
Data Structure Lower Bounds on Random

Access to Grammar-Compressed Strings�

Elad Verbin and Wei Yu

Aarhus University
34 Åbogade, 8200 Aarhus N, Denmark

{eladv, yuwei}@cs.au.dk

Abstract. In this paper we investigate the problem of building a static
data structure that represents a string s using space close to its com-
pressed size, and allows fast access to individual characters of s. This
type of data structures was investigated by the recent paper of Bille et
al. [3]. Let n be the size of a context-free grammar that derives a unique
string s of length L. (Note that L might be exponential in n.) Bille et
al. showed a data structure that uses space O(n) and allows to query for
the i-th character of s using running time O(logL). Their data structure
works on a word RAM with a word size of logL bits.

Here we prove that for such data structures, if the space is poly(n), the
query time must be at least (logL)1−ε/ log S where S is the space used,
for any constant ε > 0. As a function of n, our lower bound is Ω(n1/2−ε).
Our proof holds in the cell-probe model with a word size of logL bits, so
in particular it holds in the word RAM model. We show that no lower
bound significantly better than n1/2−ε can be achieved in the cell-probe
model, since there is a data structure in the cell-probe model that uses
O(n) space and achieves O(

√
n log n) query time. The “bad” setting of

parameters occurs roughly when L = 2
√

n. We also prove a lower bound
for the case of not-as-compressible strings, where, say, L = n1+ε. For this
case, we prove that if the space is O(n ·polylog(n)), the query time must
be at least Ω(log n/ log log n).

The proof works by reduction from communication complexity, namely
to the LSD (Lopsided Set Disjointness) problem, recently employed by
Pǎtraşcu and others. We prove lower bounds also for the case of LZ-
compression. All of our lower bounds hold even when the strings are
over an alphabet of size 2 and hold even for randomized data structures
with 2-sided error.

� The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed. Part of the work was done while the authors were
working in IIIS, Tsinghua University in China.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 247–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

248 E. Verbin and W. Yu

1 Introduction

In many modern databases, strings are stored in compressed form. Many com-
pression schemes are grammar-based, in particular Lempel-Ziv [6,11,12] and its
variants, as well as Run-Length Encoding.

A natural desire is to store a text using space close to its compressed size,
but to still allow fast access to individual characters: can we do something faster
than simply extracting the whole text each time we need to access a character?
This question was recently answered in the affirmative by Bille et al. [3] and by
Claude and Navarro [5]. These two works investigate the problem of storing a
string that can be represented by a small CFG (context-free grammar) of size n,
while allowing some basic stringology operations, in particular random access to
a character in the text. The data structure of Bille et al. [3, Theorem 1] stores
the text in space linear in n, while allowing access to an individual character in
time O(logL), where L is the text’s uncompressed size.1 But is that the best
upper bound possible?

In this paper we show a (logL)1−ε lower bound on the query time when the
space used by the data structure is poly(n), showing that the result of Bille et
al. is close to optimal. Our lower bounds are proved in the cell-probe model of
Yao [10], with word size logL, therefore they in particular hold for the model
studied by Bille et al. [3], since the cell-probe model is strictly stronger than
the RAM model. Our lower bound is proved by a reduction from Lopsided
Set Disjointness (LSD), a problem for which Pǎtraşcu has recently proved an
essentially-tight randomized lower bound [8]. The idea is to prove that gram-
mars are rich enough to effectively “simulate” a disjointness query: our class of
grammars, presented in Section 3.1, might be of independent interest as a class
of “hard” grammars for other purposes as well.

In terms of n, our lower bound is n1/2−ε. The results of Bille et al. imply an
upper bound of O(n) on the query time, since logL ≤ n, therefore in terms of n
there is a curious quadratic gap between our lower bound and Bille et al.’s upper
bound. We show that this gap can be closed by giving a better data structure: we
show a data structure which takes space O(n) and has query time O(

√
n logn),

showing that no significantly better lower bound is possible. This data structure,
however, comes with a big caveat – it runs in the highly-unrealistic cell-probe
model, thus serving more as an impossibility proof for lower bounds than as
a reasonable upper bound. The question remains open of whether such a data
structure exists in the more realistic word RAM model.

Our lower bound holds for a particular, “worst-case”, dependence of L on
n. Namely, L is roughly 2

√
n. It might also be interesting to explicitly limit

the range of allowed parameters to other regimes, for example to non-highly-
compressible text; in such a regime it might be that L = n1+ε. The above result
does not imply any lower bound for this case. Furthermore, we show in another
result that for any data structure in that regime, if the space is n · polylogn,
1 The result of Bille et. al. also allows other query operations such as pattern matching;
we do not discuss those in this paper.

Data Structure Lower Bounds on Random Access 249

the query time must be Ω(logn/ log logn). This lower bound holds, again, in
the cell probe model with words of size logn bits, and is proved by a reduction
from two-dimensional range counting (which, once again, was lower bounded by
a reduction from LSD [8]).

2 Preliminaries

In this paper we denote [N] = {1, . . . , N}. All logarithms are in base 2 unless
explicitly stated otherwise.

Our lower bounds are proved in Yao’s cell-probe model [10]. In the cell-probe
model, the memory is an array of cells, where each cell consists of w bits each.
The query time is measured as the number of cells read, while all computations
are free. This model is strictly stronger than the word RAM, since in the word
RAM the operations allowed on words are restricted, while in the cell-probe
model we only measure the number of cells accessed. The cell-probe model is
widely used in proving data structure lower bounds, especially by reduction from
communication complexity problems [7]. In this paper we prove our result by a
reduction from the Blocked-LSD problem introduced by Pǎtraşcu [8].

An SLP (straight line program) is a collection of n derivation rules, defining
the symbols g1, . . . , gn. Each rule is either of the form gi → ‘σ′, i.e. gi is a
terminal, which takes the value of a character σ from the underlying alphabet,
or of the form gi → gjgk, where j < i and k < i, i.e. gj and gk were already
defined, and we define the nonterminal symbol gi to be their concatenation. The
symbol gn is the start symbol. To derive the string we start from gn and follow
the derivation rules until we get a sequence of characters from the alphabet. The
length of the derived string is at most 2n. W.l.o.g. we assume it is at least n. As
the same in Bille et al. [3], we also assume w.l.o.g. that the grammars are in fact
SLPs and so on the righthand side of each grammar rule there are either exactly
two variables or one terminal symbol. In this paper SLP, CFG and grammar all
mean the same thing.

The grammar random access problem is the following problem.

Definition 1 (Grammar Random Access Problem). For a CFG G of size
n representing a binary string of length L, the problem is to build a data structure
to support the following query: given 1 ≤ i ≤ L, return the i-th character (bit)
in the string.

We study two other data structure problems, which are closely related to their
communication complexity counterparts.

Definition 2 (Set Disjointness, SDN). For a set Y ⊆ [N], the problem is
to build a data structure to support the following query: given a set X ⊆ [N],
answer whether X ∩ Y = ∅.
Given a universe [BN] = {1, . . . , BN}, a set X is called blocked with cardinality
N if when we divide the universe [BN] into N equal-sized consecutive blocks, X
contains exactly one element from each of the blocks while Y could be arbitrary.

250 E. Verbin and W. Yu

Definition 3 (Blocked Lopsided Set Disjointness, BLSDB,N). For a set
Y ⊆ [BN], the problem is to build a data structure to support the following
query: given a blocked set X ⊆ [BN] where |X | = N containing 1 element from
each size B block, answer whether X ∩ Y = ∅.
For proving lower bound for near-linear space data structures, we also need
reductions from a variant of the range counting problem.

Definition 4 (Range Counting). The range counting problem is a static data
structure problem. We need to preprocess a set of n points on a [n] × [nε] grid.
A query (x, y) asks to count the number of points in a dominance rectangle
[1, x]× [1, y] (a rectangle contains the lower left corner (1, 1)). Return the answer
modulo 2.

Note that the above problem is “easier” than the classical 2D range-counting
problem, since it is a dominant query problem, it is a grid n×nε, and it is modulo
2. However, the (tight) lower bound that is known for the general problem, given
by Pǎtraşcu [8], could be generalized for the problem we define.

3 Lower Bound for Grammar Random Access

In this section we prove the main lower bound for grammar random access. In
Section 3.1 we show the main reduction from SD and BLSD. In Section 3.2 we
prove lower bounds for SD and BLSD, based on reductions to communication
complexity (these are implicit in the work of Pǎtraşcu [8]). Finally, in Section
3.3 we tie these together to get our lower bounds.

3.1 Reduction from SD and LSD

In this section we show how to reduce the grammar access problem from SD
or BLSD, by considering a particular type of grammar. The reductions tie the
parameters n and L to the parameters B and N of BLSD (or just to the pa-
rameter N of SD). In Section 3.3 we show how to choose the relation between
the various parameters in order to get our lower bounds. We remark that the
particular multiplicative constants in the lemmas below will not matter, but we
give them nonetheless, for concreteness.

These reductions might be confusing for the reader, but they are in fact al-
most entirely tautological. They just follow from the fact that the communication
matrix of SD is a tensor product of the 2 by 2 communication matrices for the

coordinates, i.e., it is just a N -fold tensor product of the matrix

(
1 1
1 0

)
. For

BLSD, the communication matrix is the N -fold tensor product of the (2B)×B
communication matrix for each block (for example, for B = 3 this matrix is⎛
⎝1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

⎞
⎠). We do not formulate our arguments in the language of

Data Structure Lower Bounds on Random Access 251

communication matrices and tensor products, since this would hide what is
really going on. To aid the reader, we give an example after each of the two
constructions.

Lemma 1 (Reduction from SDN). For any set Y ⊆ [N], there is a grammar
GY of size n = 2N + 1 deriving a binary string sY of length L = 2N such that
for any set X ⊆ [N], it holds that sY [X] = 1 iff X ∩ Y = ∅.
Note that in this lemma we have indexed the string s by sets: there are 2N

possible sets X , and the length of the string sY is also 2N – each set X serves as
an index of a unique character. The indexing is done in lexicographic order: the
setX is identified with its characteristic vector, i.e., the vector in {0, 1}N whose i-
th coordinate is ‘1’ if i ∈ X , and ‘0’ otherwise, and the sets are ordered according
to lexicographic order of their characteristic vectors. For example, here is the
ordering for the case N = 3: ∅, {1} , {2} , {1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3}.
Proof. We now show how to build the grammar GY . The grammar has N sym-

bols for the strings 0, 02, 04, . . . , 02
N−1

, i.e., all strings consisting solely of the
character ‘0’, of lengths which are all powers of 2 up to 2N−1. Then, the gram-
mar has N +1 additional symbols g0, g1, . . . , gN . The terminal g0 is equal to the
character 1. For any 1 ≤ i ≤ N , we set gi to be equal to gi−1gi−1 if i /∈ Y , and

to be equal to gi−10
2i−1

if i ∈ Y . The start symbol of the grammar is gN .
We claim that the string derived by this grammar has the property that

sY [X] = 1 iff X ∩ Y = ∅. This is easy to prove by induction on i, where the
induction claim is that for any i, gi is the string that corresponds to the set
Y ∩ {1, . . . , i} over the universe {1, . . . , i}. 	

Example 1. Consider the universe N = 4. Let Y = {1, 3}. The string sY is
1010000010100000. The locations of the 1‘s correspond exactly to the sets that
don’t intersect Y , namely to the sets ∅, {2}, {4} and {2, 4}, respectively.
We now show the reduction from blocked LSD. It follows along the same general
idea, but the grammar is slightly more complicated.

Lemma 2 (Reduction from BLSDB,N). For any set Y ⊆ [BN], there is a
grammar GY of size n = 2BN +1 deriving a binary string sY of length L = BN

such that for any blocked set X ⊆ [BN] of cardinality N , it holds that sY [X] = 1
iff X ∩ Y = ∅.
Recall that by “a blocked set X ⊆ [BN] of cardinality N” we mean a set such
that the universe [BN] is divided into N equal-sized blocks, and X contains
exactly one element from each of these blocks.

Note that in this lemma we have again indexed the string s by sets: there
are BN possible sets X and the length of the string is BN . The indexing is
done in lexicographic order, this time identifying a set X with a length-N vec-
tor whose i-th coordinate is chosen according to which element it contains in
block i, and the sets are ordered according to lexicographic order of their char-
acteristic vectors. For example, here is the ordering for the case N = 2, B = 3:
{1, 4} , {2, 4} , {3, 4} , {1, 5} , {2, 5} , {3, 5} , {1, 6} , {2, 6} , {3, 6}.

252 E. Verbin and W. Yu

The construction in this reduction is similar to that in the case of SD, but
instead of working element by element, we work block by block.

Proof. We now show how to build the grammar GY . The grammar has N sym-

bols for the strings 0, 0B, 0B
2

, 0B
3

, . . . , 0B
N−1

, i.e., all strings consisting solely of
the character ‘0’, of lengths which are all powers of B up to BN−1. We cannot
simply obtain the symbols directly from each other: e.g., to obtain 0B

2

from
0B, we need to concatenate 0B with itself B times. Thus we use BN rules to
derive all of these symbols. (In fact, O(N logB) rules can suffice but this does
not matter).

Then, beyond these, the grammar has N+1 additional symbols g0, g1, . . . , gN ,
one for each block. The terminal g0 is equal to the character 1. For any 1 ≤ 1 ≤
N , gi is constructed from gi−1 according to which elements of the i-th block are
in Y : we set gi to be a concatenation of B symbols, each of which is either gi−1

or 0B
i−1

. In particular, gi is the concatenation of g
(1)
i , . . . , g

(B)
i , where gji is equal

to gi−1 if the j-th element of the i-th block is not in Y , and it is equal to 0B
i−1

if the j-th element of the i-th block is in Y . To construct these symbols we need
at most BN rules, because we need B− 1 concatenation operations to derive gi
from gi−1. (Note that here we cannot get down to O(N logB) rules – Θ(BN)
seem to be necessary.) The start symbol of the grammar is gN .

We claim that the string produced by this grammar has the property that
sY [X] = 1 iff X ∩ Y = ∅. This is easy to prove by induction on i, where the
induction claim is that for any i, gi is the string that corresponds to the set
X ∩ {1 . . . , iB} over the universe {1, . . . , iB}. 	

Example 2. Consider the values B = 3 and N = 3. Let Y = {1, 3, 5, 9}. The
string sY is “010000010 010000010 000000000”2. The locations of the 1’s cor-
respond exactly to the blocked sets that don’t intersect Y , namely to the sets
{2, 4, 7}, {2, 6, 7}, {2, 4, 8} and {2, 6, 8}, respectively. A brief illustration for this
example is in Figure 1.

g2 = 010000010

g3 = 010000010 010000010 000000000

{7} ∩ Y = ∅ {8} ∩ Y = ∅ {9} ∩ Y = {9}
Fig. 1. An illustration of Example 2

3.2 Lower Bounds for SD and BLSD

In this subsection we show lower bounds for SD and BLSD that are implicit
in the work of Pǎtraşcu [8]. Recall the notations from Section 2: in particular,
in all of the bounds, w, S, and t denote the word size (measured in bits), the

2 The spaces are just for easier presentation.

Data Structure Lower Bounds on Random Access 253

size of the data structure (measured in words) and the query time (measured in
number of accesses to words), respectively.

Theorem 1. For any 2-sided-error data structure for SDN , t ≥ Ω(N/(w +
logS)).

Note that this theorem does not give strong bounds when w = O(logL), but it
is meaningful for bit-probe (w = 1) bound and a warm-up for the reader.

Theorem 2. Let ε > 0 be any small constant. For any 2-sided-error data struc-
ture for BLSDB,N ,

t ≥ Ω

(
min

(
N logB

logS ,
B1−εN

w

))
. (1)

The proofs follow by standard reductions from data structure to communication
complexity, using known lower bounds for SD and BLSD (the latter is one of
the main results in [8]).

We now cite the corresponding communication complexity lower bounds:

Lemma 3 (See [2,9,1]). Consider the communication problem where Alice and
Bob each receive a subset of [N], and they want to decide whether the sets are
disjoint. Any randomized 2-sided-error protocol for this problem uses communi-
cation Ω(N).

Lemma 4 (See [8], Lemma 3.1). Let ε > 0 be any small constant. Consider
the communication problem where Bob gets a subset of [BN] and Alice gets a
blocked subset of [BN] of cardinality N , and they want to decide whether the sets
are disjoint. In any randomized 2-sided-error protocol for this problem, either
Alice sends Ω(N logB) bits or Bob sends B1−εN bits. (The Ω-notation hides a
multiplicative constant that depends on ε.)

The way to prove the data structure lower bounds from the communication lower
bounds is by reductions to communication complexity: Alice and Bob execute
a data structure query; Alice simulates the querier, and Bob simulates the data
structure. Alice notifies Bob which cell she would like to access; Bob returns that
cell, and they continue for t rounds, which correspond to the t probes. At the
end of this process, Alice knows the answer to the query. Overall, Alice sends
t logS bits and Bob sends tw bits. The rest is calculations, which we include
here for completeness:

Proof (Lemma 3 ⇒ Theorem 1). We know that the players must send a total of
Ω(N) bits, but the data structure implies a protocol where t logS + tw bits are
communicated. Therefore t logS + tw ≥ Ω(N) so t ≥ Ω(N/(logS + w)). 	

Proof (Lemma 4 ⇒ Theorem 2). We know that either Alice sends Ω(N logB)
bits or Bob sends B1−εN bits. Therefore, either t logS ≥ Ω(N logB) or tw ≥
B1−εN . The conclusion follows easily. 	

254 E. Verbin and W. Yu

3.3 Putting It Together

We now put the results of Section 3.1 and 3.2 together to get our lower bounds.
Note that in all lower bounds below we freely set the relation of n and L in
any way that gives the best lower bounds. Therefore, if one is interested in only
a specific relation of n and L (say L = n10) the lower bounds below are not
guaranteed to hold. The typical “worst” dependence in our lower bounds (at
least for the case where w = logL and S = poly(n)) is roughly L = 2

√
n.

Theorem 1 together with Lemma 1 immediately give:

Theorem 3. For any 2-sided-error data structure for the grammar random ac-
cess problem, t ≥ Ω(n/(w+log S)). And in terms of L, t ≥ Ω(logL/(w+logS)).

When setting w = 1 and S = poly(n) (polynomial space in the bit-probe
model), we get that t ≥ Ω(n/ logn). And in terms of L, t ≥ Ω(logL/ log logL).

Proof. Trivial, since n = Θ(N) and L = 2Θ(N). 	

Theorem 2 together with Lemma 2 give:

Theorem 4. Assume w = ω(logS). Let ε > 0 be any arbitrarily small constant.
For any 2-sided-error data structure for the grammar random access problem,

t ≥ n/w
1+ε
1−ε . And in terms of L, t ≥ logL

log S·w
ε

1−ε
.

When setting w = logL and S = poly(n) (polynomial space in the cell-probe
model with cells of size logL), there is another constant δ such that t ≥ n1/2−δ.
And in terms of L, t ≥ (logL)1−δ.

The condition w = ω(logS) is a technical condition, which ensures that the
value of B we choose in the proof is at least ω(1). For w ≤ log S one gets the
best results just by reducing from SD, as in Theorem 3.

Proof. For the first part of the theorem, substituteB = (w/ logS)1/(1−ε) log(w/S),
N = n/B, L = BN into (1). For the second part of the theorem, substitute

N = B1−ε logn
log2 B

, n = BN and L = BN . And for the result, set δ = 2ε
1−ε . 	

4 Lower Bound for Less-Compressible Strings

In the above reduction, the worst case came from strings that can be compressed
superpolynomially. However, for many strings we expect to encounter in practice,
superpolynomial compression is unrealistic. A more realistic range is polynomial
compression or less. In this section we discuss the special case of strings of length
O(n1+ε). We show that for this class of strings, the Bille et al. [3] result is also
(almost) tight by proving an Ω(log n/ log logn) lower bound on the query time,
when the space used is O(n ·polylog n). This is done by reduction from the range
counting problem on a 2D grid. We have the following lower bound for the range
counting problem (see Definition 4 for details). Due to lack of space, we omit
the proof. A similar proof for a problem with slightly different parameters could
be found in [8, Section 2.1+Appendix A].

Data Structure Lower Bounds on Random Access 255

Lemma 5. Any data structure for the 2D range counting problem for n points
on a grid of size [n]× [nε] using O(n polylogn) space requires Ω(logn/ log logn)
query time in the cell probe model with cell size logn.

Recall that the version of range counting we consider is actually dominance
counting modulo 2 on the n × nε grid. The main idea behind our reduction is
to consider the length-n1+ε binary string consisting of the answers to all n1+ε

possible dominance range queries (in the natural order, i.e. row-by-row, and in
each row from left to right); call this the answer string of the corresponding
range counting instance. We prove that the answer string can be derived using a
grammar of size O(n log n). The reduction follows obviously, since a dominance
prange query can be answered by querying one bit of the answer string.

Lemma 6. For any range counting problem in 2D, the answer string can be
derived by a grammar of size O(n logn).

The idea behind the proof of is to simulate a sweep of the point set from top to
bottom by a dynamic one-dimensional range tree. The symbols of the grammar
will correspond to the nodes of the tree. With each new point encountered, only
2 logn new symbols will be introduced. Since there are n points, the grammar
is of size O(n log n).

Proof. Assume w.l.o.g.p that n is a power of 2. It is easy to see that the answer
string could be built by concatenating the answers in a row-wise order, just as
illustrated in Figure 2.

0 0

1

0

0

(1, 1) 2 3 4

0 0

1 10

0

0

0 1

1 0

3

2

4

x

y

Fig. 2. The answer string for this instance is 0000 0111 0001 0010. The value in the
grids are the query results for queries falling in the corresponding cell, including the
bottom and left boundaries, excluding the right and top boundaries.

We are going to build the string row by row. Think of a binary tree represent-
ing the grammar built for the first row of the input. The root of the tree derives
the first row of the answer string, whose two children respectively represent the
answer string for the left and the right half of the row. In this way the tree is
built recursively. The leaves of the tree are terminal symbols from {0, 1}. Thus
there are 2n− 1 symbols in total for the whole tree. At the same time we also

256 E. Verbin and W. Yu

maintain the negations of the symbols in the tree, i.e., making a new symbol g′i
for each symbol gi in the tree, where g′i = 1 − gi if gi is a terminal symbol; or
g′i = g′jg

′
k if gi = gjgk.

The next row in the answer string will be derived by changing at most 2p logn
symbols in the grammar of the previous row, where p is the number of new
points in the row. We process the new points one by one. For each point, the
new symbols needed all lie in a path from a leaf to the root of the tree. Assuming
the update introduced by the point is the path h1, h2, . . . , hlogn, the new tree
will contain an update of h1, h2, . . . , hlogn. Also, all the right children of these
nodes will be switched to their negations (this switching step does not actually
require introducing any new symbols). An intuitive picture of the process is given
in Figure 3. The first row has a grammar g7 = g5g6, g5 = g1g2, g6 = g3g4 and
g1 = g2 = g3 = g4 = 0, as well as rules for g′i when 1 ≤ i ≤ 7. The second row
has a grammar with new rules h3 = h2g

′
6, h2 = g1h1, g

′
3 = g′4 = h1 = 1.

g1 = 0

g5 = 00 g6 = 00

g7 = 0000

g2 = 0 g3 = 0 g4 = 0 g1 = 0

h2 = 01 g′6 = 11

h3 = 0111

h1 = 1 g′3 = 1 g′4 = 1

(a) The trees built for the first and second
rows for the example in Figure 2.

(b) The general process illustrated
by picture. The black parts stands
for the negations of corresponding
symbols.

Fig. 3. Examples for building answer strings

It is easy to see for each new point, 2 logn additional rules are created. logn
of them are the new symbols (h1, . . . , hlogn), and another logn of them are their
negations (h′

1, . . . , h
′
logn). After all, we use 2(2n − 1) + n · 2 logn = O(n log n)

symbols to derive the whole answer string. 	

By using the above lemma, we have the lower bound of the grammar random
access problem when L = n1+ε.

Theorem 5. Fix ε > 0, any data structure using space O(n polylogn) for the
grammar random access problem with n rules on strings of length Ω(n1+ε) re-
quires Ω(logn/ log logn) query time.

Proof. For inputs of the range counting problem, we compress the answer string
to a grammar of size O(n logn) according to Lemma 6. After that we build a
data structure for the random access problem on this grammar using Lemma 8.
For any query (x, y) of the range counting problem, we simply pass the query
result on the index (y − 1)n + x − 1 on the answer string as an answer. As-
suming there is a data structure using O(n log n) space and query time t, then
it will also solve the range counting problem. According to Lemma 5 the lower
bound for range counting is Ω(log n/ log logn) for O(n polylog n) space, thus
t = Ω(logn/ log log n). 	

Data Structure Lower Bounds on Random Access 257

Note that natural attempt is to replace the 1D range tree that we used above by
a 2D range tree and perform a similar sweep procedure, but this does not work
for building higher dimensional answer strings.

5 LZ-Based Compression

In this section we discuss about what the lower bound means for LZ-based
compression, which is a typical case for grammar-based compression by Lempel-
Ziv [11,6]. First we look at LZ77. For LZ77 we have the following lemma.

Lemma 7 (Lemma 9 of [4]). The length of the LZ77 sequence for a string is
a lower bound on the size of the smallest grammar for that string.

The basic idea of this lemma is to show that each rule in the grammar only
contribute one entry for LZ77. Since LZ77 could compress any string with small
grammar size into a smaller size, it can also compress the string sY in Lemma 1
and the answer string in Theorem 5 into a smaller size. Thus the both lower
bounds for grammar random access problem also holds for LZ77.

The reader might also be curious about what will happen for the LZ78 [12]
case. Unfortunately the lower bound does not hold for LZ78. This is because
LZ78 is a “bad” compression scheme that even the input is 0n of all 0’s, LZ78
can only compress the string to length of

√
n. But a random access on an all 0

string is trivially constant with constant space. So we are not able to have any
lower bounds for this case.

6 Optimality

In this section, we show that the upper bound in Bille et al. [3] is nearly optimal,
for two reasons. First, it is clear that by Theorem 5, the upper bound in Lemma 8
is (almost) optimal, when the space used is O(n polylog n).

Lemma 8. There is a data structure for the grammar random access problem
with O(n) space and O(logL) time. This data structure works in the word RAM
with words of size logL.

Second, in the cell-probe model with words of size logL we also have the following
lemma by Bille et al. [3].

Lemma 9. There is a data structure for the grammar random access problem
with O(n) space and O(n logn/ logL) time.

Proof. This is a trivial bound.Thenumber of bits to encode the grammar isO(n log n)
since each rule needsO(log n) bits. The cell size isO(logL), so inO(n log n/ logL)
time the querier can just read all of the grammar. Since computation is free in the
cell-probe model, the querier can get the answer immediately. 	

258 E. Verbin and W. Yu

Thus, by using Lemma 8 when n = Ω(log2 L/ log logL) and Lemma 9 in the case
n = O(log2 L/ log logL), we have the following corollary. This corollary implies
that our lower bound of Ω(n1/2−ε) is nearly the best one can hope for in the
cell-probe model.

Corollary 1. Assuming w = logL, there is a data structure in the cell-probe
model with space O(n) and time O(

√
n logn).

Acknowledgement. We thank Travis Gagie and Pawel Gawrychowski for help-
ful discussions.

References

1. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory. In: FOCS, pp. 337–347 (1985)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. Journal of Computer and
System Sciences 68(4), 702–732 (2004)

3. Bille, P., Landau, G.M., Raman, R., Rao, S., Sadakane, K., Weimann, O.: Random
access to grammar compressed strings. In: SODA (2011)

4. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

5. Claude, F., Navarro, G.: Self-indexed text compression using straight-line pro-
grams. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
235–246. Springer, Heidelberg (2009)

6. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75–81 (1976)

7. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. In: STOC, p. 111. ACM (1995)

8. Patrascu, M.: Unifying the Landscape of Cell-Probe Lower Bounds. SIAM Journal
on Computing 40(3) (2011)

9. Razborov, A.A.: On the distributional complexity of disjointness. Theoretical Com-
puter Science 106(2), 385–390 (1992)

10. Yao, A.C.C.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)
11. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on information theory 23(3), 337–343 (1977)
12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory 24(5), 530–536 (1978)

	Data Structure Lower Bounds on RandomAccess to Grammar-Compressed Strings
	1 Introduction
	2 Preliminaries
	3 Lower Bound for Grammar Random Access
	3.1 Reduction from SD and LSD
	3.2 Lower Bounds for SD and BLSD
	3.3 Putting It Together

	4 Lower Bound for Less-Compressible Strings
	5 LZ-Based Compression
	6 Optimality
	References

