
questions. Both first name and occupation are common questions in surveys.
Monthly income is not commonly asked, but possibly due to its also high per-
ceived relevance participant thought it fair to ask in this context.

The items considered most unfair were also the ones considered most irrelevant
in the context of a credit card company survey. It seems legitimate to believe
participants saw no connection between these questions and the specified purpose
of the survey. The items perceived as most relevant were monthly income, debt
situation, and credit card count. These are all questions related to financial
matters and, therefore, aligned with the context of data collection.

Sensitivity ratings were collected for 36 items, of which 8 closely match items
collected in phase 1 of the study. Annual income was considered to be an ac-
ceptable proxy of monthly income and illnesses as an acceptable proxy of good
health.

Unsurprisingly, illness and annual income were considered the most sensi-
tive items. Past research has shown that medical and financial data are usually

260 M. Malheiros, S. Preibusch, and M.A. Sasse

considered sensitive by individuals. The least sensitive items were gender and
education. Both of these questions are commonly asked in surveys for demo-
graphics purposes, so it is likely participants are used to them and consider
them not sensitive.

4.4 Effect of Fairness, Relevance, Sensitivity, and Effort on
Disclosure

The top section of Table 2 shows the models obtained by regressing disclosure
of each data item (as a binary variable) on perceived effort, fairness, relevance,
and sensitivity (when applicable) of that data item. The models explain between
7% and 20% of the variability in disclosure decision.

Fairness is clearly the most powerful predictor of disclosure decision, with a
significant positive effect on the outcome in 11 out of 15 cases, supporting H1b.
For four data items, fairness has no significant effect: monthly income, health,
credit-card count and debt situation. With the exception of health, these are all
items with high perceived relevance to the context of credit cards. We suspect
fairness may be more important when data requests are considered irrelevant.
Perceived fairness of a data request is an under-researched factor in privacy
research and has never been linked to disclosure behaviour. Here it emerges as
a promising predictor of privacy decision making.

Sensitivity is a significant negative predictor of disclosure for 3 out 8 items:
first name, date of birth, and occupation. H1d is thus partially supported. The
effect of data sensitivity on disclosure decision has been previously observed in
the literature [23, 26].

Relevance has a significant effect on the disclosure of 3 data items, but this
effect is unexpectedly negative. Similarly, effort coefficients are significant for 3
data items, but positive contrary to out predictions. It is possible that partic-
ipants who did not answer a question rated it as requiring low effort precisely
because they did not answer it. Meanwhile, participants who disclosed the data
may have reported a higher effort. Both H1c and H1a are rejected.

4.5 Effect of Fairness, Relevance, Sensitivity, and Effort on
Truthfulness

Truthfulness ratings of each item (a 4-level scale ranging from -2=Completely
disagree my answer was truthful to +2=Completely agree my answer was truth-
ful) were regressed on perceived effort, fairness, relevance, and sensitivity (when
applicable) of that item. The resulting regression models for each item can be
seen in the bottom section of Table 2. The models explain between 10% and
26% of the variability in truthfulness.

Fairness is once again the best predictor, with a significant positive effect on
truthfulness on the same 11 items as in the disclosure regressions, supporting
H2b. Fairness has a particular and significant strong effect in items with low
relevance such as relationship max length or childhood deaths, again suggesting
that fairness has bigger important when data requests are seen as irrelavant.

Determinants of Personal Data Disclosure 261

T
a
b
le

1
.
S
a
m
p
le

si
ze
s
b
y
tr
ea
tm

en
t,
a
s
th
e
to
ta
l
n
u
m
b
er

o
f
p
a
rt
ic
ip
a
n
ts

(N
)
a
n
d
th
e
n
u
m
b
er

o
f
th
o
se

w
h
o
a
n
sw

er
ed

th
e
ch

ec
k
q
u
es
ti
o
n
s

co
rr
ec
tl
y
(N

v
a
li
d
);

a
m
o
n
g
st

th
e
la
tt
er
,
p
ro
p
o
rt
io
n
s
o
f
p
a
rt
ic
ip
a
n
ts

w
h
o
p
ro
v
id
ed

th
e
g
iv
en

d
a
ta

it
em

.
B
o
ld

n
u
m
b
er
s
in
d
ic
a
te

th
a
t
th
e

q
u
es
ti
o
n
w
a
s
m
a
n
d
a
to
ry

in
th
is

tr
ea
tm

en
t.
T
h
e
lo
w
er

p
a
rt

o
f
th
e
ta
b
le

g
iv
es

th
e
fe
ed

b
a
ck

d
es
cr
ip
ti
v
es

a
cr
o
ss

a
ll
tr
ea
tm

en
ts

(v
a
li
d
ca
se
s

o
n
ly
)
fo
r
it
em

eff
o
rt
,
fa
ir
n
es
s,

re
le
va

n
ce

a
n
d
se
n
si
ti
v
it
y.

E
ff
o
rt
,
fa
ir
n
es
s,

a
n
d
re
le
va

n
ce

w
er
e
m
ea
su
re
d
o
n
a
4
-l
ev
el

a
g
re
em

en
t
sc
a
le

ra
n
g
in
g

fr
o
m

−2
(s
tr
o
n
g
ly

d
is
a
g
re
e
th
a
t
th
e
q
u
es
ti
o
n
w
a
s
h
a
rd
,
fa
ir
,
a
n
d
re
le
va

n
t)

to
+
2
(s
tr
o
n
g
ly

a
g
re
e
th
a
t
th
e
q
u
es
ti
o
n
w
a
s
h
a
rd
,
fa
ir
,
a
n
d

re
le
va

n
t)
.
S
en

si
ti
v
it
y
w
a
s
m
ea
su
re
d
o
n
a
4
-l
ev
el

sc
a
le

ra
n
g
in
g
fr
o
m

1
(v
er
y
h
a
p
p
y
to

d
is
cl
o
se
)
to

4
(v
er
y
u
n
h
a
p
p
y
to

d
is
cl
o
se
).

T
h
u
s,

h
ig
h
er

ra
ti
n
g
s
co
rr
es
p
o
n
d
to

h
ig
h
er

se
n
si
ti
v
it
y.

R
a
ti
n
g
s
a
re

o
n
ly

av
a
il
a
b
le

fo
r
a
su
b
se
t
o
f
d
a
ta

it
em

s;
fo
r
in
co
m
e
a
n
d
h
ea
lt
h
,
h
a
p
p
in
es
s
to

p
ro
v
id
e
a
n
n
u
a
l
in
co
m
e
a
n
d
il
ln
es
se
s
w
a
s
a
sk
ed

fo
r,

re
sp

ec
ti
v
el
y.

tr
e
a
tm

e
n
t

N

Nvalid

firstname

monthlyincome

goodhealth

dateofbirth

maritalstatus

occupation

education

timesmoved

childhooddeaths

weeklyspending

relationshipmaxlength

childrencount

gender

credit-cardcount

debtsituation

q
5
m
0

3
0
0

2
5
8

6
1
.6

5
7
.8

7
4
.0

5
8
.1

7
2
.5

q
5
m
5

3
0
0

2
7
1

9
9
.3

9
9
.3

1
0
0
.0

9
9
.6

9
9
.6

q
1
0
m
0

3
0
0

2
6
2

6
9
.5

6
0
.3

7
7
.1

5
9
.9

7
6
.7

7
0
.2

7
1
.0

6
9
.1

6
1
.8

5
3
.1

q
1
0
m
5

3
0
0

2
5
4

9
9
.2

9
8
.8

1
0
0
.0

1
0
0
.0

1
0
0
.0

6
4
.6

6
6
.5

6
2
.6

5
7
.9

5
3
.5

q
1
0
m
1
0

3
0
0

2
5
7

9
9
.2

9
8
.1

1
0
0
.0

9
8
.4

9
9
.6

9
8
.8

9
9
.6

9
8
.8

9
8
.1

9
6
.9

q
1
5
m
0

3
2
0

2
7
9

6
4
.5

6
4
.9

7
5
.3

5
7
.0

7
4
.2

6
7
.0

7
1
.0

6
7
.0

6
0
.2

5
4
.5

6
1
.3

6
7
.4

7
2
.4

6
5
.9

5
6
.6

q
1
5
m
5

3
0
0

2
5
3

9
9
.2

9
8
.0

9
9
.2

9
8
.8

9
9
.2

6
9
.2

7
0
.4

6
7
.2

6
2
.1

5
1
.4

6
1
.3

6
6
.0

6
7
.6

6
3
.2

5
3
.4

q
1
5
m
1
0

3
0
0

2
5
8

9
8
.4

9
9
.2

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.6

9
5
.0

7
1
.3

7
7
.5

7
8
.3

7
6
.7

6
6
.7

q
1
5
m
1
5

3
0
0

2
6
8

9
7
.0

9
8
.5

1
0
0
.0

9
9
.6

1
0
0
.0

9
9
.3

9
9
.6

9
9
.3

9
9
.6

9
5
.1

9
3
.3

9
9
.3

9
8
.9

9
7
.8

9
5
.9

fe
e
d
b
a
ck

E
ff
o
rt

m
ea
n

−1
.4
7
−0

.8
1
−1

.2
9
−1

.2
7
−1

.5
0

−1
.4
3
−1

.4
9
−1

.1
9
−0

.7
0
−0

.5
6

−1
.1
3
−1

.5
6
−1

.6
5
−1

.1
9
−0

.9
6

s
0
.9
9

1
.2
9

1
.0
6

1
.1
8

0
.9
1

0
.9
7

0
.9
3

1
.1
7

1
.4
6

1
.4
3

1
.2
6

0
.9
0

0
.8
2

1
.2
3

1
.3
7

F
a
ir
n
es
s

m
ea
n

1
.3
7

1
.1
5

0
.2
9

1
.1
4

1
.0
0

1
.2
2

0
.8
6

0
.5
7
−0

.9
8

0
.5
1

−0
.8
1

0
.3
9

0
.9
1

1
.0
4

0
.9
2

s
0
.9
3

1
.0
2

1
.4
4

1
.0
9

1
.1
6

0
.9
9

1
.2
3

1
.3
4

1
.3
1

1
.3
5

1
.4
2

1
.4
3

1
.3
5

1
.1
9

1
.2
8

R
el
ev
a
n
ce

m
ea
n

0
.9
2

1
.3
5
−0

.5
2

1
.0
9

0
.6
4

1
.0
8

0
.3
9
−0

.0
1
−1

.5
8

0
.5
8

−1
.4
2

0
.0
5

0
.4
4

1
.1
1

1
.1
6

s
1
.3
5

0
.9
2

1
.4
2

1
.1
4

1
.3
5

1
.1
3

1
.4
1

1
.4
4

0
.9
4

1
.3
9

1
.0
8

1
.5
0

1
.5
5

1
.2
0

1
.1
8

S
en

si
ti
vi
ty

m
ea
n

2
.1
2

2
.6
2

2
.7
0

2
.5
2

1
.8
4

1
.9
8

1
.7
7

1
.6
3

s
0
.8
9

0
.8
6

0
.9
7

0
.9
4

0
.7
4

0
.7
8

0
.7
0

0
.6
6

262 M. Malheiros, S. Preibusch, and M.A. Sasse

Table 2. Item disclosure (upper part) and item truthfulness rating (lower part) re-
gressed on item perceived effort, fairness, relevance, and sensitivity ratings. Sensitivity
is only included in the regression model when applicable to that data item. Nagelk-
erke’s R2 was used to assess model fit. ∗significant at p = 0.05; ∗∗significant at p = 0.01;
∗∗∗significant at p = 0.005

Item R2 Effort Fairness Relevance Sensitivity Constant

item disclosure

first name 0.174 0.056 0.624∗∗ −0.342∗ −0.655∗∗∗ 1.407
monthly income 0.085 0.051 0.063 0.398 −0.193 0.517
good health 0.069 0.188 0.217 −0.132 −0.331 1.736
date of birth 0.206 −0.049 0.586∗ −0.304 −0.723∗∗∗ 1.896
marital status 0.101 0.330∗ 0.388∗ −0.032 −0.103 0.510

occupation 0.149 0.129 0.728∗∗∗ −0.448∗ −0.597∗∗∗ 1.326
education 0.125 0.296∗ 0.484∗∗ −0.173 −0.359 0.789
times moved 0.099 0.022 0.565∗∗∗ −0.296∗ n/a 0.317
childhood deaths 0.153 −0.178 0.685∗∗∗ −0.312 n/a 0.750
weekly spending 0.108 −0.154 0.381∗ 0.012 n/a 0.101

relationship max length 0.135 −0.067 0.588∗∗∗ −0.060 n/a 1.090
children count 0.089 0.175 0.400∗ −0.071 n/a 0.403
gender 0.121 0.344∗ 0.497∗∗ −0.297 −0.329 0.720
credit-card count 0.089 0.027 0.423 0.006 n/a 0.163
debt situation 0.063 −0.047 0.375 −0.028 n/a −0.008

item truthfulness

first name 0.096 0.005 0.384∗∗ −0.189∗ −0.355∗∗∗ 1.416
monthly income 0.097 −0.082 −0.082 0.475∗∗∗ −0.181 0.921
good health 0.096 0.013 0.098 0.124 −0.244∗∗ 1.817
date of birth 0.259 −0.032 0.431∗∗∗ −0.048 −0.613∗∗∗ 1.910
marital status 0.153 0.118 0.361∗∗∗ 0.003 −0.229 1.096

occupation 0.209 −0.034 0.442∗∗∗ 0.077 −0.285∗∗ 1.192
education 0.149 0.020 0.339∗∗∗ −0.010 −0.301∗∗ 1.469
times moved 0.188 0.028 0.580∗∗∗ −0.183∗ n/a 0.636
childhood deaths 0.137 −0.146∗ 0.487∗∗∗ −0.188 n/a 1.030
weekly spending 0.140 −0.141∗ 0.285∗ 0.120 n/a 0.472

relationship max length 0.154 −0.057 0.500∗∗∗ −0.065 n/a 1.215
children count 0.118 0.032 0.413∗∗∗ −0.074 n/a 0.885
gender 0.139 0.095 0.307∗∗∗ −0.013 −0.267∗ 1.335
credit card count 0.147 −0.050 0.312 0.192 n/a 0.457
debt situation 0.105 −0.032 0.066 0.368∗ n/a 0.309

The truthfulness regressions support the idea that fairness is a strong predictor
of privacy decision-making.

Sensitivity is a significant negative predictor of disclosure for 6 items out 8
where it is applicable, supporting H2d. Effort coefficients are significant and
negative for 2 data items, offering partial support to H2a. Taking into account

Determinants of Personal Data Disclosure 263

past research, the negative effects of sensitivity and effort (partially supported
by the data) were expected [23, 26].

Relevance coefficients are significant in 3 models, but unexpectedly negative
in two of them. Only for monthly income truthfulness is the effect positive. Thus,
H2c is rejected.

5 Conclusions

Detailed personal data from their customers can help companies to gain in-
sights to improve their services, differentiate their products or adapt their pricing
regimes. These competitive advantages have to be weighed against consumers’
concern for privacy. Previous research has shown that web users are put off by
websites asking personal information that they are unwilling to provide. Many
web users admit having provided deliberately wrong data on a web form. Con-
versely, high prevalence of voluntary over-disclosure has been observed in exper-
imental studies with up to 2/3 of online users volunteering sensitive information,
such as date of birth. So far, little has been known about the drivers and in-
hibitors that make users disclose, respectively withhold or falsify personal data
on Web forms.

Our large-scale experiment now provides first insights into the determinants
of consumers’ willingness to disclose personal data on the web. Four factors were
hypothesised to influence user behaviour: perceived effort, relevance, fairness
and sensitivity. These factors were tested in administering a web form to 2720
web users, who were asked to provide 15 personal details including financial and
health information in preparation for the launch of a new credit-card scheme. The
visual appearance of the form provided a highly realistic framing. Participants’
disclosure behaviour was then contrasted with their judgements of each of the
questions on the form, as collected through a follow-up questionnaire.

Unless a field is mandatory, fairness has a significant, consistent positive effect
on the disclosure and truthfulness of the response. Fairness is crucial in driving
disclosure for all data items, except for those that are obviously relevant for the
purpose of the form (in this case of a credit-card scheme: monthly income, health,
credit-card count and debt situation). In parallel, there is a significant positive
effect of perceived fairness on the truthfulness of the responses. Perceived fair-
ness is particularly influential and very highly significant for seemingly irrelevant
data items such as the length of the longest relationship or the number of deaths
during one’s childhood. No significant support was found for the effect of rel-
evance on disclosure or truthfulness. Perceived effort had a positive effect on
disclosure for three items, possibly due to participants who disclosed an item
rating it as requiring more effort than the ones who did not. A negative effect
of effort on truthfulness was expected, but only found in three items. Partial
support was found for the effect of sensitivity: first name, date of birth and oc-
cupation disclosure was significantly affected by their sensitivity. For 6 out of
8 data items, lower sensitivity was significantly associated with more truthful
answers.

264 M. Malheiros, S. Preibusch, and M.A. Sasse

The managerial implications of this experiment are two-fold. First, website
operators should capitalise on the positive impact of perceived fairness. If users
are convinced it is fair for a web form to ask for certain information, they will
be less likely to withhold these details or give false information. This holds
regardless of the sensitivity of a data item. Second, past research may over-
estimated the importance of perceived relevance. A positive effect on disclosure
was only observed for a few data items. In parallel, fairness has not received
the attention it deserves in privacy research and offers strong and consistent
predictive power of privacy decision-making.

This study opens several new research avenues. In particular, the interplay
between optional and mandatory fields in a web form warrants further investiga-
tion. It would also be helpful to test the robustness of the results across different
contexts. The current study was set in a financial context which is familiar to
most consumers. Individuals also have a more or less accurate perception of
what information is relevant to the financial industry. Studying disclosure in
more hedonistic applications, such as gaming or social networking, would pro-
vide a different perspective. Future work should also remedy the limitations of
this work. Although mTurk has been found to feature diverse socio-economic
backgrounds, users of this platform may be more inclined to volunteer personal
data. There may also be a bias from the research-like character of the study, al-
though efforts were made to create a realistic, commercial framing. One way of
overcoming these biases may be field observations of user behaviour on popular
web forms in the wild.

References

1. Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: examining user
scenarios and privacy preferences. In: Proceedings of the 1st ACM Conference on
Electronic Commerce, EC 1999, pp. 1–8. ACM, New York (1999)

2. Adams, A., Angela Sasse, M.: Privacy in multimedia communications: Protecting
users, not just data. In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) People
and Computers XV: Interaction without Frontiers, pp. 49–64. Springer, London
(2001)

3. Annacker, D., Spiekermann, S., Strobel, M.: E-privacy: Evaluating a new search
cost in online environments. SFB 373 Discussion Papers 2001,80, Humboldt Uni-
versity of Berlin, Interdisciplinary Research Project 373: Quantification and Sim-
ulation of Economic Processes (2001)

4. Beresford, A.R., Kübler, D., Preibusch, S.: Unwillingness to pay for privacy: A field
experiment. Economics Letters 117(1), 25–27 (2012)

5. BITKOM: 12 Millionen Deutsche machen Falschangaben im Web (2010),
http://www.bitkom.org/62107_62102.aspx

6. BITKOM: Jedes vierte Mitglied flunkert in sozialen Netzwerken (2011),
http://www.bitkom.org/de/presse/70864_67989.aspx

7. Consolvo, S., Smith, I.E., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.:
Location disclosure to social relations: why, when, & what people want to share. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2005, pp. 81–90. ACM, New York (2005)

http://www.bitkom.org/62107_62102.aspx
http://www.bitkom.org/de/presse/70864_67989.aspx

Determinants of Personal Data Disclosure 265

8. Culnan, M.J.: ”How did they get my name?”: An exploratory investigation of
consumer attitudes toward secondary information use. MIS Quarterly 17(3), 341–
363 (1993)

9. Culnan, M.J., Armstrong, P.K.: Information privacy concerns, procedural fairness,
and impersonal trust: An empirical investigation. Organization Science 10(1), 104–
115 (1999)

10. Culnan, M.J., Milne, G.R.: The Culnan-Milne survey on consumers & online pri-
vacy notices (2001)

11. Cvrcek, D., Kumpost, M., Matyas, V., Danezis, G.: A study on the value of location
privacy. In: Proceedings of the 5th ACMWorkshop on Privacy in Electronic Society,
WPES 2006, pp. 109–118. ACM, New York (2006)

12. Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transac-
tions. Information Systems Research 17(1), 61–80 (2006)

13. Gerlitz, J.Y., Schupp, J.: Zur Erhebung der Big-Five-basierten
Persönlichkeitsmerkmale im SOEP. Research notes, DIW Berlin (2005)

14. Grossklags, J., Acquisti, A.: When 25 cents is too much: An experiment on
willingness-to-sell and willingness-to-protect personal information. In: Proceedings
of the Sixth Workshop on the Economics of Information Security (WEIS 2007)
(2007)

15. Hann, I.H., Hui, K.L., Lee, T., Png, I.: Online information privacy: Measuring the
cost-benefit trade-off. In: Applegate, L., Galliers, R.D., DeGross, J.I. (eds.) Pro-
ceedings of the Twenty-Third International Conference on Information Systems,
p. paper 1 (2002)

16. Harris, Associates Inc., Westin, A.: E-commerce and privacy: What net users want.
Privacy and American Business and Pricewaterhouse Coopers LLP (1998)

17. Hine, C.: Privacy in the marketplace. The Information Society 14(4), 253–262
(1998)

18. Horne, D.R., Norberg, P.A., Ekin, A.C.: Exploring consumer lying in information-
based exchanges. Journal of Consumer Marketing 24(2), 90–99 (2007)

19. Hui, K.L., Teo, H.H., Lee, S.Y.T.: The value of privacy assurance: An exploratory
field experiment. MIS Quarterly 31(1), 19–33 (2007)

20. Hunt, J., Fry, B.: Spendsmart. Piatkus Books (2009)
21. Janrain: Research study: Consumer perceptions of online registration and social

sign-in (2011)
22. Lwin, M., Williams, J.: A model integrating the multidimensional developmen-

tal theory of privacy and theory of planned behavior to examine fabrication of
information online. Marketing Letters 14(4), 257–272 (2003)

23. Malheiros, M., Brostoff, S., Jennett, C., Sasse, M.A.: Would you sell your mother’s
data? personal data disclosure in a simulated credit card application. In: 11th
Annual Workshop on the Economic of Information Security (WEIS 2012) (2012)

24. Malheiros, M., Jennett, C., Patel, S., Brostoff, S., Sasse, M.A.: Too close for com-
fort: A study of the effectiveness and acceptability of rich-media personalized adver-
tising. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2012, pp. 579–588. ACM, New York (2012)

25. Malheiros, M., Jennett, C., Seager, W., Sasse, M.A.: Trusting to learn: Trust
and privacy issues in serious games. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 116–
130. Springer, Heidelberg (2011)

26. Metzger, M.J.: Communication privacy management in electronic commerce. Jour-
nal of Computer-Mediated Communication 12(2), 335–361 (2007)

266 M. Malheiros, S. Preibusch, and M.A. Sasse

27. Milne, G.R., Gordon, M.E.: Direct mail privacy-efficiency trade-offs within an im-
plied social contract framework. Journal of Public Policy & Marketing 12(2), 206–
215 (1993)

28. Miltgen, C.: Customers’ privacy concerns and responses toward a request for per-
sonal data on the internet: an experimental study. Tech. Rep. 369 (2007)

29. Phelps, J., Nowak, G., Ferrell, E.: Privacy concerns and consumer willingness to
provide personal information. Journal of Public Policy & Marketing 19(1), 27–41
(2000)

30. Preibusch, S., Krol, K., Beresford, A.R.: The privacy economics of voluntary over-
disclosure in web forms. In: The Eleventh Workshop on the Economics of Informa-
tion Security (WEIS) (2012)

31. Richins, M.L., Dawson, S.: A consumer values orientation for materialism and its
measurement: Scale development and validation. Journal of Consumer Research:
An Interdisciplinary Quarterly 19(3), 303–316 (1992)

32. Sheehan, K.B., Hoy, M.G.: Flaming, complaining, abstaining: How online users
respond to privacy concerns. Journal of Advertising 28(3), 37–51 (1999)

33. Spiekermann, S., Grossklags, J., Berendt, B.: E-privacy in 2nd generation e-
commerce: Privacy preferences versus actual behavior. In: Proceedings of the 3rd
ACM Conference on Electronic Commerce, EC 2001, pp. 38–47. ACM, New York
(2001)

34. Stone, E.F., Gueutal, H.G., Gardner, D.G., McClure, S.: A field experiment com-
paring information-privacy values, beliefs, and attitudes across several types of
organizations. Journal of Applied Psychology 68, 459–468 (1983)

35. Tolchinsky, P.D., McCuddy, M.K., Adams, J., Ganster, D.C., Woodman, R.W.,
Fromkin, H.L.: Employee perceptions of invasion of privacy: A field simulation
experiment. Journal of Applied Psychology 66(3), 308–313 (1981)

36. Woodman, R.W., Ganster, D.C., Adams, J., McCuddy, M.K., Tolchinsky, P.D.,
Fromkin, H.: A survey of employee perceptions of information privacy in organiza-
tions. Academy of Management Journal 25(3), 647–663 (1982)

Formal Evaluation of Persona Trustworthiness
with EUSTACE

(Extended Abstract)

Shamal Faily, David Power, Philip Armstrong, and Ivan Fléchais

Department of Computer Science, University of Oxford
Oxford UK OX1 3QD

firstname.lastname@cs.ox.ac.uk

Abstract. Personas are useful for considering how users of a system
might behave, but problematic when accounting for hidden behaviours
not obvious from their descriptions alone. Formal methods can poten-
tially identify such subtleties in interactive systems, but we lack methods
for eliciting models from qualitative persona descriptions. We present
a framework for eliciting and specifying formal models of persona be-
haviour that a persona might, in certain circumstances, engage in. We
also summarise our preliminary work to date evaluating this framework.

1 Motivation

Personas —narrative descriptions of fictional users based on archetypical user
behaviour — are commonly used when building interactive systems [1]. How-
ever, many insights about these personas may be hidden in these description
or related qualitiative data. When properly identified and analysed, this data
might suggest untrustworthy behaviour that personas might engage in. Unfor-
tunately, the volume of data underpinning personas means we cannot rely on
casual inspection alone to find such behaviour. Moreover, given that personas
are grounded in qualitative data, devising formal models of interactive behaviour
that software tools can verify is difficult.

Although usually used as a verification technique, Communicating Sequen-
tial Processes (CSP) [2] has also been used for modelling patterns of interaction
at higher levels of abstraction. It is precise enough for its specifications to be
formally checked, yet also expressive enough to deal with the nuances of hu-
man interactions. Jirotka and Luff [3] have demonstrated how CSP can be used
for modelling and reasoning about interactions and behavioural norms associ-
ated with multiple people. Using model checking technology, it is possible to
verify such interactional specifications modelled in CSP to determine whether
these are valid refinements of a secure system specification. Deriving behavioural
characteristics of personas using such refinements should allow us to investigate
whether their behaviour satisfies a system’s safety and liveness properties, or
are free from divergent behaviour; this may indicate behaviour that betrays the
trust placed by the system on the user.

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 267–268, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

268 S. Faily et al.

2 Approach and Preliminary Results

We devised the EUSTACE (Evaluating the Usability, Security, and Trustwor-
thiness of Ad-hoc Collaborative Environments) framework to formally identify
untrustworthy behaviour hidden in persona descriptions. This entails checking
whether CSP descriptions of persona behaviour are valid refinements of a CSP
system specification. To apply the EUSTACE framework, we carry out four steps.
First, we create an initial CSP system specification satisfying an agreed require-
ments of interest. Second, using the Persona Case framework [4], we code persona
data based on the specified events, and elicit new events that personas might
engage in. Coding is guided by Riegelsberger’s trusted interaction framework[5],
which provides sensitising questions about intrinsic and contextual trust prop-
erties. We also draw relationships between codes which, in turn, may lead to the
elicitation of new codes in addition to relationships between existing ones. Third,
cogent fragments of persona behaviour elicited from these relationships are an-
notated using CSP process descriptions. Finally, to evaluate whether persona
behaviour in a specific context diverges from the system’s intended behaviour,
these implied descriptions are refinement checked against the system specifica-
tion. These disparate CSP descriptions are combined based on specific context
events of interest present in the individual implied specifications.

We extended the open-source Computer Aided Integration of Requirements
and Information Security (CAIRIS) requirements management tool to support
the first three steps of the EUSTACE framework. We have also built an interface
to the FDR model checker to automate refinement checking against the implied
specifications generated by CAIRIS. We have validated the feasibility of the
framework by analysing personas of application developers and end-users to
identify ways installing apps on mobile phones might be exploited.

Acknowledgements. The research was funded by the EPSRC EUSTACE
project (R24401/GA001).

References

1. Cooper, A.: The Inmates Are Running the Asylum: Why High Tech Products Drive
Us Crazy and How to Restore the Sanity, 2nd edn. Pearson (1999)

2. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc. (1985)
3. Jirotka, M., Luff, P.: Representing and modeling collaborative practices for systems

development. In: Social Thinking–Software Practice. MIT Press (2002)
4. Faily, S., Fléchais, I.: Persona cases: a technique for grounding personas. In: Proceed-

ings of the 29th International Conference on Human Factors in Computing Systems,
pp. 2267–2270. ACM (2011)

5. Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: A framework
for research and design. International Journal of Human Computer Studies 62, 381–
422 (2005)

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 269–270, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Identity Implies Trust in Distributed
Systems – A Novel Approach

(Extended Abstract)

Lyzgeo Merin Koshy, Marc Conrad, Mitul Shukla, and Tim French

University of Bedfordshire, Computer Science Department
Park square, Luton, Bedfordshire, LU1 3JU, UK
firstname.lastname@beds.ac.uk

Abstract. Distributed software systems comprise a decentralized network topo-
graphy wherein a collection of autonomous computers communicate with each
other by exchanging messages [1]. The internet (Web 2.0) and social networks
and immersive virtual worlds (VW) are the focus of our research. Distributed
systems embed a variety of applications that seek to disclose, partially or fully
obfuscate an individual’s identity ranging from “role play” VW, social network-
ing to various forms of B2C, B2B, on-line auctions (EBay) and ubiquitous B2B
e-commerce transaction via electronic payment. Trust and identity management
are inherent phenomena of most if not all forms of such distributed web-based
systems. This research seeks to investigate how the role of identity impacts
upon trust and e-trust in distributed systems.

Trust is seen as a heterogeous phenomenon affecting users in such environ-
ments. According to Taddeo [2], e-trust is understood as a relation that holds
when the trustor relies on the trustee to perform a given action to a given level
of quality. This research will help to comprehend how trust is formed between
two strangers from the identity portrayed in distributed systems. Preliminary re-
sults show that there is a relationship between an individual’s identity and their
trustworthiness with another user. Should users trust each other? In the context
of cyber-stalking (June 2008), a middle aged woman was charged for cyber bul-
lying a 13 year old girl who later went on and took her own life [3]. Could this
have been avoided? Other types of cyber criminal activity commonly operating
within in such environment includes: pedophilia, identity theft, blackmailing
and many more. This shows that individuals are abusing web 2.0 social net-
works, hence raises issues of serious concern in relation to trust and identity mi-
suse.

To fully explicate the relationship between identity and trust, we need to tho-
roughly understand the nature of identity, self-perceptions and expression in a
world increasingly dominated by human-computer-device communication of
many kinds. Indeed a world in which a hybrid form of reality and virtual reality
is emerging (Google glasses, Second Life avatars, social networks). Identity and
identity management can be split into two broad categories, “Self” and “social
identity”. Self identity is how one perceives themselves and social identity is
seen as others perception of us. Misinterpretation of identity and trustworthiness
is seen as a serious concern. Communication between strangers is common

 L.M. Koshy et al. 270

even in real life. However, in distributed systems, limited controls are in place.
Does having better controls contribute towards the establishment of trust?

By taking all the mentioned risks into consideration, it is important to find a
solution. The main purpose of this research is to provide a framework on identi-
ty management in Distributed Software Systems and to provide practical guide-
lines and processes for managing identity and trust based on a philosophical and
ethical underpinning.

Experiments were designed to investigate the relationship
between identity and trust on social networking websites (Facebook) and
VW (such as Second Life). An OpenSim based experiment comprised of
participants being interrogated on the portrayed identity in the avatar
created. Questions such as, “Are you portraying yourself?” or “Why have
you chosen this avatar?” were asked. The results were analyzed and show
the privacy concerns in these VW's. This experiment also shows the % of fabri-
cated identities is higher than replicated identities. Another experiment will be
conducted using Facebook profiles to investigate how identity and trust are re-
lated as the first experiment was inconclusive in this matter. This experiment
should also investigate the main attributes that formulate an individual’s identi-
ty and show how those attributes help to form trust.

References

1. Li, H., Singal, M.: Trust Management in Distributed Systems (2007)
2. Taddeo, M.: Modelling Trust In Artificial Agents, A First Step Toward The Analysis of E-

trust. (2), UK (July 2010)
3. Computer Fraud: Woman accused of bullying teen on MySpace. Computer Fraud and Se-

curity, 1–2 (June 2008)

Non-intrusive and Transparent Authentication

on Smart Phones

(Extended Abstract)

Nicholas Micallef, Mike Just, Lynne Baillie, and Gunes Kayacik

Interactive and Trustworthy Technologies Research Group
Glasgow Caledonian University

name.surname@gcu.ac.uk

1 Introduction

This work aims to contribute to the field of non-intrusive and transparent authen-
tication on smart phones by defining an implicit authentication model consisting
of a set of distinguishable recurring features extracted from a combination of dif-
ferent sources of inbuilt sensors which have not yet been previously combined for
this purpose. The research goals of this work are (1) define a robust methodology
for accurate and transparent sensor data collection (2) identify sets of distin-
guishable and recurring features to define an implicit authentication model and
(3) evaluate the usability and security threats of this authentication model so
that a smart phone could be trained for a brief period of time after which it will
be capable of authenticating users in a non-intrusive and transparent manner.

2 Context and Motivation

By 2013 smart phones are expected to overtake PCs as the main way to access the
Web 1. This means that robust and efficient authentication and access control
systems are required. Traditional authentication techniques (e.g., passwords)
which are being deployed on smart phones require active user involvement, are
not considered user-friendly [1], and take users away from their main task [2].
Methods that attempt to improve usability (e.g., Android pattern) do so at the
detriment of security [3]. Implicit techniques that rely upon a users transparent
interaction with the phone (e.g., how users hold or use a phone) offer a promising
alternative or enhancement to the currently deployed authentication techniques
since they do not require any explicit user involvement [4].

Therefore, this work evaluates a combination of in-built low level sensor data
to find recurring distinguishable features to build an authentication model which
would implicitly authenticate users. The sensor data is being obtained from mo-
tion sensors (i.e. accelerometer), environment sensors (i.e. Sound, Light, Mag-
netic field), location sensors (i.e. Wi-Fi and cell tower) and usage information
(i.e. duration of sessions, etc). This authentication model will be evaluated from
a usability perspective and through different levels of security attacks.

1 Gartner forecast: http://news.cnet.com/8301-1001_3-10434760-92.html

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 271–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://news.cnet.com/8301-1001_3-10434760-92.html

272 N. Micallef et al.

3 Research Goals, Methods and Status

The first research goal has been accomplished with the definition of the method-
ology and development of a robust application that collects sensor data through
an in the wild study. The second research goal defines an implicit authentication
model. A 2 week pilot experiment with 4 users helped in defining the optimal
sampling rates together with defining which sensors should be excluded from
further experiments. A 2 week experiment with 14 users is currently in progress.
The collected sensor data is being distributed in a number of different buckets
(i.e. location, physical activity, time of the day, etc) in order to determine the
optimal sets of recurring distinguishable features which when applied to machine
learning algorithms will define the implicit authentication model.

Table 1. shows how physical activity is being used to assign weights to sensor
data. These weights give higher weight to motion sensors when the user is moving
and higher weight to usage data when the user is stationary. In the third research
goal an implicit authentication framework consisting of features extracted dur-
ing the second goal will be evaluated from both a usability and security attack
perspective. Security attacks will be evaluated through three different attacking
models (i.e. naive, partially informed and fully informed attackers). A naive at-
tacker would know some of the locations of the user and would occasionally guess
some usage information. In contrast, a fully informed attacker would be well in-
formed about the user’s actions,i.e. he would know the user’s exact locations and
most of the applications used.

Table 1. Weight distribution of sensor data according to physical activity

Motion Location User Environment

Acceleration Rotation Wi-Fi
Cell
Tower

Usage Orientation Sound Light
Magnetic
Field

Stationary Low Low Med Low High High Med Med Low

Moving High High Med Med Med Med High Med Low

Moving Fast High High High High Low Low High Low Low

References

1. Jakobsson, M., Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile de-
vices. In: HotSec 2009 (2009)

2. Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S., Ailisto, H.: Identifying
users of portable devices from gait pattern with accelerometers. In: IEEE ICASSP
2005, vol. 2, p. ii/973 (2005)

3. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and
i know it’s you!: implicit authentication based on touch screen patterns. In: CHI
2012, pp. 987–996. ACM (2012)

4. Shi, W., Yang, J., Jiang, Y., Yang, F., Xiong, Y.: Senguard: Passive user identifica-
tion on smartphones using multiple sensors. In: WiMob, p. 141. IEEE (2011)

Quaestio-it.com: From Debates Towards

Trustworthy Answers

(Extended Abstract)

Valentinos Evripidou and Francesca Toni

Department of Computing, Imperial College London,
London, SW7 2AZ, United Kingdom

{ve10,ft}@imperial.ac.uk

Abstract. Information sharing between online users has altered the way
we seek and find information. Users have at their disposal a wide range of
tools for exchanging opinions and engaging into discussions. This creates
a large amount of user generated information that can often be mislead-
ing, false or even malicious. We demonstrate a question-and-answer web
application, based on Computational Argumentation, that offers debat-
ing infrastructure for opinion exchanges. It empowers users to organically
determine trustworthy answers through their feedback which takes the
form of voting and posting attacking or supporting arguments.

Social networks, discussion platforms and forums have changed the way we in-
teract on the web. Users can easily share and express their opinions, views and
thoughts over a plethora of topics, as well as initiate conversations. This creates
an overwhelming amount of user generated information in the form of discussions
and debates that can include misleading, false or even malicious information. A
sub-category of these platforms are question-and-answer (Q&A) websites where
users turn to for asking questions and receiving answers.. These platforms de-
pend entirely on user contributions and therefore need strong mechanisms for
controlling the quality of their content. We demonstrate quaestio-it, a prototype
Q&A web application which provides an intelligent way for evaluating answers
to questions, using Computational Argumentation, a method that has proven its
importance in a number of application areas such as medicine, law, robotics and
decision tools [1]. Quaestio-it can be used to provide a way for users to give their
feedback and identify the most trustworthy answers on any question. It takes a
novel approach on Q&A functionality and offers the infrastructure for discussing
each answer to any user posted question. It imposes a basic structure for post-
ing answers and comments and offers an interactive visualised way for browsing
through conversations. Posted answers are open for debate and users can vote or
post their attacking/supporting comments as arguments either on the answers
or on other comments. The answers are then evaluated using techniques from
Computational Argumentation, taking arguments and votes into account, with
the best answers being identified and highlighted.

Figure 1 shows a screenshot of a debate about a question on quaestio-it.com.
On the right, the debate is represented as a tree with the root node being the

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 273–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 V. Evripidou and F. Toni

Fig. 1. Visualisation of debates in quaestio-it.com

question, its immediate children being the answers and all subsequent level nodes
being comments (posted by users as attacking or supporting arguments). The
edges between the nodes illustrate the relations between the question, the an-
swers and the comments; dotted edges indicate direct answers to the question,
while straight, red (-) or green (+) edges show attacking or supporting argu-
ments on the answers or on other arguments. Nodes vary in size depending on
the strength evaluation from the underlying algorithm, offering a quick insight
about the dominant, most trusted (by other users) answers for a particular ques-
tion. On the left of Figure 1 a linear representation of the answers and comments
is shown, corresponding to the nodes of the tree as indicated by the numbers
1–6. It includes further information such as the positive/negative votes ratio,
strength evaluations and all available actions to the user.

Future developments include: (i) adapting the algorithm and argumentation
framework to implement reputation mechanisms for determining a user’s trust-
worthiness, and (ii) including spam detection techniques to prevent the manip-
ulation of the system or the underlying algorithm.

Acknowledgements. This research was supported by an EPSRC Pathways to
Impact project.

Reference

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10-15), 619–641 (2007)

Towards Verifiable Trust Management

for Software Execution

(Extended Abstract)

Michael Huth and Jim Huan-Pu Kuo

Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth,jimhkuo}@imperial.ac.uk

Abstract. In the near future, computing devices will be present in most
artefacts, will considerably outnumber the number of people on this
planet, and will host software the executes in a potentially hostile and
only partially known environment. This suggests the need for bringing
trust management into running software itself, so that executing soft-
ware be guard-railed by policies that reflect risk postures deemed to be
appropriate for software and its deployment context. We sketch here an
implementation of a prototype that realizes, in part, such a vision.

The technical work described below relies on the concept of Trust Evidence. By
this we mean any source of information (credentials, reputation, system state,
past or present behavior, etc.) that can be used in order to assess the trustworthi-
ness of running a unit of code. The variety of sources for Trust Evidence suggest
the need for an extensible language in which such evidence can be combined.
The quantitative (e.g. reputation) and qualitative (e.g. a claimed credential) na-
ture of such evidence means that such a language has to consistently compose
qualitative as well as quantitative notions of Trust Evidence.

We here present an exploratory case study (whose usability issues are dis-
cussed in [1]) where Scala [2] methods are the units of software that guard rails
are meant to control. Guard rails use heterogeneous Trust Evidence sources to
decide the circumstances in which methods may be invoked. The data-flow dia-
gram of our case study, in Figure 1, has a three-layered guard rail architecture.

Annotation blocks @Expects, @Policy, and @Switch precede each method
declaration and, roughly, correspond to a context-sensitive access request, a pol-
icy decision point (where the contextualized request is evaluated), and a policy
enforcement point (where the evaluated decision is realized) – as familiar from
access-control architectures. Atomic expectations (expressed in @Expects) may
be predicates associated with a certain trust score. Intuitively, truth of the pred-
icate secures this trust score in isolation. For example, an atomic expectation
may assign trust score 0.2 if the method is not called by a specific caller method.
Atomic trust scores would then be composed within sub-blocks based on a spec-
ified composition operator (e.g. a pessimistic min operator). Sub-block scores
may be accumulative, pessimistic, etc. and are themselves combined into a lo-
cal trust score that is referred to in the second level (@Policy), which specifies

M. Huth et al. (Eds.): TRUST 2013, LNCS 7904, pp. 275–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

276 M. Huth and J. Huan-Pu Kuo

a rule-based policy for whether or not to execute the method body. The third
level (@Switch) then implements the enforcement of the guard rails specified in
the expectation and policy levels. We implemented this as a switch statement
that ranges over possible policy decisions and that specifies, for each possible
decision, whether and if so how the “payload” method body should execute.

The proof of concept framework was implemented in the Scala programming
language [2]. One reason for choosing a JVM based language such as Scala is that
there exist frameworks to extend the language and inject behaviours/aspects at
various points of the source code, allowing us to deliver more refined, future pro-
totype implementations. The two frameworks we use in our first implementation
are: ANTLR [3] and AspectJ [4].

���
���

���
	
�

�

��
����

���
���

��

�
�
���

���
���

�

��	������������� ��������
����
��
���
���
����������

����������� ���

!������������
���������������
����� �����
�
��������

!������������������
�������������
�"#"$��
�%���&$����'$����()

*��+,

������
��
	
����� ������
����������

��
���

��
��
���

�
��
��

���
���

!����������
������
�
�� ���
���

��
��
�

���
���

	��
���

�

���

��
���

�
�

��

#���� ��
���
����

���	
����������������
��

Fig. 1. Dataflow of our trust-management implementation for method guard railing

Acknowledgment. Intel R© Corporation kindly funded a sub-project within its
Trust Evidence project. Work reported here is an outcome of said sub-project.

References

1. Huth, M., Kuo, J.H.-P., Sasse, A., Kirlappos, I.: Towards usable generation and
enforcement of trust evidence from programmers’ intent. In: Proc. of 15th Int’l
Conf. on Human-Computer Interaction. LNCS. Springer (to appear, 2013)

2. Odersky, M.: The Scala Language Specification Version 2.9. Programming Methods
Laboratory, EPFL, Switzerland (May 24, 2011) (draft)

3. Parr, T.: The Definitive ANTLR 4 Reference. The Pragmatic Programmer (2013)
4. Lopes, C.V., Kiczales, G.: Improving design and source code modularity using As-

pectJ (tutorial session). In: ICSE, p. 825 (2000)

Author Index

Aigner, Ronald 37
Anderson, Gabrielle 232
Armstrong, Philip 267

Baillie, Lynne 271
Bartsch, Steffen 205
Ben-Romdhane, Molka 92
Bobba, Rakesh B. 65
Brunthaler, Stefan 151, 187
Burnett, Chris 142
Busch, Marc 223

Campbell, Roy H. 65
Chang, Dexian 133
Chen, Liang 142
Chen, Liqun 47
Cheng, Yueqiang 19
Coles-Kemp, Lizzie 196
Collinson, Matthew 232
Conrad, Marc 269

Danger, Jean-Luc 92
Ding, Xuhua 19

Edwards, Peter 142
Ekberg, Jan-Erik 115
England, Paul 37
Evripidou, Valentinos 273

Faily, Shamal 267
Feng, Dengguo 133
Feng, Wei 133
Fléchais, Ivan 267
Franz, Michael 151, 187
French, Tim 269

Gligor, Virgil 1
Graba, Tarik 92

Han, Jun 1
Hanser, Christian 47
Hein, Daniel 47
Hennigan, Eric 151, 187

Hochleitner, Christina 223
Huang, Heqing 169
Huh, Jun Ho 65
Huth, Michael 275

Jaffray, Mariesha 142
Just, Mike 271

Karame, Ghassan O. 83
Karayumak, Fatih 205
Kayacik, Gunes 271
Kerschbaumer, Christoph 151, 187
Koshy, Lyzgeo Merin 269
Kuo, Jim Huan-Pu 275

Larsen, Per 151, 187
Light, Ann 196
Lin, Yue-Hsun 1
Liu, Peng 169
Lorenz, Mario 223

Malheiros, Miguel 250
Micallef, Nicholas 271
Montanari, Mirko 65

Nordholz, Jan 37
Norman, Timothy J. 142

Perrig, Adrian 1
Pignotti, Edoardo 142
Pirker, Martin 106
Potzmader, Klaus 47
Power, David 267
Preibusch, Sören 250
Pym, David 232

Qin, Yu 133

Rahulamathavan, Yogachandran 142

Sasse, M. Angela 250
Schulz, Trenton 223
Shukla, Mitul 269

278 Author Index

Tamrakar, Sandeep 115

Teufl, Peter 47

Theuerling, Heike 205

Toni, Francesca 273

Tscheligi, Manfred 223

Volkamer, Melanie 205

Wei, Ge 133
Winter, Johannes 47, 106
Wittstock, Eckhart 223
Wu, Dinghao 169

Zhang, Qianying 133
Zhou, Zongwei 1
Zhu, Sencun 169

	Preface
	Organization
	Table of Contents
	Technical Strand
	KISS: “Key It Simple and Secure” Corporate Key Management
	1 Introduction
	2 Attacker Model
	3 Background
	4 Overview
	4.1 System Entities
	4.2 System Model

	5 System Architecture
	5.1 KISS Server, Client, and Manager
	5.2 TAD

	6 System Bootstrap
	6.1 Server Bootstrap
	6.2 Client Bootstrap and Registration

	7 Secure System Administration
	8 Fine-Grained Key Usage Control
	9 Security Analysis
	10 Discussion
	11 RelatedWork
	12 Conclusion
	References

	Guardian: Hypervisor as Security Foothold for Personal Computers
	1 Introduction
	2 Problem Definition
	2.1 ThreatModel

	3 Design of Guardian
	3.1 Establishing Guardian as a Security Foothold
	3.2 Secure User-Hypervisor Interface

	4 Security Utilities
	4.1 DeviceMonitoring
	4.2 Hyper-firewall

	5 Implementation
	5.1 DeviceMonitoring Evaluation
	5.2 Hyper-firewall Evaluation
	5.3 System Benchmark

	6 Related Work
	7 Conclusion
	References

	Improving Trusted Tickets with State-Bound Keys
	1 Introduction
	2 Background
	3 Design
	4 Implementation
	5 Evaluation
	6 Conclusion, Future Work
	References

	Group Signatures on Mobile Devices: Practical Experiences
	1 Introduction
	2 Background
	3 Results and Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

	Limiting Data Exposure in Monitoring Multi-domain Policy Conformance
	1 Introduction
	2 Related Work
	3 Multi-domain Event Sharing for Compliance
	4 Experimental Evaluation
	5 Conclusion
	References

	Towards Trustworthy Network Measurements
	1 Introduction
	2 Threats against Network Measurements
	3 Trustworthy Network Measurements Using OpenFlow
	4 Related Work
	5 Concluding Remarks
	References

	Stochastic Model of a Metastability-Based True Random Number Generator
	1 Introduction
	2 Modeling and Characterisation of Metastability
	3 Stochastic Model of the Metastability-Based TRNG
	4 ModelVerification
	5 Conclusion
	References

	Semi-automated Prototyping of a TPM v2 Software and Hardware Simulation Platform
	1 Introduction
	2 Background
	3 Synthesis of a TPM v2 Software Simulator
	4 Towards a Hardware TPM v2 Simulation Platform
	5 Conclusion and Outlook
	References

	Tapping and Tripping with NFC
	1 Introduction
	2 Related Work
	3 Our First Ticketing Protocol
	4 MTA/LIRR Mobile-Ticketing Trial
	5 Ticketing System Upgrade
	6 Implementation and Measurements
	7 Conclusions
	References

	TEEM: A User-Oriented Trusted Mobile Device for Multi-platform Security Applications
	1 Introduction
	2 Motivation and Related Work
	3 TEEM Architecture
	4 Implementation and Evaluation
	5 Conclusion and Future Work
	References

	TRUMP: A Trusted Mobile Platform for Self-management of Chronic Illness in Rural Areas
	1 Introduction
	2 Mobile Interventions
	3 Aspects of a Trustworthy Platform
	4 Architecture
	5 Conclusion and Future Work
	References

	First-Class Labels: Using Information Flow to Debug Security Holes
	1 Motivation
	2 The Attacker’s Threat
	2.1 The Developer’s Response

	3 Information Flow Terminology
	3.1 Explicit Information Flows
	3.2 Implicit Information Flow

	4 Supporting Framework
	4.1 Storage of Security Principals and Labels
	4.2 Label Propagation
	4.3 Information Flow in the Browser

	5 Design and Implementation of First-Class Labels
	5.1 Reflecting Labels into JavaScript
	5.2 JavaScript Syntax Extension to Retrieve Labels
	5.3 Network Hook in the Web Browser

	6 Using First-Class Labels
	6.1 Label Creation
	6.2 Label Application
	6.3 Label Retrieval and Comparison

	7 Evaluation
	7.1 Performance
	7.2 Completeness
	7.3 Security
	7.4 Utility as a Debugging Tool

	8 Related Work
	9 Conclusion
	References

	A Framework for Evaluating Mobile App Repackaging Detection Algorithms
	1 Introduction
	2 Study of Existing Repackaging Detection Algorithms
	2.1 Background on Dalvik Bytecode
	2.2 Fuzzy Hashing Based Detection
	2.3 PDG Based Detection
	2.4 Feature Hashing Based Detection

	3 Evaluation Framework
	3.1 Dalvik Bytecode Pre-processor
	3.2 IR Code Obfuscator
	3.3 IR2Dex Repackager
	3.4 Practical Concern

	4 Experiment
	4.1 Framework Setup
	4.2 Case Study
	4.3 Discussions

	5 Related Work
	6 Conclusion
	References

	Towards Precise and Efficient Information Flow Control in Web Browsers
	1 Motivation
	2 Threat Model
	3 Design and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Socio-Economic Strand
	Granddaughter Beware! An Intergenerational Case Study of Managing Trust Issues in the Use of Facebook
	1 Introduction
	1.1 Related Work

	2 Details of the Identity Workshop
	2.1 Planned Interactions
	2.2 Designing the Methodology

	3 Emergent Interactions
	3.1 An Open and Shut Case

	4 Learning about Social Media Use
	4.1 Different Priorities Require Different Designs
	4.2 The Challenges for Designing in Trust

	5 Conclusion and Future Work
	References

	Contextualized Web Warnings, and How They Cause Distrust
	1 Introduction
	2 Prior Research on the Content of Web Browser Warnings
	3 Pre-study: How Expert and Lay Users Assess Web Risks
	4 Research Hypotheses
	5 Research Method
	6 Results
	7 Discussion
	References

	All In: Targeting Trustworthiness for Special Needs User Groups in the Internet of Things
	1 Introduction
	2 Smart Medicine Cabinet and Trust
	3 Development and Evaluation
	3.1 Personas
	3.2 Understanding Trust in the IoT
	3.3 The Interface Approach
	3.4 Simulation and Evaluation in Virtual Reality Environments

	4 The Final Prototype
	5 Conclusion and Future Work
	References

	Trust Domains: An Algebraic, Logical, and Utility-Theoretic Approach
	1 Introduction
	2 TrustDomains
	3 Systems Modelling and Decision-Making
	4 A Process Algebra with Contextual Costs
	5 A Cost-Sensitive Modal Logic
	6 Trust Domains Revisited
	7 Further Work
	References

	“Fairly Truthful”: The Impact of Perceived Effort, Fairness, Relevance, and Sensitivity on Personal Data Disclosure
	1 Managing Disclosure of Personal Data
	2 Experimental Hypotheses
	3 Experiment Methodology
	4 Results and Discussion
	5 Conclusions
	References

	Poster Abstracts
	Formal Evaluation of Persona Trustworthiness with EUSTACE
	(Extended Abstract)
	1 Motivation
	2 Approach and Preliminary Results
	References

	Identity Implies Trust in Distributed Systems – A Novel Approach
	References

	Non-intrusive and Transparent Authentication on Smart Phones
	1 Introduction
	2 Context and Motivation
	3 Research Goals, Methods and Status
	References

	Quaestio-it.com: From Debates Towards Trustworthy Answers
	Reference

	Towards Verifiable Trust Management for Software Execution
	References

	Author Index

