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Preface

This volume contains the papers presented at the 24th Annual Symposium on
Combinatorial Pattern Matching (CPM 2013) held in Bad Herrenalb near Karls-
ruhe, Germany, during June 17–19, 2013. The hosting university was the Karls-
ruhe Institute of Technology.

There were 51 submissions from 22 countries. Each submission was reviewed
by at least three Program Committee members. The committee decided to accept
21 papers, corresponding to an acceptance rate of 41%. We thank the members
of the Program Committee and all additional external reviewers for their hard
work that resulted in this excellent program. Their names are listed on the
following pages. The whole submission and review process was carried out with
the invaluable help of the EasyChair conference system.

The program also included two invited talks by Moshe Lewenstein from Bar
Ilan University, Israel, and by Gene Myers from the MPI for Molecular Cell
Biology and Genetics, Dresden, Germany. We thank the invited speakers for
their contributions.

2013 marks the 40th anniversary of Peter Weiner’s foundational paper “Lin-
ear pattern matching algorithms” on suffix trees, in those days called “bi-trees”
[14th Annual Symposium on Switching and Automata Theory (SWAT; nowa-
days FOCS), pp. 1–11, 1973]. CPM 2013 celebrated this event with a special
session, organized by Martin Farach-Colton and S. Muthukrishnan, both from
Rutgers University, USA. It included talks by Edward M. McCreight, Vaughan
R. Pratt, Peter Weiner, and Jacob Ziv. This special session was accompanied by
an invited contribution “Forty Years of Text Indexing” by Alberto Apostolico,
Maxime Crochemore, Martin Farach-Colton, Zvi Galil, and S. Muthukrishnan.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The goal
is to derive non-trivial combinatorial properties of such structures and to exploit
these properties in order to either achieve superior performance for the corre-
sponding computational problems or pinpoint conditions under which searches
cannot be performed efficiently. The meeting also deals with problems in com-
putational biology, data compression and data mining, coding, information re-
trieval, natural language processing, and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in Paris,
London (UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Pis-
cataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Is-
land, Barcelona, London (Ontario, Canada), Pisa, Lille, New York, Palermo,
and Helsinki again. This year’s meeting was the first in Germany. Starting from
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the third meeting, proceedings of all meetings have been published in the LNCS
series, as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848, 2089, 2373,
2676, 3109, 3537, 4009, 4580, 5029, 5577, 6129, 6661, and 7354.

We thank SAP (Walldorf, Germany) and the German Research Foundation
(DFG) for their financial support.

April 2013 Johannes Fischer
Peter Sanders
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Alejandro López-Ortiz University of Waterloo, Canada
Gonzalo Navarro University of Chile
Kunsoo Park Seoul National University, South Korea
Mike Paterson University of Warwick, UK
Rajeev Raman University of Leicester, UK
Benjamin Sach University of Warwick, UK
Kunihiko Sadakane National Institute of Informatics, Japan
Peter Sanders Karlsruhe Institute of Technology,

Germany (Co-chair)
Jens Stoye University of Bielefeld, Germany
Rossano Venturini University of Pisa, Italy
Oren Weimann University of Haifa, Israel

Steering Committee

Alberto Apostolico Georgia Institute of Technology, USA
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Forty Years of Text Indexing

Alberto Apostolico1, Maxime Crochemore2,3, Martin Farach-Colton4,
Zvi Galil1, and S. Muthukrishnan4

1 College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,
Atlanta, GA 30318, USA
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2 King’s College London, Strand, London WC2R 2LS, UK

maxime.crochemore@kcl.ac.uk
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77454 Marne-la-Vallée Cedex 2, France
4 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

{farach,muthu}@cs.rutgers.edu

Abstract. This paper reviews the first 40 years in the life of textual
inverted indexes, their many incarnations, and their applications. The
paper is non-technical and assumes some familiarity with the structures
and constructions discussed. It is not meant to be exhaustive. It is meant
to be a tribute to a ubiquitous tool of string matching — the suffix tree
and its variants — and one of the most persistent subjects of study in
the theory of algorithms.

Keywords: patternmatching, string searching, bi-tree, suffix tree, dawg,
suffix automaton, factor automaton, suffix array, FM-index, wavelet tree.

1 Prolog

When William Legrand finally decrypted the string:

53‡‡†305))6*,48264‡.)4‡);806”,48†8P60))85;1‡(;:‡*8†83(88)5*†,46(;88*96
*?;8)*‡(;485);5*†2:*‡(;4956*2(5*4)8P8*;4069285);)6‡8)4‡‡;1(‡9;48081;8:8
‡1;48 85;4)485†528806*81(ddag9;48;(88;4(‡?34;48)4‡;161;:188;‡?;

it did not seem to make much more sense than it did before. The decoded message
read: “A good glass in the bishop’s hostel in the devil’s seat forty-one degrees
and thirteen minutes northeast and by north main branch seventh limb east side
shoot from the left eye of the death’s-head a bee line from the tree through the
shot fifty feet out.” But at least it did sound more like natural language, and
eventually guided the main character of Edgar Allan Poe’s “The Gold Bug” [56]
to discover the treasure he had been after. Legrand solved a substitution ci-
pher using symbol frequencies. He first looked for the most frequent symbol and
changed it into the most frequent letter of English, then similarly treated the
second most frequent symbol, and so on.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Apostolico et al.

Both before and after 1843, the natural impulse when faced with some myste-
rious message has been to count frequencies of individual tokens or subassemblies
in search of a clue. Perhaps one of the most intense and fascinating subjects for
this kind of scrutiny has been bio-sequences. As soon as some such sequences
became available, statistical analyses tried to link characters or blocks of char-
acters to relevant biological function. With the early examples of whole genomes
emerging in the mid 90’s, it seemed natural to count the occurrences of all blocks
of size 1, 2, etc. up to any desired length, looking for statistical characterizations
of coding regions, promoter regions, etc. [67].

This review is not about cryptography. It is about a data structure and its
variants, and the many surprising and useful features it carries. Among these is
the fact that, to set up a statistical table of occurrences for all substrings, of any
length, of a text string of n characters, it only takes time and space linear in the
length of the text string. While nobody would be so foolish to solve the problem
by generating all exponentially many possible substrings and then counting their
occurrences one by one, a text string may still contain O(n2) distinct substrings,
so that tabulating all of them in linear space, never mind linear time, seems
already puzzling.

Over the years, such structures have held center stage in text searching, in-
dexing, statistics, and compression as well as in the assembly, alignment and
comparison of biosequences. Their range of scope extends to areas as diverse as
detecting plagiarism, finding surprising substrings in a text, testing the unique
decipherability of a code, and more. Their impact on Computer Science and IT
at large cannot be overstated. Text and Web searching and Bioinformatics would
not be the same without them. In 2013, the Combinatorial Pattern Matching
symposium celebrates the 40th anniversary of the appearance of Wiener’s paper
with a special session entirely dedicated to that event.

2 History Bits and Pieces

At the dawn of “stringology”, Don Knuth conjectured that the problem of find-
ing the longest substring common to two long text sequences of total length n
required Ω(n log n) time. An O(n logn)-time had been provided by Karp, Miller
and Rosenberg [40]. That construction was destined to play a role in paral-
lel pattern matching [6, 24, 31, 32], but Knuth’s conjecture was short lived: in
1973, Peter Weiner showed that the problem admitted an elegant linear-time
solution [68], as long as the alphabet of the string was fixed. Such a solution
was actually a byproduct of a construction he had originally set up for a differ-
ent purpose, i.e., identifying any substring of a textfile without specifying all of
them. In doing so, Weiner introduced a notion of a textual inverted index that
would elicit refinements, analyses and applications for forty years and counting,
a feature hardly shared by any other data structure.

Weiner’s original construction processed the textfile from right to left. As each
new character was read in, the structure, which he called a “bi-tree”, would be
updated to accommodate longer and longer suffixes of the textfile. Thus this
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was an inherently offline construction, since the text had to be known in its
entirety before the construction could begin. Alternatively, one could say that
the algorithm would build online the structure for the reverse of the text. About
three years later, Ed McCreight provided a left-to-right algorithm and changed
the name of the structure to “suffix tree”, a name that would stick [52]. In
unpublished lecture notes of 1975, Vaughan Pratt displayed the duality of this
structure and Weiner’s “repetition finder” [57]. McCreight’s algorithm was still
inherently offline, and it immediately triggered a craving for an online version.
Some partial attempts at an on-line algorithm were performed [42,49], but such
a variant had to wait almost two decades for Esko Ukkonen’s paper in 1995 [65].
In all linear constructions, linearity was based on the assumption of a finite
alphabet and took O(n log n) time in general. In 1997, Martin Farach introduced
an algorithm that abandoned the one-suffix-at-time approach prevalent until
then; this algorithm gives a linear-time reduction from suffix-tree construction
to character sorting, and thus runs in linear time, for example, even when the
alphabet is of size polynomial in the input size [26].

Around 1984, Anselm Blumer, et al. [12–14] and Maxime Crochemore [19]
exposed the surprising result that the smallest finite automaton recognizing all
and only the suffixes of a string of n characters has only O(n) states and edges.
Initially coined as a directed acyclic word graph (DAWG), it can even be reduced
if all states are terminal states. It then accepts all subsstrings of the string and
is called the factor/substring automaton. Although it has never been fully eluci-
dated, it seems that Anatoli Slissenko [59,60] ended up with a similar structure
for his work on the detection of repetitions in strings. These automata provided
another more efficient counterexample to Knuth’s conjecture when they are used,
against the grain, as pattern matching machines (see [20]).

The appearance of suffix trees dovetailed with some interesting and indepen-
dent developments in information theory. In his famous approach to the notion of
information, Kolmogorov [45] equated the information or structure in a string to
the length of the shortest program that would be needed to produce that string
by a Universal Turing Machine. The unfortunate thing is that this measure is
not computable and even if it were, most long strings would be incompressible
(would lack a short program producing them), since there are increasingly many
long strings and comparatively much fewer short programs (themselves strings).

The regularities exploited by Kolmogorov’s universal and omniscient machine
could be of any conceivable kind, but what if one limited them to the syntac-
tic redundancies affecting a text in form of repeated substrings? If a string is
repeated many times one could profitably encode all occurrences by a pointer
to a common copy. This copy could be internal or external to the text. In the
latter case one could have pointers going in both directions or only in one, al-
low or forbid nesting of pointers, etc. In his doctoral thesis, Jim Storer [61–63]
showed that virtually all such “macro schemes” are intractable, except one. Not
long before that, in a landmark paper entitled “On the Complexity of Finite Se-
quences” [48], Abraham Lempel and Jacob Ziv had proposed a variable-to-block
encoding based on a simple parsing of the text and with the feature that the
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compression achieved would match in the limit that produced by a compressor
tailored to the source probabilities. Thus, by a remarkable alignment of stars,
the compression method brought about by Lempel and Ziv was not only optimal
in the information theoretic sense; it found an optimal, linear-time implementa-
tion by the suffix tree, as was detailed immediately by Michael Rodeh, Vaugham
Pratt and Simon Even [58].

In his original paper, Weiner listed a few applications of his “bi-tree”, includ-
ing most notably off-line string searching: preprocessing a text file to support
queries that return the occurrences of a given pattern in time linear in the length
of the pattern. And of course, the “bi-tree” addressed Knuth’s conjecture, by
showing how to find a longest substring common to two files in linear time for
finite alphabet. There followed unpublished notes by Pratt entitled “Improve-
ments and Applications for the Weiner Repetition Finder” [57]. A decade later,
Alberto Apostolico would list more applications in a paper entitled “The Myriad
Virtues of Suffix Trees” [3], and two decades later suffix trees and companion
structures elicited with their applications several chapters in reference books
by Crochemore and Rytter [25], Dan Gusfield [35], and Crochemore, Hancart,
Lecroq [21].

The space required by suffix trees has been a nuisance in applications where
they were needed the most. With genomes in the order of gigabytes, for instance,
it makes a big difference to need space 20 times bigger than the source versus,
say, only 11 times that big. For a few lusters, Stefan Kurtz and his co-workers
devoted their effort to cleverly allocating the tree and some of its companion
structures [46]. In 2001 David R. Clark, J. Ian Munro proposed one of the best
space-saving methods on secondary storage [18]. Clark and Munro’s “succinct
suffix tree” sought to preserve as much of the structure of the suffix tree as
possible. Udi Manber and Eugene W. Myers took a different approach, however.
In 1990 [50, 51], they introduced the “suffix array,” which eliminated most of
the structure of the suffix tree, but was still able to implement many of the
same operations, at a cost of only twice the input size. Although the suffix array
seemed at first to be a different data structure than the suffix tree, over time
they have come to be more and more similar. For example, Manber and Myers’s
original construction of the suffix array took O(n log n) time for any alphabet,
but the suffix array could be constructed in linear time from the suffix tree for
any alphabet. In 2001, Toru Kasai et al. [41] showed that the suffix tree could be
constructed in linear time from the suffix array. The suffix array was shown to
be a succinct representation of the suffix tree. In 2003, three groups [39, 43, 44]
modified in three different ways Farach’s algorithm for suffix tree construction to
give the first linear-time algorithms for directly constructing the suffix array, that
is, the first linear-time algorithms for computing suffix arrays that did not first
compute the full suffix tree. With fast construction algorithms and small space,
the suffix array is the suffix-tree variant that has gained the most widespread
adoption in software systems.

Actually, the history of inverted indexes and compression is tightly inter-
twined. This should not come as a surprise, since the redundancies that pattern
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discovery tries to unearth are ideal candidates to be removed for purposes of
compression. In 1994, M. Burrows and D. J. Wheeler proposed a puzzling data
compression method in a report that “as it happens sometimes to results that
are just too simple and elegant” ended it up never finding an archival venue [16].
Circa 1995, Amihood Amir, Gary Benson and Martin Farach posed the problem
of searching in compressed texts [1, 2]. In 2000, Paolo Ferragina and Giovanni
Manzini introduced a compressed full text index based on the Burrows-Wheeler
transform [29, 30]. In the same year, Roberto Grossi and Jeffrey Scott Vitter
presented compressed versions of suffix trees and suffix arrays [34]. These struc-
tures supported searching without decompression while being possibly smaller
than the source file. This was extended to compressed tree indexing problems
in [28] using a modification of the Burrows-Wheeler transform.

3 Fallout, Extensions and Challenges

As highlighted in our prolog, there has been hardly any application of text pro-
cessing that did not need these indexes at one point or another. A prominent
case has been searching with errors, a problem first efficiently tackled in 1985
by Gad Landau in his PhD thesis [47]. In this kind of searches, one looks for
substrings of the text that differ from the pattern in a limited number of errors
such as a single character deletion, insertion or substitution. To efficiently solve
this problem, Landau combined Suffix Trees with a clever solution to the so-
called lowest common ancestor (LCA) problem. The LCA problem assumes that
a rooted tree is given and then for any pair of nodes, it seeks the lowest node
in the tree that is an ancestor of both [37] (see [11] and references therein for
subsequent, simpler constructions). It is seen that following a linear time pre-
processing of the tree any LCA query can be answered in constant time. Landau
used LCA queries on Suffix Trees to perform contant-time jumps over segments
of the text that would be guaranteed to match the pattern. When k errors are
allowed, the search for an occurrence at any given position can be abandoned
after k such jumps. This leads to an algorithm that searches for a pattern with
k errors in a text of n characters in O(nk) steps.

Among the basic primitives supported by suffix trees and arrays one finds of
course searching for a pattern in a text in time proportional to the length of the
pattern rather than the text. In fact, it is even possible to enumerate occurrences
in time proportional to their number and, with trivial preprocessing of the tree,
tell the total number of occurrences for any query pattern in time proportional
to the pattern size. The problem of finding the longest substring appearing twice
in a text or shared between two files has been already mentioned: this is probably
where it all started. A germane problem is that of detecting squares, repetitions
and maximal periodicities in a text, a problem rooted in work by Axel Thue
dated more than a century ago [64], a problem with multiple contemporary
applications in compression and DNA analysis. A square is a pattern consisting
of two consecutive occurrences of the same string. Suffix trees have been used to
detect in optimal O(n logn) time all squares (or repetitions) in a text, each with
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its set of starting positions [7], and later to find and store all distinct square
substrings in a text in linear time [36]. Squares play a role in an augmentation
of the suffix tree suitable to report, for any query pattern, the number of its
non-overlapping occurrences [8, 15].

There are multiple uses of suffix trees in setting up some kind of signature
for texstrings, as well as measures of similarity or difference. Among the latter,
there is the problem of computing the forbidden or absent words of a text,
which are strings that do not appear in the text while all of their substrings
do [10, 22]. Such words subtend, among other things, to an original approach
to text compression [23]. Once regarded as the succinct representation of the
“bag-of-words” of a text, suffix trees can be used to assess the similarity of
two textfiles, thereby supporting clustering, document classification and even
phylogeny [5, 17, 66]. Intuitively, this is done by assessing how much the trees
relative the two input sequences have in common. Suitably enriched with the
probability affecting the substring ending at each node, a tree can be used to
detect surprisingly over-represented substrings of any length [4], e.g., in the quest
of promoter regions in biosequences [67].

The suffix tree of the concatenation of say, k ≥ 2 texfiles, supports efficient
solutions to problems arising in domains ranging from plagiarism detection to
motif discovery in biosequences. The need for k distinct end-markers poses some
subtleties in maintaining linear time, for which the reader is referred to [35]. In
its original form, the problem was called “color problem” and seeks to report,
for any given query string and in time linear in the query, how many documents
out of the total of k contain each at least one occurrence of the query. A simple
and elegant solution was given in 1992 by Lucas C. K. Hui [38]. More recently,
it was extended to a variety of document listing problems, where once a set of
text documents are preprocessed, one can return the list of all documents that
contain a query pattern in time proportional to the number of such documents,
not the total number of occurrences [53].

One surprising variant of the suffix tree was introduced by Brenda Baker for
purposes of detection of plagiarism in student reports as well as optimization
in software development [9] . This variant of pattern matching, called “param-
eterized matching”, enables to find program segments that are identical up to
a systematic change of parameters, or substrings that are identical up to a sys-
tematic relabeling or permutation of the characters in the alphabet.

One obvious extension of the notion of a suffix tree is to more than one
dimension, albeit the mechanics of the extension itself is far from obvious [54,55]
Among more distant relatives, one finds “wavelet trees”. Originally proposed as
a representation of compressed suffix arrays [33], wavelet trees enable to perform
on general alphabets the ranking and selection primitives previously limited to
bit vectors, and more [27].

The list could go on and on, but the scope of this paper was not meant be
exhaustive. Actually, after forty years of unrelenting developments, it is fair to
assume that the list will continue to grow. On the other hand, many of the
observed sequences are expressed in numbers rather than characters, and in



Forty Years of Text Indexing 7

both cases are affected by various types of errors. While the outcome of a two
character comparison is just one bit, two numbers can be more or less close,
depending on their difference or some other metric. Likewise, two textstrings
can be more or less similar, depending on the number of elementary steps nec-
essary to change one in the other. The most disruptive aspect of this framework
is the loss of the transitivity property that subtends to the most efficient ex-
act string matching solutions. And yet indexes capable of supporting fast and
elegant approximate pattern queries of the kind just highlighted would be im-
mensely useful. Hopefully, they will come up soon and, in time, get their own
40th anniversary celebration.
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Abstract. An exact run in a string, T , is a non-empty substring of T
that can be divided into adjacent non-overlapping identical substrings.
Finding exact runs in strings is an important problem and therefore a
well studied one in the strings community. For a given string T of length
n, finding all maximal exact runs in the string can be done in O(n log n)
time or O(n) time on integer alphabets. In this paper, we investigate the
maximal approximate runs problem: for a given string T and a number
k, find every non-empty substring T ′ of T such that changing at most k
letters in T ′ transforms it into a maximal exact run in T . We present an
O(nk2 log k log n

k
) algorithm.

Keywords: algorithms on strings, pattern matching, repetitions, tan-
dem repeats, runs.

1 Introduction

The domain of Algorithms on strings is fond of combinatorial properties on
words. They are used to analyze the behavior of algorithms in conjunction with
statistical results, and often lead to improving their design up to optimal charac-
teristics. Conversely, some combinatorial properties on words, obtained without
any algorithmic objectives, yield algorithms that are surprisingly efficient ac-
cording to various aspects (time, space, design, etc.).

The most central properties relate to periodicities in words and pop up in
many examples. The notion is doubtlessly at the core of many stringology ques-
tions. It constitutes a fundamental area of string combinatorics due to important
applications to text algorithms, data compression, biological sequences analysis,
or music analysis. Indeed, periods are ubiquitous in string algorithms because
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stuttering is likely to slow down any of the algorithms for pattern matching, text
compression, and genome assembly, for example.

A maximal exact run in a string is informally an occurrence of a non-extensible
segment having a small period. The concept captures all the power of local
periodicities and repetitions and therefore has attracted a lot of studies.

Several methods are available to detect all the occurrences of exact repetitions
in strings with some small variations on the elements they target (see [1–3]). For
a given string T , of length n, these algorithms run in O(n logn) time, which is
optimal because some strings contain this number of elements. Selecting some
of their occurrences or just distinct repetitions regardless of their number of
occurrences (see [4, 5]) paved the path to faster algorithms.

Runs have been introduced by Iliopoulos, Moore, and Smyth [6] who showed
that Fibonacci words contain only a linear number of them according to their
length. Kolpakov and Kucherov [7] (see also [8], Chapter 8) proved that the prop-
erty holds for any string. Meanwhile they designed an algorithm to compute all
runs in a string of length n over an alphabet Σ in O(n log(|Σ|)) time. Their algo-
rithm extends Main’s algorithm [9], which itself extends the method in [10] (see
also [8]).

The design of a linear-time algorithm for building the Suffix Array of a string on
an integer alphabet (see [8]) and the introduction of another related data structure
(the Longest Previous Factor table in [11]) have eventually led to a linear-time
solution (independent of the alphabet size) for computing all runs in a string.

Finding approximate runs is more sensible than finding exact runs in some
applications. A typical example is genetic sequence analysis. This problem was
widely researched and many different measurements have been used in order
to find such runs ([12–15]). The k-approximate run problem can be defined as
follows: given a string x and a number k, divide x into non-empty substrings,
x = u1u2 · · ·ut, such that the distance between every two adjacent substrings,
ui and ui+1, is not greater than k; or such that the distance between every two
substrings ui and uj in x cannot exceed k; or find a consensus substring u such
that the distance between u and every ui is not greater than k.

Another definition of approximate run is as follows: a string x is a k-
approximate run if x = u1u2 · · ·ut and the removal of the same k positions
from all ui generates an exact run.

In this work, we solve the following definition of the approximate run problem:
given a string T , find all non-empty substrings that by the modification of at
most k letters form an exact run. In other words, for each such substring there
exists a consensus string, u, such that the sum over all Hamming distances
between u and ui is not greater than k. We present an O(nk2 log k log n

k )-time
algorithm that solves this problem.

Roadmap: we start in section 2 with definitions and notations that will be
used throughout the paper. In section 3, we present a simple O(n2) algorithm
for finding all approximate runs in the string. Then, in section 4 we continue
to an improved O(nk3 log n

k ) algorithm. Finally, on section 5, we present the
O(nk2 log k log n

k ) algorithm.
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2 Definitions and Notations

Let T = T [1]T [2] · · ·T [n] be a string of size n defined over the constant alphabet
Σ. In this abstract the size of the alphabet is constant. We denote the i’th letter
in T as T [i], and the substring of T that starts at position i and ends at position
j as T [i . . j] = T [i]T [i + 1] · · ·T [j]. Let TR be the reversed substring of T .

An exact run is a non empty string, T , that can be divided into a number
of identical adjacent non overlapping substrings T = u1u

tu2, where the first
substring u1 can be a suffix of u, and the last substring u2 can be a prefix of u.
u is called a period and its length is denoted as the period length, p = |u|. The

exponent of the run is of size |T |
p and it is greater or equal to 2. For instance,

’ababababa’, has exact runs with period length 2 and 4. Their exponent are 4.5
and 2.25, respectively.

A maximal exact run is an exact run that cannot be extended to either right
or left. For instance, ’dabababac’, has a maximal exact run starting at position 2
with period length 2 and exponent 3.5. If a substring T contains a maximal exact
run starting at index i, it means that either i = 1 or T [i− 1] �= T [i + p− 1], for
otherwise, the exact run is not maximally extended. Similarily, if the maximal
exact run ends at position j, then either j = n or T [j + 1] �= T [j + 1 − p].

A k-maximal approximate run (k-MAR) is a non empty string, T , such that
the modification of at most k letters in T generates a maximal exact run. For
instance, ’abaabcaba’, is a 1-maximal approximate run with period length 3 and
exponent 3. In this example, the letter in position 6 is a modified letter, since
modifying it from ′c′ to ′a′ generates an exact run.

For the rest of this paper we distinguish between two notations: a mismatch
and a modified letter, that have a very strong relation between each other, but, as
we will explain shortly, are not always identical in their meanings. If two letters
T [i] and T [i + p] are not identical, we say that there is a mismatch between
positions i and i + p in T . We mark position i + p as the position in which the
mismatch occurs. A modified letter corresponds to a modification of a letter in an
approximate run in order to convert it to an exact run. For instance, for period
length p = 3 and the substring ′abcabcabd′, there is a mismatch at position 9
(between ′c′ and ′d′) and there is a modified letter in the same position, 9.

Observe that while a mismatch can imply that a modified letter needs to be
used in the k-MAR and vice versa, it is not always straightforward:

A1. Two mismatches can imply only one modified letter. For instance, for a
substring ′abaabcaba′ with period length 3, there are two mismatches in
positions (6) and (9), but only one modified letter is needed in position 6 in
order to convert the original substring into an exact run (by modifying the
letter ’c’ to ’a’).

A2. One mismatch can imply at most n
2p modified letters. For instance, in the

2-MAR with period length 3 of the string ′abcabcabdabdabd′, there is only
one mismatch in position 9 and two modified letters on positions 3 and 6.

We continue with a definition of Parikh matrix (see also [16]) that will be used
throughout the paper: A Parikh matrix, P [1 . . |Σ|, 1 . . p], is a two-dimensional
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array defined over a substring T [i . . j] and a period length p. An entry P [a, c]
contains the number of occurrences of a ∈ Σ in the column c of the period.
In addition, for each column c, we keep an additional variable, win(c), that
contains the winner letter - the letter that occurs more than any other letter in
this column (breaking ties arbitrarily).

We use the Parikh matrix in order to count the number of modified letters
used in a k-MAR of period length p that starts at position i and ends at position
j. For simplicity, we set the first column of the period to be position 1 in the
text. This means that an approximate run can start at any column of the period,
and for period length p, the column of index i is Column(i) = i mod p (with the
exception of the case where i mod p = 0, in which Column(i) = p). The number
of modified letters associated with a column is the sum over all letters that are
not the winner letter. i.e. Σa �=win(c)P [c, a]. If the sum of modified letters in a
column is greater than 0, the column is denoted as a problematic column. The
number of modified letters associated with the k-MAR is the sum of modified
letters over all its problematic columns.

Figure 1 shows examples of Parikh matrices for three period lengths computed
for the same prefix of a string.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T [i] a b b a c a b a a c a b b b c a a b b c b a .

p=3 a 1 2 1 2 1 2 2 2
b 1 1 1 1 1 1 1 1 1
c 1 1 1 1
win a b b a b b a b a a a

T [i] a b b a c a b a a c a b b b c a a b b c b a .

p=5 a 1 1 2 1 2 3 1 2 4 1 1 2 4
b 1 1 2 1 3 2 1 3 3 2 1
c 1 2 3 4
win a b b a c a b b a c a b b a c a b b a c a

T [i] a b b a c a b a a c a b b b c a a b b c b a .

p=7 a 1 1 1 2 1 2 1 2 2
b 1 1 1 1 1 1 1 2 1
c 1 1 1 1
win a b b a c a b a b b a c a b a a

Fig. 1. Examples of maximal approximate runs with the maximum of 5 modified let-
ters. The longest run has length 11 for period length 3, 21 for period length 5, and 16
for period length 7. The three Parikh matrices are computed from left to right.

2.1 Problem Definition

In this paper we present three algorithms that solve the following problem:

Definition 1 (The k-Maximal Approximate Runs Problem). Given a
string T of size n defined over the alphabet Σ, and a number k, find all k-MAR
in the string T of all period lengths p, 1 ≤ p ≤ n

2 .
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3 A Simple O(n2) Algorithm Using Parikh Matrices

We start with a simple algorithm for computing all k-MAR in a string T . The
algorithm iterates over all period lengths p, 1 ≤ p ≤ n

2 , and for each period
length computes all k-MAR that exist in the string. We describe the procedure
for finding all k-MAR with period length p:

FindKmar(T, p)

1 Initialize Parikh matrix P
2 T [n + 1] ← $
3 � ← 1, r ← 1, count ← 0, newKmar ← true
4 Move r :
5 while r ≤ n + 1 do
6 if Winner(r) = true or count < k then
7 if Winner(r) = false then
8 count ← count + 1
9 update Parikh matrix according to T [r]

10 r ← r + 1
11 newKmar ← true
12 else \* r cannot be increased *\
13 if newKmar then
14 announce k-MAR T [� . . r − 1]
15 newKmar ← false
16 goto Move �
17
18 Move � :
19 if r = n + 1 then
20 return
21 update Parikh matrix according to T [�] delete
22 if Winner(�) = false then
23 count ← count− 1
24 � ← � + 1
25 goto Move r
26
27 return

In the FindKmar procedure described above we keep two pointers, � and r,
on the string T , such that they define possible leftmost and rightmost positions
of a k-MAR, respectively. The computation uses Parikh matrix, P , of size |Σ|×p.
The initialization of the Parikh matrix (line 1) consists of setting the winners of
all columns of p according to the letters in T [1 . . p].

The procedure uses an auxiliary function, Winner(), that gets a position i
in the text as a parameter and returns true if the number of occurrences of the
letter T [i] in its column is equal to the number of occurrences of the winner
letter in it (lines 6, 7, 22). Recall that the first column of the period is set to
position 1 in the text.
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Each iteration call checks whether r position can be increased: either r is
one of the winners in its column (thus no modified letters are used when r is
increased) or the number of used modified letters is less than the maximum
allowed. When r position cannot be increased, � position is increased. Note that
as long as r ≤ n each update of � position calls Move r sub procedure. The
reason for that is that the deletion of T [�] can either release a modified letter
(line 22) or change the current winners list of �’s column. In the case where
these two cases have not occurred, Move r procedure does not increase r and
the iteration returns to Move � sub procedure (line 16).

A new k-MAR is announced whenever r position cannot be increased and its
position has moved since the last k-MAR announcement. In this case T [� . . r−1]
is announced as a k-MAR (line 14). Observe that in every string T there is
always a k-MAR that consists of n position. This case is handled as follows: an
extra letter, $, (that is not included in the alphabet) is added to the text in
position n + 1 (line 2). This way, all k-MARS, including the rightmost one, will
be announced by the procedure.

An example of the procedure run is demonstrated in figure 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T [i] a b b a c a b a a c a b b a b b a a b c b a .

(� = 1) a 1 2 1 2 1 2 2 2
(r = 12) b 1 1 1 1 1 1 1 1 1

c 1 1 1 1
win a b b a b b a b a a a

T [i] a b b a c a b a a c a b b a b b a a b c b a .

(� = 3) a . . 1 1 1 1 2 1 2
(r = 12) b . . 1 1 1 1 1

c . . 1 1 1 1
win . . b a c b a c a a a

T [i] a b b a c a b a a c a b b a b b a a b c b a .

(� = 3) a . . 1 1 1 1 2 1 2 2 1 3 2 1 4
(r = 18) b . . 1 1 1 1 1 2 2 3 3

c . . 1 1 1 1 1 1 1 1
win . . b a c b a c a a a a b a b b a

Fig. 2. One iteration of finding 5-MAR with period length 3. The first Parikh matrix
is computed until 5 modified letters are in use. Then, � is moved to the right until
one modified letter is released. Then, r is moved to the right until one modified letter
is used. At the end of this iteration the 5-MAR T [3 . . 17] is announced. In the next
iteration, when � is moved to the right (� = 4), there is a tie between the letters a and
b in column 3, therefore, r can be moved to the right without using modified letters
until position 20.

Time Complexity: each Parikh matrix entry computation takes O(1), either
when adding a letter (moving r index to the right) or when subtracting a letter
(moving � to the right). Therefore, the time complexity depends on the number
of such updates. For a single period length, p, each position i, 1 ≤ i ≤ n, is
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updated in the Parikh matrix at most twice: when � = i and when r = i. This
gives a total of O(n) time per period. p goes from 1 to n

2 , which gives a total
time complexity of O(n2) for the entire algorithm.

4 An O(nk3 log n
k
) Algorithm

The general strategy of the improved algorithm is a divide-and-conquer recursive
scheme similar to the one used by Main and Lorentz [3] for computing squares
and to that of [12] for computing approximate repetitions. It works as follows:
during the first step, we locate all k-MAR that contain the middle position of T ,
i.e. n

2 . This is computed for all possible period lengths p such that 1 ≤ p ≤ n
2 .

Then, the same procedure for finding all k-MAR with period lengths 1 ≤ p ≤ n
4

is applied independently on the first half (T [1 . . n2 − 1]) and on the second half
of T (T [n2 + 1 . . n]).

High level description of the algorithm is described in algorithm ApproxRep.

ApproxRep(T, start, end)

1 n ← (end− start)
2 if n > 2k then
3 mid ← start + �n/2�
4 for p ← 1 to �n/2� do
5 Find all k-MAR with period length p that contain mid
6 ApproxRep(T, start,mid− 1)
7 ApproxRep(T,mid + 1, end)

In the rest of this section we describe the algorithm for finding all k-MAR
with period length p that exist on a text T of size n and contains position n

2
(line 5 in the above algorithm).

4.1 Initialization Step: Defining the Substring Boundaries

We start with a simple observation regarding the boundaries of the substring that
should be handled on each iteration. Let T [i . . j] be a k-MAR that contains po-
sition n

2 . According to observation A1 in section 2, since one modified letter can
imply on at most 2 mismatches, there are no more than 2k mismatches such that
T [i] �= T [i+ p] in the substring T [i . . j]. Thus, all k-MAR substrings that contain
position n

2 must start at a position that is right to the position of the 2k + 2 mis-
match going from n

2 to the left on the reversed substring of T . More precisely, if x
is the position of the 2k+1 mismatch going from n

2 to the left, then i must be right
to position x − p (this is due to the fact that by definition, a mismatch between
two positions, i and i + p, is marked in i + p position and not in i). Let �1 be the
position x − p. In addition, j must be left to the position of the 2k + 1 mismatch
going from n

2 to the right. Let r1 be the position of this mismatch. Any extension
to these positions cannot contain the position n

2 in the k-MAR.
As an initialization step, the algorithm uses the technique described in [12],

using [17] and [18], in order to find 2k + 1 mismatches between two copies of T



20 M. Amit, M. Crochemore, and G.M. Landau

shifted by p positions starting at index n
2 going right, and 2k + 1 mismatches

starting at index n
2 going left. This is done by constructing two suffix trees (or

suffix arrays), one for the string T and one for its reversed string TR, and using
the ”kangaroo” jumps of [18] (i.e., using suffix trees and LCA algorithm for a
constant time ”jump” over equal substrings of the aligned copies of T ) in order
to find the positions of 2k+1 mismatches between the suffixes TR[n2 . . n−p] and
TR[n2 + p . . n], and the positions of 2k + 1 mismatches between the substrings
T [n2 . . n− p] and T [n2 + p . . n].

Observe that the mismatches define the problematic columns that should be
handled in the current iteration over p. A modified letter can only be used in
one of these columns. Hence, there are at most 4k + 2 = O(k) such columns.

We use two sorted lists: ColumnList that contains the problematic columns in
the substring T [�1 . . r1], and MismatchList that contains the mismatch positions
in the substring. The mismatch positions are inserted in a sorted manner to the
MismatchList , such that m1 is the leftmost mismatch. In addition, ColumnList
is updated with all problematic columns as follows: for each mismatch in position
i, we add its column to ColumnList .

Time Complexity: in order to find all 4k + 2 mismatches, two suffix trees are
constructed. This is done once for the entire algorithm in O(n) time. The al-
gorithm for finding O(k) mismatch positions between the substrings is done in
O(k) time, including the update of both MismatchList and ColumnList .

4.2 Main Procedure: Finding All k-MAR in the Substring

The main procedure of the algorithm uses both MismatchList and ColumnList
in order to find all k-MAR in between the boundaries �1 and r1. It is similar
to the simple algorithm described in section 3 which uses the Parikh matrix in
order to find k-MAR, and that it keeps two pointers on the string, � and r, that
are increased in turns. The difference between the two algorithms is that in this
algorithm we take advantage of the fact that not all positions in the substring
need to be visited, the only relevant positions are the ones of the problematic
columns in all periods.

Observe that the mismatch positions in MismatchList divide the text T [�1 . . r1]
into 4k + 1 adjacent non overlapping substrings. We denote each such substring
as a zone. The leftmost zone is the substring T [�1 . .m1 − 1], the second zone is
the substring T [m1 . .m2− 1], and so on. Each zone presents either an exact run
(since there are no mismatches in it), or a prefix of an exact run (if the zone’s
length is smaller than 2p). Note that because the mismatch position of (i, i+ p)
is marked in position i + p by definition, these exact runs are not maximally
extended - they can be extended to the left by p− 1 letters.

Consider a possible k-MAR T [� + 1 . . r − 1], such that �1 < � < n
2 and

n
2 < r < r1: from the definition of k-MAR we get that both substrings T [� . . r−1]
and T [� + 1 . . r] contain k + 1 modified letters (for otherwise, the approximate
run is not maximally extended). We denote the zone in which � is contained as
L and the zone in which r is contained as R. Let mi be the mismatch position
in L zone, and let mj be the mismatch position in R zone (see figure 3).
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We continue with an observation regarding the possible positions of � and r:

Observation 1 � position can only be on the k+1 rightmost periods in L zone.
r position can only be on the k + 1 leftmost periods in R zone. Denote these
periods as the (k + 1)-periods.

Proof. We prove this property by contradiction: assume that L zone contains
z > k + 1 periods and that � position is left to the rightmost k + 1 periods in L.
We consider two cases regarding the problematic columns in L:

Case 1: there exists at least one letter in L that is a non-winner letter of its
column - this means that the number of modified letters in T [� + 1 . . r − 1]
exceeds k + 1, a contradiction.

Case 2: all letters inL are winners of their columns - note that the substring T [mi−
p + 1 . .mi+1 − 1] is an exact run, therefore, in order for T [� + 1 . . r − 1] to be
maximally extended, � has to be equal to mi − p. This position is not in L zone
(and it was visited on an earlier iteration), a contradiction. In a similar way, it is
easy to show that r position can only be on the leftmost k + 1 periods in R.

Recall that a problematic column is a column that contains at least two different
letters in the substring T [�1 . . r1]. We continue with a definition of a problematic
position: a problematic position is a position in the substring T such that its col-
umn is a problematic column and it is in the (k+1)-periods of L or R zones. There
are a total of O(k) zones and each one contains O(k) periods that needs to be vis-
ited. Each period contains O(k) problematic columns. Hence, the total number
of problematic positions in the substring is O(k3). Note that a problematic posi-
tion is a position in which a modified letter might be used. These positions are the
positions that � and r are assigned to in the improved algorithm.

The algorithm works in a similar way to the simple O(n2) algorithm with the
two following differences: first, the Parikh matrix contains only the problematic
columns of ColumnList . The second difference is that on each iteration over
� and r, their position is increased to the next problematic position (and not
necessarily increased by 1).

Fig. 3. L, R zones, and the positions � and r in them. The mismatch positions are
marked with ’X’ and the boundaries of the substrings are marked with vertical lines.
For k = 3, the relevant periods in each of the zones are marked with brackets.
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This complicates the Parikh matrix update procedure, and we distinguish
between two cases of it:

Case 1: moving a position inside a zone: moving � in L (or r in R) updates only
one column in the Parikh matrix, which is decreased (or increased) by at most 1.

Case 2: moving a position in between zones: assume that � is moved from L
zone to L′ zone on its right. Suppose that L′ contains q > k + 1 periods, then �
position is increased to the position of the first problematic column in L′ such
that � is in the rightmost k + 1 periods of L′. All problematic columns in the
Parikh matrix need to be updated according to the number of times the column
occurs in the leftmost q − (k + 1) periods of L′. The situation is similar when
moving r from R zone to R′ zone: if R contains more than k + 1 periods, then
the increase of r position should update the entire Parikh matrix and compute
the total number of modified letters used in the new substring.

The procedure stops when either � > n
2 or r = r1.

Time Complexity: each position move of either � or r updates the Parikh matrix.
If the position move is in the same zone, the update takes O(1) time. If a position
is increased to a different zone, the entire Parikh matrix is computed, which takes
O(k) time. On each zone there are at most O(k2) positions, and there are a total
of O(k) zones. This gives a total of O(k3) updates in the same zone and a total
of O(k) updates of zone changing. Therefore, the total time complexity of the
main procedure is O(k3).

4.3 Total Time Complexity Analysis

Finding the initial boundaries of the substring takes O(k) time. The time com-
plexity of the main procedure is O(k3). The total time complexity for finding
all k-MAR with period length p that exist in a substring T is O(k3). There are
at most O(n log n

k ) iterations in the ApproxRep algorithm, and each iteration is
done in O(k3) time, which gives a total time complexity of O(nk3 log n

k ) for the
entire algorithm.

In the next section, we describe an algorithm that improves the time complexity
of the main procedure: instead of going over all O(k2) possible problematic posi-
tions for � and r in each zone, the algorithm only visits O(k log k) such positions.

5 An improved O(nk2 log k log n
k
) Algorithm

In this algorithm we improve the main procedure of the previous algorithm. The
main idea behind the improvement is that there are still redundant positions that
were visited in the previous algorithm: in this algorithm we only visit positions
in L and in R that are the positions of modified letters. In addition, we visit
each one of the (k+1)-periods in L. The iteration over � and r positions and the
update of the Parikh matrix according to them is done in a similar way to the
previous algorithm. The only difference is in the initialization and the handling
of the relevant positions that need to be visited.
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Let T [� + 1 . . r − 1] be a k-MAR, and let mi,mj be the mismatch positions
in L and R, respectively. We denote the substring T [mi+1 . .mj − 1] as M (see
figure 4).

Fig. 4. L, M and R zones, and the positions � and r in them. The mismatch positions
are marked with ’X’ and the boundaries of the substrings are marked with vertical
lines.

Note that the k modified letters in the k-MAR are spread among L,M and R.
In order to handle only the relevant problematic positions in the substring, the

following sub procedures are added to the previous algorithm: at first, when either
� or r reaches the leftmost position of its zone, an initialization is done, in which
initial positions that need to be visited on L and R are found. Second, when iter-
ating over � position - on each one of the (k + 1)-periods in L, additional columns
are added to the list of problematic columns that are relevant for the rest of the
iteration. The third sub procedure is added to the iteration over r position - prob-
lematic columns are added or removed from the lists of problematic columns in L
and R.

5.1 Sub Procedure 1: Updating the Problematic Positions

This sub procedure is called whenever � or r moves between zones. Then, the
substrings L,M and R are redefined according to the substring T [� . . r], and the
procedure begins.

Note that there are two different options for positions � and r: either � is on
the (k+1)’th period of L and r is a position in between the leftmost k+1 periods
in R, or � is a position in between the k + 1 rightmost periods in L and r is
the mismatch position of R zone. In both options, the Parikh matrix is updated
according to the substring T [� . . r].

The algorithm uses two lists, LeftList and RightList , that keep the problematic
columns that need to be visited in L and in R, respectively. In addition, for each
period in the (k + 1)-periods of L, we keep a list, newColumnList , that contains
added problematic columns that need to be visited in L starting this period.

Let c be a problematic column, and let x be the letter of column c in L, having
|x| occurrences in T [� . . r]. Let y be the letter of c in R having |y| occurrences
in T [� . . r], and z be the letter with the maximum number of occurrences, |z|, in
c column in M .

We first define the positions in L that need to be visited by the algorithm.
The following cases regarding the majority of x in the initial substring T [� . . r]
are considered:
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– Case 1: x is the loser of its column - in this case, the column c is added
to LeftList , since it implies on modified letters. Note that in the case where
x = y, a losing letter might gain majority and become a winner of its column.

– Case 2: x is the winner of its column, but might lose its majority. This case
can be either one of the following two sub cases (or both):
• x might lose its majority to y - this case can happen when |y| < |x| ≤
|y| + 2k. The column c is added to newColumnList of the |y|’th period
of L.

• x might lose its majority to z - this case can happen when |z| < |x| ≤
|z|+ k. The column c is added to newColumnList of the |z|’th period of
L.

Note that in the case that x can lose to both y and z, the column c is added
to newColumnList of the max{|y|, |z|} period of L only.

– Case 3: x is the winner of its column and will win throughout the entire
iteration - in this case, the column is not added to any list.

The number of columns in both LeftList and newColumnList cannot exceed
O(k), since there are at most O(k) problematic columns in T [� . . r]. Furthermore,
in the initialization step, each column in LeftList implies on a column that will
be visited throughout the entire iteration over �. The number of such visited
positions cannot exceed O(k), since they are the positions of the modified letters
in L. Also note that each column in newColumnList of a period i of L implies on
i visited positions in L. These are the positions that x might lose its majority to
either z or y. The number of such visited positions cannot exceed O(k) either,
since these positions imply on modified letters in either M or R. Thus, the total
number of the initial visited positions in L is bounded by O(k).

We continue with the visited positions in R. We again consider the following
cases regarding the majority of y in the initial substring T [� . . r]:

– Case 1: y is the loser of its column - in this case, the column c is added to
RightList , since it may imply on modified letters.

– Case 2: y is the winner of its column, but might lose its majority to z - this
case can only happen when y = x and |z| < |y| ≤ |z| + k. The column c is
added to RightList , with a special flag that says that this column needs to
be visited until r reaches the |z|’th period of R.

– Case 3: y is the winner of its column and will win throughout the entire
iteration - in this case, the column is not added to any list.

The number of columns in RightList is bounded by O(k).

Time Complexity: each column is added to a list in O(1) time and there are
O(k) such columns, which gives a total time complexity of O(k) for the update
phase.

5.2 Sub Procedure 2: Period Handling in L Zone

This step is called whenever � position moves from one period to the one on its
right (in the same zone). The procedure is very simple: it goes over all columns
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in newColumnList , and adds them to LeftList . The total number of columns
that can be added throughout the entire iteration over � in L is O(k).

Time Complexity: each column is added to LeftList in a sorted manner in
O(log k) time and there are O(k) such columns, which gives a total time com-
plexity of O(k log k) for all period handling steps.

5.3 Sub Procedure 3: Iterating over r in R and � in L

In this algorithm, in a similar way to the algorithm described in section 4,
positions � and r are increased to the next problematic positions. The difference
is that in this algorithm, the problematic positions are taken from LeftList and
RightList . On each position visit, the Parikh matrix is updated in the same
manner as before.

This procedure is called whenever r position is increased. Let c be the prob-
lematic column of position r, and let y be the letter in this column. Since the
number of occurrences of y was increased by one, the two following cases need
to be checked:

Adding a column to LeftList : if y is not the winner of its column and it loses
to the letter x in L, then a new wakeup call needs to be added to the respected
period in L: column c is added to newColumnList of the |y|’th period of L, and
is removed from the previous newColumnList (on period |y| − 1 in L), if such
exists. Each insertion is done in O(1) time. Note the special case in which the
column is added to a period that � is currently in. In this case, the column is
added straight to LeftList in O(log k) time.

Removing a column from RightList : if y is the winner of its column, we con-
sider the two cases: x = y and x �= y. If x �= y, it means that y will continue to
win throughout the entire iteration, and therefore its column is removed from
RightList . If x = y, the situation is a bit more complicated since y can again lose
its majority as � position is increased. Therefore, before the column is removed
from RightList , a check to see whether r position is on a period greater than |z|.
If yes, the column is removed from the list. Otherwise, it is not removed, and
will be visited on the next period, as well. Each deletion from RightList is done
in a sorted manner in O(log k) time.

Time Complexity:adding a column to newColumnList is done in O(1) time,
since the list does not need to be sorted. adding or removing a column from
LeftList and RightList in a sorted manner is done in O(log k) time. But, each
problematic column is added or removed from the lists at most once, and there
are O(k) such columns. This gives a total time complexity of O(k log k) for the
entire iteration over r in R and � in L. In addition, each Parikh matrix update
is done in O(1) time (when � and r stay in the same zone), and as proved in
Lemma 1 below, there are at most O(k log k) such updates for both � and r.

Recall that the iteration over � and r visits the following positions: for a letter
x in L, as long as x is the winner of its column, the algorithm visits only the
periods in L, in which it might lose its majority to z (or y). In a similar way, for
a letter y in R, as long as y is the winner of its column, the algorithm visits only
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the periods in R, in which it might lose its majority to z (this can only happen
when x = y). If x (or y) is the loser of its column, then all the positions in which
it loses (there are at most k + 1 such positions) are visited.

Note that although new columns are never added to RightList , additional
columns are added to LeftList from newColumnList . This means that the number
of positions visited in L (and as a result in R) can be greater than O(k). Lemma
1 proves that this number is bounded by O(k log k):

Lemma 1. The total number of visited positions in L and in R is bounded by
O(k log k).

Proof. We start by counting the number of visited positions in R, and distinguish
between the two cases when x �= y and when x = y:

– Case 1: x �= y
Assume that on the initial substring T [� . . r], there are no modified letters
in R, and as the iteration over � and r continues, all k modified letters are
moved into R. In this situation, the number of visited positions in R is k.
Additional visited positions are added to R when a loser letter y becomes a
winner, this way r can be extended to the right without using more than k
modified letters.
Suppose that when r is increased to the next problematic position, y becomes
a winner of its column. Let a be the number of problematic columns in R
(a ≤ k), then k/a additional modified letters can be visited in R. Now, there
are at most a − 1 problematic columns in R. The next time it happens, at
most k/(a− 1) modified letters that can be visited are added to R, and so
on. Thus, the maximal number of problematic positions in R is equal to
Σa

i=1k/i, which gives a total of O(k log k).
– Case 2: x = y

If y becomes a winner in its column, it does not necessarily mean that it
will continue to win throughout the iteration, as � position is increased. This
situation is handled in the initialization step (see case 2), and the column is
checked until the number of y occurrences is greater than |z|. As mentioned
above, the total number of such visited positions cannot exceed O(k), as it
is bounded by the number of modified letters used in M .

Thus, the total number of visited positions in R cannot exceed O(k log k). In a
similar way, it is easy to show that the total number of visited positions in L
cannot exceed O(k log k).

5.4 Total Time Complexity Analysis

The difference between this algorithm and the previous O(nk3 log n
k ) algorithm

is in the number of visited positions of the main procedure. For each L and R
possible substring definition, the algorithm visits at most O(k log k) positions,
and updates the column lists of L and R in O(k log k) time. There are at most
O(k) such combinations of L and R, which gives a O(k2 log k) time complexity
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for this step. In addition, moving between zones takes O(k) time, which does not
add to the total time. Thus, the total time complexity of the main procedure of
the algorithm is O(k2 log k). This gives a total time complexity O(nk2 log k log n

k )
for the entire algorithm.
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Abstract. Lexicographically minimal and lexicographically maximal
suffixes of a string are fundamental notions of stringology. It is well known
that the lexicographically minimal and maximal suffixes of a given string
S can be computed in linear time and space by constructing a suffix tree
or a suffix array of S. Here we consider the case when S is a substring of
another string T of length n. We propose two linear-space data structures
for T which allow to compute the minimal suffix of S in O(log1+ε n) time
(for any fixed ε > 0) and the maximal suffix of S in O(log n) time. Both
data structures take O(n) time to construct.

1 Introduction

Non-empty lexicographically minimal and lexicographically maximal suffixes of
a string are fundamental notions of stringology. Given a string S, a straight-
forward way to compute its minimal non-empty and maximal suffixes involves
constructing the suffix tree or the suffix array for S. (Both of the latter capture
the lexicographic order of all suffixes of S, see [7].) This way, the problem can
be solved in an optimal linear time.

Now suppose that S is a substring extracted from a longer text T of length
n. Then the information about T can be used to speed up the computation of
the desired suffixes of S. For example, Duval [6] showed that the minimal non-
empty and the maximal suffixes of all prefixes of T can be found in O(n) time and
space. (Note that computing the answers for each prefix of T separately would
take O(n2) time.) Duval’s result was later generalized to parallel machines by
Apostolico and Crochemore [2]. It was shown that the minimal non-empty and
the maximal suffixes of all prefixes of T can be computed on a CRCW PRAM
with n processors in O(log n) time and linear space. In both cases the mini-
mal non-empty and the maximal suffixes are found as a by-product of Lyndon
factorization.

This paper focuses on the RAM model and concerns the problems of comput-
ing the minimal non-empty and the maximal suffixes of an arbitrary substring
of a given string. Namely, let T be a string of length n. For any substring T [i..j]
of T starting in position i and ending in position j, we consider the following
problems:

1. MinSuf: find the minimal non-empty suffix of T [i..j];
2. MaxSuf: find the maximal suffix of T [i..j].

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 28–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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For any given ε > 0 we propose a data structure that solves MinSuf within
O(log1+ε n) time per query. We also present a data structure to solve MaxSuf

in O(log(j − i + 1)) = O(log n) time per query. Both data structures involve
linear preprocessing and occupy linear space.

Our results align nicely with a number of related substring problems that
were earlier studied in the literature. In particular, Crochemore et al [4] and
Karhumäki et al [8] concern the problem of computing primitive periods of sub-
strings of a given string. Kociumaka et al [10] focus on computing all periods of
substrings of a given string.

The paper is organized as follows. Section 2 gives a formal background and in-
troduces some basic notation and definitions. Section 3 presents the data structure
for solving MinSuf, which is conceptually simpler. Section 4 addresses MaxSuf.
Finally Section 5 discusses the relation between MinSuf and MaxSuf.

2 Preliminaries

We start by introducing some standard notation and definitions. Let Σ be a
finite ordered non-empty set (called an alphabet). The elements of Σ are letters.

A finite ordered sequence of letters (possibly empty) is called a string. Letters
in a string are numbered starting from 1, that is, a string T of length k consists
of letters T [1], T [2], . . . , T [k]. The length k of T is denoted by |T |. For i ≤ j,
T [i..j] denotes the substring of T from position i to position j (inclusively). If
i > j, T [i..j] is defined to be the empty string. Also, if i = 1 or j = |T | then we
omit these indices and we write just T [..j] and T [i..]. Substring T [..j] is called a
prefix of T , and T [i..] is called a suffix of T .

We assume the standard RAM model of computation [1]. Letters are treated
as integers in range {1, . . . , |Σ|}; a pair of letters can be compared in O(1)
time. This lexicographic order on Σ is linear and can be extended in a standard
way to the set of strings in Σ. Namely, T1 ≺ T2 if either (i) T1 is a prefix of
T2; or (ii) there exists 0 ≤ i < min(|T1|, |T2|) such that T1[..i] = T2[..i], and
T1[i + 1] < T2[i + 1].

Let Suf be the set of all suffixes of a string T . The suffix array SA of a
string T is a permutation on {1, . . . , |T |} defining the lexicographic order on
Suf . More precisely, SA[r] = i iff the rank of T [i..] in the lexicographic order on
Suf is r. The inverse permutation is denoted by ISA; it reduces lexicographic
comparison of suffixes T [i..] and T [j..] to integer comparison of their ranks ISA[i]
and ISA[j]. For a string T , both SA and ISA occupy linear space and can be
constructed in linear time (see [11] for a survey).

A string T is called periodic with period β if T = βsβ′ for an integer s ≥ 1 and
a (possibly empty) prefix β′ of β. When this leads to no confusion the length of
β will also be called a period of T .

A border of a string T is a string that is both a prefix and a suffix of T and
differs from T . A string T that has no non-empty border is called border-free.
Borders and periods are dual notions; namely, if T has period β then it has a
border of length |T | − |β|, and vice versa (see, e.g., [5]).
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3 Computing Minimal Suffix

Consider a string T of length n. As a warm-up, in this section we show how to
preprocess T so that given its substring T [i..j] we can compute the lexicograph-
ically minimal non-empty suffix of T [i..j] efficiently.

First, build the suffix array SA of T . As indicated in Section 2, SA occupies
O(n) memory and can be built in O(n) time. Then compute ISA array by in-
verting SA. We preprocess ISA so as to answer range minimum queries over it
in constant time. The answer to a range minimum query on ISA[i..j] is the lexi-
cographically minimal suffix among suffixes starting between positions i through
j (inclusively). The preprocessing takes linear time and space, see e.g. [3].

Using the range minimum data structure on ISA, we can find the lexico-
graphically minimal suffix T [m..], m ∈ [i, j], among Suf [i, j] := {T [i..], T [i +
1..], . . . , T [j..]} in O(1) time. Let T [μ..j] be the requested lexicographically min-
imal suffix of T [i..j].

Lemma 1. If T [m..j] is border-free then T [μ..j] = T [m..j]. Otherwise T [μ..j]
is the shortest non-empty border of T [m..j].

Proof. We first show that T [μ..j] is both a prefix and a suffix of T [m..j]. If
T [m..j] = T [μ..j] then we are done otherwise T [μ..j] ≺ T [m..j]. By the definition
of the lexicographic order, either (1) T [μ..j] is a prefix of T [m..j], or (2) there
exists � < min(|T [μ..j]|, |T [m..j]|) such that T [μ..μ + �] = T [m..m + �], and
T [μ + � + 1] < T [m + � + 1].

In Case (1) we have m < μ and thus T [μ..j] is a suffix of T [m..j] as well. Let
us show that Case (2) is impossible. Indeed, it follows that T [μ..] ≺ T [m..], but
the lexicographically smallest suffix in Suf [i, j] is T [m..].

Hence T [μ..j] is both a prefix and a suffix of T [m..j]. If T [m..j] is border-free
then μ = m. Otherwise T [μ..j] is a border of T [m..j]. Suppose T [μ..j] is not the
shortest non-empty border, then there exists a shorter border β of T [m..j]. By
definition β is a prefix of T [m..j] and thus is also a prefix of T [μ..j]. Therefore
β ≺ T [μ..j], which is a contradiction. 
�

Summing up these observations, to compute the lexicographically minimal suffix
of T [i..j] it suffices to find the shortest border of T [m..j] or, equivalently, to find
the longest period of T [m..j]. As shown in [10], for any fixed ε > 0, T can be
turned into a data structure of size O(n) capable of computing, for given (m, j),
all periods of T [m..j] in O(log1+ε n) time. These periods are reported as a set of
O(log n) arithmetic progressions. We scan over these progressions and find the
shortest border of T [m..j].

We conclude:

Theorem 1. Given a string T of length n and fixed ε > 0, one can construct in
O(n) time a data structure of size O(n) that enables finding the lexicographically
minimal suffix of any substring of T in O(log1+ε n) time.
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4 Computing Maximal Suffix

Now we switch to the problem of computing the lexicographically maximal suffix
of a substring. Let T [μ..j] be the desired lexicographically maximal suffix of
T [i..j]. As earlier, let Suf [i, j] := {T [i..], T [i+ 1..], . . . , T [j..]}.

4.1 Naive Algorithm

The following simple observation is crucial:

Lemma 2. Let P = T [m..j] be a prefix of T [μ..j]. If there are no suffixes in
Suf [i,m−1] starting with P ; then m = μ. Otherwise, let T [m1..] be the maximal
suffix in Suf [i,m − 1] among those starting with P ; then P1 = T [m1..j] is a
another prefix of T [μ..j] obeying |P1| > |P |.

Proof. Suppose that no suffix in Suf [i,m−1] starts with P . Then μ /∈ [i,m−1]
(as T [μ..] does start with P ) so μ ≥ m. Also μ ≤ m since |T [μ..j]| ≥ |P |. Hence
μ = m and we are done.

Now let T [m1..] be the lexicographically maximal suffix in Suf [i,m−1] among
those starting with P . If m1 = μ then we are done. Otherwise T [m1..j] ≺ T [μ..j]
by the definition of μ. Suppose that P1 = T [m1..j] is not a prefix of T [μ..j].
Then T [m1..m1 + �] = T [μ..μ + �] and T [m1 + � + 1] < T [μ + � + 1] for some
� with |P | ≤ � < j − μ + 1. Therefore T [m1..] ≺ T [μ..] and T [m1..] is not
the lexicographically largest suffix in Suf [i,m − 1] starting with P , which is a
contradiction. 
�

The above lemma leads to the following procedure for computing the lexico-
graphically maximal suffix of T [i..j]. We maintain a certain prefix P = T [m..j]
of T [μ..j] (initially m = j + 1 so P is empty) and execute a series of iterations.
On each iteration we compute the lexicographically maximal suffix T [m1..] in
Suf [i,m− 1] among those starting with P . We apply Lemma 2, reset m := m1

and proceed to the next iteration. We call this transition a jump from m to
m1. The iterations terminate when no suffixes in Suf [i,m − 1] starting with P
remain; then the algorithm stops with P = T [μ..j].

Two issues remain open. First, we need an efficient way to compute the lexi-
cographically maximal suffix in Suf [i,m− 1] among those starting with a given
prefix P . Second, the number of jumps in the above method can be linear. In-
deed, for T = an−1b and its substring T [1..n− 1] the answer is an−1. However,
each iteration increases the length of P by one. We will address these concerns
in the upcoming subsections.

4.2 Data Structures

The following data structures are crucial to the success of our approach:

Suffix Array, LCP, and Maximum Ranks: We start by constructing the
suffix array SA of T . As indicated in Section 2, this suffix array uses O(n)
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space and can be built in O(n) time. Then SA is inverted and gives rise to
ISA array. We preprocess ISA so as to answer range maximum queries over
it in constant time. The answer to a range maximum query on ISA[i..j] is
the lexicographically maximal suffix among suffixes starting between positions
i through j. The preprocessing takes linear time and space, see e.g. [3]. Next,
we construct the LCP array of length (n − 1), where LCP [i] is equal to the
length of the longest common prefix of suffixes T [SA[i]..] and T [SA[i + 1]..]. As
shown in [9], LCP can be built in linear time as well. Finally, we build a range
minimum query data structure on top of LCP (again using the construction
from [3]). This enables us to find, for every pair of suffixes T [i..] and T [j..], the
length of their longest common prefix (denoted by lcp(i, j)) in O(1) time.

Suffix Array for Reversed Text and LCS: Similar to the above, we con-
struct the suffix array SAr for the reversed string Tr = T [n] T [n − 1] . . . T [1]
and construct the LCS array of length (n − 1), where LCS[i] is equal to the
length of the longest common prefix of suffixes Tr[SAr[i]..] and Tr[SAr[i + 1]..]
(i.e. the length of the longest common suffix of T [..n − SAr[i] + 1] and
T [..n−SAr[i+ 1] + 1]). As above, we build a range minimum query data struc-
ture on top of LCS. This enables computing, for every pair of prefixes T [..i] and
T [..j], the length of their longest common suffix (denoted by lcs(i, j)) in O(1)
time.

4.3 Improved Algorithm

To achieve the desired running time per query, we improve the above naive
method as follows. As earlier, we maintain a certain current prefix P = T [m..j]
of T [μ..j]. Instead of gradually jumping according to Lemma 2 we perform a
series of improved iterations. At each such iteration the algorithm either finds
out that P = T [μ..j] (in which case it stops) or replaces m by m′ such that
P ′ = T [m′..j] is another prefix of T [μ..j] obeying |P ′| ≥ 3

2 |P |. As we will see,
each iteration takes O(1) time.

The following invariants are maintained throughout the algorithm:

(1) (a) P = T [m..j] is a prefix of T [μ..j];
(b) Every suffix in Suf [i,m− 1] that starts with P = T [m..j] is less than

T [m..].

We will describe the structure of the algorithm postponing some technical proofs
until the end of this section.

Startup: Due to invariant (1,b) we cannot start iterations with the empty prefix.
Instead we compute the lexicographically largest suffix T [m..] in Suf [i, j]. This is
done by performing a single range maximum query on ISA array in O(1) time.

Next we explain how an iteration works.

Iteration: Initial Jump: The iteration starts by performing a usual jump from
m in accordance to Lemma 2. To this aim, let T [m1..] be the lexicographically
largest suffix among Suf [i,m − 1]. Such a suffix can be found by executing a
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range maximum query for ISA array. A somewhat unexpected fact is that m1

defines the jump destination for m:

Lemma 3. If T [m1..] starts with P then T [m1..] is the lexicographically largest
suffix in Suf [i,m− 1] among those starting with P . Otherwise there is no suffix
in Suf [i,m− 1] that starts with P .

Checking if T [m1..] indeed starts with P amounts to validating if lcp(m1,m) ≥
|P |. If the latter is false then no suffix in Suf [i,m − 1] starts with P , so by
Lemma 2 the algorithm terminates with T [m..j] being the answer.

Now let us assume that T [m1..] is the desired lexicographically maximal suffix
in Suf [i,m − 1] starting with P . From Lemma 2 it follows that invariant (1,a)
holds for m := m1, while invariant (1,b) holds for m := m1 by construction. If
|T [m1..j]| ≥ 3

2 |T [m..j]|, the iteration completes with m′ := m1.
Otherwise the initial jump was a short one. Note that P occurs both at po-

sitions m1 and m and the distance between these two occurrences is m−m1 <
1
2 |P |. This large overlap implies a certain periodicity:

Lemma 4. β := T [m1..m− 1] is the shortest period of T [m..j], i.e. T [m..j] =
βsβ′ where s ≥ 1 and β′ is a prefix of β; also β is the shortest string with such
a property.

Iteration: Fast-Forward: Taking the above periodicity into account the jump
procedure can be refined as follows:

Lemma 5. Let T [m..j] = βsβ′, where s ≥ 1, β′ is a prefix of β, and β is the
shortest period. Assume that the jump from m leads to m1 and T [m1..m−1] = β.
Suppose there is an additional match of β to the left of T [m1..j] inside T [i..j],
i.e. T [m1 − |β|..m1 − 1] = β and m1 − |β| ≥ i. Then the jump from m1 leads to
m1 − |β|.

According to Lemma 5, if a copy of β exists to the left of T [m1..j], then jumping
from m1 one gets into m1−|β|, etc. This process can be fast-forwarded; namely,
let us match as many copies of β to the left of T [m1..] (while remaining inside
T [i..j]) as possible, i.e. find the minimum m2 ∈ [i,m1] such that T [m2..m1−1] =
βt for some t ≥ 0. Then from repeated application of Lemma 5 it follows that
the sequence of jumps ultimately leads from m1 to m1 − t|β|.

Recall that for positions p, p′ in T we write lcs(p, p′) to denote the longest
common suffix of prefixes T [..p] and T [..p′]. Then t :=

⌊
min(lcs(m1−|β|−1,m1−

1),m1 − i)/|β|
⌋
. Since lcs(p, p′) can be computed in constant time by the range

minimum data structure, values t and m2 := m1− t|β| can be found in constant
time.

Iteration: Final Jump: To finish the iteration we perform a jump from the
position m2 to a position m3 (applying Lemma 3 for m := m2, P := T [m2..j]
and making a range maximum query to ISA array). If there is no matching
suffix, the algorithm reports T [m2..] as the lexicographically maximal suffix and
stops. Otherwise we claim that total increase of prefix length is sufficiently large,
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i.e. |T [m3..j]| > 3
2 |T [m..j]|. Indeed, consider the first (s + t + 1)|β| letters of

T [m2..] and T [m3..]; both of these two substrings are equal to βs+t+1. Since there
is no match of β to the left of T [m2..j] these substrings must have an overlap
of length less than |β|, for otherwise β has a non-trivial occurrence in β2 and
thus β is not the shortest period of T [m..j] (see Lemma 3.2.1 in [7]). Therefore
m3 < m2−(s+t)|β| ≤ m2−s|β| ≤ m2− 1

2 |T [m..j]|, hence |T [m3..j]| > 3
2 |T [m..j]|,

as required.
This completes the description of the algorithm. Summing up, we obtain the

following

Theorem 2. Given a string T of length n, one can construct in O(n) time a
data structure of size O(n) that enables computing the lexicographically maximal
suffix of any substring T [i..j] of T in O(log(j − i + 1)) = O(log n) time.

Proof. At each iteration of the algorithm |T [m..j]| increases by at least a factor
of 3

2 . Therefore, the number of iterations is O(log(j− i+ 1)). Since each of them
takes O(1) time, each request in answered in O(log(j− i+ 1)) time in total. The
linearity of needed time and space follows immediately from the description. 
�

4.4 Proof of Lemma 3

Define � := j−m+1 and consider the substring Q := T [m1..m1+�−1] of length
�. We claim that Q � P . Indeed, if Q  P then since T [μ..j] starts with P (by
invariant (1,a)) it follows that T [m1..j]  T [μ..j], which is impossible as T [μ..j]
is the maximal suffix of T [i..j].

If Q = P then T [m1..] starts with P and is the lexicographically largest suffix
among all in Suf [i,m − 1] (even those not starting with P ), so the jump from
m leads to m1.

Finally let Q ≺ P . Then no suffix in Suf [i,m−1] can start with P for otherwise
such a suffix would be larger than T [m1..]. 
�

4.5 Proof of Lemma 4

We rely on the following well-known facts:

Lemma 6 (see Lemma 3.2.3 in [7]). Given strings α and β, assume that α
occurs in β at positions p and p′, p < p′, 0 < p′ − p < |α|/2. Then α is periodic
with period β[p..p′ − 1].

Lemma 7 (see Lemma 3.2.4 in [7]). If k and k′ are both periods of a string
α obeying k + k′ ≤ |α| then gcd(k, k′) is also a period of α.

Since m−m1 = |T [m1..j]| − |T [m..j]| < 1
2 |T [m..j]|, Lemma 6 implies (for α :=

T [m..j] and β := T ) that β = T [m1..m− 1] is a period of T [m..j]. It remains to
prove that the latter period is the shortest possible.

Observe the following:
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Lemma 8. If α  βkα for some strings α, β and integer k ≥ 1, then βk−1α 
βkα.

Proof. Suppose that α ≺ βα. Then prepending both parts of the latter in-
equality by multiples of β gives βα ≺ β2α, β2α ≺ β3α, . . . , βk−1α ≺ βkα. By
transitivity this implies α ≺ βkα, which is a contradiction. Therefore α  βα
and consequently βk−1α  βkα. 
�

Now we complete the proof of Lemma 4. Let γ be the shortest period of T [m..j].
Suppose |γ| < |β|. Then |γ| + |β| < 2|β| ≤ |T [m..j]|, and by Lemma 7 sub-
string T [m..j] has another period gcd(|γ|, |β|). Since γ is the shortest period, |β|
must be a multiple of |γ|, i.e., β = γk for some k ≥ 2.

By invariant (1,b) we have T [m..]  T [m1..] = γkT [m..]. Now from Lemma 8
it follows that T [m1 + |γ|..] = γk−1T [m..]  γkT [m..] = T [m1..]. Therefore
T [m1+ |γ|..], which starts with T [m..j], is greater than T [m1..]. This contradicts
invariant (1,b). 
�

4.6 Proof of Lemma 5

Clearly T [m1−|β|..] = βs+2β′ starts with T [m1..j] = βs+1β′. It remains to prove
that this is the lexicographically largest suffix in Suf [i,m1 − 1] with the given
prefix. Assume the contrary, i.e. T [x..] starts with βs+1β′, x ∈ [i,m1 − 1] and
T [x..]  T [m1 − |β|..]. Note that x �= m1 − |β| (otherwise one would get the
equality). Also x > m1 − |β| is impossible (otherwise β would have a non-trivial
occurrence within β2, which is impossible due to its minimality). Therefore x ∈
[i,m1 − |β| − 1]. Define y := x + |β|, notice that y ∈ [i,m1 − 1], and consider the
suffix T [y..]. Since both T [x..] and T [m1 − |β|..] start with βs+1β′ and T [x..] 
T [m1−|β|..] it follows that both T [y..] and T [m1..] start with βsβ′ = T [m..j] and
T [y..]  T [m1..]. The latter contradicts the choice of m1. 
�

5 Conclusions

We showed that a string T of length n can be preprocessed in linear time into
a data structure that takes linear space and solves MinSuf within O(log1+ε n)
time per query and MaxSuf within O(log n) time per query.

One may wonder if the algorithm for MaxSuf presented in Subsection 4.3 gen-
eralizes to MinSuf. Indeed, suppose we are asked to compute the minimal suffix
of T [i..j]. The first step would be to compute the minimal suffix T [m..] among
Suf [i..j]. Now suppose that T [m..j] has no proper borders, then by Lemma 1
the latter substring is the answer. Otherwise let T [k..j] be any (non necessarily
minimal) non-empty border of T [m..j]. Then if |T [k..j]| < 1

2 |T [m..j]| we can
reset m := k and continue (achieving a noticeable reduction of length). Other-
wise T [k..j] and T [m..j] have a large overlap implying that T [m..j] is periodic.
Now we can reset T [m..j] to its period and again achieve a significant length
reduction.
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A closer look, however, immediately reveals an obstacle. The above method is
correct and solves MinSuf in O(log n) time per query but requires a subroutine
for finding an arbitrary non-empty border of a given substring in O(1) time. In
case of MaxSuf we used simple range queries to perform such a lookup; namely
we were looking for a maximal suffix in Suf [i..m− 1] among those starting with
T [m..j]. This approach does not seem to apply to MinSuf. Indeed, what we need
is a shorter string, so it is not clear what suffixes in Suf [m + 1..j] to consider.
Also just picking the minimal suffix T [k..] among Suf [m + 1..j] we may end up
having a substring T [k..j] that is not a border of T [m..j].

Another (more conceptual) way of explaining the difference between MinSuf

and MaxSuf if to say that in MaxSuf we are approximating the answer from
below and extend the current candidate on each iteration. This helps us to
guide the search by fixing a prefix of the new candidate. On the other hand, in
MinSuf we are approximating the answer from above and have no obvious way
of narrowing down the search.

Soon after submitting the paper to CPM 2013 we found a way to overcome
the above issues. After a suitable linear-time preprocessing, the new algorithm
solves MinSuf in O(log(j − i+ 1)) = O(log n) time per query and does not rely
on any sophisticated data structures for finding periodicities. This algorithm,
however, is rather complicated so we decided to postpone it until the full version
of the paper.
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Abstract. Given a straight line program of size n, we are interested in
constructing the LZ78 factorization of the corresponding text. We show
how to perform such conversion in O(n + m logm) time, where m is
the number of LZ78 codewords. This improves on the previously known
O(n√N +m logN) solution [Bannai et al., SPIRE 2012]. The main tool
in our algorithm is a data structure which allows us to efficiently op-
erate on labels of the paths in a growing trie, and a certain method of
recompressing the parse whenever it leads to decreasing its size.

1 Introduction

Large scale string data are commonly compressed before being stored or trans-
mitted, in order to save storage and communication costs. Compressed string
processing (CSP) is an approach for processing such data without explicitly de-
compressing them, therefore enabling us to process the data using less space
and time. Efficient CSP algorithms have been proposed for exact pattern match-
ing [7,10,17,18], and other string problems [8,6,9,22] and can outperform the
straightforward decompress-then-process approach, both in theory and even in
practice [8,21].

In this paper, we consider the following re-compression problem in the CSP
setting. Given a string t represented as a Straight Line Program (SLP) [11],
compute the LZ78 factorization [24] of t. An SLP is a context free grammar
in Chomsky normal form, that derives a single string. Since outputs of various
grammar based [12,19] and dictionary based [23,24] compression algorithms (in-
cluding LZ78) can be considered as SLPs, or quickly transformed to an SLP [20],
it is widely used as a model of compressed representations in CSP. The LZ78
compression algorithm compresses a given string based on a dynamic dictionary
which is constructed by partitioning the input string, the process of which is
called LZ78 factorization. Other than its obvious use for compression, the LZ78
factorization is an important concept used in various string processing algorithms
and applications [4,14,15,16].

The significance of recompression can be seen in the following situation. Some
CSP algorithms make use of properties of the compressed representation that
are specific to a certain compression algorithm. In order to apply such CSP
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c© Springer-Verlag Berlin Heidelberg 2013
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algorithms to a compressed representation that was generated by a different
compression algorithm, we must somehow convert the given compressed repre-
sentation of a string to another compressed representation that would have been
generated by the specific compression algorithm given the uncompressed string.
Furthermore, for the CSP approach to be meaningful, this conversion must be
done without explicitly reconstructing the uncompressed string. Other examples
of application of recompression are dynamic updates of compressed strings and
efficient computation of normalized compression distance (NCD) [13] via the
CSP approach (see [2] for details).

The contribution of this paper is as follows. Given an SLP of size n that
represents a string t of length N , we present an O(n + m logm) time and space
algorithm for computing the LZ78 factorization of t, where m is the number of
LZ78 factors. Then we improve the space complexity to linear in n + m at the
cost of increasing the time complexity to O((n + m) logm).

This improves on the previous O(n
√
N+m logN) time and O(n

√
N+m) space

solution [2]. Since m = Ω(
√
N), the second term is asymptotically m logm =

O(m logN) and differs only by a constant factor. However, the first term can
be significantly smaller, since N can be as large as 2n−1. The main tool in our
solution is a data structure which allows us to efficiently operate on labels of the
paths in a growing trie, see Theorem 1, which we believe to be of independent
interest. Additionally, we apply a certain method of recompressing the parse
whenever it leads to decreasing size. A similar idea was previously applied to
solve the fully LZ78-compressed pattern matching problem [5,7], but here we
need to find the means to work with both the SLP and LZ78 parse at the same
time.

We start with some preliminaries, including presenting the tools that we are
using, in Section 2. Then in Section 3 we develop a data structure which allows
us to maintain a growing trie so that we can quickly lexicographically compare
suffixes of any two paths starting at the root. In Section 4 we use this structure
to construct a faster recompression algorithm.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string t is denoted by |t|. For a string t = xyz, x, y and z are called a prefix,
substring, and suffix of t, respectively. The i-th letter of a string t is denoted by
t[i] for 1 ≤ i ≤ |t|, and the substring of a string t that begins at position i and
ends at position j is denoted by t[i..j] for 1 ≤ i ≤ j ≤ |t|. For convenience, let
t[i..j] = ε if j < i.

Our model of computation is the word RAM: we shall assume that the word
size is at least �log2 |t|�, and hence operations on values representing lengths and
positions of string t can be manipulated in constant time. Space complexities will
be determined by the number of computer words (not bits).
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Fig. 1. The derivation tree of SLP S = {X1 → a,
X2 → b, X3 → X1X2, X4 → X1X3, X5 → X3X4,
X6 → X4X5, X7 → X6X5} representing string
aababaababaab
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b
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Fig. 2. LZ78 trie for string
aaabaabbbaaaba$. Node i repre-
sents fi, e.g., f4 = aab.

2.2 Straight Line Programs

A straight line program (SLP) is a set of productions T = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a distinct non-terminal variable and
each expri is an expression that can be either expri = a (a ∈ Σ), or expri =
X�(i)Xr(i) (i > �(i), r(i)). An SLP is essentially a context free grammar in the
Chomsky normal form, that derives a single string. The size of the program T
is the number n of assignments in T .

The derivation tree of SLP T is a labeled ordered binary tree where each
internal node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each
leaf is labeled with a terminal letter in Σ. The root node has label Xn. Fig. 1
shows an example of such derivation tree.

2.3 LZ78 Parsing

Definition 1 (LZ78 parse). The LZ78 parse of a string t is a partition of t
into substrings t = f1 · · · fm of t, where (for convenience) f0 = ε, and each LZ78
codeword fi ∈ Σ+ is defined as fi = t[p : p+ |fj |] where p = |f0 · · · fi−1|+ 1 and
fj(0 ≤ j < i) is the longest previously used codeword which is a prefix of t[p..|t|].

The LZ78 parse can be encoded by a sequence of pairs, where the pair for fi con-
sists of the identifier j of the previous substring fj and the new letter t[|f1 · · · fi|].
Regarding this pair as a parent and edge label, the substrings can be represented
as a trie, see Fig. 2.

We will need to operate on the trie representing the LZ78 codewords efficiently.
For this we will apply two relatively well-known tools.

Lemma 1 (see [1]). We can maintain a tree in linear space so that addition of
a leaf and a level ancestor query are performed in worst-case O(1) time, where
a level ancestor query gives us the k-th ancestor of a given node v.
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Lemma 2 (see [3]). We can maintain a tree under adding new leaves and
inserting new nodes on edges so that both updates and lowest common ancestor
queries are performed in worst-case O(1) time.

3 Dynamic LZ78 Trie for Constant-Time Chunk
Comparison

Definition 2. A chunk is a suffix of a codeword. We represent such suffix as a
pair consisting of a node of the LZ78 trie and a number denoting the length.

Given a chunk, using Lemma 1 we can either access any of its letters, or construct
a chunk corresponding to any of its substrings. The goal of this section is to show
how to maintain a data structure which allows lexicographical comparison of any
two chunks for a growing trie. We will implement the comparison in O(1) time
at the expense of adding new leaves in O(logm) time. To gain some intuition,
we begin with a static solution for the case when we are given the whole trie in
the very beginning. Some of the bounds mentioned below are amortized, which
is good enough for our purposes.

Lemma 3. Given a static trie on m nodes, we can build in O(m logm) time a
structure of size O(m logm) which allows lexicographical comparison of any two
chunks in O(1) time.

Proof. It is enough to show that it is possible to compare any two chunks whose
length is a power of 2 in such complexity. Observe that for a fixed k, there are
just m chunks of length 2k (because for each node of the trie we get at most one
chunk ending there). Hence we can afford to assign numbers to all of them in
such a way that lexicographical comparisons can be performed by simply looking
at the numbers. Observe that computing those numbers requires sorting, but the
sorting can be actually implemented using radix sort, if we compute the numbers
for increasing values of k. 
�

If the trie is dynamic, it is still enough to consider only chunks whose length
is a power of 2, but now new chunks can arrive, thus destroying the numbering
we have so far. We will use a different approach consisting of a number of steps
building on each other. At a high level, we split all chunks into different types
depending on their length and the value of logm (or, more precisely, the rounded
down value of logm) and deal with different types separately. The value of logm
can (and will) actually change during the computation. To avoid the messy
details, we apply the following reasoning: whenever the value of m doubles, we
recompute all structures constructed so far with the new rounded down value
of logm. As the update time for a single codeword will be just O(logm), the
total construction time will be at most

∑
iO(m2i log m

2i ) = O(m logm), where m
is the final number of codewords, so O(logm) amortized per codeword. Now our
approach is as follows.
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1. We will show a structure which can be used to compute the longest common
suffix of any two chunks.

2. We will construct a structure allowing us to compute the longest common
prefix of any two chunks of length at most logm, which we will call the
short chunks.

3. We will extend the above structure so that it can be used to compute the
longest common prefix of any two chunks of length at most log2 m being a
multiple of logm.

4. We will choose and store in a compacted trie some of the longer chunks of
lengths being powers of 2, which will allow computing the longest common
prefix of any two of them. Updating this compacted trie will be costly, but
we will make sure that it does not happen very often. More precisely, we will
make sure that it happens at most twice for every addition, and takes just
O(logm) time.

5. Finally, we will show that even though we have chosen just some of the longer
chunks, we can use the structure built for the short ones to fill in the missing
information.

As soon as we know that the longest common prefix of two chunks is of length
�, we can access their � + 1-th letters and use them to determine their ordering.

Lemma 4. We can maintain a structure of size O(m) for a growing trie so that
each addition requires O(logm) time and the longest common suffix of any two
chunks can be computed O(1) time.

Proof. It is enough to show that we are able to compute the longest common
suffix of any two codewords. We store their reversals in a compacted trie. To-
gether with a lowest common ancestor structure, this is enough to compute the
longest common suffix in O(1) time. Adding a new codeword reduces to insert-
ing one new path into the compacted trie, which requires locating its lowest
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already existing node. For this we maintain a lexicographically sorted list of all
reversed codewords. Given a new codeword, we use binary search to locate its
predecessor/successor on the sorted list, where each comparison reduces to com-
puting the longest common suffix of two (already existing before the update)
codewords. Then we compute the longest common prefix of the new reversed
codeword and the predecessor/successor, which gives us the prefix of the path
that already exists, see Fig. 3. Using yet another binary search on the sorted list
we can retrieve the last already existing node on this prefix. Then we create the
remaining part of the path, which requires either adding a new outgoing edge,
or locating and splitting one of the already existing outgoing edges. If we store
all outgoing edges in a balanced search tree, both can be done in O(logm) time.
Note that as new reversed codewords appear, the sorted list must be actually
implemented as a (any) balanced search tree. 
�

Lemma 5. We can maintain a structure of size O(m logm) for a growing trie
so that each addition requires O(logm) time and the longest common prefix of
any two short chunks can be computed in O(1) time.

Proof. We maintain a short trie containing all short chunks with a lowest com-
mon ancestor structure, which allows computing the longest common prefix for
any two short chunks. Consider the total number of nodes in this trie: each edge
of the original trie contributes at most logm to this number, hence the size of
the short trie is at most m logm. For each node in the original trie we store
up to logm pointers to the nodes of the short trie corresponding to all short
chunks ending there. In contrast to the previous proof, now whenever we add
a new codeword, up to logm new short chunks must be inserted into the short
trie (less if the depth of the new leaf is smaller than that, exactly logm other-
wise), hence the situation is more complex. More precisely, adding a codeword
ca, where c is an existing codeword and a is a letter, requires iterating through
all sufficiently short (of length less than logm) suffixes c′ of c and inserting a
as a child of the node of the short trie corresponding to c′. If the alphabet is
of constant size, inserting a child takes constant time. If this is not the case,
it could take as much as logm as we should check if such child already exists,
and the total complexity would be O(log2 m), hence we need a slightly different
approach.

Consider all sufficiently short suffixes c[|c|..|c|], c[|c|−1..|c|], . . . , c[|c|− logm+
1..|c|] of c. If the node corresponding to c[i..|c|] in the short trie has an outgoing
edge labeled by a, so does the node corresponding to any shorter suffix. Hence
we should identify the smallest such i, and then simply add a new outgoing
edge labeled by a for each node corresponding to a longer suffix, which can
be done in constant time per suffix, as there is no need to keep the children
sorted. To identify this smallest i, we can apply binary search to locate the
predecessor/successor of (ca)R in the sorted list of all reversed codewords. The
list is implemented, as in Lemma 4, as a balanced search tree. Then we compute
the longest common suffix of ca and the predecessor/successor, and the maximum
of those two values gives us the value of i. The total complexity is O(logm). 
�
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Now, observe that the above idea can be actually used to store all chunks of
length α logm, where α = 1, 2, . . . , logm. Indeed, because the method worked for
any alphabet size, we can treat fragments of length logm as single letters which
we can compare in constant time with Lemma 4. More precisely, we construct a
new trie, where the parent of a node is its logm-th ancestor in the original trie
(or the root, if there is no such ancestor), and the labels of the edges are words
of length up to logm. Then by applying Lemma 5 to this new trie we get the
following result.

Lemma 6. We can maintain a structure of size O(m logm) for a growing trie
so that each addition requires O(logm) time and the longest common prefix of
any two chunks of length α logm with α ≤ logm can be computed in in O(1)
time.

By first using Lemma 5 and then Lemma 6, we can actually compare any two
chunks of length at most log2 m in constant time. To deal with the longer chunks,
we will store for each k a sorted list of chunks of length 2k log2 m. We would like
to actually store all chunks of length 2k, but this seems infeasible: insertion takes
constant time when we know the place we want to insert at, and computing this
place seems to require logarithmic time. Hence we will make sure that the total
number of chunks we store is O(m), choosing them carefully. For each node we
will store at most two chunks ending there. More precisely, let the level of a
node be its distance from the root. Then if the level is �, and � = k1 logm + k2
(mod log2 m) where 0 ≤ k1, k2 < logm, we store selected chunks of length
2k1 log2 m and 2k2 log2 m ending there. Selected chunks are used to show the
following lemma:

Lemma 7. Assume that we can compare any two selected chunks in constant
time. Then, we can maintain a structure of size O(m logm) for a growing trie
so that each addition requires O(logm) time and the longest common prefix of
any two chunks can be computed in O(1) time.

Proof. Let t be the length of the shorter chunk. First we use the method devel-
oped for short chunks to compare their prefixes of length log2 m+(t mod log2 m)
(if t is smaller, we are already done). Then cut this prefix and consider the result-
ing two chunks, which are of length α log2 m. Choose k such that 2k ≤ α < 2k+1

and cover both chunks with fragments of length 2k log2 m, see Fig. 4. To fin-
ish the computation, we only need to show how to compare the corresponding
fragments of such length. Note that given such pair of fragments, we are actu-
ally allowed to move both of them up by at most log2 m. This is because we
already compared the prefixes of length at least log2 m of the original chunks,
and realized that they are the same, and because we can compare any two other
short chunks in constant time (so after the shift we can compare the uncovered
suffix parts, if necessary). Hence the situation is actually simpler than compar-
ing any two chunks of such length, and this is where the selected chunks come
into the play. As long as at least one of the two fragments does not correspond
to a selected chunk, we move both of them up (simultaneously) by one. Note
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that because of the way selection works, we never have to move up more than
log2 m. More precisely, imagine that we first move up as long as the first one is
not a selected chunk, which happens after at most logm moves. Then we move
up skipping logm edges in a single step as long as the second one is not a se-
lected chunk, which happens after at most logm steps consisting of logm edges.
Moreover, how much we need to move up can actually be computed using simple
arithmetic operations operating on the levels. Then we use the structure to com-
pare the selected chunks we got. Repeating this at most twice (and comparing
the remaining short parts, if necessary) gives us the final result. 
�

The only remaining part is comparing the selected chunks. The difficult part
is updating the structure, and for this we will actually use the above lemma,
making sure that this is not a circular reference.

Lemma 8. We can maintain a structure of size O(m logm) for a growing trie
so that each addition requires O(logm) time and the longest common prefix of
any two selected chunks of the same length can be computed in O(1) time.

Proof. For each k we maintain a separate compacted trie storing all selected
chunks of length 2k log2 m. Together with the lowest common ancestor structure,
this gives us enough information to compute the longest common prefix. To
update the compacted trie, we maintain a sorted list of the corresponding chunks,
which is stored in a balanced search tree. Each elements of this list keeps a
bidirectional link to the corresponding leaf in the compacted trie.

After adding a new leaf, we need to insert two selected chunks ending there
into their compacted tries. We first insert the shorter and then the longer. Each
insertion requires locating the new selected chunk ca in the sorted list of all
chunks of given length, which is stored in a balanced search tree. Navigating the
tree can be done in O(logm) time assuming we can compare the current chunk
with any already existing one in constant time. We can use the existing data to
first compare c (which is a chunk, although not necessarily selected) and then
(if required) look at the next letter of the other chunk and compare it with a,
hence each comparison takes O(1) time. As soon as we know the predecessor and
successor of ca on the list, we can compute the longest prefix ca which already
exists in the compacted trie, and then using another binary search retrieve the
last node on this prefix. Then we either add a new outgoing edge, or perform a
binary search among the already existing outgoing edges and split one of them.
Finally, we add the new chunk to the sorted list. 
�

Theorem 1. We can maintain a structure of size O(m logm) for a growing trie
so that each addition requires O(logm) time and the longest common prefix of any
two suffixes of words corresponding to the nodes can be computed in O(1) time.

To decrease the space complexity of the final algorithm, we will also need the
following consequence of the above theorem.

Lemma 9. We can maintain a structure of size O(m) for a growing trie so that
each addition requires O(logm) time and the longest common prefix of any two
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chunks can be approximately computed in O(1) time. If the length of the longest

common prefix is �, the approximation returns
⌊

�
log2 m

⌋
.

4 Algorithm

First we transform the SLP. We want to have a description of the text which
consists of a number of blocks. Each block is either a single letter, or a concate-
nation of a consecutive range of blocks on the left. We can get such description
consisting of O(n) blocks from the SLP in O(n) time [20]. We will store all blocks
in a doubly linked list.

We process the text from left to right. Assuming we have already processed its
prefix t[1..i], we need to compute the longest prefix of t[i + 1..N ] which is a code-
word. We would like to apply binary search here, so we keep all codewords sorted in
the lexicographical order. As we will need to add new codewords, we actually store
them in a balanced search tree. So, to compute the longest prefix of t[i + 1..N ]
which is a codeword, we traverse the balanced search tree, and at each node we
compare its codeword to t[i + 1..N ]. Depending on the result, we go left or right.
We need to execute each of those comparisons in amortized constant time.

We store the representation of the already processed prefix t[1..i] as a con-
catenation of chunks, maintained as a doubly linked list. Additionally, for each
boundary between two elements of the block list we maintain a link to the corre-
sponding position on this chunks list. We will make sure that the only operations
on the chunks list is appending a new element and merging two adjacent ele-
ments, hence the links can be easily maintained using a union-find data structure.
Such structure can be implemented with O(1) time for find and O(logU) time
for union, where U = O(m) is the universe size, by the standard relabel-the-
smaller-part technique. We require that t[1..i] is a prefix of the concatenation of
all chunks, but it might (and will) happen that this concatenation is actually a
longer prefix of the whole word. It will be the case, though, that concatenating
all but the last chunk gives us a prefix of t[1..i], which will be called the sticking
out invariant. Let the frontier be the position in the text just after the concate-
nation of all chunks. We maintain its corresponding block. If the frontier lies
inside a block which is a copy of a range of blocks on the left, we also need the
shadow frontier, which is the position in the text corresponding to the place we
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c

a

Fig. 6. Fixing the sticking out invariant

R︷ ︸︸ ︷

c

blocks

chunks

Fig. 7. Merging two adjacent chunks

should copy the letter at the frontier from. For the shadow frontier we maintain
its corresponding chunk. See Fig. 5 which depicts all data we maintain.

Now consider comparing t[i + 1..N ] with some codeword c. Imagine that we
have access to the representation of this suffix as a concatenation of already
defined codewords. Then we can simply go through those codewords one-by-one
and compare each of them with the corresponding substring of c as long as they
are equal, and the first mismatch allows us to determine the result. The total
cost is proportional to the number of codewords we access and we must somehow
amortize this quantity. This is the first difficulty. The second difficulty is that we
do not really have the whole representation yet. Nevertheless, we will see how to
be always able to extract the next element using the shadow frontier.

Lemma 10. Given a codeword c which should be compared to t[i + 1..N ] we can
execute a constant time procedure which achieves at least one of the following goals:

1. deciding if t[i + 1..N ] is lexicographically smaller or bigger than c,
2. moving the frontier to the next block,
3. merging two adjacent chunks.

Proof. First we compare the suffix of the last chunk with the corresponding
prefix of c. If they are not equal, we are done. Otherwise consider the next letter
a of the text. If the corresponding block consists of just this letter, we compare a
with the corresponding letter of c. If they are not equal, we are done. Otherwise
we can move the frontier one position to the right and append a new chunk to
the chunks list. Note that as a result we might break the sticking out invariant,
but in such case before appending we shorten the last element and append the
corresponding substring of c, see Fig. 6.

If the corresponding block is a copy of a range R of blocks on the left, we
can use the shadow frontier to extract a chunk describing a prefix of the suffix
of the text starting at the frontier. Again, we compare this chunk with the
corresponding fragment of c, and if they are not equal, we are done. If they are
equal, we look at the next chunk, and if it still intersects R, we use it to compare
with c. We repeat this twice, stopping whenever we have inequality or move
beyond R. Now, if we have inequality, we are done. If we move beyond R, we
can move the frontier to the beginning of the next block and append at most 2
chunks to the chunks list. As before, this might break the sticking out invariant,
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but we can fix this using the same trick. We also have to update the shadow
frontier by using the link computed for the next block in the very beginning.
Hence the only remaining case is that we have equality, we are still inside R,
and we repeated 2 times. Hence the situation looks like on Fig. 7, namely two
chunks can be actually replaced with the corresponding fragment of c. 
�
The above lemma actually allows us to compare t[i+1..N ] with any c in amortized
constant time, as we either get the comparison result, consume one block, or
decrease the number of chunks. Hence in amortized O(logm) time we are able
to find the longest codeword which is a prefix of t[i + 1..N ] by simulating a
binary search for t[i + 1..N ] on the sorted list of all codewords and returning
the codeword corresponding to the longest common prefix of t[i + 1..N ] and its
predecessor on this list (because the the set of words on the list is prefix-closed,
there is no need to compute the longest common prefix with the successor, as
it cannot be larger). Then we create the next codeword and increase i. This
requires possibly updating both frontier and shadow frontier. The former is easy
to perform in amortized constant time, as we just need to skip a number of
blocks, so we can amortize using the number of blocks n. The latter seems to be
more complicated. Nevertheless, we can simply move to the right on the chunks
list, and observe that whenever we go through at least two whole chunks, we can
replace them with a corresponding fragment of the new codeword. Hence, again,
we can amortize using the total number of codewords m.

Theorem 2. Given a SLP on n productions, we can build a LZ78 parse describ-
ing the same text in O(n + m logm) time and space.

Using Lemma 9 and two levels of binary search, we can decrease the space usage
at the cost of a slight increase in the time complexity.

Theorem 3. Given a SLP on n productions, we can build a LZ78 parse describ-
ing the same text in O((n + m) logm) time and O(n + m) space.

5 Open Problems

The following question seems interesting: is it possible to implement the structure
from Theorem 1 in linear space and/or with better update time?
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Abstract. Mapping of next-generation sequencing data and other pro-
cessor-intensive sequence comparison applications have motivated a con-
tinued search for high efficiency sequence alignment algorithms. In one
approach, which exploits the inherent parallelism in computer logic cal-
culations, individual cells in an alignment scoring matrix are represented
as bits in a computer word and the calculation of scores is emulated by
a series of bit operations comprised of AND, OR, XOR, complement,
shift, and addition. Bit-parallelism has been successfully applied to the
Longest Common Subsequence (LCS) and edit-distance problems, pro-
ducing solutions which are significantly faster than standard implementa-
tions. But, the intensive mental effort required to produce these solutions,
which are closely tied to special properties of the problems, has limited
efforts to extend bit-parallelism to more general scoring schemes. In this
paper, we give the first bit-parallel solution for general, integer-
scoring global alignment. Integer-scoring schemes, which are widely
used, assign integer weights for match, mismatch, and insertion/deletion
or indel. Our method depends on structural properties of the relationship
between adjacent scores in the scoring matrix. We utilize these properties
to construct a class of efficient algorithms, each designed for a particular
set of weights, and we introduce a standard for characterizing the effi-
ciency in terms of the average number of bit-operations per cell of the
original scoring matrix.

Keywords: bit-parallelism, global sequence alignment, integer weights.

1 Introduction

Sequence alignment algorithms are critical tools in the analysis of biological
sequence data including DNA, RNA, and protein sequences. But, the demands
placed on computational resources by high-throughput experiments such as next-
generation sequencing require new, more efficient methodologies. While standard
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implementations of the Smith-Waterman [11] and Needleman-Wunsch [10] algo-
rithms calculate the score in each cell of the alignment scoring matrix sequen-
tially, a newer technique called bit-parallelism adapts the inherent parallelism in
computer logic calculations to the task of overcoming the limited dependencies
between adjacent scores in order to achieve much higher efficiencies.

Bit-parallel algorithms use computer words to represent multiple adjacent
cells in the scoring matrix, and bit operations to mimic the result of dynamic
programming. Bit-parallel methods have been successfully applied to the longest
common subsequence (LCS) [1,3,5] and unit-cost edit distance (Levenshtein)
[6,12,8] problems. These algorithms focus on computing the alignment score, de-
linking that computation from the traceback which produces the final alignment.
In the LCS scoring matrix, scores are monotonically non-decreasing in the rows
and columns and the bit-parallel implementations use bits to represent the cells
where an increase occurs. In the edit distance scoring matrix, adjacent scores
can differ by at most one, and the binary representation stores the locations
of (two of the three) possible differences, +1,−1, and zero. These algorithms
are adhoc in their approach, relying on specific properties of the underlying
problems, making it difficult to directly adapt them to other alignment scoring
schemes.

Bit-parallel algorithms have also been developed for the approximate string
matching problem in which a pattern and text are given and occurrences of the
pattern with at most k differences are sought in the text [13,12,2,9]. For example,
the Wu and Manber algorithm [12] finds approximate matches to a pattern or
regular expression where the number of differences between the pattern and
the text is at most k. This algorithm is implemented as the Unix command
agrep. The Navarro algorithm for approximate regular expressions [9] allows
arbitrary integer weights for match, mismatch, and insertion or deletion and finds
occurrences of the pattern where the sum of the edit weights is at most k. In these
algorithms, the complexity (and computation time) increases with increasing k.
By contrast, in our algorithm discussed below, the complexity depends on the
edit weights, not the ultimate score of the alignment.

In this paper, we describe, to our knowledge, the first generalization of the
bit-parallel method to integer-scoring similarity and distance based global align-
ment. Integer-scoring schemes, which are widely used, assign integer weights for
match, mismatch, and indel operations. Our new contribution is an observa-
tion of the regularity of the relationship between adjacent scores in the scoring
matrix when using general integer scoring (Section 3) and the design of an ef-
ficient series of bit operations to exploit that regularity (Section 4). We show
how to construct a class of efficient algorithms, each designed for a particular
set of weights. The method works, as described below, for general alphabets,
but our interest derives from frequent use of DNA alignment when analyzing
next-generation sequencing data to detect genetic variation. The remainder of
the paper is organized as follows. In Section 2 we give a formal presentation of
the problem, in Section 5 we compare the performance of our algorithm with
five related algorithms, and in Section 6 we discuss future work.
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2 Problem Description

We state our problem in terms of similarity scoring, but the technique can be
used for distance scoring as well.

Problem: Given two sequences Xand Y, of length n and m respectively, and a
similarity scoring function S defined by three integer weights M, I,G (match,
mismatch, indel or gap), calculate the global alignment similarity score for Xand
Y using bit operations with computer words of length w in time O(nm/w), and
more specifically, such that the actual average count of bit operations per cell
of the alignment scoring matrix, p/w, is ≤ e for some small number e, where p
is the number of operations to complete the calculation for w cells.

We will say that an algorithm (or program) that accomplishes the task has
a per-cell bit operation cost of at most e. For example, in the case of the
LCS, the per cell bit operation cost is p/w = 1/16 (that is, there are p = 4
bit operations per word of length w = 64) [5]. For the edit distance problem,
p/w = 15/64 < 1/4 (15 bit operations per word, unpublished, improved from
[8,6]). Note that in these examples we have counted only bit operations and
not storage of computed values in program variables. Adding store operations is
more accurate and increases the numbers here, but stores are difficult to count
because they depend on specifics of the compiler and the level of optimization.

We require that the alignment method be global, but do not restrict the
initializations in the first row or column of the alignment scoring matrix. Typical
initializations require 1) a gap weight to be added successively to every cell
(global alignment from the beginning of a sequence), and 2) a zero in every cell
(global alignment where an initial gap has no penalty).

We assume that match scores are positive, M > 0, mismatch and gap scores
are negative, I,G < 0 and that the use of mismatch is possible, meaning that
its penalty is no worse than the penalty for two adjacent gaps, one in each se-
quence, I ≥ 2G. While other weightings are possible, they either reduce to simpler
problems from a bit-parallel perspective (i.e., Longest Common Subsequence has
G = 0, I = −∞, M = 1) or require more complicated structures than detailed
here (protein alignment using PAM or BLOSUM style amino acid substitution
tables).

We stress that we do not claim to have an optimal solution for any particular
instance of the alignment weights. As can be seen in the cases of the LCS and
edit-distance, extreme efficiency can be obtained by exploiting specific problem
properties. Instead, we give a general framework for efficient bit-parallel imple-
mentation of alignment which works across a wide spectrum of weights.

3 Function Tables

Let S be a recursively-defined, similarity scoring function for computing the
global alignment score between two sequences X and Y :
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S[i, j] = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S[i− 1, j − 1] + M if Xi = Yj

S[i− 1, j − 1] + I if Xi �= Yj

S[i− 1, j] + G delete Xi

S[i, j − 1] + G delete Yj

We assume the convention that S is computed in an alignment scoring matrix.
Suppose that instead of knowing the actual value in a cell S[i, j] we know only
the difference, ΔV , between that cell and the cell above, and the difference, ΔH ,
between that cell and the cell to it’s left:

ΔV [i, j] = S[i, j] − S[i− 1, j]

ΔH [i, j] = S[i, j] − S[i, j − 1].

Lemma 1 defines the minimum and maximum values of ΔV and ΔH and
Lemma 2 gives their recursive definitions. Proofs are omitted.

Lemma 1. Given S, X, and Y as described above where match score M > 0,
mismatch score I < 0 and gap (indel) score G < 0, the minimum and maximum
differences between adjacent values in the same row (i.e., ΔH [i, j]) or column
(i.e., ΔV [i, j]) are G and M −G.

Lemma 2. The values for ΔV are shown below and the values for ΔH are the
transpose, that is ΔH [i, j] = ΔV [j, i].

ΔV [i, j]
∀i,j≥1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Score comes diagonally from a match:

M −ΔH [i− 1, j] if Xi = Yj

Score comes diagonally from a mismatch:

I −ΔH [i − 1, j] if I −G ≥
{
ΔH [i− 1, j]

ΔV [i, j − 1]

Score comes from the cell above:

G if ΔH [i− 1, j] ≥
{
I −G

ΔV [i, j − 1]

Score comes from the cell to the left:

ΔV [i, j − 1] + G−ΔH [i− 1, j] if ΔV [i, j − 1] ≥
{
I −G

ΔH [i− 1, j](
V [0, j]
∀j≥1

= G or V [0, j]
∀j≥1

= 0

)
and

(
H [i, 0]
∀i≥1

= G or H [i, 0]
∀i≥1

= 0

)
.
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The recursion for the ΔV values can be summarized in a Function Table (Fig-
ure 1). Note the key value I−G from the recursion and the relation ΔH = ΔV .
They set the boundaries for the marked zones in the table. These zones comprise
(ΔV,ΔH) value pairs which determine how the best score of a cell in S is ob-
tained in the absence of a match, either as an indel from the left (Zones A and
B), a mismatch (Zone C), or an indel from above (Zone D). Borders between
zones, indicated by dotted lines, yield ties for the best score. Figure 2 shows how
the relative size of the Zones changes with changes in I and G.

A

C

D

B{
{
Fig. 1. Zones in the Function Table for ΔV

We use the following (see Figure 1):

Definitions:
ΔVmin = ΔHmin = G
ΔVmax = ΔHmax = M −G
ΔVlow, ΔHlow ∈ [G, I −G]
ΔVhigh, ΔHhigh ∈ [I −G + 1,M −G]

Observations:
Zone A – All value are in Vhigh

Zone B – All values are in Vlow

Zone C – All values are in Vlow. Values depend only on ΔH .
Zone D – All values are G
Last Row – Values from this row also apply when there is a Match.
First Column – Identity column for values in Vhigh



A Bit-Parallel, General Integer-Scoring Sequence Alignment Algorithm 55

A

C

D

B

D

A B

C

gap
2*gap0

mismatch

gap
2*gap0

mismatch

gap
2*gap0

mismatch

gap
2*gap0

mismatch

0
D

A

D

C

A
B

Fig. 2. Relative size of Zones as I (mismatch penalty) decreases from 2G (twice gap
penalty) where there is no preference for mismatches, to zero, where mismatches are
free and gaps are introduced only to obtain matches

4 Bit-Parallel Alignment

Our goal is to develop an algorithm for calculating the ΔH values in row i from:

• the ΔH values in row i− 1,

• the initial ΔV value in row i

• the Match positions in row i.

What follows is a description of the simplest case where the length of the first
sequence, n, is less than the computer word size w. Longer sequences can be
handled in “chunks,” where each chunk has size w. The Match positions for every
row are computed prior to the calculation of the row values as is done for the
LCS and edit-distance problems. Details are given at the end. For the remainder
of the paper, we will use the following set of scoring weights for illustration:

M = 2, I = −3, G = −5.

The ΔV Function Table for these weights is shown in Figure 3.

Representation of ΔH and ΔV Values. In the bit-parallel framework, we
use one computer word (sometimes referred to later as a vector) to represent
each possible value of ΔH and ΔV . Bit i in a word refers to column i in the
alignment scoring matrix. With the weights used for illustration, there are 13
values, each, for ΔH and ΔV .

Algorithm Outline. We first calculate all ΔV values for row i and then use
them to calculate the ΔH values. Close inspection of the Function Table (Fig-
ure 3) reveals that the values in Zone A, which are all in ΔVhigh, are interdepen-
dent, and require computing in order from high to low. The other complication
is the identity column ΔHmin which requires carrying a ΔV input value through
runs of ΔHmin. Values in Zones B, C, and D, which are all in ΔVlow, can be
computed once the values from Zone A are obtained. The main work is combin-
ing outputs from (ΔV,ΔH) pairs which intersect along the same diagonal. Once
all ΔV values are available, the ΔH values can be computed in any order.
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Fig. 3. The ΔV Function Table for the weights M = 2, I = −3, G = −5. Note that
ΔVhigh,ΔHhigh ∈ [3, 7]; ΔVlow,ΔHlow ∈ [−5, 2]; ΔVmin = ΔHmin = −5; ΔVmax =
ΔHmax = 7.

4.1 Computing ΔV

We present the following without theorems or proofs for compactness.

Zone A – Dependencies. To compute its output value, each cell needs to
know its ΔH and ΔV input values. The ΔH values are already known, as is
the input ΔV value for the first cell. As in standard left to right processing, the
output ΔV value from one cell becomes the input value for the cell to its right.
The arrangement of the ΔV values in Zone A of Figure 3 indicates a chain of
dependency:

Matches → 7 → 6 → . . . → 3.

Additionally, the identity column ΔHmin (= −5) indicates that a ΔVhigh value
that is fed into a ΔH run of −5s will yield the identical output for every cell
in the run. Therefore, to know where the 7s are (for ΔV ) first requires knowing
where the Matches are and then which of the 7s from Matches carry through
runs of −5; to know where the 6s are first requires knowing where the Matches
and 7s are and then which of those 6s carry through runs of −5, etc. The “carry
through runs of ΔHmin” is really the only obstacle, but can be accomplished
with an addition (+) as seen below. Addition is also used to solve similar left to
right dependency problems in the LCS and edit-distance bit-parallel algorithms.

Zone A – Finding ΔVmax. The vector is calculated with four operations (Fig-
ure 4). The result stores locations of ΔVmax shifted one position to the right for
input to subsequent calculations. The operations are 1) an AND to find the 7s
from Matches, 2) an addition (+) to carry through adjacent runs of ΔHmin and
into the position following a run (and causing erroneous internal bit flips if there
are multiple Matches in the same run), 3) an XOR to complement the bits within
the runs, and 4) an XOR to correct any erroneous bits and accomplish the shift
by removing the leading 1 in a run.
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1 1 1 1 1 1 Matches
AND 1110 1110 111110 1110 ΔHmin

------------------------------------
0100 1000 010100 0000 ΔVmax (initial)

+ 1110 1110 111110 1110 ΔHmin

------------------------------------
1001 0001 100X01 1110

XOR 1110 1110 111110 1110 ΔHmin

------------------------------------
0111 1111 011011 0000

XOR 0100 1000 010100 0000 ΔVmax (initial)
------------------------------------

0011 0111 001111 0000 >> ΔVmax (final and shifted)

Example Code:
INITpos7 = DHneg5 & Matches;
DVpos7shift = ((INITpos7+ DHneg5) ∧ DHneg5) ∧ INITpos7;

Fig. 4. Finding ΔVmax. Each line represents a computer word with low order bit,
corresponding to the first position in a sequence, on the left. 1s are shown explicitly,
0s are only shown to fill runs of ΔHmin and the first position to the right of each run.
Symbol >> indicates that the final ΔVmax values are shifted to the right one position.
Erroneous bit set by the ADD (+) is marked X.

Zone A – Others. Remaining ΔVhigh vectors are calculated, in descending
order as discussed above. First, initial vectors are computed by AND of appropri-
ate (ΔV,ΔH) pairs (which intersect along a common diagonal in the Function
Table) and collected together with ORs. Second, the intial vectors are shifted
right one position for subsequent calculations. Third, the carry through runs of
ΔHmin is computed in two operations (Figure 5), an addition (+) as before and
an XOR to complement the bits within the runs. Before the carry operation, those
ΔHmin positions that have already output a ΔVmax value must be removed. Note
that initial ΔV values, when shifted to the right, can only occur at the leftmost
position of a ΔHmin run, and not at the single bit between adjacent runs.

Zones B and C and D. (Figure 6). At this point, all the ΔVhigh input values
for Zone B have been computed, remaining output values are all ΔVlow, and Zone
C output depends only on ΔH values. Each output vector is an OR combination
of 1) Zone B – the AND of appropriate (ΔV,ΔH) pairs, which intersect along a
common diagonal, and 2) Zone C – the AND of the appropriate ΔH vector and
all positions without a ΔVhigh output. The result is shifted one position to the
right for subsequent calculations. Zone D has only one output value, ΔVmin. It
is assigned to all remaining positions as well as the first position if gap penalty
in the first column is being used.

4.2 Computing ΔH

After the ΔV values are computed, there are no longer any dependencies. All
the new vectors for ΔH can be immediately computed. Again, each vector is an
OR combination of the AND of appropriate pairs of ΔH and ΔV values.
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1110 1110 11101110 ΔHmin (remaining)
+ 1 1 1 1 X >> ΔV (initial shifted)
--------------------------

0001 1 0001 00011110
XOR 1110 1110 11101110 ΔHmin (remaining)
--------------------------

1111 1 1111 11110000 >> ΔV (final and shifted)

Example Code:
RemainDHneg5 = DHneg5 ∧ (DVpos7shift >> 1);
INITpos3s = (DHneg1& DVpos7shiftorMatch)|(DHneg2& DVpos6shiftNotMatch)|

(DHneg3& DVpos5shiftNotMatch)|(DHneg4& DVpos4shiftNotMatch);
DVpos3shift = ((INITpos3s << 1) + RemainDHneg5) ∧ RemainDHneg5;
DVpos3shiftNotMatch = DVpos3shift& NotMatches;

Fig. 5. Carry through runs of ΔHmin for remaining values in ΔVhigh. Symbol
X marks a single position between runs which cannot be 1 in the initial shifted values.

4.3 Other Tasks

Determining Matches. Prior to computing any ΔH or ΔV , the position of
the matches are determined for each character σ in the sequence alphabet Σ. A
bit vector Matchσ records those positions in sequence X where σ occurs. Filling
all the Matchσ simultaneously can be accomplished efficiently in a single pass
through X . For row i of the ΔH and ΔV calculations, the Match vector for
character Yi is used.

Decoding the Alignment Score. The score in the last column of the last row
of the alignment scoring matrix can be obtained by calculating the score in the
zero column (= m ∗G) and then adding the number of 1 bits in each of the ΔH
vectors multiplied by the value of the vector. Using the method described in [7],
this takes O(n + M − 2G) operations with a small constant:

S[m,n] = m ∗G +

M−G∑
i=G

bitsi ∗ i.

Example Code Zones B and C:

DVnot7to3shiftorMatch = ∼ (DVpos7shiftorMatch|DVpos6shift|DVpos5shift|DVpos4shift|
DVpos3shift);

DVpos2shift = ((DHzero & DVpos7shiftorMatch)|(DHneg1& DVpos6shiftNotMatch)|
(DHneg2& DVpos5shiftNotMatch)|(DHneg3& DVpos4shiftNotMatch)|
(DHneg4& DVpos3shiftNotMatch)|(DHneg5& DVnot7to3shiftorMatch)) << 1;

Example Code Zone D:

DVneg5shift = all ones ∧ (DVpos7shift|DVpos6shift|DVpos5shift|DVpos4shift|DVpos3shift|
DVpos2shift|DVpos1shift|DVzeroshift|DVneg1shift|DVneg2shift|DVneg3shift|
DVneg4shift);

Fig. 6. Code for Zones B and C and D
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Several methods can be used to efficiently find all scores in the last row.
Discussion of these is omitted due to space limitations.

4.4 Complexity and Number of Operations

The time complexity of our algorithm is O(znm/w) where z depends on the
combined size of the Zones A, B, and C (the latter is reduced to a single row
as in Figure 3) in the Function Table. This in turn depends on the alignment
weights M, I, and G:

z =
(M − 2G + 1)2 − (I − 2G)2

2

and the constant hidden in the big O notation is approximately 4 (dominated
by two operations per cell of Zones A, B, and C for ΔV and separately for
ΔH). For the example weights used in this paper, the number of bit operations
per w cells of the scoring matrix is 265 yielding a per-cell bit operation cost of
265/64 ≈ 4.2.

5 Experimental Results

We compared running times for several related bit-parallel algorithms: 1) BHL
– our new algorithm with 5 sets of alignment weights to show the effect of
the weights on the running time, 2) NW – the classical Needleman-Wunch [10]
dynamic programming alignment algorithm, 3) LCS – the bit-parallel LCS algo-
rithm of [5], 4) ED – a bit-parallel, unit-cost edit-distance algorithm, improved
from [8,6], 5) WM – the unit-cost Wu-Manber approximate pattern matching
algorithm [12], and 6) N – the Navarro, general integer scoring, approximate
regular expression matching algorithm [9]. We implemented BHL, NW, LCS,
ED, and WM. N was graciously provided by Gonzalo Navarro.

For all experiments, we used human DNA and ran 100 pattern sequences
against 250,000 text sequences for a total of 25 million alignments. (Pattern and
text distinctions are irrelevant for BHL, NW, LCS, and ED.) All sequences were
63 characters long. For WM we varied k, the maximum number of allowed errors,
from 1 to 15. For N, we varied k from 1 to 12. (Additionally, we selected the
smallest values for tables and mask length, internal parameters to the N method,
for which the program could be successfully run. For k = 1, we used tables = 8
and mask length = 4. For k = 2 through 5, tables = 9 and mask length = 5.
For k = 6 through 12, tables = 13 and mask length = 7.)

All programs were compiled with GCC using optimization level O3 and were
run on an Intel Core 2 Duo E8400 3.0 GHz CPU running Ubuntu Linux 12.10.
Results are shown in Figure 7.
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Fig. 7. Running times. For BHL, alignment weights (M, I, G) are shown in paren-
thesis. All times are averages of three runs. Left. Unit-cost BHL, unit-cost WM, LCS,
and ED. k is the maximum number of errors allowed for WM. k is not a parameter
for the other algorithms and their times are shown as horizontal lines. LCS uses 4 bit
operations per w cells, ED uses 15 bit operations, BHL (0, -1, -1) uses 23 bit opera-
tions. For k = 7, the times for BHL and WM are nearly the same. By k = 15, BHL is
approximately twice as fast. Results for N are not shown on the graph due to the much
longer running time. For N, we ran 2 sequences against 250,000 and multiplied by 50
to find comparable times. For values of k from 1 to 12, the performance of N varied
from 20 to 50 times slower than BHL (2, -3, -5). Right. Variants of BHL and NW. For
BHL, time is approximately linearly proportional to the number of bit operations (and
z) as explained in Section 4.4. For NW, the number of bit operations is not available.
Its time is shown as a horizontal line. BHL (2, -3, -5) is approximately 4.2 times faster
than NW and BHL (0,-1,-1) is approximately 24.9 times faster.

6 Discussion

The algorithm outlined above can be extended in several ways. Computers now
in common usage have a word size of w = 64 bits. A straightforward extension
is to use the 128 bit SIMD registers (Single Instruction, Multiple Data). This
essentially halves the number of operations per cell (with the addition of several
bookkeeping operations) and doubles the speed of computation. Details of the
method will be given in the journal version of this abstract. Another extension is
due to the unexploited parallelism of the operations. There are no dependencies
on prior computations after the ΔV vectors in Zone A are computed. This means
that all the computations in Zones B, C, and D for ΔV and all the subsequent
computations for ΔH can be computed simultaneously, an ideal situation for the
use of general purpose graphical processing units (GPGPU). CUDA program-
ming (Compute Unified Device Architecture) for this method will be presented
in a separate paper.

Because a different program has to be created for each unique set of weights for
M, I, and G, adoption of this algorithm would require a complete understanding
of the program structure. To simplify usage, we are constructing a web site that
will generate C computer code given the weights as input.
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This method has already been used to accelerate software for detecting tandem
repeat variants in next-generation sequencing reads [4] and is well suited to other
DNA sequence comparison tasks that involve computing many alignments.
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Abstract. We consider the problem of computing the q-gram profile of
a string T of size N compressed by a context-free grammar with n pro-
duction rules. We present an algorithm that runs in O(N − α) expected
time and uses O(n+kT,q) space, where N−α ≤ qn is the exact number of
characters decompressed by the algorithm and kT,q ≤ N −α is the num-
ber of distinct q-grams in T . This simultaneously matches the current
best known time bound and improves the best known space bound. Our
space bound is asymptotically optimal in the sense that any algorithm
storing the grammar and the q-gram profile must use Ω(n+ kT,q) space.
To achieve this we introduce the q-gram graph that space-efficiently cap-
tures the structure of a string with respect to its q-grams, and show how
to construct it from a grammar.

1 Introduction

Given a string T , the q-gram profile of T is a data structure that can answer
substring frequency queries for substrings of length q (q-grams) in O(q) time.
We study the problem of computing the q-gram profile from a string T of size
N compressed by a context-free grammar with n production rules.

The generalization of string algorithms to grammar-based compressed text is
currently an active area of research. Grammar-based compression is studied be-
cause it offers a simple and strict setting and is capable of modelling many com-
monly used compression schemes, such as those in the Lempel-Ziv family [15,16],
with little expansion [1,12]. The problem of computing the q-gram profile has its
applications in bioinformatics, data mining, and machine learning [3,9,11]. All
are fields where handling large amount of data effectively is crucial. Also, the
q-gram distance can be computed from the q-gram profiles of two strings and
used for filtering in string matching [14].

Recently the first dedicated solution to computing the q-gram profile from
a grammar-based compressed string was proposed by Goto et al. [5]. Their al-
gorithm runs in O(qn) expected time1 and uses O(qn) space. This was later
improved by the same authors [6] to an algorithm that takes O(N −α) expected

1 The bound in [5] is stated as worst-case since they assume integer alphabets for fast
suffix sorting. We make no such assumptions and without it hashing can be used to
obtain the same bound in expectation.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 62–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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time and uses O(N − α) space, where N is the size of the uncompressed string,
and α is a parameter depending on how well T is compressed with respect to its
q-grams. N − α ≤ min(qn,N) is in fact the exact number of characters decom-
pressed by the algorithm in order to compute the q-gram profile, meaning that
the latter algorithm excels in avoiding decompressing the same character more
than once. These algorithms, as well as the one presented in this paper, assume
the RAM model of computation with a word size of logN bits.

We present a Las Vegas-type randomized algorithm that gives Theorem 1.

Theorem 1. Let T be a string of size N compressed by a grammar of size n.
The q-gram profile can be computed in O(N −α) expected time and O(n + kT,q)
space, where kT,q ≤ N − α is the number of distinct q-grams in T .

Hence, our algorithm simultaneously matches the current best known time bound
and improves the best known space bound. Our space bound is asymptotically
optimal in the sense that any algorithm storing the grammar and the q-gram
profile must use Ω(n + kT,q) space.

A straightforward approach to computing the q-gram profile is to first de-
compress the string and then use an algorithm for computing the profile from
a string. For instance, we could construct a compact trie of the q-grams using
an algorithm similar to a suffix tree construction algorithm as mentioned in [7],
or use Rabin-Karp fingerprints to obtain a randomized algorithm [14]. However,
both approaches are impractical because the time and space usage associated
with a complete decompression of T is linear in its size N = O(2n). To achieve
our bounds we introduce the q-gram graph, a data structure that space effi-
ciently captures the structure of a string in terms of its q-grams, and show how
to compute the graph from a grammar. We then transform the graph to a suffix
tree containing the q-grams of T . Because our algorithm uses randomization to
construct the q-gram graph, the answer to a query may be incorrect. However,
as a final step of our algorithm, we show how to use the suffix tree to verify that
the fingerprint function is collision free and thereby obtain Theorem 1.

2 Preliminaries and Notation

2.1 Strings and Suffix Trees

Let T be a string of length |T | consisting of characters from the alphabet Σ.
We use T [i : j], 0 ≤ i ≤ j < |T |, to denote the substring starting in position
i of T and ending in position j of T . We define socc(s, T ) to be the number of
occurrences of the string s in T .

The suffix tree of T is a compact trie containing all suffixes of T . That is,
it is a trie containing the strings T [i : |T | − 1] for i = 0..|T | − 1. The suffix
tree of T can be constructed in O(|T |) time and uses O(|T |) space for integer
alphabets [2]. The generalized suffix tree is the suffix tree for a set of strings. It
can be constructed using time and space linear in the sum of the lengths of the
strings in the set. The set of strings may be compactly represented as a common
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suffix tree (CS-tree). The CS-tree has the characters of the strings on its edges,
and the strings start in the leaves and end in the root. If two strings have some
suffix in common, the suffixes are merged to one path. In other words, the CS-
tree is a trie of the reversed strings, and is not to be confused with the suffix
tree. For CS-trees, the following is known.

Lemma 1 (Shibuya [13]). Given a set of strings represented by a CS-tree of
size n and comprised of characters from an integer alphabet, the generalized suffix
tree of the set of strings can be constructed in O(n) time using O(n) space.

For a node v in a suffix tree, the string depth sd(v) is the sum of the lengths of
the labels on the edges from the root to v. We use parent(v) to get the parent
of v, and nca(v, u) is the nearest common ancestor of the nodes v and u.

2.2 Straight Line Programs

A Straight Line Program (SLP) is a context-free grammar in Chomsky normal
form that unambigously derives a string T of length N over the alphabet Σ. In
other words, an SLP S is a set of n production rules of the form Xi = XlXr or
Xi = a, where a is a character from the alphabet Σ, and each rule is reachable
from the start rule Xn. Our algorithm assumes without loss of generality that
the compressed string given as input is compressed by an SLP.

It is convenient to view an SLP as a directed acyclic graph (DAG) in which
each node represents a production rule. Consequently, nodes in the DAG have
exactly two outgoing edges. An example of an SLP is seen in Figure 1(a). When
a string is decompressed we get a derivation tree which corresponds to the depth-
first traversal of the DAG.

We denote by tXi the string derived from production rule Xi, so T = tXn .
For convenience we say that |Xi| is the length of the string derived from Xi, and
these values can be computed in linear time in a bottom-up fashion using the
following recursion. For each Xi = XlXr in S,

|Xi| =

{
|Xl| + |Xr| if Xi is a nonterminal,

1 otherwise.

Finally, we denote by occ(Xi) the number of times the production rule Xi occurs
in the derivation tree. We can compute the occurrences using the following linear
time and space algorithm due to Goto et al. [5]. Set occ(Xi) = 1 for i = 1..n.
For each production rule of the form Xi = XlXr, in decreasing order of i, we set
occ(Xl) = occ(Xl) + occ(Xi) and similarly for occ(Xr).

2.3 Fingerprints

A Rabin-Karp fingerprint function φ takes a string as input and produces a value
small enough to let us determine with high probability whether two strings match
in constant time. Let s be a substring of T , c be some constant, 2N c+4 < p ≤
4N c+4 be a prime, and choose b ∈ Zp uniformly at random. Then,
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φ(s) =

|s|∑
k=1

s[k] · bk mod p.

Lemma 2 (Rabin and Karp [8]). Let φ be defined as above. Then, for all
0 ≤ i, j ≤ |T | − q,

φ(T [i : i + q]) = φ(T [j : j + q]) iff T [i : i + q] = T [j : j + q] w.h.p.

We denote the case when T [i : i + q] �= T [j : j + q] and φ(T [i : i + q]) = φ(T [j :
j + q]) for some i and j a collision, and say that φ is collision free on substrings
of length q in T if φ(T [i : i+ q]) = φ(T [j : j + q]) iff T [i : i+ q] = T [j : j + q] for
all i and j, 0 ≤ i, j < |T | − q.

Besides Lemma 2, fingerprints exhibit the useful property that once we have
computed φ(T [i : i+ q]) we can compute the fingerprint φ(T [i+ 1 : i+ q + 1]) in
constant time using the update function,

φ(T [i + 1 : i + q + 1]) = φ(T [i : i + q])/b− T [i] + T [i + q + 1] · bq mod p.

3 Key Concepts

3.1 Relevant Substrings

Consider a production rule Xi = XlXr that derives the string tXi = tXl
tXr .

Assume that we have counted the number of occurrences of q-grams in tXl
and

tXr separately. Then the relevant substring rXi is the smallest substring of tXi

that is necessary and sufficient to process in order to detect and count q-grams
that have not already been counted. In other words, rXi is the substring that
contains q-grams that start in tXl

and end in tXr . Formally, for a production
rule Xi = XlXr, the relevant substring is rXi = tXi [max(0, |Xl| − q + 1) :
min(|Xl| + q − 2, |Xi| − 1)]. We want the relevant substrings to contain at least
one q-gram, so we say that a production rule Xi only has a relevant substring
if |Xi| ≥ q. From this definition we see that the size of a relevant substring is
q ≤ |rXi | ≤ 2(q − 1).

The concept of relevant substrings is the backbone of our algorithm because
of the following. If Xi occurs occ(Xi) times in the derivation tree for S, then
the substring tXi occurs at least occ(Xi) times in T . It follows that if a q-
gram s occurs socc(s, tXi) times in some substring tXi then we know that it
occurs at least socc(s, tXi) · occ(Xi) times in T . Using our description of rele-
vant substrings we can rewrite the latter statement to socc(s, tXi) · occ(Xi) =
socc(s, tXl

) · occ(Xl) + socc(s, tXr ) · occ(Xr) + socc(s, rXi) · occ(Xi) for the pro-
duction rule Xi = XlXr. By applying this recursively to the root Xn of the SLP
we get the following Lemma, which is implicit in [5].

Lemma 3. Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of production rules
that have a relevant substring, and let s be some q-gram. Then,

socc(s, T ) =
∑

Xi∈Sq

socc(s, rXi) · occ(Xi).
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3.2 Prefix and Suffix Decompression

The following Lemma states a result that is crucial to the algorithm presented
in this paper.

Lemma 4 (Ga̧sieniec et al. [4]). An SLP S of size n can be preprocessed in
O(n) time using O(n) extra space such that, given a pointer to a variable Xi in
S, the j length prefix and suffix of tXi can be decompressed in O(j) time.

Ga̧sieniec et al. give a data structure that supports linear time decompression of
prefixes, but it is easy to extend the result to also hold for suffixes. Let s be some
string and sR the reversed string. If we reverse the prefix of length j of sR this
corresponds to the suffix of length j of s. To obtain an SLP for the reversed string
we swap the two variables on the right-hand side of each nonterminal production
rule. The reversed SLP S ′ contains n production rules and the transformation
ensures that tXi′ = tRXi

for each production rule Xi′ in S ′. A proof of this can be
found in [10]. Producing the reversed SLP takes linear time and in the process we
create pointers from each variable to its corresponding variable in the reversed
SLP. After both SLP’s are preprocessed for linear time prefix decompression, a
query for the j length suffix of tXi is handled by following the pointer from Xi

to its counterpart in the reversed SLP, decompressing the j length prefix of this,
and reversing the prefix.

3.3 The q-Gram Graph

We now describe a data structure that we call the q-gram graph. It too will
play an important role in our algorithm. The q-gram graph Gq(T ) captures the
structure of a string T in terms of its q-grams. In fact, it is a subgraph of the De
Bruijn graph over Σq with a few augmentations to give it some useful properties.
We will show that its size is linear in the number of distinct q-grams in T , and
we give a randomized algorithm to construct the graph in linear time in N .

A node in the graph represents a distinct (q − 1)-gram, and the label on the
node is the fingerprint of the respective (q − 1)-gram. The graph has a special
node that represents the first (q − 1)-gram of T and which we will denote the
start node. Let x and y be characters and α a string such that |α| = q − 2.
There is an edge between two nodes with labels φ(xα) and φ(αy) if xαy is a
substring of T . The graph may contain self-loops. Each edge has a label and
a counter. The label of the edge {φ(xα), φ(αy)} is y, and its counter indicates
the number of times the substring xαy occurs in T . Since |xαy| = q this data
structure contains information about the frequencies of q-grams in T .

Lemma 5. The q-gram graph of T , Gq(T ), has O(kT,q) nodes and O(kT,q)
edges.

Proof. Each node represents a distinct (q− 1)-gram, and because of the way we
construct the graph, its outgoing edges have unique labels. The combination of
a node and an outgoing edge thus represents a distinct q-gram, and therefore



Compact q-Gram Profiling of Compressed Strings 67

there can be at most kT,q edges in the graph. For each new q-gram the algorithm
adds an edge from an existing node to a new node, so the graph is connected.
Therefore, it has at most kT,q + 1 nodes. 
�

The graph can be constructed using the following online algorithm which takes
a string T , an integer q, and a fingerprint function φ as input. Let the start node
of the graph have the fingerprint φ(T [0 : (q−1)−1]). Assume that we have built
the graph Gq(T [0 : k + (q − 1) − 1]) and that we keep its nodes and edges in
two dictionaries implemented using hashing. We then compute the fingerprint
φ(T [k+1 : k+(q−1)]) for the (q−1)-gram starting in position k+1 in T . Recall
that since this is the next successive q-gram, this computation takes constant
time. If a node with label φ(T [k + 1 : k + (q − 1)]) already exists we check if
there is an edge from φ(T [k : k+ (q− 1)− 1]) to φ(T [k+ 1 : k + (q− 1)]). If such
an edge exists we increment its counter by one. If it does not exist we create it
and set its counter to 1. If a node with label φ(T [k + 1 : k + (q − 1)]) does not
exist we create it along with an edge from φ(T [k : k + (q − 1) − 1]) to it.

Lemma 6. For a string T of length N , the algorithm is a Monte-Carlo type
randomized algorithm that builds the q-gram graph Gq(T ) in O(N) expected time.

4 Algorithm

Our main algorithm is comprised of four steps: preparing the SLP, constructing
the q-gram graph from the SLP, turning it into a CS-tree, and computing the
suffix tree of the CS-tree. Ultimately the algorithm produces a suffix tree con-
taining the reversed q-grams of T , so to answer a query for a q-gram s we will
have to lookup sR in the suffix tree. Below we will describe the algorithm and
we will show that it runs in O(qn) expected time while using O(n+ kT,q) space;
an improvement over the best known algorithm in terms of space usage. The
catch is that a frequency query to the resulting data structure may yield incor-
rect results due to randomization. However, we show how to turn the algorithm
from a Monte Carlo to a Las Vegas-type randomized algorithm with constant
overhead. Finally, we show that by decompressing substrings of T in a specific
order, we can construct the q-gram graph by decompressing exactly the same
number of characters as decompressed by the best known algorithm.

The algorithm is as follows. Figure 1 shows an example of the data structures
after each step of the algorithm.

Preprocessing. As the first step of our algorithm we preprocess the SLP such
that we know the size of the string derived from a production rule, |Xi|, and the
number of occurrences in the derivation tree, occ(Xi). We also prepare the SLP
for linear time prefix and suffix decompressions using Lemma 4.

Computing the q-gram graph. In this step we construct the q-gram graph Gq(T )
from the SLP S. Initially we choose a suitable fingerprint function for the q-gram
graph construction algorithm and proceed as follows. For each production rule
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Xi = XlXr in S, such that |Xi| ≥ q, we decompress its relevant substring rXi .
Recall from the definition of relevant substrings that rXi is the concatenation of
the q− 1 length suffix of tXl

and the q− 1 length prefix of tXr . If |Xl| ≤ q− 1 we
decompress the entire string tXl

, and similarly for tXr . Given rXi we compute
the fingerprint of the first (q − 1)-gram, φ(rXi [0 : (q − 1) − 1]), and find the
node in Gq(T ) with this fingerprint as its label. The node is created if it does
not exist. Now the construction of Gq(T ) can continue from this node, albeit
with the following change to the construction algorithm. When incrementing
the counter of an edge we increment it by occ(Xi) instead of 1.

The q-gram graph now contains the information needed for the q-gram profile;
namely the frequencies of the q-grams in T . The purpose of the next two steps
is to restructure the graph to a data structure that supports frequency queries
in O(q) time.

Transforming the q-gram graph to a CS-tree. The CS-tree that we want to create
is basically the depth-first tree of Gq(T ) with the extension that all edges in
Gq(T ) are also in the tree. We create it as follows. Let the start node of Gq(T )
be the node whose label match the fingerprint of the first q−1 characters of T . Do
a depth-first traversal of Gq(T ) starting from the start node. For a previously
unvisited node, create a node in the CS-tree with an incoming edge from its
predecessor. When reaching a previously visited node, create a new leaf in the
CS-tree with an incoming edge from its predecessor. Labels on nodes and edges
are copied from their corresponding labels in Gq(T ). We now create a path of
length q − 1 with the first q − 1 characters of T as labels on its edges. We set
the last node on this path to be the root of the depth-first tree. The first node
on the path is the root of the final CS-tree.

Computing the suffix tree of the CS-tree. Recall that a suffix in the CS-tree
starts in a node and ends in the root of the tree. Usually we store a pointer from
a leaf in the suffix tree to the node in the CS-tree from which the particular
suffix starts. However, when we construct the suffix tree, we store the value of
the counter of the first edge in the suffix as well as the label of the first node on
the path of the suffix.

4.1 Correctness

Before showing that our algorithm is correct, we will prove some crucial proper-
ties of the q-gram graph, the CS-tree, and the suffix tree of the CS-tree subse-
quent to their construction in the algorithm.

Lemma 7. The q-gram graph Gq(T ) constructed from the SLP is connected.

Proof. Omitted due to lack of space. 
�

Lemma 8. Assuming that we are given a fingerprint function φ that is collision
free for substrings of length q − 1 in T , then the extended CS-tree contains each
distinct q-gram in T exactly once.
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Fig. 1. An SLP compressing the string ababbbab, and the data structures after each
step of the algorithm executed with q = 3

Proof. Let v be a node with an outgoing edge e in Gq(T ). The combination of
the label of v followed by the character on e is a distinct q-gram and occurs only
once in Gq(T ) due to the way we construct it. There may be several paths of
length q − 1 ending in v spelling the same string s, and because the fingerprint
function is deterministic, there can not be a path spelling s ending in some other
node. Since the depth-first traversal of Gq(T ) only visits e once, the resulting
CS-tree will only contain the combination of the labels on v and e once. 
�

Lemma 9. Assuming that we are given a fingerprint function φ that is collision
free for substrings of length q − 1 in T , then any node v in the suffix tree of the
CS-tree with sd(v) ≥ q is a leaf.

Proof. Each suffix of length ≥ q in the CS-tree has a distinct q length prefix
(Lemma 8), so therefore each node in the suffix tree with string depth ≥ q is a
leaf. 
�

We have now established the necessary properties to prove that our algorithm
is correct.
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Lemma 10. Assuming that we are given a fingerprint function φ that is colli-
sion free on all substrings of length q− 1 of T , our algorithm correctly computes
a q-gram profile for T .

Proof. Our algorithm inserts each relevant substring rXi exactly once, and if a
q-gram s occurs socc(s, rXi) times in rXi , the counter on the edge representing
s is incremented by exactly socc(s, rXi ) · occ(Xi). From Lemma 3 we then know
that when Gq(T ) is fully constructed, the counters on its edges correspond to the
frequencies of the q-grams in T . Since Gq(T ) is connected (Lemma 7) the mod-
ified depth-first traversal will correctly produce a CS-tree, and it contains each
q-gram from Gq(T ) exactly once (Lemma 8). Finally, we know from Lemma 9
that a node v with sd(v) ≥ q in the suffix tree is a leaf, so searching for a string
of length q in the suffix tree will yield a unique result and can be done in O(q)
time. 
�

4.2 Analysis

Theorem 2. The algorithm runs in O(qn) expected time and uses O(n + kT,q)
space.

Proof. Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of production rules
that have a relevant substring. For each production rule Xi = XlXr ∈ Sq we
decompress its relevant substring of size |rXi | and insert it into the q-gram
graph. Since rXi is comprised of the suffix of tXl

and the prefix of tXr we know
from Lemma 4 that rXi can be decompressed in O(|rXi |) time. Inserting rXi

into the q-gram graph can be done in O(|rXi |) expected time (Lemma 6). Since
|Sq| = O(n) and q ≤ |rXi | ≤ 2(q−1) this step of the algorithm takes O(qn) time.
From Lemma 5 we know that Gq(T ) has size O(kT,q), so transforming the graph
to the CS-tree takes O(kT,q) expected time. We also know that constructing
the suffix tree takes expected linear time in the size of the CS-tree if we hash
the characters of the alphabet to a polynomial range first (Lemma 1). Finally,
observe that since our algorithm is correct, it detects all q-grams in T and
therefore there can be at most kT,q ≤

∑
Xi∈Sq

|rXi | = O(qn) distinct q-grams in

T . Thus, the expected running time of our algorithm is O(qn).
In the preprocessing step of our algorithm we use O(n) space to store the size

of the derived substrings and the number of occurrences in the derivation tree
as well as the data structure needed for linear time prefix and suffix decompres-
sions (Lemma 4). The space used by the q-gram graph is O(kT,q), and after the
transformation and augmentation, the CS-tree and suffix tree uses O(kT,q + q)
space. In total our algorithm uses O(n + kT,q) space. 
�

4.3 Verifying the Fingerprint Function

Until now we have assumed that the fingerprints used as labels for the nodes
in the q-gram graph are collision free. In this section we describe an algorithm
that verifies if the chosen fingerprint function is collision free using the suffix
tree resultant from our algorithm.
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If there is a collision among fingerprints, the q-gram graph construction algo-
rithm will add an edge such that there are two paths of length q − 1 ending in
the same node while spelling two different strings. This observation is formalized
in the next Lemma.

Lemma 11. For each node v in Gq(T ), if every path of length q − 1 ending in
v spell the same string, then the fingerprint function used to construct Gq(T ) is
collision free for all (q − 1)-grams in T .

Proof. From the q-gram graph construction algorithm we know that we create a
path of characters in the same order as we read them from T . This means that
every path of length q − 1 ending in a node v represents the q − 1 characters
generating the fingerprint stored in v, regardless of what comes before those q−1
characters. If all the paths of length q − 1 ending in v spell the same string s,
then we know that there is no other substring s′ �= s of length q − 1 in T that
yields the fingerprint φ(s). 
�

It is not straightforward to check Lemma 11 directly on the q-gram graph without
using too much time. However, the error introduced by a collision naturally
propagates to the CS-tree and the suffix tree of the CS-tree, and as we shall now
see, the suffix tree offers a clever way to check for collisions. First, recall that in
a leaf v in the suffix tree, we store the fingerprint of the reversed prefix of length
q− 1 of the suffix ending in v. Now consider the following property of the suffix
tree.

Lemma 12. Let vφ be the fingerprint stored in a leaf v in the suffix tree. The
fingerprint function φ is collision free for (q − 1)-grams in T if vφ �= uφ or
sd(nca(v, u)) ≥ q − 1 for all pairs v, u of leaves in the suffix tree.

Proof. Consider the contrapositive statement: If φ is not collision free on T then
there exists some pair v, u for which vφ = uφ and sd(nca(v, u)) < q− 1. Assume
that there is a collision. Then at least two paths of length q−1 spelling the same
string end in the same node in Gq(T ). Regardless of the order of the nodes in
the depth-first traversal of Gq(T ), the CS-tree will have two paths of length q−1
spelling different strings and yet starting in nodes storing the same fingerprint.
Therefore, the suffix tree contains two suffixes that differ by at least one character
in their q − 1 length prefix while ending in leaves storing the same fingerprint,
which is what we want to show. 
�

Checking if there exists a pair of leaves where vφ = uφ and sd(nca(v, u)) < q− 1
is straightforward. For each leaf we store a pointer to its ancestor w that satisfies
sd(w) ≥ q−1 and sd(parent(w)) < q−1. Then we visit each leaf v again and store
vφ in a dictionary along with the ancestor pointer just defined. If the dictionary
already contains vφ and the ancestor pointer points to a different node, then it
means that vφ = uφ and sd(nca(v, u)) < q − 1 for some two leaves.

The algorithm does two passes of the suffix tree which has size O(kT,q + q).
Using a hashing scheme for the dictionary we obtain an algorithm that runs in
O(kT,q + q) expected time.
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4.4 Eliminating Redundant Decompressions

We now present an alternative approach to constructing the q-gram graph from
the SLP. The resulting algorithm decompresses fewer characters.

In our first algorithm for constructing the q-gram graph we did not specify in
which order to insert the relevant substrings into the graph. For that reason we
do not know from which node to resume construction of the graph when inserting
a new relevant substring. So to determine the node to continue from, we need
to compute the fingerprint of the first (q − 1)-gram of each relevant substring.
In other words, the relevant substrings are overlapping, and consequently some
characters are decompressed more than once. Our improved algorithm is based
on the following observation. Consider a production rule Xi = XlXr. If all
relevant substrings of production rules reachable from Xl (including rXl

) have
been inserted into the graph, then we know that all q-grams in tXl

are in the
graph. Since the q − 1 length prefix of rXi is also a suffix of tXl

, then we know
that a node with the label φ(rXi [0 : (q− 1)− 1]) is already in the graph. Hence,
after inserting all relevant substrings of production rules reachable from Xl we
can proceed to insert rXi without having to decompress rXi [0 : (q − 1) − 1].

Algorithm. First we compute and store the size of the relevant substring |rXi | =
min(q − 1, |Xl|) + min(q − 1, |Xr|) for each production rule Xi = XlXr in the
subset Sq = {Xi | Xi ∈ S and Xi ≥ q} of the production rules in the SLP. We
maintain a linked list L with a pointer to its head and tail, denoted by head(L)
and tail(L). The list initially contains the leftmost node in Sq, say Xk, from the
root of the SLP and the sentinel value |Xk|. We now start decompressing T by
traversing the SLP depth-first, left-to-right. When following a pointer from Xi

to a right child, and Xi ∈ Sq, we add Xi and the sentinel value |rXi | − (q − 1)
to the back of L. As characters are decompressed they are fed to the q-gram
graph construction algorithm, and when a counter on an edge in Gq(T ) is incre-
mented, we increment it by occ(head(L)). For each character we decompress, we
decrement the sentinel value for head(L), and if this value becomes 0 we remove
the head of the list and set head(L) to be the next production rule in the list.
When leaving a node Xi we mark it as visited and store a pointer from Xi to
the node with label φ(tXi [|Xi| − (q − 1) : |Xi| − 1]) in Gq(T ). If we encounter
a node that has already been visited, we decompress its q − 1 length prefix, set
the node with label φ(tXi [|Xi| − (q − 1) : |Xi| − 1]) to be the node from where
construction of the q-gram graph should continue, and do not proceed to visit
its children nor add it to L.

Analysis. Assume without loss of generality that the algorithm is at a production
rule deriving the string tXi = tXl

tXr and all q-grams in tXl
are in Gq(T ). Since

we start by decompressing the leftmost production rule in Sq there is always
such a rule. We then decompress |rXi | − (q− 1) characters before Xi is removed
from the list. We only add a production once to the list, so the total number
of characters decompressed is (q − 1) +

∑
Xi∈Sq

|rXi | − (q − 1) = O(N − α),
and we hereby obtain our result from Theorem 1. This is fewer characters than
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our first algorithm that require
∑

Xi∈Sq
|rXi | characters to be decompressed.

Furthermore, it is exactly the same number of characters decompressed by the
fastest known algorithm due to Goto et al. [6].
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Abstract. We introduce the problem of computing the Burrows–
Wheeler Transform (BWT) using just O(1) additional space. Our in-
place algorithm does not need the explicit storage for the suffix sort
array and the output array, as typically required in previous work. It
relies on the combinatorial properties of the BWT, and runs in O(n2)
time in the comparison model using O(1) extra memory cells, apart from
the array of n cells storing the n characters of the input text. We also
discuss some time-space trade-offs for the inverse algorithm to obtain the
text from the given BWT.

1 Introduction

The Burrows–Wheeler Transform [2] (known as BWT) of a text string is at the
heart of the bzip2 family of text compressors, and finds also applications in text
indexing and sequence processing. Consider an input text string T ≡ T [0 . . n−1]
and the set of its suffixes Ti ≡ T [i . . n − 1] (0 ≤ i < n) under the lexicographic
order, where T [n−1] is an endmarker symbol $ smaller than any other symbol in
T . The alphabet Σ from which the symbols in T are drawn can be unbounded.

A classical way to define the BWT uses the n circular shifts of the text
T = mississippi$ as shown in the first column of Table 1. We perform a
lexicographic sort of these shifts, as shown in the second column: if we mark the
last symbol from each of the circular shifts in this order, we obtain a sequence
L of n symbols that is called the BWT of T . Its relation with suffix sort is well
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Table 1. BWT L for the text T = mississippi$ and its relation with suffix sort

cyclic shifts sorted cyclic shifts suffixes

L i Ti

mississippi$ $mississipp i 11 $
$mississippi i$mississip p 10 i$
i$mississipp ippi$missis s 7 ippi$

pi$mississip issippi$mis s 4 issippi$

ppi$mississi ississippi$ m 1 ississippi$

ippi$mississ mississippi $ 0 mississippi$

sippi$missis pi$mississi p 9 pi$

ssippi$missi ppi$mississ i 8 ppi$

issippi$miss sippi$missi s 6 sippi$

sissippi$mis sissippi$mi s 3 sissippi$

ssissippi$mi ssippi$miss i 5 ssippi$

ississippi$m ssissippi$m i 2 ssissippi$

known, as illustrated in the third column: the rth symbol in L is T [j− 1] if and
only if Tj is the rth suffix in the sort (except the borderline case j = 0, for which
we take T [n− 1]),

As it can be seen in the example of Table 1, the BWT produces a text of the
same length as the input text T . The transform is reversible since it is a one-to-
one function when the input text is terminated by an endmarker $. Thus, not
only we can recover T from L alone, but typically L is more compressible than
T itself using 0th-order compressors [16]. There are now efficient methods that
convert T to L and vice versa, taking O(n log n) time for unbounded alphabets
in the worst case [1].1 The BWT is also a key element of some compressed text
indexing implementations due to the small amount of space it requires: some
examples are the solution by Ferragina and Manzini [5] or that by Grossi et al.
[7], where the transform is associated with the techniques of wavelet trees and
of succinct data structures using rank-select queries on binary sequences [17].

One of the prominent applications of the BWT is for software dealing with
Next Generation Sequencing, where millions of short strings, called reads, are
mapped onto a reference genome. Typical and popular software of this type are
Bowtie [13], BWA [14] and SOAP2 [12]. Here it is crucial that the genome is
indexed in a compact manner to get reasonable running time. Space issues for
computing the BWT are thus relevant: it is not rare the case when the input
data is so large that the input text T stays in main memory but any additional
data structure of similar size cannot fit in the rest of the main memory [10].

All the previous work for computing the BWT of T relies on the fact that
(a) we need first to store the suffix sorting of T (also known as suffix array [15]),
thus occupying n memory cells for storing integers, and (b) we need to output the
BWT in another array storing n characters. Motivated by these observations,

1 As is standard in many string algorithms, we assume that any two symbols in Σ can
only be compared and this takes O(1) time. Hence, comparing symbolwise any two
suffixes may require O(n) time in the worst case.
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we want to study the case in which (a) and (b) are avoided, thus saving over the
space occupied by them.

In this paper, our goal is to obtain the BWT by directly permuting T and
using just O(1) memory cells, i.e., we aim at an in-place algorithm for computing
the BWT. We consider the model in which the text T is stored as an array of n
entries, where each entry stores exactly one character of T . Note that storing an
integer usually takes more space than a character, so we assume that only the
characters of T can be kept in the array T . Moreover, T is not read-only but it
can be modified at any time, and just O(1) additional memory cells (besides T )
can be kept for storing auxiliary information.2

Note that our model represents some realistic situations in which one has
to handle large text collections, or large genomic sequences, without relying on
extra memory for (a) and (b). Hence it is crucial to maximize the amount of
data that can fit into main memory: not storing explicitly (a) and (b) permits
to save space, which is typically regarded as taking more than half of the total
space required. For instance, DNA sequences are stored by using 2 bits per
character and machine integers take 64 bits. Here we just need 2n bits to store
the (genomic) text and save the 64n bits for storing the intermediate suffix
sorting in (a) and the 2n bits for storing the output of BWT in another array
in (b): this means that during the BWT construction, we can fit almost 33 times
more text using the same main memory size, thus eliminating the usage of the
slower external memory for this time-consuming task in these cases.

From the combinatorial point of view, the in-place BWT is an interesting
question to solve on strings. There are space saving approaches storing the suffix
sorting in compressed form [9,19,10,20] or only partially at a time [11], but none
of them provides an in-place algorithm. In-place selection and sorting does not
seem to help either [4,6,8,18,21]. It well known that in-place sorting requires the
same comparison cost of Θ(n log n) as in standard sorting. But for the BWT,
we only know its comparison cost of Θ(n logn) for the standard construction.
As far as we know, no result is known for the in-place construction of BWT:
a naive solution is not that simple, even allowing for exponential time. Indeed,
any movement of a character T [j] to another position inside T at least changes
the content of its suffixes Ti for 0 ≤ i ≤ j, making the algorithmic flavor of this
problem different from that of in-place sorting n elements.

The above discussion suggests that a careful orchestration of the movement
of the characters inside T is needed to avoid losing the content of some suffixes
before they contribute to the BWT. Our idea is to define a sequence of transfor-
mations B0, B1, . . . , Bn, where B0 is the input text T and Bn is the final BWT
of T . For 1 ≤ k ≤ n, we have that Bk is the BWT of the last k characters in T
and is computed from Bk−1 (re)using just O(1) extra memory cells. We think
that this sequence of transformations could be of independent interest for the
community of string algorithms, and some of the combinatorial properties can
be found in [22].

2 In C code, we would declare T as unsigned char T[n] and use this storage plus
O(1) local variables of constant size.
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In this paper we propose an O(n2)-time approach that builds the above se-
quence of transformations using four integer variables and one character variable,
taking O(n) time per transformation in the worst case. The resulting in-place
algorithm is simple and can be easily encoded in few lines of C code or similar
programming languages. However we do not claim any practicality of our so-
lution due to its quadratic cost. Our contribution is that it could lay out the
path towards faster methods for the space-efficient computation of the BWT:
any method to compute Bk from Bk−1 in t(s) time (re)using s(n) space, would
lead to a construction of the BWT in O(n · t(n)) time using O(1 + s(n)) space.
To this end, it is worth noting that the inputs for BWT are typically large and
a fast algorithm that is in-place or uses very low additional memory, would be
relevant in practice.

The paper is organized as follows. We describe how to perform the in-place
BWT in Section 2. We then discuss how to invert the BWT, so as to obtain the
original text T , in Section 3. Finally, we draw some conclusions in Section 4.

2 In-Place BWT

Given the input text T = T [0 . . n− 1] where T [n− 1] = $, moving a single char-
acter inside T can change the content of many suffixes. The idea to circumvent
this difficulty without using storage for the suffix sort is to proceed by induction
from right to left in T , while maintaining the BWT of the current suffix Ts,
denoted by BWT(Ts). We assume 0 ≤ s ≤ n− 3, since the last two suffixes of T
are equal to their respective BWT.

To compute BWT(Ts), suppose that BWT(Ts+1) has been already computed
and stored in the last positions of T , i.e. T [s + 1 . . n− 1]. Consider the current
symbol c = T [s]: if we look at the content of T [s . . n− 1], we no longer find Ts,
but the symbol c followed by the permutation BWT(Ts+1) of Ts+1. Nevertheless,
we still have enough information as we will show in the proof of Theorem 1 that
the position of $ inside BWT(Ts+1) is related to the rank of Ts+1 among the
suffixes Ts+1, . . . , Tn−1. We exploit this fact in the following steps.

1. Find the position p of the $ in T [s+ 1 . . n− 1]: note that p− s is the (local)
rank of the suffix Ts+1 that originally was starting at position s + 1.

2. Find the rank r of the suffix Ts (originally in position s) using just symbol c.
To this end, scan T [s + 1 . . n− 1] and count how many symbols are strictly
smaller than c and how many occurrences of c appear in T [s + 1 . . p] (and
add s as an offset to obtain r).

3. Store c into T [p] (thus replacing the $).
4. Insert the symbol $ in T [r] by shifting T [s + 1 . . r] by one position left.

The simple and short C code reported in Fig. 1 implements Steps 1–4 above,
where END_MARKER denotes $. For example, consider T = mississippi$ and
s = 4, where we use capital letters to denote the BWT partially built on the
last positions of T . Suppose that we have already computed the BWT for the
last 7 characters in T , namely, we have missiIPSPIS$. We then have p = 11
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void inplaceBWT( unsigned char T[ ], int n ){

int i, p, r, s;

unsigned char c;

for ( s = n-3; s >= 0; s-- ){

c = T[ s ];

/* steps 1 and 2 */

r = s;

for ( i = s+1; T[ i ] != END_MARKER; i++ )

if ( T[ i ] <= c ) r++;

p = i;

while ( i < n )

if ( T[ i++ ] < c ) r++;

/* step 3 */

T[ p ] = c;

/* step 4 */

for ( i = s; i < r; i++ )

T[ i ] = T[ i+1 ];

T[ r ] = END_MARKER;

}

}

Fig. 1. In-place construction of BWT

and, since there is one symbol ($) smaller than c = i, and two symbols that are
equal to c and occur before position p, we have r = s + 3 = 7. This means that
we have to replace $ by c and shift IPS by one position left so as to insert $ in
position r. The next configuration is missIPS$PISI, which is the BWT of Ts.

Theorem 1. Given a text T of n symbols, we can compute its Burrows–Wheeler
Transform (BWT) in O(n2) time in the comparison model using O(1) additional
memory cells.

Proof. We prove first the correctness. Let T be the input text and T ′ be its
modification at a generic iteration s, where 0 ≤ s ≤ n− 3. Note that T ′[0 . . s] =
T [0 . . s] while T ′[s + 1 . . n − 1] = BWT(T [s + 1 . . n − 1]). By induction, the
position p of $ in T ′[s + 1 . . n − 1] indicates the rank p − s of Ts+1 among the
suffixes in {Ts+1, Ts+2, . . . , Tn−1}. The base case for Tn−2 and Tn−1 is trivially
satisfied. Hence, we show how to preserve this property for 0 ≤ s ≤ n− 3.

First note that the symbol c = T [s] goes in position p, since it precedes Ts+1

inside T . Next, we have to find the new position r for Ts, so that r − (s − 1)
is its rank among the suffixes in S = {Ts, Ts+1, . . . , Tn−1}. First count how
many symbols smaller than c occur in T ′[s + 1 . . n − 1]: there are as many
suffixes in S that are smaller than Ts since their first character is smaller than c.
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To this quantity, add the number of occurrences of c in T ′[s + 1 . . p]: these are
also smaller since they start with c but have rank smaller than p, i.e. the rank
of Ts+1. In this way, we discover how many suffixes are smaller than Ts in S:
inserting $ in the corresponding location of T ′, by shifting some of the characters
in T ′[s . . n − 1], we maintain the induction. Hence, T ′[0 . . s − 1] = T [0 . . s − 1]
and T ′[s . . n− 1] = BWT(T [s . . n− 1]). When s = 0, we obtain the BWT of T .

As for the complexity, note that each of the n − 2 iterations requires O(n)
time, since it can be implemented by O(1) scans of T ′[s . . n − 1]. This gives a
total cost of O(n2). We use four integer variables (i, p, r, s) and one character
variable (c) in the C code shown in Fig. 1, and thus we need O(1) memory cells
for the local variables. 
�

3 Inverting the BWT

Reversing the permutation performed by the in-place BWT is called inverting
the BWT. Initially we have the BWT of the original input text T , denoted
BWT(T ). We want to invert the latter by permuting its symbols. Thus we reverse
the approach described in Section 2. We maintain the invariant that there is a
pointer L to a certain position in the input buffer storing BWT(T ) so that,
at any time, (a) the prefix of the buffer to the left of L stores the prefix of T
obtained so far by the inverting process and (b) the remaining suffix of the buffer
(pointed by L till the end of the input buffer) stores the portion of the BWT still
to be inverted. For the sake as discussion, we identify L with the entire suffix of
the input buffer that still has to be inverted.

Under this invariant, which is initially true by setting L to the beginning of
the input buffer for BWT(T ), we proceed as follows. We find the position p of $
in L, and then select the pth symbol in the multiset given by the symbols of L.
Stability is needed, since equal symbols should be considered in the order of their
appearance in L, as detailed below.

1. Find the position p of the $ in L, and increment p (since array indexing
starts from 0).

2. Let select be a selection algorithm that works on read-only input, i.e., it
does not move elements around while finding the pth smallest element. Using
select on L, select the pth symbol c in the multiset of the symbols of L

3. Let f denote the fth occurrence of c, which we hit in a stable fashion when
finding c in L, and let q be the position of this occurrence inside L.

4. Replace the occurrence of c at position q by $, and remove the old occurrence
of $ by shifting to the right the symbols in L.

5. At this point, the first position in L is free: store the symbol c in it, and
shorten L by one symbol at the beginning (i.e. advance the pointer L by one
position towards the end of the input buffer).

The C code in Fig. 2 implements Steps 1–5 above, where END_MARKER denotes
$. Note that it is a bit longer than the code for the in-place BWT in Fig. 1. The
proof of correctness proceeds along the same lines as in the proof of Theorem 1,
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void inplaceIBWT( unsigned char L[ ], int n ){

int f, i, p, q, count;

unsigned char c;

/* step 1 */

p = 0;

while( L[ p ] != END_MARKER )

p++;

p++;

while ( n > 2 ){

/* step 2 */

c = select( L, p );

count = 0;

for ( i = 0; i < n; i++ ){

if (T[i] < c) count++;

}

/* step 3 */

f = p - count;

q = -1;

while ( f > 0 ){

q++;

if ( L[ q ] == c ) f--;

}

/* step 4 */

L[ q ] = END_MARKER;

for ( i = p-1; i > 0; i-- ){

L[i] = L[i-1];

}

/* step 5 */

L[0] = c;

L++; n--;

/* step 1 */

if (p-1 > q)

p = q+1; /* also the new END_MARKER has been shifted */

else

p = q;

}

}

Fig. 2. Reverting the permutation of the inverse BWT

since we are reversing the procedure described there. As for the complexity,
each of the n− 2 iterations is dominated by the cost of select. We obtain the
following result.

Theorem 2. Let ts(n) be the time complexity in the comparison model and
ss(n) be the space complexity required by select. Given the BWT of a text T
of n symbols, we can recover T by permuting the BWT (also known as inverse
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BWT) in O(n·ts(n)) time in the comparison model using O(1+ss(n)) additional
memory cells.

We give some examples of the bounds that can be attained with Theorem 2. Us-
ing the result in [18], where ts(n) is O(n1+ε) in the worst case for any fixed small
constant ε > 0, and O(n log logn) on the average (which meets the randomized
lower bound in [3]), with ss(n) = O(1), we have the following.

Corollary 1. Given the BWT of a text T of n symbols, we can recover T by
inverting the BWT in O(n5/2) time in the worst case, or O(n2 log logn) time
on the average, in the comparison model using O(1) additional memory cells.

Using slightly more additional space than a constant—literally speaking, the
algorithm is no more in-place—and the result in [21], where ts(n) = O(n(log n)2)
and ss(n) = O(log n), we derive the following.

Corollary 2. Given the BWT of a text T of n symbols, we can recover T by
inverting the BWT in O((n log n)2) time in the comparison model using O(log n)
additional memory cells.

Finally, for the special case in which the alphabet of the distinct symbols in T
is of constant size (as in DNA and ASCII texts), we obtain an improved bound
since select can be immediately implemented by a simple scheme that employs
O(Σ|) = O(1) counters.

Corollary 3. Given the BWT of a text T of n symbols drawn from a constant-
size alphabet, we can recover T by inverting the BWT in O(n2) time in the
comparison model using O(1) additional memory cells.

4 Conclusions

We presented an in-place BWT construction taking O(n2) time in the compari-
son model. It would be interesting to improve this bound. Note that the while

loop in our in-place BWT can be avoided using O(Σ) space, where Σ is the
alphabet of symbols occurring in T . Unfortunately, some experiments on DNA
sequences and on the Calgary corpus show that the overall number of steps
of the inner for loop (preceding the while loop) is roughly n2/4 and, with
some trickery, it can be reduced to n2/10. In any case, the cost of the in-place
BWT in practical situations is actually Θ(n2). Time can be further reduced to
O(n2/ logσ n) by packing symbols but still not useful for large text collections.

We do not know whether a lower bound better than Ω(n logn) holds for the
problem in the comparison model since the space is very constrained. This is an
interesting question to investigate.
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22. Salson,M., Lecroq, T., Léonard,M.,Mouchard, L.: A four-stage algorithm for updat-
ing a Burrows–Wheeler Transform. Theor. Comput. Sci. 410(43), 4350–4359 (2009)



Pattern Matching with Variables:

A Multivariate Complexity Analysis

(Extended Abstract)

Henning Fernau and Markus L. Schmid�

Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54286 Trier, Germany
{Fernau,MSchmid}@uni-trier.de

Abstract. In the context of this paper, a pattern is a string that con-
tains variables and terminals. A pattern α matches a terminal word w if
w can be obtained by uniformly substituting the variables of α by termi-
nal words. It is a well-known fact that deciding whether a given terminal
word matches a given pattern is an NP-complete problem. In this work,
we consider numerous parameters of this problem and for all possible
combinations of these parameters, we investigate the question whether
or not the variant obtained by bounding these parameters by constants
can be solved efficiently.

Keywords: Parameterised Pattern Matching, Function Matching, NP-
Completeness, Membership Problem for Pattern Languages, Morphisms.

1 Introduction

In the present work, a detailed complexity analysis of a computationally hard
pattern matching problem is provided. The patterns considered in this context
are strings containing variables from {x1, x2, x3, . . .} and terminal symbols from
a finite alphabet Σ, e. g., α := x1 a x1 b x2 x2 is a pattern, where a, b ∈ Σ. We say
that a word w over Σ matches a pattern α if and only if w can be derived from α
by uniformly substituting the variables in α by terminal words. The respective
pattern matching problem is then to decide for a given pattern and a given
word, whether or not the word matches the pattern. For example, the pattern
α from above is matched by the word u := bacaabacabbaba, since substituting
x1 and x2 in α by baca and ba, respectively, yields u. On the other hand, α is
not matched by the word v := cbcabbcbbccbc, since v cannot be obtained by
substituting the variables of α by some words.

To the knowledge of the authors, this kind of pattern matching problem first
appeared in the literature in 1979 in form of the membership problem for An-
gluin’s pattern languages [3, 4] (i. e., the set of all words that match a certain
pattern) and, independently, it has been studied by Ehrenfeucht and Rozen-
berg in [9], where they investigate the more general problem of deciding on the
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existence of a morphism between two given words (which is equivalent to the
above pattern matching problem, if the patterns are terminal-free, i. e., they only
contain variables).

Since their introduction by Angluin, pattern languages have been intensely
studied in the learning theory community in the context of inductive inference
(see, e. g., Angluin [4], Shinohara [28], Reidenbach [22, 23] and, for a survey, Ng
and Shinohara [20]) and, furthermore, their language theoretical aspects have
been investigated (see, e. g., Angluin [4], Jiang et al. [17], Ohlebusch and Ukko-
nen [21], Freydenberger and Reidenbach [10], Bremer and Freydenberger [6]).
However, a detailed investigation of the complexity of their membership prob-
lem, i. e., the above described pattern matching problem, has been somewhat
neglected. Some of the early work that is worth mentioning in this regard is by
Ibarra et al. [15], who provide a more thorough worst case complexity analysis,
and by Shinohara [29], who shows that matching patterns with variables can be
done in polynomial time for certain special classes of patterns. Recently, Reiden-
bach and Schmid [24,25] identify complicated structural parameters of patterns
that, if bounded by a constant, allow the corresponding matching problem to be
performed in polynomial time (see also Schmid [27]).

In the pattern matching community, independent from Angluin’s work, the
above described pattern matching problem has been rediscovered by a series of
papers. This development starts with [5] in which Baker introduces so-called
parameterised pattern matching, where a text is not searched for all occurrences
of a specific factor, but for all occurrences of factors that satisfy a given pat-
tern with parameters (i. e., variables). In the original version of parameterised
pattern matching, the variables in the pattern can only be substituted by single
symbols and, furthermore, the substitution must be injective, i. e., different vari-
ables cannot be substituted by the same symbol. Amir et al. [1] generalise this
problem to function matching by dropping the injectivity condition and in [2],
Amir and Nor introduce generalized function matching, where variables can be
substituted by words instead of single symbols and “don’t care” symbols can be
used in addition to variables. In 2009, Clifford et al. [8] considered generalised
function matching as introduced by Amir and Nor, but without “don’t care”
symbols, which leads to patterns as introduced by Angluin.

In [2], motivations for this kind of pattern matching can be found from such
diverse areas as software engineering, image searching, DNA analysis, poetry
and music analysis, or author validation. Another motivation arises from the
observation that the problem of matching patterns with variables constitutes a
special case of the matchtest for regular expressions with backreferences (see, e. g.,
Câmpeanu et al. [7]), which nowadays are a standard element of most text editors
and programming languages (cf. Friedl [12]). Due to its simple definition, the
above described pattern matching paradigm also has connections to numerous
other areas of theoretical computer science and discrete mathematics, such as
(un-)avoidable patterns (cf. Jiang et al. [16]), word equations (cf. Mateescu and
Salomaa [19]), the ambiguity of morphisms (cf. Freydenberger et al. [11]) and
equality sets (cf. Harju and Karhumäki [14]).
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It is a well-known fact that – in its general sense – pattern matching with vari-
ables is an NP-complete problem; a result that has been independently reported
several times (cf. Angluin [4], Ehrenfeucht and Rozenberg [9], Clifford et al. [8]).
However, there are many different versions of the problem, tailored to different
aspects and research questions. For example, in Angluin’s original definition, vari-
ables can only be substituted by non-empty words and Shinohara soon afterwards
complemented this definition in [28] by including the empty word as well. This
marginal difference, as pointed out by numerous results, can have a substantial
impact on learnability and decidability questions of the corresponding classes of
nonerasing pattern languages on the one hand and erasing pattern languages on
the other. If we turn from the languages point of view of patterns to the respective
pattern matching task, then, at a first glance, this difference whether or not vari-
ables can be erased seems negligible. However, in the context of pattern matching,
other aspects are relevant, which for pattern languages are only of secondary im-
portance. For example, requiring variables to be substituted in an injective way is
a natural assumption for most pattern matching tasks and bounding the maximal
length of these terminal words by a constant (which would turn pattern languages
into finite languages) makes sense for special applications (cf. Baker [5]). Hence,
there are many variants of the above described pattern matching problem, each
with its individual motivation, and the computational hardness of all these vari-
ants cannot directly be concluded from the existing NP-completeness results.

For a systematic investigation, we consider the following natural parameters:
the number of different variables in the pattern, the maximal number of occur-
rences of the same variable in the pattern, the length of the terminal word, the
maximum length of the substitution words for variables and the cardinality of
the terminal alphabet. For all combinations of these parameters, we answer the
question whether or not the parameters can be bounded by (preferably small)
constants such that the resulting variant of the pattern matching problem is still
NP-complete. In addition to this, we also study the differences between the erasing
and nonerasing case, between the injective and non-injective case and between the
case where patterns may contain terminal symbols and the terminal-free case.

Due to space constraints, the formal proofs for most of the results presented
in this paper are omitted.

2 Definitions

Let N := {1, 2, 3, . . .}. For an arbitrary alphabet A, a word (over A) is a finite
sequence of symbols from A, and ε is the empty word. The notation A+ denotes
the set of all non-empty words over A, and A∗ := A+∪{ε}. For the concatenation
of two words w1, w2 we write w1w2. We say that a word v ∈ A∗ is a factor of a
word w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 v u2. The notation |K|
stands for the size of a set K or the length of a word K.

Let X := {x1, x2, x3, . . .} and every x ∈ X is a variable. Let Σ be a finite alpha-
bet of terminals. Everyα ∈ (X∪Σ)+ is a pattern and everyw ∈ Σ∗ is a (terminal)
word. For any pattern α, we refer to the set of variables in α as var(α) and, for any
variable x ∈ var(α), |α|x denotes the number of occurrences of x in α.
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Let α be a pattern. A substitution (for α) is a mapping h : var(α) → Σ∗. For
every x ∈ var(α), we say that x is substituted by h(x) and h(α) denotes the word
obtained by substituting every occurrence of a variable x in α by h(x) and leaving
the terminals unchanged. If, for every x ∈ var(α), h(x) �= ε, then h is nonerasing
(h is also called erasing if it is not non-erasing). If, for all x, y ∈ var(α), x �= y
and h(x) �= ε �= h(y) implies h(x) �= h(y), then h is E-injective1 and h is called
injective if it is E-injective and, for at most one x ∈ var(α), h(x) = ε.

Example 1. Let β := x1 a x2 b x2 x1 x2 be a pattern, let u := bacbabbacb and
let v := abaabbababab. It can be verified that h(β) = u, where h(x1) = bacb,
h(x2) = ε and g(β) = v, where g(x1) = g(x2) = ab. Furthermore, β cannot be
mapped to u by a nonerasing substitution and β cannot be mapped to v by an
injective substitution.

If the type of substitution is clear from the context, then we simply say that a
word w matches α to denote that there exists such a substitution h with h(α) =
w. We can now formally define the pattern matching problem with variables,
denoted by PMV, which has informally been described in Section 1:

PMV
Instance: A pattern α and a word w ∈ Σ∗.
Question: Does there exist a substitution h with h(α) = w?

As explained in Section 1, the above problem exists in various contexts with
individual terminology. Since we consider the problem in a broader sense, we
term it pattern matching problem with variables in order to distinguish it –
and all its variants to be investigated in this paper – from the classical pattern
matching paradigm without variables.

Next, we define several parameters of PMV. To this end, let α be a pattern,
let w be a word and let h be a substitution for α.

– ρ| var(α)| := | var(α)|,
– ρ|α|x := max{|α|x | x ∈ var(α)},
– ρ|w| := |w|,
– ρ|Σ| := |Σ|,
– ρ|h(x)| := max{|h(x)| | x ∈ var(α)}.

The restricted versions of the problem PMV are now defined by P -[Z, I, T ]-PMV,
where P is a list of parameters that are bounded, Z ∈ {E,NE} denotes whether
we are considering the erasing or nonerasing case, T ∈ {tf, n-tf} denotes whether
or not we require the patterns to be terminal-free and I ∈ {inj, n-inj} denotes
whether or not we require the substitution to be injective (more precisely, if
Z = NE, then I = inj denotes injectivity, but if Z = E, then I = inj denotes E-
injectivity). Hence, [ρc1|α|x , ρ

c2
|Σ|, ρ

c3
|h(x)|]-[NE, n-inj, tf]- PMV denotes the problem

to decide for a given terminal-free pattern α and a given word w ∈ Σ∗ with
max{|α|x | x ∈ var(α)} ≤ c1 and |Σ| ≤ c2, whether or not there exists a

1 We use E-injectivity, since if an erasing substitution is injective in the classical sense,
then it is “almost” nonerasing, i. e., only one variable can be erased.
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nonerasing substitution h (possibly non-injective) that satisfies max{|h(x)| |
x ∈ var(α)} ≤ c3 and h(α) = w, where c1, c2 and c3 are some constants.

The contribution of this paper is to show for each of the 256 individual prob-
lems P -[Z, I, T ]-PMV whether or not there exist constants such that if the pa-
rameters in P are bounded by these constants, this version of PMV is still
NP-complete or whether it can be solved in polynomial time. To this end, we
first summarise all the respective known results from the literature and then we
close the remaining gaps.

3 Known Results and Preliminary Observations

In this section, we briefly summarise those variants of PMV, for which NP-
completeness or membership in P has already been established. To this end, we
first informally describe an obvious and simple brute-force algorithm that solves
the pattern matching problem with variables. For some instance (α,w) of PMV
with m := | var(α)|, we simply enumerate all tuples (u1, u2, . . . , um), where, for
every i, 1 ≤ i ≤ m, ui is a factor of w. Then, for each such tuple (u1, u2, . . . , um),
we check whether h(α) = w, where h is defined by h(xi) := ui, 1 ≤ i ≤ m. This
procedure can be performed in time exponential only in m and, furthermore,
it is generic in that it works for any variant of PMV. This particularly implies
that every version of PMV, for which ρ| var(α)| is restricted, can be solved in
polynomial time.

Next, we note that in the nonerasing case, a restriction of ρ|w| implicitly bounds
ρ| var(α)| as well and, thus, all the corresponding versions of the pattern matching
problem with variables can be solved efficiently. Moreover, in [13], Geilke and Zilles
note that if ρ|w| ≤ c, for some constant c, then this particularly implies that the
number of variables that are not erased is bounded by c as well. As demonstrated
in [13], this means that also for the erasing case PMV can be solved in polynomial
time if the length of the input word is bounded by a constant. Consequently, every
version of PMV, for which ρ| var(α)| or ρ|w| is restricted, can be solved in polynomial
time; thus, in the following, we shall neglect these two parameters and focus on
the remaining 3 parameters ρ|α|x , ρ|Σ| and ρ|h(x)|.

In the next table, we briefly summarise those variants of PMV, for which
NP-completeness has already been established. A numerical entry denotes the
constant bound of a parameter and “–” means that a parameter is unrestricted.

E /NE inj / n-inj tf / n-tf |h(x)| |α|x |Σ| Complexity

1 NE n-inj n-tf 3 – 2 NP-C [4]
2 E, NE n-inj tf 3 – 2 NP-C [9]
3 NE n-inj tf 2 – 2 NP-C [8]
4 NE inj tf – – 2 NP-C [8]
5 NE inj tf 2 – – NP-C [8]
6 E n-inj n-tf – 2 2 NP-C [26]



88 H. Fernau and M.L. Schmid

The main contribution of this paper is to close the gaps that are left open in the
above table. Before we present our main results in this regard, we conclude this
section by taking a closer look at the parameters ρ|α|x and ρ|Σ|. As indicated
by rows 1 to 4 and row 6, restricting ρ|Σ| does not seem to help to solve PMV
efficiently. In [26] it is shown that even if we additionally require the number of
occurrences per variable to be bounded by 2, then PMV is still NP-complete.
However, regarding these two parameters, we seem to have reached the boundary
between P and NP-completeness, since it can be easily shown that PMV can be
solved in polynomial time if parameter ρΣ or ρ|α|x is bounded by 1 (see, e. g.,
Schmid [27]).

4 Main Results

In this section, we investigate the complexity of all the variants of the pattern
matching problem with variables that are not already covered by the table pre-
sented in the previous section. Most of these variants turn out to be NP-complete.
The general proof technique used to establish these results is illustrated in Sec-
tion 5. We shall now first consider the non-injective case, i. e., we consider the
problems P -[Z, n-inj, T ]-PMV first and the problems P -[Z, inj, T ]-PMV later on.

4.1 The Non-injective Case

All the results of this section are first presented in a table of the form already
used in the previous section and then we discuss them in more detail.

E /NE inj / n-inj tf / n-tf |h(x)| |α|x |Σ| Complexity

E n-inj n-tf 1 2 2 NP-C
NE n-inj n-tf 3 2 2 NP-C
E n-inj tf 1 8 2 NP-C

NE n-inj tf 3 3 4 NP-C

As mentioned in Section 3, Clifford et al. show in [8] that the nonerasing,
terminal-free and non-injective case of the pattern matching problem with vari-
ables is NP-complete, even if additionally the parameters ρ|Σ| and ρ|h(x)| are
bounded. By the rows 2 and 4 of the above table, we strengthen this result by
stating that the NP-completeness is preserved, even if in addition also ρ|α|x is
bounded and this holds both for the terminal-free and non-terminal-free case.
However, we are only able to prove that these results hold if the parameter ρ|α|x
is bounded by 3 and the case where ρ|α|x is bounded by 2 is left open.

With respect to the erasing case, i. e., rows 1 and 3 of the above table, we
observe a surprising situation that deserves to be discussed in a bit more detail.
To this end, we introduce a special case of a substitution. A substitution h (for
a pattern α) is called a renaming if every variable of α is either erased by h or
substituted by a single symbol, i. e., for every x ∈ var(α), |h(x)| ≤ 1. Now row 1
shows that the erasing, non-injective and non-terminal-free version of the pattern
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matching problem with variables remains NP-complete, even if both ρ|α|x and
ρ|Σ| are bounded by 2 and the substitution needs to be a renaming. This is a very
restricted version of the pattern matching problem with variables, which seems
to be located directly on the border between NP-completeness and polynomial
time solvability, since the nonerasing version of this problem is trivially solvable
in linear time, the parameter ρ|h(x)| is already bounded in the strongest possible
sense, if ρ|α|x or ρ|Σ| is bounded by 1 instead of 2, then, as mentioned in Section 3,
the problem becomes polynomial time solvable and, in the next section, we shall
see that the injective version is in P as well.

With respect to the terminal-free case (row 3 of the table), we are only able to
show NP-completeness if the parameter ρ|α|x is bounded by 8 instead of 2. This
version of the pattern matching problem with variables can be rephrased as a
more general problem on strings: given two strings u and v, can u be transformed
into v in such a way that every symbol of w is either erased, substituted by a

or substituted by b? This problem is NP-complete, even if every symbol in u
occurs at most 8 times. It is open, however, whether it is still NP-complete if at
most two occurrences per symbol are allowed.

We conclude this section by pointing out that the pattern matching problem
that Baker considers in [5], and for which she presents efficient algorithms, in
fact relies on the problem of finding a renaming between two words. However,
in [5] only nonerasing and injective renamings are considered and with our above
result we can conclude that Baker’s pattern matching problem most likely cannot
be solved in polynomial time if it is generalised to erasing and non-injective
renamings.

4.2 The Injective Case

A main difference between the complexity of the injective and non-injective cases
is that in the injective case, bounding ρ|Σ| and ρ|h(x)| already yields polynomial
time solvability (see Theorem 1 below), whereas the non-injective case remains
NP-complete, even if we additionally bound ρ|α|x (as stated in Section 4.1).
Informally speaking, this is due to the fact that if ρ|Σ| and ρ|h(x)| are bounded
by some constants, then the number of words variables can be substituted with
is bounded by some constant, say c, as well. Now if we additionally require
injectivity, then the number of variables that are substituted with non-empty
words is bounded by c, too, which directly implies the polynomial time solvability
for the nonerasing case. In order to extend this result to the erasing case, we
apply a technique similar to the one used by Geilke and Zilles in [13].

Theorem 1. Let k1, k2 ∈ N, let Z ∈ {E,NE} and let T ∈ {tf, n-tf}. The prob-
lem [ρk1

|Σ|, ρ
k2

|h(x)|]-[Z, inj, T ]-PMV is in P.

Proof. Since the case Z = E implies the case Z = NE, we shall only prove the
former.

Let α be a pattern and let w be a word over Σ := {a1, a2, . . . , ak1}. Let S be
an arbitrary subset of var(α). We say that S satisfies condition (∗) if and only
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if there exists an E-injective substitution h with h(α) = w, 1 ≤ |h(x)| ≤ k2, for
every x ∈ S, and h(x) = ε, for every x ∈ var(α) \ S. For any set S ⊆ var(α), it
can be checked in time exponential in |S|, whether S satisfies condition (∗). More
precisely, this can be done in the following way. First, we obtain a pattern β from
α by erasing all variables in var(α) \ S. Then we use a brute-force algorithm to
check whether or not there exists an injective nonerasing substitution h with

h(β) = w and 1 ≤ |h(x)| ≤ k2, x ∈ var(β), which can be done in time O(k
|S|
2 ).

For the sake of convenience, we define k′ := k2×kk2

1 . We observe that there are
O(k′) non-empty words over {a1, a2, . . . , ak1} of length at most k2. This implies
that every substitution h that maps more than k′ variables to non-empty words
of length at most k2 is necessarily not E-injective. So, for every set S ⊆ var(α),
if |S| > k′, then S does not satisfy condition (∗). Consequently, there exists an
E-injective substitution h with h(α) = w, |h(x)| ≤ k2, for every x ∈ var(α),
if and only if there exists a set S ⊆ var(α) with |S| ≤ k′ and S satisfies the
condition (∗).

We conclude that we can solve the problem stated in the theorem by enu-
merating all possible sets S ⊆ var(α) with |S| ≤ k′ and, for each of these sets,
checking whether they satisfy condition (∗). Since the number of sets S ⊆ var(α)
with |S| ≤ k′ is

k′∑
i=0

(
| var(α)|

i

)
≤

k′∑
i=0

| var(α)|i ≤ (k′ + 1) var(α)k
′

= O(| var(α)|k′
) ,

the runtime of this procedure is exponential only in k′; thus, since k′ is a constant,
it is polynomial. 
�

On the other hand, as pointed out by the following table, for all other possibilities
to bound some of the parameters ρ|Σ|, ρ|α|x and ρ|h(x)|, without bounding both
ρ|Σ| and ρ|h(x)| at the same time, we can show NP-completeness:

E /NE inj / n-inj tf / n-tf |h(x)| |α|x |Σ| Complexity

E inj n-tf 5 2 – NP-C
NE inj n-tf 19 2 – NP-C

E, NE inj n-tf – 2 2 NP-C
E, NE inj tf 19 4 – NP-C
E, NE inj tf – 9 5 NP-C

With respect to the injective case (and in contrast to the non-injective case), we
are not able to conclude any results about renamings. In particular, the most
interesting open question in this regard is whether or not the following problem
is NP-complete:

Instance: A pattern α and a word w ∈ Σ∗.
Question: Does there exist an E-injective renaming h with h(α) = w?

We conjecture that this question can be answered in the affirmative.
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In order to conclude this section, we wish to point out that for every variant of
the pattern matching problem with variables that is not explicitly mentioned in
the above tables, either NP-completeness or membership in P is directly implied
by one of the results presented in this section or Section 3.

5 Proof Techniques

In this section, we give a sketch of the main proof technique for the hardness
results presented in Section 4. To this end, we first define a graph problem, which
is particularly suitable for our purposes.

Let G = (V,E) be a graph with V := {v1, v2, . . . , vn}. The neighbourhood of
a vertex v ∈ V is the set NG(v) := {u | {v, u} ∈ E} and NG [v] := NG(v)∪ {v} is
called the closed neighbourhood of v. If, for some k ∈ N, |NG(v)| = k, for every
v ∈ V , then G is k-regular. A perfect code for G is a subset C ⊆ V with the
property that, for every v ∈ V , |NG [v] ∩C| = 1. Next, we define the problem to
decide whether or not a given 3-regular graph has a perfect code:

3R-PERFECT-CODE
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

In [18], Kratochv́ıl and Kr̆ivánek prove the problem 3R-PERFECT-CODE to be
NP-complete:

Theorem 2 (Kratochv́ıl and Kr̆ivánek [18]). 3R-PERFECT-CODE is NP-
complete.

All the NP-completeness results of Section 4 can be proved by reducing
3R-PERFECT-CODE to the appropriate variant of PMV. However, these reduc-
tions must be individually tailored to these different variants. As an example, we
give a reduction from 3R-PERFECT-CODE to [ρ5|h(x)|, ρ

2
|α|x ]-[E, inj, n-tf]-PMV,

which implies the result stated in row 1 of the table presented in Section 4.2.
Let G = (V,E) with V := {v1, v2, . . . , vn} be a 3-regular graph and, for every

i, 1 ≤ i ≤ n, let Ni be the closed neighbourhood of vi. We transform the graph G
into a pattern α and a word w over Σ := {ai, ¢i,#j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2n−1},
such that, for every x ∈ var(α), |α|x ≤ 2. Now, for any i, 1 ≤ i ≤ n, let
Nj1 , Nj2 , Nj3 , Nj4 be exactly the closed neighbourhoods that contain vertex vi.
We transform vertex vi into the pattern variables xi,j1 , xi,j2 , xi,j3 , xi,j4 ; thus,
our interpretation shall be that variable xi,j refers to vertex vi in the closed
neighbourhood of vertex vj .

For every i, 1 ≤ i ≤ n, the closed neighbourhood Ni := {vj1 , vj2 , vj3 , vj4} is
transformed into

βi := xj1,i xj2,i xj3,i xj4,i and

ui := ai .
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Furthermore, for every i, 1 ≤ i ≤ n, we define

γi := zi ¢i xi,j1 xi,j2 xi,j3 xi,j4 ¢i z′i and

vi := ¢i ¢i aj1 aj2 aj3 aj4 ¢i ,

where Ni = {vj1 , vj2 , vj3 , vj4}. Finally, we define

α := β1 #1 β2 #2 · · ·#n−1 βn #n γ1 #n+1 γ2 #n+2 · · ·#2n−1 γn and

w := u1 #1 u2 #2 · · ·#n−1 un #n v1 #n+1 v2 #n+2 · · ·#2n−1 vn .

Every variable zi, z
′
i, 1 ≤ i ≤ n, has only one occurrence in α. For every i,

1 ≤ i ≤ n, and every j with vj ∈ Ni, variable xj,i has exactly one occurrence in
βi and exactly one occurrence in γj . Thus, for every x ∈ var(α), |α|x ≤ 2.

In order to see that the existence of an E-injective substitution h for α with
h(α) = w and |h(x)| ≤ 5 implies the existence of a perfect code for G, we first
observe that, for any substitution h with h(α) = w, h(βi) = ui and h(γi) = vi,
1 ≤ i ≤ n, is satisfied. This implies that, for every i, 1 ≤ i ≤ n, exactly one of
the variables xjl,i, 1 ≤ l ≤ 4, where Ni = {vj1 , vj2 , vj3 , vj4}, is mapped to ai and
the other three variables are erased. Furthermore either each of the variables
xi,jl , 1 ≤ l ≤ 4, is mapped to ajl or all these variables are erased. This directly
translates into the situation that it is possible to pick exactly one vertex from
each neighbourhood. The converse statement, i. e., the existence of a perfect
code implies the existence of such a substitution h, follows from the observation
that for the variables xi,j we can define h as induced by the perfect code and,
for every i, 1 ≤ i ≤ n, either h(zi) := ¢i and h(z′i) := ε or h(zi) := ε and
h(z′i) := aj1 aj2 aj3 aj4 ¢i, depending on whether or not vertex vi is a member of
the perfect code.

We wish to point out that the above reduction strongly relies on the possi-
bility to erase variables and to have terminal symbols in the pattern; thus, as
pointed out by the following explanations, converting it to the nonerasing or the
terminal-free case is non-trivial. The general idea of extending our reduction to
the terminal-free case is that instead of using terminals # in the pattern, we
use variables that are forced to be substituted by #. Especially for the erasing
case, this is technically challenging and, furthermore, if we use an unbounded
number of occurrences of the same terminal symbol in the pattern, then it is
difficult to maintain the restriction on the number of variable occurrences and
injectivity at the same time. In the above reduction, we also use the possibility
of having an unbounded number of terminal symbols. Hence, if parameter ρ|Σ| is
bounded, then instead of using arbitrarily many different symbols a1, a2, . . . , an,
we either have to use only one symbol a for different variables, which destroys
the injectivity, or we have to encode a single symbol ai by a string baib, which
breaks the bound on parameter ρ|h(x)|.

6 Future Research Directions

In this paper, for every variant P -[Z, I, T ]-PMV of the pattern matching problem
with variables, we either show that bounding the parameters by any constants
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leads to polynomial time solvability or that the parameters can be bounded
by some constants, such that P -[Z, I, T ]-PMV is NP-complete. Although for the
results of the latter type we are mostly able to present rather small constants, we
do not provide a full dichotomy result for the class of problems P -[Z, I, T ]-PMV.

As pointed out in Section 4.1, [ρ1|h(x)|, ρ
2
|α|x , ρ

2
|Σ|]-[E, n-inj, n-tf]-PMV is an

example for an NP-complete version of the pattern matching problem with vari-
ables for which we provable know that any further restriction – except to the
terminal-free case, which is open – makes the problem polynomial time solvable.
On the other hand, we do not know when exactly the problem [ρ3|h(x)|, ρ

3
|α|x , ρ

4
|Σ|]-

[NE, n-inj, tf]-PMV shifts from NP-completeness to polynomial time solvability
when the constants are decreased.

Consequently, possible further research is to completely determine these bor-
derlines between NP-completeness and P with respect to the pattern matching
problem with variables.
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14. Harju, T., Karhumäki, J.: Morphisms. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 1, ch. 7, pp. 439–510. Springer (1997)

15. Ibarra, O., Pong, T.-C., Sohn, S.: A note on parsing pattern languages. Pattern
Recognition Letters 16, 179–182 (1995)

16. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with
and without erasing. International Journal of Computer Mathematics 50, 147–163
(1994)

17. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal
of Computer and System Sciences 50, 53–63 (1995)
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Abstract. We present several results about position heaps, a relatively
new alternative to suffix trees and suffix arrays. First, we show that if
we limit the maximum length of patterns to be sought, then we can
also easily limit the height of the heap and reduce the worst-case cost
of insertions and deletions. Second, we show how to build a position
heap in linear time independent of the size of the alphabet. Third, we
show how to augment a position heap such that it supports access to the
corresponding suffix array, and vice versa. Fourth, we introduce a variant
of a position heap that can be simulated efficiently by a compressed suffix
array with a linear number of extra bits.

1 Introduction

String-indexing data structure have played a central role in pattern matching at
least since the introduction of suffix trees forty years ago, and their importance
has only increased with the introduction of suffix arrays, compressed suffix ar-
rays, FM-indexes, etc. There are still many open problems about them, however,
such as how best to make them dynamic. There are now fairly practical dynamic
versions of suffix arrays and FM-indexes but these have poor worst-case theo-
retical bounds for updates [10,11]. Relatively recently, Ehrenfeucht, McConnell,
Osheim and Woo [6] introduced a new and simple indexing data structure, called
a position-heap, and showed how it can easily be made dynamic (albeit with a
logarithmic slowdown for searches and also with a poor worst-case bound for
updates). Like suffix trees and suffix arrays, position heaps take linear space
and support searching in time proportional to the length of the pattern plus
the number of occurrences reported, which is optimal. Ehrenfeucht et al. gave a
construction algorithm that works in linear time when the size of the alphabet
is constant. Shortly thereafter, Kucherov [7] gave a simpler, online construction
that also takes linear time when the alphabet size is constant. Ehrenfeucht et al.’s
and Kucherov’s constructions of position heaps are analogous to Weiner’s and
Ukkonen’s construction of suffix trees, respectively, and Kucherov asked whether
there is a construction that takes linear time independent of the alphabet size,
analogous to Farach’s construction of suffix trees. Kucherov also asked whether
position heaps can be compressed, as can suffix trees, suffix arrays and FM-
indexes. Most recently, Nakashima, I, Inenaga, Bannai and Takeda [8] showed
how to build the position heap for a set of strings given as a trie in linear time
when the alphabet size is constant.
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c© Springer-Verlag Berlin Heidelberg 2013
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In this paper we answer some of the open problems about position heaps.
We show in Section 3 that, if we limit the maximum length of patterns to be
sought, then we can use a position heap with limited height as an index, which
reduces the maximum cost of updating the heap after we make insertions or
deletions in the string. In many practical applications we are interested only
in fairly short patterns anyway, so this seems like a reasonable tradeoff. We
also note that, if we replace a splay tree by an AVL-tree in Ehrenfeucht et
al.’s implementation of dynamic position heaps, then their time bounds become
worst-case instead of amortized. In Section 4 we show how to turn a suffix tree
into a position heap in linear time independent of the alphabet size, using a
simple modification of a recent algorithm by Bannai, Inenaga and Takeda [1] for
building the LZ78 parse from a straight-line program. Combined with Farach’s
algorithm for building suffix trees in linear time, this means we can build position
heaps in linear time independent of the alphabet size, answering Kucherov’s first
question affirmatively. In Section 5 we show how to augment a position heap with
O(n logh) bits such that it supports O(1)-time access to the corresponding suffix
array and inverse suffix array, where n is the length of the string and h is the
height of the heap. Ehrenfeucht et al. showed that, although h can be as large
as n in the worst case, it is typically O(logn). We also show how to augment a
compressed suffix array with O(n log h) bits such that it supports access to the
position heap in the same time needed to access the suffix array and inverse suffix
array. Finally, in Section 7 we introduce a variant of a position heap, which we
call a suffix heap, that still supports indexed pattern matching but which can be
simulated by a compressed suffix array with only a linear number of extra bits.
This seems at least partly to answer Kucherov’s second question affirmatively
as well.

2 Position Heaps

Ehrenfeucht et al.’s position heap data structure is a modification of an older
data structure by Coffman and Eve [5] for hashing. Kucherov gave a simplified
definition according to which, for a string S[1..n] terminated by a special symbol
S[n] = $, the position heap is the trie Heap in which

– the root is labelled 0 and the other nodes are labelled 1 to n such that
parents’ labels are smaller than their children’s labels;

– for 1 ≤ i ≤ n, the path label of the node labelled i is a prefix of S[i..n];
– for 1 ≤ i ≤ n, the node labelled i stores a pointer (called its maximal-reach

pointer) to the deepest node whose path label is a prefix of S[i..n].

For example, if S = abaababbabbab$ then Heap is as shown in Figure 1 (except
that maximal-reach pointers are omitted there when they point back to the
nodes themselves), overlaid on the the suffix trie for S. One reason to label the
root 0 is so that, for 1 ≤ i ≤ n, S[i] is equal to the first edge label on the path
from the root to the node labelled i.
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Fig. 1. The position heap Heap (in heavy lines) overlaid on the suffix trie for S =
abaababbabbab$

To be able to use Heap for indexed pattern matching in S we store, first, an
array of pointers such that, given i, in O(1) time we can find the node labelled
i; and second, a data structure such that, given i and j, in O(1) time we can
determine whether the node labelled i is an ancestor of the node labelled j. The
total space for Heap and these data structures is O(n logn) bits, i.e., linear space
on a word RAM.

To search for a pattern P [1..m] in S, we start at the root and descend to the
deepest node v whose path label is a prefix of P . If v’s depth d = m, then we
report the label of each node that is either in the subtree of v or on the path from
the root to v with a maximal reach pointer into the subtree of v. Otherwise, we
build a list containing the label of each node on the path from the root to v with
a maximal reach pointer to v. We return to the root and descend to the deepest
node v′ whose path label is a prefix of P [d + 1..m]. If the depth d′ of v′ is m− d,
then we report each label i in our list for which the node labelled i+ d is either in
the subtree of v′ or on the path from the root to v′ with a maximal-reach pointer
into the subtree of v′. Otherwise, we filter our list, keeping each label i only if the
node labelled i+d is on the path from the root to v′ with a maximal reach pointer
to v′. We return to the root and descend again, using d′ in place of d, and keep
repeatedly descending until we reach the end of P . By induction, this yields a list
of the starting positions of the occurrences of P in S and, with the data structures
mentioned above, takes time linear in m and the number of those occurrences.

For example, to search for P = aabab in S = abaababbabbab$, we start at
the root and descend along two edges labelled P [1] = P [2] = a to the node v
labelled 3. Since v is at depth only d = 2 ≤ m = 5, we check the nodes labelled
1 and 3 and then, since the former’s maximal-reach pointer is not to the latter,
build a list containing only 3. We return to the root and descend along edges
labelled P [3] = b, P [4] = a and P [5] = b to the node v′ labelled 8. Since v′ is at
depth 3 = m− d, we find the node labelled 3 + d = 5 and, since it is on the path
from the root to the v′ and its maximal-reach pointer is into the subtree of v′,
we report position 3.
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3 Limiting Length and Height

If we will never search for a pattern of length greater than M , then we can
easily build a position heap of height O(M) that works as an index for S. To do
this, we make two copies of S called S′ and S′′; insert a unique character after
every 2M characters, counting from the first character of S′ and the (M + 1)st
character of S′′; and build the position heap for S′ !S′′, where ! is another unique
character. We refer to the inserted unique characters and ! as dividers and to
the substrings of S′ and S′′ strictly between dividers as blocks. For example, if
S = abaababbabbab$ and M = 3, then S′ = abaaba #1 bbabba #2 b$, S′′ =
ababba #3 bbab$ and we build the position heap for

S′ !S′′ = abaaba #1 bbabba #2 b$ ! ababba #3 bbab$ .

Notice that any substring of S with length at most M occurs in either S′ or S′′

or both. Moreover, given the endpoints of a substring in S′ !S′′, in O(1) time
we can determine whether it contains any dividers and, if not, where it occurs
in S. Therefore, we can use the position heap for S′ !S′′ as an index for S. The
position heap for S′ !S′′ has height at most a factor of 2 larger than the height of
the position heap for S and the dividers guarantee there are no common prefixes
in S longer than 2M , so the position heap for S′ !S′′ has height O(M).

If we insert or delete a substring in S, then we should update S′ and S′′ to
maintain the invariants that every substring of S with length at most M occurs
in either S′ or S′′ or both, and that the position heap for S′ !S′′ has height
O(M). Consider first how we update S′ when we insert a substring of length
at most 4M into S. We insert that substring into the appropriate block of S′;
if that block then has length more than 4M , we split the block into two parts,
each of length between 2M and 4M , and insert a new divider between them.
If we insert a substring with length greater than 4M into S, then we split that
substring into blocks of length at most 2M separated by dividers, split the block
of S′ where the substring is to be inserted into two parts, concatenate the first
part with the first block of the substring and concatenate the last block of the
substring with the second part.

If we delete a substring of S, then we delete any blocks of S′ completely
contained in that substring and perform separate deletions from the blocks where
the substring starts and finishes. To delete a substring from a single block of S′,
we delete that substring and then check whether the block still has length at
least 2M . If not, we remove the divider between that block and an adjacent one
(assuming S is still long enough for there to be another block); if the resulting
block then has length more than 4M , we split it into two parts, each with length
between 2M and 4M , and insert a new divider between them.

Once we have updated S′, we update S′′ so that the blocks of S′′ are again
centered on the dividers in S′ and have length exactly 2M (or less if they
reach an end of S). Notice that inserting or deleting a substring of length �
into or from S requires inserting or deleting O(1) substrings of length O(�) into
or from S′ !S′′. For example, if S = abaababbabbab$, M = 3 and we insert
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bba in position 5 to obtain S = abaabbababbabbab$, then we update S′ to be
abaabbaba #1 bbabba #2 b$ and S′′ to be ababba #3 bbab$.

Ehrenfeucht et al.’s dynamic index has two parts, a dynamic position heap
and the data structure for storing the dynamic string itself. They suggested
using a splay tree to store the dynamic string but noted that this choice gives
only amortized time bounds. If we use their dynamic position heap for S′ !S′′

exactly as they described but use an AVL-tree (which can also be split and joined
in logarithmic time) instead of a splay tree to store S′ !S′′, then we obtain the
following result with no amortization. We will give more details in the full version
of this paper. Our use of dividers makes the alphabet size more than constant
but, as we show in the next Section, it is still possible to build the position heap
in linear time.

Theorem 1. If we will never search for a pattern of length greater than M in a
dynamic string S, then we can maintain a position heap that works as an index
for S such that

– searching for a pattern of length m ≤ M takes O(m log |S| + occ) time,
– inserting a substring of length � takes O((M + �)M log(|S| + �)) time,
– deleting a substring of length � takes O((M + �)M log |S|) time.

4 Turning a Suffix Tree into a Position Heap

Bannai et al. recently gave an algorithm for computing the LZ78 parse of a string
from a straight-line program for that string. A key idea in their algorithm is to
build the LZ78 trie superimposed on the suffix tree for the string. To compute
the LZ78 parse normally, we start at the left with an empty dictionary; at each
step, we take as the next phrase the shortest prefix of the remainder of the string
that is not yet in the dictionary; we add that phrase to the dictionary and delete
it from the beginning of the remainder of the string. The trie of the phrases in
the dictionary when we finish parsing is the LZ78 trie. If we delete only the first
character of the remainder of the string at each step, instead, then the trie of
the phrases when we finish parsing is the position heap. In this section we use
this idea to turn a suffix tree into a position heap in linear time independent of
the alphabet size.

A simple way to build Heap is to build the suffix trie for S (i.e., the trie of all its
suffixes); label each leaf with the starting position of the suffix which is its path
label; label the root 0; for 1 ≤ i ≤ n in increasing order, move each leaf’s label
to its highest unlabelled ancestor (or, if there are no unlabelled ancestors, leave
the label on the leaf); and finally, for 1 ≤ i ≤ n, add a maximal-reach pointer
from the node labelled i to the deepest labelled ancestor of the leaf originally
labelled i. The correctness of this algorithm follows from the definition of the
position heap; see Figure 1.

Suppose we already have built and preprocessed the suffix trie of S such that
in O(1) time, first, we can mark nodes; second, given a node, we can find its
lowest marked ancestor; and third, given a node and a depth, we can find that
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node’s ancestor at that depth. Then we can perform the algorithm we have
just described in linear time independent of the alphabet size, marking nodes
whenever we move a label to them. Since the suffix trie has size Θ(n2), however,
building it explicitly and preprocessing it takes Ω(n2) time.

Bannai et al. showed how we can use the suffix tree ST for S as a repre-
sentation of the suffix trie. Suppose we have already built two copies ST 1 and
ST 2 of ST with the same nodes. Westbrook [12] showed how we can preprocess
ST 1 in linear time such that in O(1) amortized time, first, we can mark nodes;
second, given a node, we can find its lowest marked ancestor; and third, we can
insert a node in the middle of an edge. Berkman and Vishkin [4] showed how we
can preprocess ST 2 in linear time such that, given a node and a depth, we can
find that node’s ancestor at that depth in O(1) time. We work in ST 1, which is
dynamic; ST 2 remains static.

We start by labelling with 0 the root of ST 1 and marking it. For 1 ≤ i ≤ n,
we find the lowest marked ancestor u in ST 1 of the leaf w labelled i. (This is
the difference between building a position heap and Bannai et al.’s algorithm
for building the LZ78 trie: they consider only values of i that are the starting
positions of phrases in the LZ78 parse.) If u is w itself, then we simply mark
it; otherwise, we find the child v of u that is also an ancestor of w. If u has a
constant number of children then finding v takes O(1) time even in ST 1. If u
has more than a constant number of children then we use ST 2 to find v, as we
explain next. If v’s stringdepth (i.e., the length of its path label) is 1 more than
u’s, then we move the label i to v and mark it in ST 1. Otherwise, we insert a
new node v′ between u and v in ST 1; assign the first character of the edge label
of the old edge (u, v) to the new edge (u, v′) and assign the rest to the new edge
(v′, v); move the label i to v′; and mark v′. This all takes O(1) amortized time.
Finally, for 1 ≤ i ≤ n, we add a maximal-reach pointer from the node labelled i
in ST 1 to the deepest marked ancestor of the leaf originally labelled i. Due to
space constraints, we do not include a figure showing a position heap overlaid
on a suffix tree; however, that figure for S = abaababbabbab$ would look like
Figure 1 but without the internal nodes of the trie that are not part of the heap.
In this case, building Heap requires us to insert into ST 1 the nodes of the heap
labelled 3, 7, 9 and 10.

Notice that, if u has more than one child then, first, u exists in both ST 1

and ST 2 and, second, we have not inserted any nodes in u’s subtree in ST 1.
Therefore, v also exists and is u’s child in both ST 1 and ST 2. We can find v in
O(1) time in ST 2 by finding the ancestor of w whose depth is 1 more than u’s.
Summing up, we have the following theorem.

Theorem 2. Given the suffix tree for a string, we can build the position heap
for that string in linear time independent of the size of the alphabet.

Since Farach’s construction of suffix trees takes linear time independent of the
alphabet size, we have answered affirmatively Kucherov’s question of whether
there is an algorithm for building position heaps that takes linear time indepen-
dent of the alphabet size.
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5 Using a Position Heap as a Suffix Array

The order in which we see positions in a traversal of Heap may not be the order
in which they appear from left to right on the leaves of the suffix tree for S,
which is the same as their order in the suffix array SA[1..n] for S. For example,
if S = abaababbabbab$ then SA = [14, 3, 12, 1, 4, 9, 6, 13, 2, 11, 8, 5, 10, 7]; since
the node labelled 4 is the child of the node labelled 1 and the parent of the
node labelled 12 in Heap, no traversal of Heap can produce the order 12, 1, 4.
Nevertheless, by the definition of a position heap, if positions are labels of nodes
at the same depth in Heap, then their left-to-right order is the same as the
lexicographic order of the suffixes starting at those positions and, so, the same
as their left-to-right order in the suffix tree or suffix array for S.

Let D[1..n] be the array in which D[i] is the depth in Heap of the value SA[i].
In other words, if D[i] is the rth copy of d in D, then the label of the rth node
from the left at depth d in Heap is SA[i]. For example, if S = abaababbabbab$
then D = [1, 2, 3, 1, 2, 4, 3, 2, 1, 4, 3, 2, 3, 2]. Since D[8] is the third copy of 2 in
D, the label on the third node from the left at depth 2 in Heap is SA[8] = 13,
as shown in Figure 1. It follows that, if we can answer access and partial rank
queries on D and access nodes in Heap given their depths and their ranks from
the left at those depths, then we can support access to SA.

We can store D in nH0(D) + o(n(H0(D) + 1)) bits, where H(D) ≤ log h is
the 0th-order empirical entropy of D and h is the height of Heap, such that
access and partial rank queries take O(1) time [3]. Ehrenfeucht et al. showed
that, although h can be as large as n in the worst case, it is typically O(logn).
There are (2n + o(n))-bit data structures that support access in O(1) time to
any node in Heap given its rank in pre-order, in-order or post-order traversals;
given a pointer to a node, they also return its rank in the appropriate traversal.
Notice that any of these traversals visits the nodes at any particular depth in
Heap in their left-to-right order. For the sake of simplicity, we now consider only
pre-order traversal.

Let E[1..n] be the array in which E[i] is the depth of the (i + 1)st node (or
ith if we ignore the root) visited in a pre-order traversal of Heap. In other words,
if E[i] is the rth copy of d in E, then the rth node from the left at depth d is the
(i+1)st visited in a pre-order traversal. For example, if S = abaababbabbab$ then
E = [1, 1, 2, 2, 3, 3, 4, 1, 2, 2, 3, 4, 2, 3]. Since E[9] is the third copy of 2 in E, the
third node from the left at depth 2 is the 9th node visited in a pre-order traversal
of Heap. It follows that, if we can answer select queries on E, then we can access
nodes in Heap given their depths and their ranks from the left at those depths.

We can store E in (1+ε)nH0(E)+o(n) bits such that select queries take O(1)
time [2], where ε is any positive constant. Notice that E is a permutation of D so
H0(E) = H0(D) ≤ log h. Therefore, we can add (2 + ε)nH0(D) + o(n(H0(D) +
1)) = O(n log h) bits to Heap and support access to SA in O(1) time.

The inverse suffix array SA−1[1..n] stores the lexicographic ranks of the suf-
fixes in left-to-right order. For example, if S = abaababbabbab$ then SA−1 =
[4, 9, 2, 5, 12, 7, 14, 11, 6, 13, 10, 3, 8, 1]. Suppose we store data structures support-
ing access and partial rank queries on E and select queries on D, which take
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another (2+ ε)nH0(D)+o(n(H0(D)+1)) = O(n log h) bits. If we want to access
SA−1[i], then we follow the pointer to the node v labelled i in Heap; find v’s
rank t in the pre-order traversal of Heap; find the partial rank r of E[t− 1] = d
in E; and use select to find the position of the rth copy of d in D. This takes a
total of O(1) time. For example, to access SA−1[13], we find the node labelled
13 in Heap, which is the 10th visited in a pre-order traversal; find the partial
rank 3 of E[9] = 2 in E; and return the position 8 of the third 2 in D.

Theorem 3. We can add O(n log h) bits to a position heap, where h is the
height of the heap, such that it supports access to the corresponding suffix array
and inverse suffix array in O(1) time.

6 Using a Compressed Suffix Array as a Position Heap

Many compressed suffix arrays (see, e.g., [9] for a survey) support efficient access
to both SA and SA−1. Suppose we have access to SA and SA−1 and want to
represent a position heap, including

– its structure as a tree;
– the nodes’ labels;
– the edges’ labels;
– the maximal-reach pointers;
– an array of pointers such that, given i, in O(1) time we can find the node

labelled i;
– a data structure such that, given i and j, in O(1) time we can determine

whether the node labelled i is an ancestor of the node labelled j.

We can represent the heap’s structure as a tree using any of the (2n + o(n))-bit
data structures mentioned in Section 5; assume we use the one based on pre-
order traversal. Without increasing the size of the data structure by more than
o(n) bits, we can support queries to determine whether one node is the ancestor
of another, given pointers to them. We now show that, with the data structures
for access, partial rank and selection on D and E, we can represent the nodes’
labels and the array of pointers.

To find the label of a given node v, we find v’s rank t in the pre-order traversal
of Heap; find the partial rank r of E[t − 1] = d in E; use select to find the
position p of the rth copy of d in D; and return SA[p]. For example, if S =
abaababbabbab$ and we are asked for the label of the 10th node visited in a
pre-order traversal of Heap, then we find the partial rank 3 of E[9] = 2; find the
position 8 of the third 2 in D; and return SA[8] = 13.

To find a node given its label i, we find the position SA−1[i] = p in SA of i;
find the partial rank r of D[i] = d in D; find the partial rank t − 1 of the rth
copy of d in E; and return a pointer to the t node visited in a pre-order traversal
of Heap. For example, if S = abaababbabbab$ and we are asked to find the node
in Heap with label 13, then we find the position SA−1[13] = 8 in SA of 13; find
the partial rank 3 of D[8] = 2; find the partial rank 9 of the 3rd copy of 2 in E;
and return a pointer to the 10th node visited in a pre-order traversal of Heap.
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To be able to return edges’ labels, we store a bitvector indicating, for each
distinct character a, the interval of SA containing the positions of copies of a in S.
Assuming the size σ of the alphabet is at most n, this bitvector takes σ log(n/σ)+
o(n) = O(n) bits, and lets us determine in O(1) time the first character S[i] in
suffix S[i..n] given S[i..n]’s lexicographic rank among the suffixes of S. If we are
using a compressed suffix array that already supports this functionality, then we
do not need the bitvector.

To find an edge’s label, we find the label i and depth d of the node at the
bottom of that edge, find the position SA−1[i + d − 1] in SA of i + d − 1,
then use the bitvector to determine the character S[i + d − 1]. For example, if
S = abaababbabbab$ and we are asked to find the label of the edge above the
node labelled 13, which is at depth 2, then we find the position SA−1[14] = 1 of
14 in SA and use the bitvector to determine S[14] = $.

To be able to return nodes’ maximal-reach pointers, we store the balanced-
parentheses representation of the tree structure of Heap, with copies of a special
symbol ∗ interleaved so that the ith copy of ∗ occurs after the jth copy of ‘(’
if, in a pre-order traversal of the position heap overlaid on the suffix trie (see
Figure 1), we visit the ith leaf of the trie after we visit the jth node of the heap;
the ith copy of ∗ occurs before the jth copy of ‘)’ if, in a post-order traversal
of the position heap overlaid on the suffix trie, we visit the ith leaf of the trie
before visiting the jth node of the heap. For example, if S = abaababbabbab$
then we store

( ( ∗ ) ( ( ∗ ) ( ( ∗ ) ∗ ∗ ( ( ∗ ) ∗ ) ) ) ( ( ∗ ) ( ∗ ( ( ∗ ) ∗ ∗ ) ) ( ( ∗ ∗ ) ) ) ) .

To clarify this example, we now attach subscripts and superscripts showing the
labels of the nodes of the heap to which parentheses correspond, and superscripts
showing the labels of the leaves of the trie to which copies of ∗ correspond:

(0 (14 ∗14 14) (1 (3 ∗3 3) (4 (12 ∗12 12) ∗1 ∗4 (6 (9 ∗9 9) ∗6 6) 4) 1) . . .

. . . (2 (13 ∗13 13) (5 ∗2 (8 (11 ∗11 11) ∗8 ∗5 8) 5) (7 (10 ∗10 ∗7 10) 7) 2) 0) .

Recall from Section 4 that the maximal-reach pointer of the node labelled i
in Heap points to the deepest node of Heap that, when Heap is overlaid on
the suffix trie, is an ancestor of the leaf labelled i in the suffix trie. For exam-
ple, if S = abaababbabbab$, then the node labelled 5 in Heap points to the
node labelled 8 (see Figure 1). It follows that the maximal-reach pointer of the
node labelled i is to the node corresponding to the matching pair of parenthe-
ses most closely enclosing the SA−1[i]th copy of ∗ in our augmented balanced-
parentheses representation of Heap. For example, if S = abaababbabbab$, then
the SA−1[5] = 12th copy of ∗ is most closely enclosed by the matching pair of
parentheses corresponding to the 12th node visited in a pre-order traversal of
Heap, which is labelled 8. We can store our augmented representation in O(n)
bits such that we can find this matching pair of parentheses, and the corre-
sponding node, in O(1) time. Carefully combining this with all the results in
this section, we obtain the following theorem.
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create a node x
let leaves(v) be the number of leaves in v’s subtree
if c = leaves(v) then return x
let v1, . . . , vt be v’s children
for i := 1..t

if leaves(vi) > c
make Build(vi, c+ 1) a child of x
for j := i+ 1..t
make Build(vj , 1) a child of x

else
c := c− leaves(vi)

return x

Fig. 2. The suffix heap S -Heap for S = abaababbabbab$ (left) and pseudocode for the
recursive procedure Build(v, c) (right)

Theorem 4. Suppose we have a compressed suffix array that supports access
to both the suffix array and the inverse suffix array in O(t) time, and the cor-
responding position heap has height h. Then we can add O(n logh) bits to the
compressed suffix array such that it simulates the position heap with an O(t)-
factor slowdown.

7 Suffix Heaps

Suppose we modify the definition of a position heap so that, instead of the path
label of the node labelled i being a prefix of S[i..n], it is a prefix of S[SA[i]..n].
We call the resulting data structure the suffix heap S -Heap for S. For example, if
S = abaababbabbab$ then S -Heap is as shown in Figure 2 (except that maximal-
reach pointers are omitted there when they point back to the nodes themselves).

Searching in a suffix heap is similar to searching in a standard position heap
but now, instead of reporting a node’s label i, we report SA[i]; instead of com-
puting i + d, we compute SA−1[SA[i] + d]. Therefore, searching a suffix heap
requires access to SA and SA−1. For example, to search for P = aabab in
S = abaababbabbab$, we start at the root and descend along the edge labelled
P [1] = a to the node v labelled 2 at depth 1. We return to the root and descend
along the edges labelled P [2] = a, P [3] = b, P [4] = a and P [5] = b to the node
v′ labelled 5. Since SA−1[SA[2] + 1] = 5 is the label of v′, we report position
SA[2] = 3. We will give more examples in the full version of this paper.

We can build a suffix heap using the linear-time algorithm described in Sec-
tion 4 but first labelling the leaves of the suffix tree by their ranks from left to
right. There is a simpler recursive algorithm, however, to build the suffix heap
from the suffix trie; we can make it linear-time by simulating the suffix trie with
the suffix tree, as before. We start by creating the root of S -Heap; for each child
v of the root of the suffix trie, we call Build(v, 1), where Build(v, c) is the pro-
cedure given in Figure 2. We will prove this algorithm correct and analyze it in
the full version of this paper. If we store trees using their balanced-parentheses
representation, then this algorithm takes O(n) bits of work space.
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Notice that nodes’ labels are simply their ranks in a pre-order traversal of
S -Heap; therefore, in a total of 2n + o(n) bits we can store

– S -Heap’s structure as a tree;
– the nodes’ labels

– an array of pointers such that, given i, in O(1) time we can find the node
labelled i;

– a data structure such that, given i and j, in O(1) time we can determine
whether the node labelled i is an ancestor of the node labelled j.

Suppose we have stored the bitvector described in Section 6 that indicates, for
each distinct character a, the interval of SA containing the positions of copies of
a in S. Again, assuming the size σ of the alphabet is at most n, this bitvector
takes O(n) bits and lets us determine in O(1) time the first character S[i] in
suffix S[i..n] given S[i..n]’s lexicographic rank among the suffixes of S. If we are
using a compressed suffix array that already supports this functionality, then we
do not need the bitvector.

To find an edge’s label, we find the label j and depth d of the node at the
bottom of that edge; find the starting position i = SA[j] in S of the lexico-
graphically jth suffix; find the position SA−1[i + d − 1] in SA of SA[j] + d− 1;
then use the bitvector to determine the character S[i + d − 1]. For example,
if S = abaababbabbab$ and we are asked to find the label of the edge above
the node labelled 13, which is at depth 2, then we find the starting position
SA[13] = 10 of the lexicographically 13th suffix; find the position SA−1[11] = 10
of 11 in SA; and use the bitvector to determine S[11] = b.

If the maximal-reach pointer of the node labelled i is to the node labelled
j at depth d, then S

[
SA[i]..SA[i] + d− 1

]
= . . . = S

[
SA[j]..SA[j] + d− 1

]
. It

follows that, if the maximal reach pointer of the node labelled i′ > i is to the
node labelled j′, then j′ > j. Therefore, we can store the nodes’ maximal-reach
pointers in S -Heap as a balanced-parentheses representation of the tree structure
with copies of a special symbol ∗ interleaved so that the ith copy of ∗ occurs
after the jth copy of ‘(’ if the maximal-reach pointer of the node labelled i is to
the node labelled j. For example, if S = abaababbabbab$ then we store

(0 (1 ∗1 1) (2 ∗2 (3 ∗3 (4 ∗4 (5 ∗5 5)(6 (7 ∗6 ∗7 7) 6) (8 ∗8 (9 ∗9 (10 ∗10 . . .

. . . (11 (12 ∗11 ∗12 12) 11) 10) 9) (13 (14 ∗13 ∗14 14) 13) 8) 0) ;

again, we have shown subscripts and superscripts only to clarify the example.
Given a pointer to the node labelled i, we can find where its maximal-reach
pointer points by using a select query to find the position of the ith copy of ∗,
using a rank query to find the number of copies of ‘(’ preceding it, and subtracting
1 for the root. For example, if S = abaababbabbab$ and we want the maximal-
reach pointer of the node labelled 6, then we compute rank(select∗(6) − 1 = 7.
We can store our augmented balanced-parentheses representation in O(n) bits
such that rank and select queries take O(1) time. Carefully combining this with
all the results in this section, we obtain the following theorem.
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Theorem 5. Suppose we have a compressed suffix array that supports access to
both the suffix array and the inverse suffix array in O(t) time. Then we can add
O(n) bits such that it simulates the corresponding suffix heap with an O(t)-factor
slowdown.
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Abstract. Many document collections consist largely of repeated ma-
terial, and several indexes have been designed to take advantage of this.
There has been only preliminary work, however, on document retrieval
for repetitive collections. In this paper we show how one of those indexes,
the run-length compressed suffix array (RLCSA), can be extended to
support document listing. In our experiments, our additional structures
on top of the RLCSA can reduce the query time for document listing by
an order of magnitude while still using total space that is only a fraction
of the raw collection size. As a byproduct, we develop a new document
listing technique for general collections that is of independent interest.

1 Introduction

Document listing is a fundamental and well-studied problem in information re-
trieval. It is known how to store a collection of documents in entropy-compressed
space such that, given a pattern, we can quickly list the distinct documents in
which that pattern occurs [15,8]. If the collection is repetitive, however — e.g.,
genomes of individuals of the same or related species, software repositories, or
versioned document collections — then its statistical entropy may not capture
its true compressibility (the statistical entropy does not decrease if we concate-
nate the same text several times). Several indexes for exact pattern matching
[9,4,2] take good advantage of repetitiveness, but to date there has been no work
on document retrieval in this setting.

In this paper we show how Mäkinen et al.’s [9] run-length compressed suffix ar-
ray (RLCSA) can be extended to support fast document listing. We present two
different solutions. In Section 3, we show that interleaving the longest common
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prefix (LCP) arrays of the individual documents, in the order given by the global
LCP of the collection, yields long runs of equal values on repetitive collections,
which makes this so-called interleaved LCP (ILCP) array highly compressible.
Further, we show that a classical document listing technique [11], designed for a
completely different array, works almost verbatim over the ILCP, and this yields
a new document listing technique of independent interest for generic document
collections (not only repetitive). In Section 4 we explore the idea, dubbed PDL,
of precomputing the answers of document listing queries for all suffix tree nodes
with enough leaves, and exploiting repetitiveness by grammar-compressing the
resulting sets of answers. In Section 5 we experimentally show that the ILCP
takes very little extra space on top of the RLCSA, and can speed up the RLCSA
when the pattern appears many times in the documents; PDL is an order of
magnitude faster and still uses only a fraction of the original text size.

2 Related Work

The best current solutions for document listing are based on an idea by Muthukr-
ishnan [11]. Let T [1..n] be the concatenation of the collection of d documents sep-
arated by copies of a special character “$”. Muthukrishnan’s solution stores the
suffix tree [18] of T , which in particular includes the suffix array [10] SA[1..n]. The
solution also stores a so-called document array D[1..n] of T , in which each cell
D[i] stores the identifier of the document containing T [SA[i]]; an array C[1..n],
in which each cell C[i] stores the largest value h < i such that D[h] = D[i], or
0 if there is no such value h; and a data structure supporting range-minimum
queries (RMQs) over C, rmqC(i, j) = argmini≤k≤jC[k]. These data structures
take a total of O(n lgn) bits. Given a pattern P [1..m], the suffix tree is used
to find the interval SA[�..r] that contains the starting positions of the suffixes
prefixed by P . It follows that every value C[i] < � in C[�..r] corresponds to a
distinct document in D[i]. Thus a recursive algorithm finding all those positions
i starts with k = rmqC(�, r). If C[k] ≥ � it stops. Otherwise it reports document
D[k] and continues recursively with the ranges C[�, k − 1] and C[k + 1, r] (the
condition C[k] ≥ � always uses the original � value). In total, the algorithm uses
O(m + ndoc) time, where ndoc is the number of documents returned.

Sadakane [15] gave a compressed version of Muthukrishnan’s solution, which
stores only a compressed suffix array CSA of T , a sparse bitvector B[1..n] in-
dicating where in T each document starts, an RMQ data structure for C that
returns the position of the leftmost minimum in a range without accessing C,
and a bitmap V [1..d] to record which document identifiers we have already re-
turned. Fischer [3] showed that such an RMQ data structure takes only 2n+o(n)
bits and can answer queries in O(1) time. These data structures take a total of
|CSA| + 2n + d lg(n/d) + O(d) + o(n) bits. Here d lg(n/d) + O(d) + o(n) bits
are for a sparse bitvector representation (e.g., [13]) of B, which has only d 1s.
This representation answers in constant time query rank(B, i), which gives the
number of 1s in B[1..i]. Now, given P , we use CSA to find � and r, then emulate
Muthukrishnan’s algorithm: After each RMQ giving position k we use CSA and
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B to compute D[k] = rank(B,CSA[k]), then check the bitmap V to see whether
we have already returned that document. If V [D[k]] = 1, we stop that recursive
branch, else we return D[k], mark V [D[k]] ← 1, and continue recursing. In total
we use O(search(m) + ndoc · lookup(n)) time, where search(m) is the time to find
� and r and lookup(n) is the time to access a cell of SA, using CSA.

Hon et al. [8] push the space down further by sampling array C. The array is
divided into blocks of length b, and an array C ′[1..n/b] stores the minima of the
blocks. The recursive RMQs algorithm is run over C′, so that each position C′[k]
found requires exploring the documents in one block of D, D[(k−1)b+1..kb]. By
setting, say, b = lgε n for a constant ε > 0, the space becomes |CSA|+d lg(n/d)+
O(d) + o(n) bits and the time raises to O(search(m) + ndoc · lookup(n) lgε n).

In a repetitive environment, one can use an RLCSA [9] as the CSA. However,
those 2n + o(n) bits of Sadakane [15], and even the o(n) bits of Hon et al. [8],
are likely to dominate the space requirement.

Another trend to simulate Muthukrishnan’s algorithm is to represent the doc-
ument array D[1..n] explicitly using a wavelet tree [7], which uses n lg d + o(n)
bits and can access any D[i], as well as compute rankc(D, i) and selectc(D, j),
in time O(lg d). The first query counts the number of times c occurs in D[1..i],
whereas the second gives the position in D of the jth occurrence of c. The
wavelet tree root divides values ≤ d/2 and > d/2 in D[1..n], storing only a
bitmap B[1..n] where B[i] = 0 iff D[i] ≤ d/2. Then, recursively, the left child of
the root represents the subsequence of D with values ≤ d/2, and the right child
the subsequence with values > d/2. The leaves represent runs of a single value
in [1..d], and the tree has height lg d.

Mäkinen and Välimäki [17] showed that the wavelet tree of D can also emulate
array C, as C[i] = selectD[i](rankD[i](D, i) − 1). Then, Gagie et al. [6] showed
that just the CSA and the wavelet tree of D provided document listing in time
O(search(m) + ndoc lg(n/ndoc)), without using any RMQ structure. Navarro et
al. [12] showed that this wavelet tree is grammar-compressible, as D contains
repeated substrings at almost the same positions of the runs found in SA.

3 Interleaved LCP Array

The longest-common-prefix array LCPS [1..|S|] of a string S is defined such that
LCPS [1] = 0 and, for 2 ≤ i ≤ |S|, LCPS [i] is the length of the longest common
prefix of the lexicographically (i − 1)th and ith suffixes of S, that is, between
S[SAS [i−1]..|S|] and S[SAS [i]..|S|], where SAS is the suffix array of S. We define
the interleaved LCP array of T , ILCP, to be the interleaving of the LCP arrays
of the individual documents according to the document array.

Definition 1. Let T [1, n] = S1 ·S2 · · ·Sd be the concatenation of documents Sj,
D the document array of T , and LCPSj the longest common prefix array of string
Sj. Then the interleaved LCP array of T is defined, for all 1 ≤ i ≤ n, as

ILCP[i] = LCPSD[i]

[
rankD[i](D, i)

]
.

The following property of ILCP makes it suitable for document retrieval.
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Lemma 1. Let T [1, n] = S1 · S2 · · ·Sd be the concatenation of documents Sj,
SA its suffix array and D its document array. Let SA[�..r] be the interval that
contains the starting positions of suffixes prefixed by a pattern P [1..m]. Then the
values strictly less than m in ILCP[�..r] are in the same positions as the leftmost
occurrences in D[�..r] of the distinct document identifiers in that range.

Proof. Let SASj [�j ..rj ] be the interval of all the suffixes of Sj starting with
P [1..m]. Then it must hold that LCPSj [�j] < m, as otherwise Sj[SA[�j−1]..SA[�j−
1] +m− 1] = Sj[SA[�j ]..SA[�j ] +m− 1] = P as well, contradicting the definition
of �j. For the same reason, it holds that LCPSj [�j +k] ≥ m for all 1 ≤ k ≤ rj−�j.
Now, let Sj start at position pj + 1 in T , where pj = |S1 · · ·Sj−1|. Because each
Sj is terminated by the special symbol “$”, the lexicographic ordering between
the suffixes Sj [k..] in SASj is the same as of the corresponding suffixes T [pj +k..]
in SA. That is, it holds that 〈SA[i], D[i] = j, 1 ≤ i ≤ n〉 = 〈pj + SASj [i], 1 ≤ i ≤
|Sj |〉. Or, put another way, SA[i] = pj + SASj [rankj(D, i)] whenever D[i] = j.
Now, let fj be the leftmost occurrence of j in D[�..r]. This means that SA[fj ]
is the lexicographically first suffix of Sj that starts with P . By definition of
�j, it holds that �j = rankj(D, fj). Thus, by definition of ILCP, it holds that
ILCP[fj ] = LCPSj [rankj(D, fj)] = LCPSj [�j] < m, whereas all the other ILCP[k]
values, for � ≤ k ≤ r, where D[k] = j, must be ≥ m. 
�

Therefore, for the purposes of document listing, we can replace the C array
by ILCP in Muthukrishnan’s algorithm: instead of recursing until listing all the
positions k such that C[k] < �, we recurse until listing all the positions k such
that ILCP[k] < m.

3.1 Document Listing in General Collections

Under Szpankowski’s very general A2 probabilistic model [16] (which includes
Bernoulli and Markov chains of fixed memory), the maximum LCP value in a
string S is almost surely (a very strong kind of convergence2, which we abbreviate
a.s.) O(lg |S|) [16]. This means that storing ILCP explicitly requires a.s. at most
n lg lg(n/d) + O(n) bits, usually far less than the n lg d bits required by C.

The fact that we are interested in the values 0 to m − 1 in ILCP gives a
new relevant index for document listing in general collections. Grossi et al. [7]
proved that, if we give the wavelet tree of a sequence S any shape (i.e., not
necessarily balanced) and represent the wavelet tree bitmaps using a compressed
representation (e.g., [13]), then the total space is the zero-order entropy of the
represented sequence, H0(S), plus o(nh) bits, where h is the wavelet tree’s height.
The o(nh) bits can become O(nh/ lgn) if we use the bitmap representation of
Pătraşcu [14] instead. Now consider a representation where the leftmost leaf is at
depth 1, the next 2 leaves are at depth 3, the next 4 leaves are at depth 5, and in
general the 2d−1th to (2d−1)th leftmost leaves are at depth 2d−1. Then the ith

2 A sequence Xn tends to a value β almost surely if, for every ε > 0, the proba-
bility that |XN/β − 1| > ε for some N > n tends to zero as n tends to infinity,
limn→∞ supN>n Pr(|XN/β − 1| > ε) = 0.
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leftmost leaf is at depth O(lg i). If we build this wavelet tree on sequence ILCP,
the total space is H0(ILCP) + O(n lg d/ lgn), which is a.s. n lg lg(n/d) + O(n).
What is interesting about this shape is that, using the traversal of Gagie et
al. [6] to reach the leaves with values 0 to m − 1, we need only reach m leaves
at depth O(lgm) (i.e., the leftmost m in the wavelet tree), and thus we need to
traverse only O(m) wavelet tree nodes. Array D can be stored in plain form, but
permuted so that it is aligned to the wavelet tree leaves, which allows determining
each distinct document identifier in O(1) time.

Theorem 1. Let T [1..n] = S1 · S2 · · ·Sd be the concatenation of d documents
Sj and let l be the maximum length of a repeated string in any Sj. Let CSA
be a compressed suffix array on T that searches for any pattern P [1..m] in
time search(m) ≥ m. Then we can store T in |CSA| + n(lg d + lg l + O(1))
bits such that the ndoc documents where P [1..m] occurs can be listed in time
O(search(m) + ndoc). If T is generated under Szpankowski’s A2 model [16], then
the space is |CSA| + n(lg d + lg lg(n/d) + O(1)) bits.

In particular, if we use the CSA of Belazzougui and Navarro [1], we recover the
optimal time of Muthukrishnan’s solution, using (in most cases) less space.

Corollary 1. Under the conditions of Theorem 1, we can obtain nHk(T ) +
o(nHk(T )) + n(lg d + lg l + O(1)) bits and O(m + ndoc) time, where Hk(T ) is
the k-th order empirical entropy of T , for any k ≤ α lgσ n, σ the alphabet size of
T , and 0 < α < 1 any constant.

3.2 Document Listing in Repetitive Collections

Array ILCP has yet another property, which also makes it attractive for repetitive
collections.

Lemma 2. Let S be a string generated under Szpankowski’s A2 model. Let T be
formed by concatenating d copies of S, each terminated with the special symbol
“$”, and then carrying out s edits (symbol insertions, deletions, or substitutions)
at arbitrary positions in T (excluding the ‘$’s). Then, a.s., the ILCP array of T
is formed by ρ ≤ r + O(s lg(r + s)) runs of equal values, where r = |S|.
Proof. Before applying the edit operations, we have T = S1 · · ·Sd and Sj = S$
for all j. At this point, ILCP is formed by at most r + 1 runs of equal values,
since the d equal suffixes Sj [SASj [i]..r+1] must be contiguous in the suffix array
SA of T , in the area SA[(i − 1)d + 1..id]. Since the values l = LCPSj [i] are also
equal, and ILCP values are the LCPSj values listed in the order of SA, it follows
that ILCP[(i− 1)d + 1..id] = l forms a run, and thus there are r + 1 = n/d runs
in ILCP. Now, if we carry out s edit operations on T , any Sj will be of length
at most r + s + 1. Consider an arbitrary edit operation at T [k]. It changes all
the suffixes T [k − h..n] for all 0 ≤ h < k. However, since a.s. the string depth
of a leaf in the suffix tree of S is O(lg(r + s)) [16], the suffix will possibly be
moved in SA only for h = O(lg(r + s)). Thus, a.s., only O(lg(r + s)) suffixes are
moved in SA, and possibly the corresponding runs in ILCP are broken. Hence
ρ ≤ r + O(s lg(r + s)) a.s. 
�
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This proof generalizes Mäkinen et al.’s [9] arguments, which hold for uniformly
distributed strings S. There is also experimental evidence [9] that, in real-life
text collections, a small change to a string usually causes only a small change
to its LCP array. Next we design a document listing data structure whose size is
bound in terms of ρ.

Let LILCP[1..ρ] be the array containing the partial sums of the lengths of
the ρ runs in ILCP, and let VILCP[1..ρ] be the array containing the values
in those runs. We can store LILCP as a bitvector L[1..n] with ρ 1s, so that
LILCP[i] = select(L, i). Bitmap L can be stored using a structure by Okanohara
and Sadakane [13] that requires ρ lg(n/ρ) +O(ρ) bits and answers select queries
in O(1) time3. For rank it requires O(lg(n/ρ)) time, but we can reduce it to
O(lg lg n) by building a y-fast trie [19] on every (lg n)th value of LILCP and
completing the query with a binary search using select, adding O(ρ) bits.

With this representation, it holds that ILCP[i] = VILCP[rank(L, i)]. We can
map from any position i to its run i′ = rank(L, i) in time O(lg lg n), and from
any run i′ to its starting position in ILCP, i = select(L, i′), in constant time.

This is sufficient to emulate Sadakane’s algorithm [15] on a repetitive collec-
tion. We will use RLCSA as the CSA. The sparse bitvector B[1..n] marking the
document beginnings in T will be represented just like L, so that it requires
d lg(n/d) + O(d) bits and lets us compute any value D[i] = rank(B, SA[i]) in
time O(lg lg n + lookup(n)). Finally, we build an RMQ data structure on VILCP,
requiring 2ρ + o(ρ) bits and without needing access to VILCP [3].

Assume we have already used RLCSA to find � and r in O(search(m)) time.
Now we compute �′ = rank(L, �) and r′ = rank(L, r), which are the endpoints of
the interval VILCP[�′..r′] containing the values in the runs in ILCP[�..r]. Now we
run the recursive RMQs algorithm on VILCP[�′..r′]. Each time we find a minimum
at VILCP[i′], we remap it to the run ILCP[i..j], where i = max(�, select(L, i)) and
j = min(r, select(L, i+1)−1). For each i ≤ k ≤ j, we compute D[k] using B and
RLCSA as explained, mark it in V [D[k]] ← 1, and report it. Since we do not have
access to the values in ILCP nor in VILCP, the condition to stop the recursion at
some value i′ is that V [D[i]] = 1 is already marked. We show next that this is
correct as long as RMQ returns the leftmost minimum in the range and that we
recurse first to the left and then to the right of each minimum VILCP[i′] found.

Lemma 3. Using the procedure described, we correctly find all the positions � ≤
k ≤ r such that ILCP[k] < m.

Proof. Let j = D[k] be the leftmost occurrence of document j in D[�..r]. By
Lemma 1, among all the positions where D[k′] = j in D[�..r], k is the only one
where ILCP[k] < m. Since we find a minimum ILCP value in the range, and then
explore the left subrange before the right subrange, it is not possible to find first
another occurrence D[k′] = j, since it has a larger ILCP value and is to the right
of k. Therefore, when V [D[k]] = 0, that is, the first time we find a D[k] = j,
it must hold ILCP[k] < m, and the same is true for all the other ILCP values
in the run. Hence it is correct to list all those documents and mark them in V .

3 Using a constant-time rank/select data structure for their internal array H .
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Conversely, whenever we find a V [D[k′]] = 1, the document has already been
reported, thus this is not its leftmost occurrence and then ILCP[k′] ≥ m holds,
as well as for the whole run. Hence it is correct to avoid reporting the whole run
and to stop the recursion in the range, as the minimum value is already ≥ m. 
�

We have thus obtained our first result for repetitive collections:

Theorem 2. Let T = S1 · S2 · · ·Sd be the concatenation of d documents Sj, and
RLCSA be a suffix array on T , searching for any pattern P [1..m] in time search(m)
and accessing SA[i] in time lookup(n). Let ρ be the number of runs in the ILCP array
of T . We can store T in |RLCSA| + ρ lg(n/ρ) + O(ρ) + d lg(n/d) + O(d) bits such
that document listing takes O(search(m) + ndoc · (lg lg n + lookup(n))) time.

3.3 Document Counting

Finally, array ILCP allows us to efficiently count the number of distinct docu-
ments where P appears, without listing them all. Sadakane [15] showed how to
compute it in constant time adding just 2n + o(n) bits of space. With ILCP we
can obtain a variant that is suitable for repetitive collections.

We represent VILCP using a skewed wavelet tree as in Section 3.1. We can visit
the first m leaves in time O(m). Moreover, the traversal algorithm [6] tells us
how many times each value 0 ≤ l < m occurs in VILCP[�′..r′]. More precisely, we
arrive at each leaf l with an interval [�′l, r

′
l] such that VILCP[�′..r′] contains from

the �′lth to the r′lth occurrences of value l in VILCP[�′..r′]. We store a reordering
of the run lengths so that the runs corresponding to each value l are collected
left to right in ILCP and stored aligned to the wavelet tree leaf l. Those are
concatenated into another bitmap L′[1..n] with ρ 1s, similar to L, which allows
us, using select(L′, ·), to count the total length spanned by the �′lth to r′lth runs
in leaf l. By adding the areas spanned over the m leaves, we count the total
number of documents where P occurs. Note that we need to correct the lengths
of runs �′ and r′, as they may overlap the original interval ILCP[�..r].

Theorem 3. Let T = S1 ·S2 · · ·Sd be the concatenation of d documents Sj, and
RLCSA a compressed suffix array on T that searches for any pattern P [1..m] in
time search(m) ≥ m. Let ρ be the number of runs in the ILCP array of T and l
be the maximum length of a repeated substring inside any Sj. Then we can store
T in |RLCSA|+ρ(lg l+2 lg(n/ρ)+O(1)) bits such that the number of documents
where a pattern P [1..m] occurs can be computed in time O(search(m)).

4 Precomputed Document Listing

When the document collection is repetitive, the document array is also repetitive.
Let SA[i..j] be a run in the suffix array, so that there is another area SA[i′..j′],
where SA[i + k] = SA[i′ + k] − 1 for all k ≤ j − i. Then D[i + k] = D[i′ + k]
for all k ≤ j − i, except for at most d cells in the entire array D [5]. Navarro
et al. [12] used this repetitiveness in grammar-based compression of the wavelet
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tree of D. We can also use it to compress the precomputed answers to document
listing queries covering long intervals of suffixes.

Let v be a suffix tree node. We write SAv to denote the interval of the suffix
array covered by node v, and Dv to denote the set of distinct document identifiers
occurring in the same interval of the document array. Given block size b and a
constant β ≥ 1, we build a sparse suffix tree that allows us to answer document
listing queries efficiently. For any suffix tree node v, it holds that

1. |SAv| < b, and thus documents can be listed in time O(b · lookup(n)) by
using CSA and bitvector B; or

2. we can compute the set Dv as a union of some sets Du1 , . . . , Duk
of total

size at most β · |Dv|, where nodes u1, . . . , uk are in the sparse suffix tree.

We start by selecting suffix tree nodes v1, . . . , vL, so that no selected node is
an ancestor of another, and the intervals SAvi of the selected nodes cover the
entire suffix array. Given node v and its parent w, we select v if |SAv| ≤ b and
|SAw| > b, and store Dv with the node. These nodes become the leaves of the
sparse suffix tree, and we assume that they are numbered from left to right. Next
we proceed upward in the suffix tree. Let v be an internal node, u1, . . . , uk its
children, and w its parent. If the total size of sets Du1 , . . . , Duk

is at most β ·|Dv|,
we remove node v from the tree, and add nodes u1, . . . , uk to the children of node
w. Otherwise we keep node v in the sparse suffix tree, and store Dv there.

Let v1, . . . , vL be the leaf nodes and vL+1, . . . , vL+I the internal nodes of the
sparse suffix tree. We use grammar-based compression to replace frequent subsets
in sets Dv1 , . . . , DvL+I with grammar rules expanding to those subsets. Given a
set Z and a grammar rule X → Y , where Y ⊆ {1, . . . , d}, we replace Z with
(Z ∪ {X}) \ Y , if Y ⊆ Z. As long as |Y | ≥ 2 for all grammar rules X → Y , each
set Dvi can be decompressed in O(|Dvi |) time.

When all rules have been applied, we store the reduced sets Dv1 , . . . , DvL+I

as an array A of document and rule identifiers. The array takes |A| lg(d + nR)
bits of space, where nR is the total number of rules. We mark the first cell in the
encoding of each set with a 1 in a bitvector BA[1..|A|], so that set Dvi can be
retrieved by decompressing A[select(BA, i), select(BA, i + 1) − 1]. The bitvector
takes |A|(1 + o(1)) bits of space and answers select queries in O(1) time [13].
The grammar rules are stored similarly, in an array G taking |G| lg d bits and
a bitvector BG[1..|G|] of |G|(1 + o(1)) bits separating the array into rules (note
that right hand sides of rules are formed only by terminals).

In addition to the sets and the grammar, we also have to store the sparse
suffix tree. Bitvector BL[1..n] marks the first cell of interval SAvi for all leaf
nodes vi, allowing us to convert interval SA[�, r] into a range of nodes [ln, rn] =
[rank(BL, �), rank(BL, r + 1) − 1]. By using the same bitvector as for LILCP in
Section 3.2, we can store BL in L lg(n/L)+O(L) bits and answer rank queries in
O(lg lg n) time and select queries in constant time. Another bitvector BF [1..L+I]
of (L + I)(1 + o(1)) bits marks the nodes that are the first children of their
respective parents, supporting rank queries in constant time [13]. Array F of
I lg I bits stores pointers to parent nodes, so that if node vi is a first child, its
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function listDocuments(�, r)
(res, ln)← (∅, rank(BL, �))
if select(BL, ln) < �:

r′ ← min(select(BL, ln+ 1)− 1, r)
(res, ln)← (list(�, r′), ln+ 1)
if r′ = r: return res

rn ← rank(BL, r + 1)− 1
if select(BL, rn+ 1) ≤ r:

�′ ← select(BL, rn+ 1)
res ← res ∪ list(�′, r)

return res ∪ decompress(ln, rn)

function decompress(�, r)
(res, i)← (∅, �)
while i ≤ r:

next ← i+ 1
while BF [i] = 1:

(i′, next′)← parent(i)
if next′ > r + 1: break
(i, next)← (i′, next′)

res ← res ∪ set(i)
i ← next

return res

function parent(i)
par ← F [rank(BF , i)]
return (par + L,N [par])

function set(i)
res ← ∅
� ← select(BA, i)
r ← select(BA, i+ 1) − 1
for j ← � to r:

if A[j] ≤ d: res ← res ∪ {A[j]}
else: res ← res ∪ rule(A[j]− d)

return res

function rule(i)
� ← select(BG, i)
r ← select(BG, i+ 1)− 1
return G[� . . . r]

function list(�, r)
res ← ∅
for i ← � to r:

res ← res ∪ {rank(B,SA[i])}
return res

Fig. 1. Pseudocode for document listing using precomputed answers. Function
listDocuments(�, r) lists the documents from interval SA[�, r]; decompress(�, r) decom-
presses the sets stored in nodes v�, . . . , vr; parent(i) returns the parent node and the
leaf node following it for a first child vi; set(i) decompresses the set stored in vi; rule(i)
expands the ith grammar rule; and list(�, r) lists the documents from interval SA[�, r]
by using CSA and bitvector B.

parent node is vj , where j = L + F [rank(BF , i)]. Finally, array N of I lgL bits
stores a pointer to the leaf node following each internal node.

Figure 1 contains pseudocode for document listing using the precomputed
answers. Function list(�, r) takes O((r + 1 − �)(lg lg n + lookup(n))) time, set(i)
takes O(|Dvi |) time, and parent(i) takes O(1) time. Function decompress(�, r)
requires O(|res|) time to decompress the sets. Traversing the tree takes addi-
tional O(h) time per decompressed set, where h is the height of the sparse suffix
tree. As each set contains at least one document, and we may have to list each
document up to β times, this sums to O(βh · |res|) time in the worst case. Hence
the total time for listDocuments(�, r) is O(ndoc · βh + lg lg n), if the answer has
been precomputed, and O(b · (lg lgn + lookup(n))) otherwise.

5 Experiments

We implemented the document listing approaches described in preceding sec-
tions, and measured their performance on two datasets. All experiments were
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Table 1. Means and standard deviations (SD) of ndoc and the ratio occ
ndoc

for the
pattern sets

High Medium Low

Mean SD Mean SD Mean SD

fiwiki, ndoc 1810.8 1369.8 602.7 654.9 327.0 556.7

fiwiki, ratio 32.04 378.62 4.26 22.72 1.75 2.46

influenza, ndoc 111021.3 29379.4 69666.5 19056.8 46304.3 17082.8

influenza, ratio 1.55 0.26 1.23 0.08 1.11 0.06

run on an Intel i7 860 2.8 GHz (8192 KB cache), with 16 GB RAM, running
Ubuntu 12.04 and compiling with gcc-4.6.3 -03.

Test Data. We used two repetitive text collections. Fiwiki is a 400 MB prefix of
Finnish Wikipedia version history. Each version of each Wikipedia article is con-
sidered a separate document, giving 20,433 documents. influenza is composed
of genomes of the influenza virus, totaling 321.2 MB, and 227,356 documents.

Test Patterns. Let occ be the number of times a pattern occurs in the whole col-
lection, and recall ndoc is the number of documents containing the pattern. Doc-
ument listing queries for patterns with similar occ and ndoc are easily handled by
just enumerating all the positions of pattern occurrences (with the RLCSA) and
mapping them to document identifiers. This approach however becomes less fea-
sible as the separation between occ and ndoc grows, and at some point specialized
document listing approaches become necessary. With this in mind, for each collec-
tion we constructed three sets of patterns as follows. First, we listed all patterns
of length k present, and then ordered the patterns in descending order by value
occ− ndoc, picking specific intervals of this list for testing.

For fiwiki, the pattern length is 8, and each pattern set contains 20,000
patterns, starting at ranks 1,001, 40,001 and 100,001 of the full list of patterns.
For influenza, the pattern length is 6, the set size 1000, and starting ranks are
1, 1,001 and 2,001. We call these three sets in both collections the high, medium
and low pattern sets, respectively. Table 1 gives pattern statistics.

Results. Figure 2 shows the space-time tradeoff achieved by our document list-
ing methods. The interleaved LCP array approach (Section 3) is called ilcp, and
values following underscores represent the RLCSA sample rate. The precom-
puted document listing approach (Section 4) is called pdl, and values following
underscores represent block size and the β value.

As a baseline we measured the time for a brute force (brute) approach, which
simply enumerates pattern occurrences with the RLCSA, collecting distinct doc-
uments. This approach adds no space to the index. Like ilcp, brute’s tradeoff
comes from the sample period of the RLCSA.

Our first observation is that the new approaches achieve small space overhead,
particularly on the fiwiki set. Specifically, the RLCSA with sample period 128



Document Listing on Repetitive Collections 117

High Medium Low

1.0

2.5

5.0

10.0

25.0

50.0

100.0 ●

●

●
● ●

●

●

●
● ●

●

●

●
●

●

fiw
iki

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

tim
e 

(s
)

method

●

●

●

●

●

brute_128

brute_64

brute_32

brute_16

brute_8

ilcp_128

ilcp_64

ilcp_32

ilcp_16

ilcp_8

pdl_1024_16

pdl_256_16

pdl_128_2

High Medium Low

5

10

25

50

100

250

500

1000 ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

influenza

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
bits per character

tim
e 

(s
)

Fig. 2. Document listing times and memory required by different document listing
approaches. Bits per character are shown on the x-axis, and time taken to list the
documents on the y-axis (note the logarithmic scale). The time taken to find suffix
array intervals corresponding to each pattern is not included in times shown here.

takes 29 MB and 27 MB for the fiwiki and influenza collections, respectively
(about 7% and 8% of the uncompressed collection sizes). Including such RLCSA,
ilcp took 40 MB and 45 MB (about 10% and 14%). With block size b = 1024
and β = 16, pdl took 61 MB and 267 MB (about 15% and 83%).

With respect to query time, pdl significantly outperforms ilcp and brute on
both data sets and is around an order of magnitude faster than the others when
memory is equated. On the other hand ilcp is beaten by brute, except when the
separation between occ and ndoc becomes large (the high fiwiki pattern set).

Our most important experimental result is that, on the fiwiki collection, pdl
speeds up document listing by around an order of magnitude over brute while still
using total space that is only a fraction of the uncompressed collection size. We
were unable to compare to more sophisticated document listing techniques [12]
designed for non-highly-repetitive collections because we could not construct
them on our data sets. We leave an extensive comparison for the full paper.

6 Conclusions

We have described two approaches to document listing in highly repetitive col-
lections — using an interleaved LCP array (ilcp) and precomputed document
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listing (pdl) — and shown that, on some representative collections, pdl signifi-
cantly reduces the query time of a brute-force solution, while still using only a
fraction of the space of the uncompressed collection.

Aside from further experimental analysis, there are many directions for future
work. Probably the most interesting one is to apply the ilcp approach over faster
document listing indices, such as the wavelet tree of Theorem 3, which would
yield an interesting space/time tradeoff.

Acknowledgements. We thank Giovanni Manzini for suggesting this line of re-
search, Veli Mäkinen and Jorma Tarhio for helpful discussions, Cecilia Hernández
for her grammar compressor, and Meg Gagie for righting our own grammar.
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Abstract. The best known approximation ratio for the shortest super-
string problem is 2 11

23
(Mucha, 2012). In this note, we improve this bound

for the case when the length of all input strings is equal to r, for r ≤ 7.
E.g., for strings of length 3 we get a 1 1

3
-approximation. An advantage

of the algorithm is that it is extremely simple both to implement and to
analyze. Another advantage is that it is based on de Bruijn graphs. Such
graphs are widely used in genome assembly (one of the most important
practical applications of the shortest common superstring problem). At
the same time these graphs have only a few applications in theoretical
investigations of the shortest superstring problem.

1 Introduction

1.1 Problem Statement

The superstring problem (also known as shortest common superstring problem,
SCS, or shortest superstring problem, SSP) is: given n strings s1, . . . , sn to find
a shortest string containing each si as a substring. By r-superstring problem
(or just r-SCS) we denote the SCS problem for the special case when all input
strings have length exactly r. Gallant et al. [10] showed that both SCS over the
binary alphabet and 3-SCS are NP-hard, while 2-SCS can be solved in linear
time. Crochemore et al. [7] proved that 2-SCS with multiplicities can be solved
in quadratic time. (Note however that when both parameters, the length of
input strings and the size of the alphabet, are bounded by constants then the
problem degenerates since then the number of possible input strings is bounded
by a constant.) The problem has received a lot of attention as it is interesting
as a purely theoretical problem and has many practical applications including
genome assembly and data compression.

In this note, we present a simple polynomial time algorithm that finds an
(r2 +r−4)/(4r−6)-approximation to r-SCS. This is better than the best known
approximation ratio 2 11

23 by Mucha [16] for r = 3, . . . , 7. The algorithm first
finds an approximate longest traveling salesman path in the overlap graph. It
then finds an approximate shortest rural postman path in the de Bruijn graph.
We show that if a permutation of the input strings given by one of these two
paths does not give a good enough superstring then the other permutation does.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 120–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1.2 General Setting

For strings s and t by overlap(s, t) we denote the longest suffix of s that is also
a prefix of t. By prefix(s, t) we denote the first |s| − |overlap(s, t)| symbols of s.
Similarly, suffix (s, t) is the last |t| − |overlap(s, t)| symbols of t. Clearly, for any
strings s and t,

prefix(s, t) ◦ overlap(s, t) = s, overlap(s, t) ◦ suffix(s, t) = t .

s

t

prefix(s, t) suffix(s, t)

overlap(s, t)

E.g.,
overlap(ABACBA, BABCA) = BA, prefix(ABACBA, BABCA) = ABAC .

For a non-empty string s, by prefix (s) and suffix (s) we denote the string resulting
from s by removing the last and the first symbol, respectively.

Now let S = {s1, . . . , sn} be a set of strings over an alphabet Σ and s be
a superstring of S. By OPT(S) we denote the length of a shortest possible
superstring for S. A compression of s (w.r.t. S) is

|s1| + |s2| + · · · + |sn| − |s| .

Clearly minimizing the length of a superstring corresponds to maximizing the
compression.

2 Known Results for SCS and Related Graph Problems

2.1 Superstring Problem

Improving the approximation ratio for the SCS problem is interesting both from
practical and theoretical points of view. In this subsection, we review known
results in this direction. Table 1 shows the sequence of known approximation
algorithms and inapproximability results (under the P�=NP assumption) both
for minimizing the length and maximizing the compression of superstrings. The
well-known Greedy Conjecture [4] says that repeatedly combining two strings
with maximal overlap gives a 2-approximation for SCS. Blum et al. [4] proved
that this simple algorithm has ratio 4, and Kaplan and Shafrir [13] improved the
ratio to 3.5.

Vassilevska [25] showed that an α-approximation of SCS over the binary al-
phabet implies an α-approximation over any alphabet. Hence, approximating
SCS over the binary alphabet cannot be easier than for an arbitrary alphabet.
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Table 1. Known approximation ratios and inapproximability results for length and
compression of superstrings

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9

Teng, Yao [23] 1993

2 5
6

Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63

Kosaraju, Park, Stein [15] 1994

2 3
4

Armen, Stein [1] 1994

2 50
69

Armen, Stein [2] 1995

2 2
3

Armen, Stein [3] 1996

2 25
42

Breslauer, Jiang, Jiang [5] 1997

2 1
2

Sweedyk [21] 1999

2 1
2

Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2

Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23

Mucha [16] 2013

approximating compression

1
2

Tarhio, Ukkonen [22] 1988
1
2

Turner [24] 1989
2
3

Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3

Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245

Ott [17] 1999

1 1
1216

Vassilevska [25] 2005

1 1
332

Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216

Ott [17] 1999

1 1
1071

Vassilevska [25] 2005

1 1
203

Karpinski, Schmied [14] 2012
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Note that SCS is a typical permutation problem: if we know the order of the
input strings in a shortest superstring then we can recover this superstring by
overlapping the strings in this given order. For this reason, it will be convenient
for us to identify a superstring with the order of input strings in it. Below we
describe several related graph permutation problems.

2.2 Prefix/Overlap Graphs and Traveling Salesman Problem

Many known approximation algorithms for SCS work with the so-called overlap
graph. The overlap graph OG(S) of the set of strings S = {s1, . . . , sn} is a
complete weighted directed graph on a set of vertices V = {1, . . . , n}. The weight
of an edge from i to j equals |overlap(si, sj)|. It is easy to see that solving SCS
corresponds to solving the asymmetric maximum traveling salesman path (MAX-
ATSP) problem in OG(S) where one is asked to find a longest path visiting each
vertex of the graph exactly once (such a path is called Hamiltonian). Note that
the length of any Hamiltonian path in this graph equals the compression of the
corresponding superstring. The best known approximation ratio 2/3 for MAX-
ATSP is due to Kaplan et al. [12]. This immediately gives a 2/3-approximation
for the compression. Also, Breslauer et al. [5] showed that an α-approximation
for MAX-ATSP implies a 3.5 − 1.5α approximation for SCS. Plugging in the
result by Kaplan et al. [12] gives a 2.5-approximation for SCS.

An alternative way is to find a minimum traveling salesman path (MIN-ATSP)
in the prefix graph PG(S) where vertices i and j are joined by an edge of weight
|prefix(si, sj)|. However MIN-ATSP cannot be approximated within any poly-
nomial time computable function unless P=NP [20].

2.3 De Bruijn Graphs and Rural Path Problem

Another important concept is the de Bruijn graph DG(S). In this graph each
input string si ∈ S is represented as a directed (unweighted) edge from prefix(si)
to suffix(si). De Bruijn graphs are widely used in genome assembly, one of the
practical applications of the SCS problem [19]. A useful property of de Bruijn
graphs is the following: if S is the set of all substrings of length k of some
unknown string s (this is called a k-spectrum of s) then we can solve SCS for S
in polynomial time. Indeed, in this case there is an Eulerian path in the de Bruijn
graph DG(S) spelling the string s. The advantage is that an Eulerian path in
a graph can be found in linear time (as opposed to Hamiltonian path that is
NP-hard to find). The found Eulerian path in DG(S) does not necessarily need
to spell the initial string s (as a graph may contain many Eulerian paths) but
it spells a shortest superstring. See Figure 1 for an illustration. A more detailed
description of this algorithm can be found, e.g., in [19].

In general, solving the r-SCS problem corresponds to finding a shortest rural
postman path in the following extended de Bruijn graph EDG(S): the set of
vertices is Σr−1, and every two vertices s and t are joined by a directed edge of
weight |suffix(s, t)|. A path t1, . . . , tk spells a string of length

|t1| + |suffix(t1, t2)| + |suffix(t2, t3)| + · · · + |suffix(tk−1, tk)| .
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Fig. 1. Solving SCS for a k-spectrum of an unknown string s is easy. (a) De Bruijn
graph of a set of strings {CDEB, CDBC, DBCD, BCDB, BCDE}. (b) An Eulerian path in this
graph spells a shortest superstring BCDBCDEB.

Thus, the extended de Bruijn graph may be viewed as a weighted analogue of
de Bruijn graph. The shortest directed rural postman path (DRPP) problem is:
given a graph and a subset of edges to find a shortest path going through all
these edges. DRPP has many practical applications (see, e.g., [9], [11]), and many
papers study heuristic algorithms for it ([6], [9], [11]). At the same time almost
no non-trivial theoretical bounds are known for DRPP.

This approach is particularly useful for solving 2-SCS. For this, we first con-
struct the de Bruijn graph of the given set of 2-strings, then for each weakly
connected component we add edges between imbalanced vertices (i.e., vertices
with non-zero difference of in-degree and out-degree) so that the resulting com-
ponent contains an Eulerian path. Finally, we add edges between components
so that the graph contains an Eulerian path. Figure 2 gives an example. For a
more detailed explanation of this algorithm see [10]. Crochemore et al. [7] used
a similar technique to solve 2-SCS with multiplicities.

Note that the algorithm described above works for 2-SCS, but not for general
r-SCS for the following reason: in case of 2-SCS, strings from different weakly
connected components do not share letters (and hence have empty overlap) so
the components can be traversed in any order.

3 Algorithm

In this section, we present a simple (r2+r−4)/(4r−6)-approximation algorithm
for the r-SCS problem. This ratio is better than the best known ratio 2 11

23 [16]
for r ≤ 7. Before presenting the algorithm we explain its main idea for the case
of 3-strings.

3.1 Informally

Let S ⊆ Σ3 be a set of n strings of length 3. Note that n + 2 ≤ OPT(S) ≤ 3n
(the former inequality corresponds to the case when in a shortest superstring all
input strings have overlaps of size 2, the latter one corresponds to the case when
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D A

B E

C K L

(a)

D A

B E

C K L

(b)

D A

B E

C K L

(c)

Fig. 2. 2-SCS can be solved in polynomial time. (a) de Bruijn graph of a set of strings
{KL, DB, DE, CK, BD, DA}. (b) After adding an edge ED each weakly connected com-
ponent contains an Eulerian path. (c) The string DBDEDACKL spelled by a path going
through all the edges is a shortest superstring.

the input strings do not overlap at all in a shortest superstring). Note that in the
two extreme cases when OPT(S) = n+2 or OPT(S) = 3n a shortest superstring
can be easily found. Indeed, if OPT(S) = n+2 then S is the set of all substrings
of length 3 of an unknown superstring of length n + 2. Such a superstring can
be found by traversing an Eulerian path in the de Bruijn graph of S, DG(S).
On the other hand, if OPT(S) = 3n then the input strings just do not overlap
with each other and any concatenation of them is a shortest superstring. The
case OPT(S) = n + 2 corresponds to the maximal possible compression while
the case OPT(S) = 3n corresponds to the minimal (i.e., zero) compression.

The algorithm proceeds as follows. We first construct the overlap graph OG(S)
and find a 2/3-approximation of the maximum TSP path in it. Such a path
provides a good approximation to OPT(S) in case OPT(S) is large.

We then construct the de Bruijn graph DG(S). Note that this graph can be
viewed as the de Bruijn graph of a set of strings of length 2 over the alphabet
Σ2. Namely, in the original de Bruijn graph a string ABC is represented as an
edge from AB to BC. This edge can be viewed as corresponding to the string
(AB)(BC) of length 2 over the new alphabet. We then find a shortest superstring
to this new set of 2-strings (recall that 2-SCS can be solved exactly in polynomial
time) and translate the found solution back to the original problem. This gives
a good approximation in case OPT(S) is small. The crucial fact is that if two
input strings overlap a lot, then the corresponding 2-strings also overlap a lot
and hence many overlaps are found by an algorithm for 2-SCS.

3.2 Formally

We are now ready to give all the details, see Algorithm 3.1. Note that the algo-
rithm is quite easy to implement. Its only black-box part is a 2/3-approximation
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of MAX-ATSP. A recent algorithm achieving this ratio is due to Paluch et al. [18]
and it is essentially based on finding a maximum weight matching. Thus, the
running time of the presented algorithm is O(n3 ·

∑n
i=1 |si|) = O(n4).

Algorithm 3.1. (r2 + r − 4)/(4r − 6)-approximation algorithm r-SCS
Input: S = {s1, . . . , sn} ⊆ Σr.
Output: A superstring of S that is at most (r2 + r− 4)/(4r − 6) times longer than a

shortest superstring.

// first, find a long traveling salesman path in the overlap graph
1: let π be a 2/3-approximate maximum traveling salesman path in OG(S)

// then, find a short rural postman path in the de Bruijn graph
2: let S ′ = {s′1, . . . , s′n} ⊆ Σ2

1 be a set of 2-strings over the alphabet Σ1 = Σr−1; s′i is
the 2-string consisting of prefix of si of length r− 1 and suffix of si of length r− 1

3: let π1 be a shortest superstring for the set of 2-strings S ′

4: return the better one among π and π1

Theorem 1. Algorithm 3.1 finds an α(r)-approximation for r-SCS where

α(r) =
r2 + r − 4

4r − 6
.

Proof. Let H be a shortest Hamiltonian path in OG(S). Then clearly

OPT(S) = rn− w(H) ,

where w(H) is the weight of H . A 2/3-approximate maximum traveling salesman
path has weight at least 2w(H)/3. Thus, the permutation π gives a superstring
of length at most rn − 2w(H)/3 (formally, to get a superstring from a permu-
tation one just overlaps all the strings in this given order). The corresponding
approximation ratio is

rn− 2w(H)/3

rn− w(H)
. (1)

Now let u denote the number of edges of weight at most (r− 2) in H . Then the
number of edges of weight exactly (r − 1) in H is (n − 1 − u). Then w(H) ≤
(r − 1)(n− 1 − u) + (r − 2)u and hence

u ≤ (r − 1)(n− 1) − w(H) . (2)

Note that

overlap(s′i, s
′
j) =

{
1 if overlap(si, sj) = r − 1,
0 otherwise.

Since S ′ is a 2-SCS instance, a shortest superstring for S ′ has the maximal
possible number of overlaps of size 1. This number is in turn equal to the maximal
possible number of overlaps of size r − 1 for S. Since the number of overlaps of
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Fig. 3. Plots of r−2x/3
r−x

and (r2−2r+2)−(r−1)x
r−x

for r = 3, 4, 5 and 0 ≤ x ≤ r − 1

size r−1 in H is (n−1−u) the length of a shortest superstring for S ′ has length
at most 2n− (n− 1 − u) = n + u + 1. Hence π1 gives a superstring of length at
most rn− (r − 1)(n− 1 − u) in S. Because of (2), this is at most

rn− (r − 1)(n− 1 − (r − 1)(n− 1) + w(H)) < (r2 − 2r + 2)n− (r − 1)w(H) .

The corresponding approximation ratio is

(r2 − 2r + 2)n− (r − 1)w(H)

rn− w(H)
. (3)

From (1) and (3) and a simple observation that 0 ≤ w(H)/n ≤ (r − 1) we
conclude that the approximation ratio of the constructed algorithm is

α(r) = max
0≤x≤r−1

{
min

{
r − 2x/3

r − x
,

(r2 − 2r + 2) − (r − 1)x

r − x

}}
.

Fig. 3 shows plots of the considered functions for r = 3, 4, 5.
By taking the derivatives it is easy to see that the former function increases

while the latter one decreases on [0, r − 1]. This means that the maximum of
their minimum is attained at x where they meet, namely

x =
r2 − 3r + 2

r − 5/3
.

Plugging in this x gives

α(r) =
r2 + r − 4

4r − 6
. 
�
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Abstract. We address the problem of whether the brute-force pro-
cedure for the local improvement step in a local search algorithm
can be substantially improved when applied to classical NP-hard
string problems. We examine four problems in this domain: Closest

String, Longest Common Subsequence, Shortest Common Su-

persequence, and Shortest Common Superstring. Herein, we con-
sider arguably the most fundamental string distance measure, namely
the Hamming distance, which has been applied in practical local search
implementations for string problems. Our results indicate that for all
four problems, the brute-force algorithm is essentially optimal.

1 Introduction

Local search is a universal algorithmic approach for coping with computationally
hard optimization problems. It is typically applied on problems which can be
formulated as finding a solution maximizing or minimizing a criterion among a
number of feasible solutions. The main idea is to start with some solution, then
search inside the local neighborhood of this solution for a better solution until
a locally optimal solution has been found. The hope is then that the locally
optimal solution is almost as good as a globally optimal one. See the book by
Aarts and Lenstra [1] for further background and results concerning local search.

There are two main theoretical approaches to study local search: PLS-
completeness [11] and parameterized local search [13,6]. PLS-completeness can
be used to show that finding a locally optimal solution is computationally hard
since a lot of improvement steps might be needed until it has been found. In
contrast, parameterized local search is concerned with the parameterized com-
plexity of the problem of searching the local neighborhood of a solution in order
to find a better solution. Usually the size of the neighborhood is nO(k), where n is
the total input length, and k is a parameter measuring the “radius” of the neigh-
borhood; that is, the maximum distance to the current solution. It is therefore
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natural to ask whether nO(k) time is required for searching this neighborhood, or
whether f(k) · poly(n) time can be achieved. This is precisely the main question
underlying the theory of parameterized complexity [5].

There is substantial work in parameterized local search. For example, con-
cerning the Traveling Salesman problem, Balas [2] showed that one can
find, if it exists, a better tour with “shift” distance at most k to the old one
in 4k ·poly(n) time. Marx [13] proved the non-existence of such an algorithm for
the edge-exchange neighborhood. Subsequently, the complexity of local search
for further neighborhood measures of Euclidean Traveling Salesman was
examined [10]. Notably, the fixed-parameter tractability of Euclidean Trav-

elling Salesman and the edge-exchange neighborhood remains open [13,10].
Fellows et al. [6] provided fixed-parameter algorithms for local search variants of
diverse graph problems such as Vertex Cover, Odd Cycle Transversal,
Max Cut, and Min-Bisection on planar graphs and proved W[1]-hardness for
the general case. Fomin et al. [8] considered the Feedback Arc set in Tour-

naments problems and presented a subexponential-time algorithm for its edge-
exchange local search version. Further results concerning parameterized local
search have been achieved for clustering problems [4], Boolean Constraint

Satisfaction [12], Stable Marriage variants [14], and Satisfiability [16].
In this paper, we add a new realm to the study of parameterized local search

by considering string problems. Stringology is one of the most widely studied
areas in computer science, particularly motivated by direct applications in text
mining and computational biology. Here, we consider four of the most promi-
nent NP-hard string problems: Closest String, Longest Common Sub-

sequence, Shortest Common Supersequence, and Shortest Common

Superstring. Local search seems to be a natural approach for dealing with
string problems. For instance, a local search heuristic using the Hamming dis-
tance neighborhood has been implemented and evaluated with real-world data
for problems closely related to Closest String [7,15].

We examine all four string problems above in the framework of parameter-
ized local search. Herein, we consider the Hamming distance neighborhood of a
temporary solution and prove that the local search version of all these problems
are W[1]-hard even on alphabets of constant size, with the Hamming distance k
between the old and new solutions as parameter. Since the Hamming distance
seems to be the most simple distance between strings, our results could serve as
the basis for proving the hardness for other distance neighborhoods. Moreover,
for all problems except Shortest Common Supersequence, we can exclude
the existence of algorithms with running-times no(k). Thus, for these three prob-
lems, the nO(k)-time brute-force cannot be substantially improved. We remark
that these results do not exclude the existence of all parameterized local search
algorithms for these problems, but rather motivate the study of further param-
eterizations, for instance by considering the combined parameter “number m of
strings and neighborhood radius k”.
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2 Preliminaries

For a string S we write |S| to denote the length of S. We use S[i], 1 ≤ i ≤ |S|, to
denote the letter at position i in S and use S[i, j], 1 ≤ i < j ≤ |S|, to denote the
substring S[i] · · ·S[j] of S from position i to position j. A substring of the form
S[i, n] is called a suffix of S, and a substring S[1, j] is called a prefix. For a given
suffix T of S, we write S−T to denote the string S[1, |S|− |T |]. We use S− as a
shorthand for S − S[|S|]. A string T is a subsequence of S if T can be obtained
from S by deleting some letters; that is, if there exists a sequence of positions
i1 < · · · < i|T | with S[ij] = T [j] for all j ∈ {1, . . . , |T |}. If T is a subsequence
of S, then S is called a supersequence of T . The Hamming distance dH(S, T ) :=
|{i : S[i] �= T [i]}| between two string S and T of equal length is defined as the
number of positions in which the two strings differ. We define the Hamming
distance of a string S to a set T of strings as dH(S, T ) := maxT∈T dH(S, T ).

We analyze our local search string problems in the framework of parameterized
complexity [5]. A parameterized reduction from a parameterized problem L to
another parameterized problem L′ is an algorithm with running time f(k) ·
poly(|x|) for some computable f(), that maps an instance (x, k) ∈ {0, 1}∗ × N

to an instance (x′, k′) ∈ {0, 1}∗ × N such that:

(i) k′ ≤ g(k) for some computable g(), and
(ii) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′.

If g() is linearly bounded, i.e. g(k) ≤ ck for some constant c, then we say that the
reduction is a linear parameterized reduction. Two basic classes of parameterized
intractability are W[1] and W[2]; if there is a parameterized reduction from a
W[1]-hard (W[2]-hard) problem to a parameterized problem L, then L is W[1]-
hard (W[2]-hard).

The hardness results in this paper are obtained by parameterized reductions
from the following three problems which all have the solution size k as param-
eter: In the W[2]-hard Multicolored Hitting Set(k) (MHS(k)), the input
is a hypergraph (V, E) and a coloring function c : V → {c1, . . . , ck}. The goal is
to determine whether there exists a size-k subset H ⊆ V with H ∩E �= ∅ for all
E ∈ E , such that H is multicolored, that is, |{v ∈ H : c(v) = ci}| = 1 for all ci ∈
{c1, . . . , ck}. In the W[1]-hard Multicolored Independent Set(k) (MIS(k)),
the input is a graph (V,E) and a coloring function c : V → {c1, . . . , ck}, and
the goal is to determine if (V,E) has a multicolored independent set I ⊆ V .
The W[1]-hard Multicolored Clique(k) (MC(k)) is defined similarly, ex-
cept the goal is to determine the existence of a multicolored clique instead of a
multicolored independent set. We make use of the following result [3].1

Lemma 1. Let L be a parameterized problem with parameter k, and assume
that there is a linear parameterized reduction from either MHS(k), MIS(k), or
MC(k) to L. Then unless all problems in SNP can be solved in subexponential
time, size-n instances of L cannot be solved in no(k) time.

1 For Hitting Set, Chen et al. [3] do not explicitly make this statement, but it can
be inferred via a simple reduction from Dominating Set.
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3 Closest String

The first local search string problem we consider is a local search variant of the
Closest String problem. Let Σ denote some arbitrary alphabet, and n be a
positive integer. In Closest String, the input is a set T ⊆ Σn of strings and
an integer d, and the goal is to determine whether there is a string S ∈ Σn such
that dH(S, T ) ≤ d. The local search variant of this problem that we consider is
defined as follows:

Local Search Closest String (LSCS):

Input: A set T := {T1, . . . , Tm} ⊆ Σn of input strings, a temporary
solution string S ∈ Σn with d := dH(S, T ), and a nonnegative integer k.

Question: Is there a string S̃ of length n such that dH(S̃, T ) < d

and dH(S̃, S) ≤ k?

Thus, we are given a temporary solution string S, and we want to find a better
solution S̃ in the k-neighborhood of S, where this neighborhood is defined w.r.t.
Hamming distance.

We denote the different parameterizations of this problem by appending the
parameters to the problem name in parenthesis. Thus, LSCS(k) for instance, is
the LSCS problem parameterized by k. Observe that LSCS can be solved by
a brute-force algorithm in O(nk+1 ·m) time. It is also not difficult to devise a
dk · poly(n,m) algorithm for this problem based on the following observation: as
long as S differs from some input string at least d positions, then one of these
positions in S has to be changed. Achieving an f(m) · poly(n)-time algorithm
by modifying the Integer Linear Programming-based algorithm of Gramm et
al. [9] is also possible. Below, we show that for the parameter k, one cannot
substantially improve on the brute-force algorithm in general, even when the
strings are binary. We begin with the easier case of parameterized-size alphabets.

Proposition 1. There is a linear parameterized reduction from MHS(k) to
LSCS(k + |Σ|).

We next consider the binary case. Let (V := {1, . . . , |V |}, E , c) be an instance
of MHS(k), and assume, w.l.o.g., that |E| ≤ |V | − k for each E ∈ E . Set the
individual input string length to n := |V | + |V | · |E| + 2k · |V |, and set the
temporary solution S to 0n. For each E ∈ E create a string TE of length n. For
each v ∈ {1, . . . , |V |}, set TE[v] := 1 if v ∈ E and TE [v] := 0 otherwise. Note that
the Hamming distance between TE [1, |V |] and S[1, |V |] is exactly |E| ≤ |V | − k.
The remaining positions are used to “pad” the distance between TE and S
to |V | − k. To this end, assign a unique number i ∈ {1, . . . , |E|}, and use the
substring TE[i · |V |+ 1, (i+ 1) · |V |] to pad the distance between TE and S; that
is, set the first |V |−k−|E| positions in this substring to 1 and all other positions
in TE[|V | + 1, n] to 0.

Next, add an additional set of strings which enforce that for each proper
subset of colors C ⊂ {c1, . . . , ck}, the set of colors used by a solution string

C(S̃) := {c(v) : S̃[v] = 1} is not C. Since we enforce this for each proper subset, it
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will follow that C(S̃) = {c1, . . . , ck}. For each proper C ⊂ {c1, . . . , ck}, construct
a string TC such that, for each v ∈ {1, . . . , |V |}, we have TC [v] = 0 if c(v) ∈ C
and TC [v] = 1 otherwise. Note that the distance between S[1, |V |] and TC [1, |V |]
equals the number of vertices in V not colored by a color in C. Pad the distance
between TC and S to |V |− |C| by assigning TC a unique number i ∈ {1, . . . , 2k−
1}, and let x denote the number of positions v in TC [1, |V |] with TC [v] = 0. Note
that x ≥ |C| since for each color c ∈ C there is at least one vertex colored c.
Consequently, set the first x−|C| positions in TC [|V |·(|E|+i)+1, |V |·(|E|+i+1)]
to 1, and all remaining unspecified positions to 0. Observe that in this way
T∅ = 1|V |0n−|V |.

This concludes the construction of the set T of input strings, and the
instance (T , S, k) of LSCS(k). Clearly this construction can be performed
in 2k · poly(n,m) time, and therefore it is a parameterized reduction. Further-
more, observe that dH(S, T ) = |V |, and that this distance is obtained by the
distance between S and T∅.

Theorem 1. There is a linear parameterized reduction from MHS(k) to
LSCS(k) for binary strings.

Corollary 1. LSCS(k) for binary strings is W[2]-hard, it cannot be solved no(k)

time unless all problems in SNP can be solved in subexponential time.

4 Longest Common Subsequence

The Longest common subsequence (LCS) problem asks to determine
whether an input set T of strings has a string S of some specified length �
such that S is a subsequence of each string T ∈ T . In this section we consider
the following local search variant of LCS:

Local Search Longest Common Subsequence (LSLCS):

Input: A set T := {T1, . . . , Tm} of input strings over an alphabet Σ, a
temporary solution string S such that S is a subsequence of each string
in T , and a nonnegative integer k.
Question: Is there a letter σ ∈ Σ and a string S̃ of length |S| such that

S̃σ is a subsequence of each string in T and dH(S̃, S) ≤ k?

Observe that LSLCS can be solved in
(|S|

k

)
· |Σ|k · poly(n) = nO(k) time by

brute-force (n denotes the overall instance size). We show that it is unlikely to
substantially improve on this algorithm, even in the case of constant-size alpha-
bets. As a warm-up, we begin with the very easy case of unbounded alphabets.

Lemma 2. There is a linear parameterized reduction from the W[2]-hard
LCS(�) problem to LSLCS(k) with unbounded alphabets.

We next proceed to the more involved case where |Σ| is part of the parameter.
We present a reduction from MIS(k) to LSLCS(k + |Σ|). Let (G = (V,E), c)
denote an instance of MIS(k), where G is a graph and c is a coloring function
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c : V → {c1 . . . , ck}. By padding (G, c), we can assume, w.l.o.g, that each color
class in G has precisely n vertices, that is, |{v : c(v) = ci}| = n for each
i ∈ {1, . . . , k}.

We begin by describing the solution string S. The string S consists of a suffix
S∗ := ($£k+1$)k+1, where $ and £ are two letters of the alphabet that do not
appear elsewhere in S. The prefix of S consists of k substrings, or blocks, one for
each color class. The substring S(ci) corresponding to ci is defined as the string
S(ci) := −→ci (0#)n←−ci where −→ci and ←−ci are letters corresponding to color class ci.
The whole string S is thus constructed as

S := S(c1) · · ·S(ck)S∗.

Next we construct the two enforcement strings T1, T2 ∈ T . The string T1 contains
the string S as its suffix. Its prefix contains k blocks, one for each color class
of G, where the i’th block T1(ci) is defined as T1(ci) := −→ci (0#1#)n−1←−ci . The
prefix of T1 is separated from its suffix with the string S∗ to form the string

T1 := T1(c1) · · ·T1(ck)S∗S.

The string T2 also contains k blocks, each corresponding to a color of G, where
the block corresponding to ci is constructed as T2(ci) := −→ci (01#)n←−ci . We con-
catenate all these blocks with the suffix S∗$ to obtain the string

T2 := T2(c1) · · ·T2(ck)S∗$.

Finally, for each edge e ∈ E, we construct an input string Te as follows. Assume
that the vertices in each color class are ordered. Let e be an edge between the
x’th vertex of color ci and the y’th vertex of color cj , where i < j. The string
Te consists of two blocks for each color class of G, defined by

– T 1
e (ci) := −→ci (01#)x−10#(01#)n−x←−ci ,

– T 2
e (cj) := −→cj (01#)y−10#(01#)n−y←−cj ,

– T 2
e (ci) := −→ci (01#)n←−ci ,

– T 1
e (cj) := −→cj (01#)n←−cj ,

– T 1
e (c�) := T 2

e (c�) := −→c� (01#)n←−c� , for all � �= i, j.

We then construct Te by concatenating all these blocks, along with the suffix
S∗$ to form

Te := T 1
e (c1) · · ·T 1

e (ck)T 2
e (c1) · · ·T 2

e (ck)S∗$.

Setting T := {T1, T2} ∪ {Te : e ∈ E} completes the construction of our
LSLCS(k + |Σ|) instance (T , S, k). Observe that S is indeed a subsequence
of all strings in T , and that Σ is an alphabet of size 2k + 5 consisting of the
letters −→c1 , ←−c1 , . . ., −→ck , ←−ck , 0, 1, #, $, and £. We now make two observations that
lead to the soundness and completeness of our reduction.

Lemma 3. Suppose that S̃σ is a solution string for the constructed instance
(T , S, k). Then S̃σ = S̃(c1) · · · S̃(ck)S∗σ, where for each i ∈ {1, . . . , k}, the

substring S̃(ci) is obtained from S(ci) by replacing exactly one occurrence of the
letter 0 with the letter 1.
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According to Lemma 3 above, we can think of the positions in which
S̃(c1) · · · S̃(ck) differs from S(c1) · · ·S(ck) as an encoding the selection of k ver-
tices, one for each color class of G. We refer to these vertices as the set of vertices
selected by S̃.

Lemma 4. The set I ⊆ V (G) of vertices selected by S̃ is a multicolored inde-
pendent set in G.

Theorem 2. There is a linear parameterized reduction from MIS(k) to
LSLCS(k + |Σ|).

We next sketch how to reduce the alphabet in our construction to constant size.
For each i ∈ {1, . . . , k}, replace the letters −→ci and ←−ci with the substrings pα(i)

and qα(i) respectively, where α(k) := 1 and α(i) := α(k) + · · ·+ α(i + 1) + 1 for
i < k. The new alphabet is of size 7. It is not difficult to verify that Lemma 3
still holds under this modification. The rest of the proof remains unchanged.

Corollary 2. LSLCS(k) restricted to strings over a constant-size alphabet is
W[1]-hard. Moreover, the problem has no no(k) algorithm unless all problems in
SNP can be solved in subexponential time.

5 Shortest Common Supersequence

In this section, we consider a local search version of Shortest Common Super-

sequence (SCSeq). In SCSeq, the input is a set of strings T and an integer
�, and the question is whether there exists a string S of length � which is a
supersequence of all strings in T . The local search variant of this problem that
we consider is given by:

Local Search Shortest Common Supersequence (LSSCSeq):

Input: A set T = {T1, . . . , Tm} of strings over an alphabet Σ, a string S
which is a supersequence of all Ti’s, and a positive integer k.
Question: Is there a string S̃ of length |S| − 1 which is a supersequence

of all Ti’s such that dH(S−, S̃) ≤ k?

In other words, the new solution supersequence S̃ is created from S by removing
the last position of S and modifying at most k remaining positions. The main
result of this section is the theorem below.

Theorem 3. There is a linear parameterized reduction from MIS(k) to
LSSCSeq(k) restricted to strings over an alphabet of constant size.

Let (G = (V,E), c) denote an arbitrary input of MIS(k) with c : V →
{c1, . . . , ck}. We assume, w.l.o.g., that there are n vertices colored ci, for each
color ci ∈ {c1, . . . , ck}, and that any pair of vertices with equal color are adjacent
in G. Furthermore, to ease our presentation, we assume that the edges in G are
directed; that is, E contains the two ordered pairs (u, v) and (v, u) for every pair
of adjacent vertices u and v in G.
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We begin by constructing the temporary solution S. First we create three
substrings for each color ci ∈ {c1, . . . , ck}, which we refer to as selection blocks :

S1(ci) := −→ci (01#)n←−ci , S2(ci) := −→ci (00#)n←−ci , and S3(ci) := −→ci (01#)n←−ci .

We construct S by concatenating the selection blocks, using the letter & to
separate the three sets of selection blocks. We then add a suffix to S: The string
S∗ := ($£n$)k+1 concatenated to the input string T1 ∈ T which will be specified
later. The string S is then given by

S := S1(c1) · · ·S1(ck) &S2(c1) · · ·S2(ck) &S3(c1) · · ·S3(ck)S∗ T1.

Next, we construct the input string T1 which is the first of two input strings
that will act as enforcement strings, enforcing the changes in S to occur in its
selection blocks in a controlled fashion. For ci ∈ {c1, . . . , ck}, define

T 1
1 (ci) := −→ci 0n+1←−ci , T 2

1 (ci) := −→ci 1←−ci , and T 3
1 (ci) := −→ci 0n+1←−ci .

We construct T1 using these substrings, the separation letter &, and the suffix S∗:

T1 := T 1
1 (c1) · · ·T 1

1 (ck) &T 2
1 (c1) · · ·T 2

1 (ck) &T 3
1 (c1) · · ·T 3

1 (ck)S∗.

The second enforcement string T2 is constructed using the following substrings
corresponding to a color ci ∈ {c1, . . . , ck}:

T 1
2 (ci) := −→ci (0#)n←−ci , T 2

2 (ci) := −→ci (0#)n←−ci , and T 3
2 (ci) := −→ci (0#)n ←−ci .

The string T2 is then constructed as

T2 := T 1
2 (c1) · · ·T 1

2 (ck) &T 2
2 (c1) · · ·T 2

2 (ck) &T 3
2 (c1) · · ·T 3

2 (ck)S∗ T1 − .

To complete the construction of T , we construct a string Te for each e ∈ E.
These strings are composed of substrings that correspond to vertices of G. Let
v ∈ V with c(v) := ci, and assume v is the x’th vertex of color ci. The string
T (v) is defined by

T (v) := −→ci (0#)x−1 01 (0#)n−x←−ci .
The string Te is constructed as Te := T (u) &T (v) if e := (u, v) (recall that we
assume that the edges are directed, and that any pair of vertices with the same
color are adjacent).

To finalize our construction, we set the parameter k′ of the LSSCSeq instance
to 3k. Clearly the instance (T , S, k′) can be constructed in polynomial time. We
proceed to show that this instance is equivalent to the MIS(k) instance. The
first crucial step is given by the following lemma.

Lemma 5. Let (T , S, k′) be an LSSCSeq instance constructed as described

above. If (T , S, k′) ∈ LSSCSeq, then there exists a solution string S̃ for

(T , S, k′) where S̃ can be written as S̃ := S′ S∗ T1− with

S′ := S̃1(c1) · · · S̃1(ck) & S̃2(c1) · · · S̃2(ck) & S̃3(c1) · · · S̃3(ck),

such that for each i ∈ {1, . . . , k} we have:
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– S̃1(ci) is obtained from S1(ci) by replacing exactly one occurrence of 01 by 00,

– S̃2(ci) is obtained from S2(ci) by replacing exactly one occurrence of 00 by 01,

– S̃3(ci) is obtained from S3(ci) by replacing exactly one occurrence of 01 by 00.

Let S̃ be a solution string for (T , S, k′) as in Lemma 5. We interpret the positions
in S′ that differ from S− as a set of selected vertices {v11 , v21 , v31 , . . . , v1k, v2k, v3k} of
G, where for each i ∈ {1, . . . , k}, the vertex v1i (resp. v2i , v3i ) is the x-th vertex in

ci if the x-th substring 01 (resp. 00, 01) in S(ci) is modified in S̃(ci). The next
lemma shows that the set of selected vertices includes in fact only k vertices.

Lemma 6. For each i ∈ {1, . . . , k} v1i = v2i = v3i .

According to Lemma 6, we let vi be the single vertex corresponding to v1i = v2i =
v3i , giving us a multicolored set {v1, . . . , vk} of vertices in G. The next lemma
shows that this set is independent in G.

Lemma 7. The set of vertices I := {v1, . . . , vk} forms an independent set in G.

Corollary 3. LSSCSeq(k) restricted to strings over a constant-size alphabet is
W[1]-hard, and has no no(k) algorithm unless all problems in SNP can be solved
in subexponential time.

6 Shortest Common Superstring

In this section we deal with a local search variant of Shortest Common Su-

perstring. In this problem, the input is a set of strings T and an integer �,
and the question is whether there is a string S of length at most � which is a
superstring of all strings in T . The local search version of Shortest Common

Superstring is defined as follows:

Local Search Shortest Common Superstring (LSSCStr):

Input: A set T = {T1, . . . , Tm} of strings over an alphabet Σ, a string S
which is a superstring of all Ti’s, and a positive integer k.
Question: Is there a string S̃ of length |S| − 1 which is a superstring of

all Ti’s such that dH(S̃, S−) ≤ k?

Theorem 4. LSSCStr(k) is W[1]-hard, even with an alphabet of constant size.

For ease of presentation, we describe here only the case that the alphabet size |Σ|
is part of the parameter. The case with constant-size alphabets can be coped with
the method introduced in Section 4. The reduction is from the W[1]-complete
Multicolored Clique problem, where, given a graph G = (V,E) and a col-
oring function c : V → {c1, . . . , ck}, we ask for a multicolored clique of size k.
We assume, w.l.o.g., that c is a proper coloring, that is, there is no edge {u, v}
between vertices u and v with c(u) = c(v) (such edges can be removed in linear
time), and that each color class contains exactly |V |/k vertices.

The alphabet Σ consists of k∗·k(k−1)+4k+4 letters with k∗ := 2k(k2+k). The
letters $ and # are separating letters, where $ does not occur in the input strings.
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The letters 0 and 1 are encoding letters. The other letters correspond to colors
and color pairs. For each color ci, we have 4 letters: ai, bi, ci, and di. For each
ordered color pair (ci, cj) with i �= j, there are k∗ letters, namely, c1i,j , . . . , c

k∗
i,j .

Assume that each color class in G contains n vertices. The LSSCStr(k)-instance
consists of the superstring S and a set T of 1 + (k − 1)k · n + (k − 1) · n input
strings: one special input string T0, k input strings for each vertex from color
classes c1 to ck−1, and k−1 input strings for each vertex from the color class ck.

To construct these strings, we first introduce some strings, which are used as
“building blocks” in the construction. First, we describe the “separating blocks”.

For each color ci with 2 ≤ i ≤ k, we introduce two such blocks: Ai := a
g(i)
i and

Bi := b
g(i)
i , where g(i) := 2k−i · (k2 +k). For each ordered pair of colors ci and cj

with i �= j, we construct one separating block: Ci,j := (c1i,j#)n · · · (ck∗
i,j#)n.

Moreover, we construct two “color-pair matching” blocks for each color ci:

– M1
i := 0Ci,1 · · · 0Ci,i−1 Ci,i+1 · · ·Ci,k, and

– M2
i := Ci,1 · · ·Ci,i−1 Ci,i+10 · · ·Ci,k0.

Finally, for every vertex v we construct an “identifying block”. Let ci := c(v).
Here we distinguish i = 1 and i > 1. Assume v is the x’th vertex colored ci. The
identifying block for v is constructed as

– I(v) := d1 0x−1 1 0n−x d1 for i = 1, and
– I(v) := di (0Ai)

x−11Ai(0Ai)
n−x didi−1, for i > 1.

We are now ready to describe the set of input strings T in our LSSCStr in-
stance. First, for each vertex v colored ci with 1 ≤ i < k, we construct one
“triggering” input string. If v is the x’th vertex colored ci, its triggering input
string T (v) is constructed as:

T (v) := ci+1 M
1
i+1 di+1 (0Ai+1)x−10Bi+1 (0Ai+1)n−x di+1di.

Then, for each vertex v colored ci with 1 ≤ i ≤ k, we add k − 1 “pairing” input
strings, each corresponding to a color class cj with j �= i. Here, we distinguish i <
j and i > j:

– T (v, cj) := Ci,j+1 · · ·Ci,k I(v)Ci,1 · · ·Ci,i−1Ci,i+10 · · ·Ci,j0 (i < j),
– T (v, cj) := 0Ci,j · · · 0Ci,i−1Ci,i+1 · · ·Ci,k I(v)Ci,1 · · ·Ci,j−1 (i > j).

To finalize our construction of T , we set the special input string T0:

T0 := c1 M
1
1 d1 0n d1.

Now, it remains to describe the temporary solution S. To this end, we introduce
some further building blocks. For each edge e = {u, v} ∈ E, where u is colored ci,
and v is colored cj with i < j, we construct one “edge block” S(e) for S as:

S(e) := T (u, cj) − 1 − T (v, ci),

where T (u, cj)− as usual denotes the prefix of the pairing input string T (u, cj)
without the last 0, and −T (v, ci) denotes the suffix of T (v, ci) without the first 0.
Furthermore, for each vertex v ∈ V colored ci in G we construct the selection
block S(v) of v by:
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– S(v) := T (v)M1
i I(v)M2

i for i < k, and
– S(v) := M1

k I(v)M2
k for i = k.

The solution S then consists of three parts, S := S(V )S(E)T0, where the first
part S(V ) is the concatenation of the selection blocks S(v) separated by $’s in
any arbitrary order, the second part S(E) is the concatenation of edge blocks
S(e) separated by $’s, and T0 is the special input string described above.

Finally, we set the parameter for the LSSCStr-instance to k′ := 2k + k(k −
1)/2 + (2k−1 − 1)(k2 + k). It is easy to verify that S is a superstring of all
input strings: The string T0 occurs at the end of S. Furthermore, for each vertex
v ∈ V , the triggering input string T (v) is a prefix of S(v), while the pairing
strings T (v, cj) are clearly substrings of M1

i I(v)M2
i . We next turn to showing

the equivalence of the two instances.

Lemma 8. If G has a multicolored clique K then (S, T , k′) has a solution

string S̃.

We next consider the reversed direction. Suppose that a solution S̃ exists for
(T , S, k′). We use S̃(v) to denote substring of S̃ corresponding to the selection
block S(v) of S.

Lemma 9. If there is a solution S̃ for (T , S, k) constructed above, then the input

string T0 is a substring of some S̃(v1) for some v1 ∈ V with c(v1) = c1.

Let v1 be the vertex in Lemma 9. By construction, we have to match M1
1 of T0

to the M1
1 -substring of S̃(v1). This implies that the letter 1 in the corresponding

identifying block has to be changed to 0. Moreover, the last letter d1 of the
corresponding triggering block must be changed to c1. These two changes cause
that the pairing input strings and the triggering string for v1 are matched to
somewhere else in S̃ than in S. We consider first the triggering string T (v1).

Lemma 10. The triggering input string T (v1) can only be matched to a sub-

string of S̃(v2) for some vertex v2 with c(v2) = c2.

It can be shown that the matching of T (v1) to some S̃(v2) causes 2 + |A2|
modifications after which the triggering input string T (v2) and k−1 pairing input

strings are unmatched. Furthermore, T (v2) has to be matched to some S̃(v3)
with c(v3) = c3: after performing the 2 + |A2| = 2 + 2k−2(k2 + k) changes to
match T (v1), one cannot afford to perform 2|B3| = 2·2k−3(k2+k) = 2k−2(k2+k)
changes which are necessary for matching T (v2) to the selection block of another
vertex colored c2. The same argument applies inductively for all i > 2. In this
way, the string S̃ differs from S in exactly k selection blocks corresponding to a
multicolored set of vertices {v1, . . . , vk} in G, and the Hamming distance between

the remaining suffixes of S− and S̃ is at most k(k − 1)/2.

Lemma 11. The set of vertices {v1, . . . , vk} specified above forms a clique in G.

Combining all lemmas above completes the proof of Theorem 4 when |Σ| is part
of the parameter. Using the method from Section 4 gives the proof for constant-
size alphabets.
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Abstract. Hon et al. (2011) proposed a variant of the suffix tree, called
circular suffix tree, and showed that it can be stored succinctly and can
be used to solve the circular dictionary matching problem efficiently. In
this paper, we give the first construction algorithm for the circular suffix
tree, which takes O(n log n) time and requires O(n log σ+d log n) bits of
working space, where n is the total length of the patterns in D, d is the
number of patterns in D, and σ is the alphabet size.

1 Introduction

Given a set D of d patterns, the dictionary matching problem is to index D
such that for any online query text T , we can quickly locate the occurrences
of any pattern of D within T . This problem has been well-studied in the liter-
ature [1,3], and an index taking optimal space and simultaneously supporting
optimal-time query is achieved [2,6]. In some practical bioinformatics and com-
putational geometry applications [10], such as indexing a collection of viruses,
we are interested in searching for, not only the original patterns in D, but also
all of their cyclic shifts. We call this the circular dictionary matching problem.
Hon et al. [9] recently proposed a variant of suffix tree [14,18], called circular
suffix tree and showed that it can be compressed into succinct space. With a
tree structure augmented to a circular pattern matching index called circular
suffix array, the circular suffix tree can be used to solve the circular dictionary
matching problem efficiently. Although there are several efficient construction
algorithms for the suffix tree in the literature, none of them can be applied di-
rectly to construct circular suffix tree due to the different nature of the patterns
being indexed. In this paper, we give the first construction algorithm for the
circular suffix tree, which takes O(n logn) time and requires O(n log σ + d logn)
bits of working space, where n denotes the total length of the patterns in D and
σ denotes the alphabet size.

Briefly speaking, the framework of the construction is as follows. First, we
directly apply the result of [7] to obtain the circular suffix array of D in the
succinct form, and use this as a succinct representation of the leaf labels in
the circular suffix tree. Next comes to the major technical challenge, where we
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construct the tree structure of the circular suffix tree. Our approach is based
on Kasai et al.’s algorithm [12], which is originally used for contructing the tree
structure of a (non-circular) suffix tree. However, a non-trivial adaptation (yet
with simple modifications) to the algorithm is proposed to handle the circular
case, and new observation about the auxiliary data structure is given so as to
control the working space of the algorithm. Finally, we mark the nodes in the
circular suffix tree as specified in the definition, which can be done efficiently with
standard techniques, even though the tree structure and the marking are both
represented in the succinct forms. As we shall see, each part of the construction
algorithm runs in O(n log n) time, and all the data structures involved (including
the final output and the intermediate auxiliary strucutres) require O(n log σ +
d logn) bits of storage, the result of the paper thus follows.

The remainder of the paper is organised as follows. Section 2 provides basic
notation, the definitions of the circular suffix array, and the circular suffix tree.
Section 3 reviews Kasai et al.’s algorithm and explains how we can adapt it
to construct the desired tree structure. Finally, in Section 4, we show how the
marking of nodes is performed.

2 Preliminaries

Let P = P [1..|P |] be a pattern of length |P |. We use P∞ to denote the string
formed by repeating P an infinite number of times. For any i ∈ [1, |P |], the string
Q = P [i..|P |]P [1..i− 1] is called the ith cyclic shift of P , and the string Q∞ is
called the ith circular suffix of P∞. We have the following definition.

Definition 1. Let P and Q be two patterns. We say P is circularly larger than
Q, or simply P is larger than Q, if and only if P∞ is lexicographically larger
than Q∞. The notions of “smaller than”, or “equal to”, are defined analogously.

Lemma 1 ([7]). Let P and Q be two strings, and let m denote the maximum
of |P | and |Q|. Then, P is circularly smaller than Q if and only if P∞[1..2m] is
lexicographically smaller than Q∞[1..2m]. In other words, to compare the “cir-
cular” lexicographical order of P and Q, we only need to compare P∞ and Q∞

directly up to length 2m.1

Let D = {P1, P2, . . . , Pd} be a set of d patterns to be indexed for the circular
dictionary matching problem. Let n be the total length of the d patterns, and
σ be the size of the alphabet. Without loss of generality, we assume that the
lengths of the patterns in D are monotonically decreasing (i.e., |Pi| ≥ |Pj | if
i < j). For ease of discussion, we assume that each pattern Pj in D cannot be
written as P k for some string P and some integer k > 1, and that no pattern is
a cyclic shift of another one. These two assumptions ensure that all cyclic shifts
of all patterns are distinct in the circular sense.

1 In fact, Mantaci et al. [13] have shown a better bound of |P | + |Q| − gcd(|P |, |Q|),
based on the Fine and Wilf theorem.
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2.1 Circular Suffix Array

The circular suffix array SAcirc[1..n] for D is an arrangement of all circular
suffixes of all P∞

j according to the lexicographical order. Precisely, SAcirc [i] =
(j, k) if the ith lexicographically smallest circular suffix is the kth circular suffix
of P∞

j . For example, D = {bbba, ba, b}, and

SAcirc[1..7] = [(2, 2), (1, 4), (2, 1), (1, 3), (1, 2), (1, 1), (3, 1)].

See Figure 2 for the lexiographical arrangement of the respective circular suffixes.
We also define SA−1

circ(j, k) to be i, if and only if SAcirc [i] = (j, k).

Lemma 2 ([7]). The circular suffix array can be stored succinctly in O(n log σ)
bits, and can be constructed in O(n logn) time using O(n log σ) bits working
space. The functions SAcirc and SA−1

circ can both be evaluated in O(log n) time.

For ease of discussion, we use Si to denote the ith lexicographically smallest
circular suffix, and ||Si|| to denote the length of its corresponding cyclic shift,
which is |Pj | if SAcirc[i] = (j, k). Note that the value ||Si|| can be computed in
O(log n) time by first finding SAcirc[i], and then reporting the length of Pj .

2.2 Circular Suffix Tree

Let C be a compact (i.e., path-compressed) trie. For each node v in C, we use
path(v) to denote the concatenation of edge labels along the path from the root
to v. The circular suffix tree STcirc for D is a compact trie storing all circular
suffixes of all P∞

j . In addition, as in a (non-circular) suffix tree, the children of
a node are arranged according to the lexicographical order of the labels in their
incident edges. Consequently, the ith leftmost leaf in the circular suffix tree will
correspond to the ith lexicographically smallest circular suffix, which is indexed
by SAcirc[i].

To facilitate efficient reporting of pattern occurrences in answering a query,
certain nodes in the circular suffix tree are marked. Precisely, a node u is marked
if there exists a circular suffix S such that (i) ||S|| is less than |path(u)|, (ii)
parent(u) is an ancestor of the leaf for S, but (iii) u is not an ancestor of the leaf
for S; here, parent(u) denotes the parent node of u. Intuitively, the marked node
u is used when the searching path of a query text ends in the subtree rooted at
u, so that it reveals at least one cyclic shift of some pattern appears as a prefix
in the query text. (See [9] for the details of the query algorithm.) Moreover, each
node in STcirc maintains a pointer to its lowest marked ancestor.

3 Construction of Circular Suffix Tree

To save the working space, we shall directly construct the circular suffix tree
in its succinct form, as introduced in [9], which contains three key components:
(1) the circular suffix array, for representing the leaf labels and the edge labels;
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(2) an Hgt array (to be defined), for representing the lengths of the edge labels;
and (3) a string of balanced parentheses, for encoding the tree structure. As
we can already construct the circular suffix array efficiently by Lemma 2, the
remaining of this section is devoted to the efficient construction of the other two
components.

3.1 Construction of the Hgt Array

Kasai et al.’s Algorithm. The Hgt array (called the height array) is intro-
duced by Kasai et al. [12], which was originally defined for the (non-circular)
suffix tree of a pattern P . Precisely, it is an array Hgt [1..|P |], such that Hgt [i]
stores the length of the longest common prefix between Si and its predecessor
suffix Si−1 (the lexicographically ith and i− 1th smallest suffixes). See Figure 1
for an example. It is shown [12] that given the SA−1, the Hgt array can be con-
structed in linear time, using O(n logn) bits of working space. See Algorithm 1
for details.

index suffix SA Hgt

1 abc 5 -1

2 abcdabc 1 3

3 bc 6 0

4 bcdabc 2 2

5 c 7 0

6 cdabc 3 1

7 dabc 4 0

Fig. 1. Hgt array for P = abcdabc

index suffix SAcirc Hgt

1 (ab)∞ (2, 2) -1

2 (abbb)∞ (1, 4) 2

3 (ba)∞ (2, 1) 0

4 (babb)∞ (1, 3) 3

5 (bbab)∞ (1, 2) 1

6 (bbba)∞ (1, 1) 2

7 (b)∞ (3, 1) 3

Fig. 2. Hgt array for D = {bbba, ba, b}

Kasai et al.’s algorithm consists of |P | rounds. In round k, it examines the
suffix of P [k..|P |] and sets up the corresponding value Hgt [i], where i is the
rank of P [k..|P |]. Briefly speaking, the efficiency of the algorithm comes from
maintaining the following invariant: Before each round starts, the length of the
LCP to be computed is at least h, where the value is inferred from the previous
round. This allows us to avoid redundant matching, and start matching the
h + 1th character of the corresponding suffixes (Line 6) in the current round to
compute the LCP; consequently the overall running time is bounded by O(|P |).

The Hgt array can naturally be defined for the circular suffix tree for D.
See Figure 2 for an example. We can also extend Kasai et al.’s algorithm to
construct the Hgt array in this case, as shown in Algorithm 2. Nevertheless, when
we process the circular suffixes of P∞

j in round j, the total time required will
become O(|Pj | + Lj), where Lj denotes the maximum length of LCP between
a circular suffix of P∞

j and its predecessor circular suffix. In the worst case,
Lj = O(n) for each j, and the overall running time will become O(dn).
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Algorithm 1. Kasai et al.’s Algorithm

1: h ← 0;
2: for k ← 1 to |P | do
3: i ← SA−1[k]; { Finding i such that Si = P [k..|P |] }
4: if i > 1 then
5: m ← SA[i− 1]; { Finding m such that Si−1 = P [m..|P |] }
6: while P [k + h] = P [m+ h] do
7: h ← h+ 1;
8: end while
9: Set Hgt[i] to be h;
10: if h > 0 then
11: h ← h− 1;
12: end if
13: else
14: Set Hgt[i] to be -1;
15: end if
16: end for

Algorithm 2. Constructing the Hgt array for STcirc

1: for j ← 1 to d do
2: Apply Kasai et al.’s algorithm to compute the Hgt entries corresponding to the

circular suffixes of P∞
j ;

{ those Hgt [i] entries with SAcirc [i] = (j, k), for k = 1, 2, . . . , |Pj | }
3: end for

The O(Lj) bound becomes problematic when it is ω(|Pj |). This occurs when
the length of the LCP of a certain suffix of P∞

j and its predecessor suffix is not
bounded by O(|Pj |), so that the computation of the corresponding Hgt value will
take too much time. By Lemma 1, this happens only if the predecessor suffix
is a circular suffix of P∞

i for some i < j. To overcome the above problem, we
make use of a very simple, yet powerful idea: to construct an analogous array
Hgt ′ in phase with Hgt , where Hgt ′[i] stores the length of the LCP between Si

and its successor Si+1. Precisely, each round will update both Hgt [i] and Hgt ′[i]
that correspond to the same circular suffix Si. The benefit is that, if Hgt ′[i− 1]
is already computed, we can immediately set Hgt [i] = h = Hgt ′[i − 1] without
performing any character comparison.2 Consequently, the time for round j can
be bounded by O(|Pj | + L′

j), where L′
j is defined similarly as Lj , but with an

extra condition that the predecessor suffix is not a circular suffix of P∞
i , with

i < j. (We defer the details of the analysis to the full paper.) Since L′
j is bounded

by O(|Pj |), the overall running time is thus O(n).
So far, we have implicitly assumed that SAcirc and SA−1

circ can be evaluated
in constant time. If we use the succinct form of the circular suffix array instead,
the evaluation takes O(log n) time, so that the overall running time is increased

2 Similarly, if Hgt [i+ 1] is already computed, we set Hgt ′[i] = h′ = Hgt [i + 1], where
h′ is used by the invariant corresponding to the construction of Hgt ′.
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to O(n logn). For the working space, apart from storing the circular suffix array
in O(n log σ) bits, we need O(n logn) bits for the storage of the Hgt array. In
the following, we use an alternative representation for Hgt that is introduced
in [16,9], namely the H array, and show that its storage can be bounded by
O(n + d logn) bits.3

Succinct Representation for Hgt Array. The H array is a two-dimensional
array which stores that Hgt values in the order they are computed. Precisely,
we define H [j, k] = Hgt [i], if the kth circular suffix of P∞

j is Si. Then, when
we process the circular suffixes of P∞

j in round j of Algorithm 2, the values
H [j, 1], H [j, 2], . . . , H [j, |Pj |] will be computed sequentially by Kasai et al.’s al-
gorithm (more precisely, the modified version that constructs Hgt and Hgt ′ in
phase). We also define an analogous H ′ array where H ′[j, k] = Hgt ′[i]. In [9], it
is observed that for each j,

H [j, 1] ≤ H [j, 2] + 1 ≤ H [j, 3] + 2 ≤ · · · .

Since P∞
j is circular, its |Pj | + 1th circular suffix is the same as itself. By the

above observation, we obtain the following relationship:

H [j, 1] ≤ H [j, |Pj |] + |Pj | − 1 ≤ H [j, |Pj | + 1] + |Pj | = H [j, 1] + |Pj |.

Thus, the sequence of values H [j, k] + k− 1 is monotonically increasing, and we
shall encode them with difference encoding, using logn+O(|Pi|) bits: (1) Store
the value H [j, 1] explicitly. (2) Initialize an empty bit-vector z. (3) For k = 1
to |Pj | − 1, compute the difference between the kth and k + 1th values. If the
difference is x, append x 0s to z, followed by a 1.

In the end, the bit-vector z contains exactly |Pj | − 1 1s and at most |Pj | 0s,
so that its length is bounded by O(|Pj |). For example, in Figure 2, the sequence
of values of H [1, 1], H [1, 2] + 1, H [1, 3] + 2, and H [1, 4] + 3 are 2, 2, 5, and 5,
respectively. We shall store H [1, 1] = 2 explicity, and represent the other values
by the bit-vector z = 100011. Note that z can be created on the fly when we
process P∞

j in Algorithm 2, as the values of H [j, k] are computed in increasing
order of k.

To compute a particular value H [j, k], we first compute H [j, k] + k − 1 as
follows: (1) Find the k − 1th 1 in z, and count the number of 0s in z before it,
and (2) add H [j, 1] to the count, and report the sum. Once H [j, k] + k − 1 is
obtained, we just subtract k− 1 from it to obtain the desired H [j, k]. The above
process can be performed in constant time, by maintaining Jacobson’s rank and
select structure [11]. This structure takes o(|Pj |) bits of storage, and can be
constructed in o(|Pj |) time using o(|Pj |) of working space once the bit-vector z
is ready.

3 We remark that this bound is not observed in [9]. Consequently, we can slightly
improve the result of [9] by removing an assumption about the lengths of the patterns
in D. Details are deferred to the full paper.
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As soon as the H array entries corresponding to the circular suffixes of P∞
j

are stored, then for any i such that Si is a circular suffix of P∞
j (say, the kth

one), the value Hgt [i] can be computed by

Hgt [i] ≡ H [j, k] ≡ H [SA−1
circ[i]],

using O(log n) time. With similar arguments, we can derive the same bounds for
the storage of the H ′ array and the computation of Hgt ′ value. In conclusion,
we have the following theorem.

Theorem 1. Suppose the succinct form of the circular suffix array is given.
Using the H array as a succinct representation, the Hgt array can be constructed
in O(n log n) time using O(n log σ + d logn) bits of working space. When the
construction process is over, each entry in the Hgt array can be computed in
O(log n) time.

Proof (sketch). In the modified version of Algorithm 2, the values of Hgt and
Hgt ′ are accessed at most O(n) times (where they are only accessed when the
corresponding H array entries are stored during the previous rounds). These
accesses create an overhead of O(n logn) time in total, which does not affect
the overall time complexity. For the space, the number of bits for storing H is
bounded by

∑d
j=1 O(log n + |Pj |), which is O(n + d logn). Together with the

space for storing the succinct form of the circular suffix array, the space bound
follows.

3.2 Construction of the Parentheses Encoding of STcirc

The structure of the circular suffix tree is encoded by a string of balanced paren-
theses in the following way [15]: (1) Perform a pre-order traversal from the root.
(2) When visiting a node in the first time, output an open parentheis symbol ‘(’.
(3) When visiting a node in the last time, output a close parentheis symbol ‘)’.
Kasai et al. [12] showed that a left-to-right bottom-up traversal of the suffix tree
can be performed in linear time based on the Hgt array. Here, we simulate Kasai
et al.’s algorithm to compute the topology of the circular suffix tree, using O(n)
bits of additional working space, apart from those used by the circular suffix
array and the Hgt array.4 Let Q1 be a list of 2n bits. During the traversal, we
append ‘()’ to the end of Q1 if we visit a leaf, and we append ‘)’ to the end of
Q1 if we last visit an internal node. See Algorithm 3 for details. Essentially, after
the traversal, Q1 is very close to the desired parentheses encoding, only with all
the (’s corresponding to the internal nodes removed. Similarly, by performing a
symmetric right-to-left traversal starting from the rightmost leaf, we can obtain
another list of parentheses Q2 which is equal to the parentheses encoding of
the circular suffix tree, but with all the )’s corresponding to the internal node
removed. Finally, we compute the desired parentheses encoding by merging Q1

and Q2, as shown in Algorithm 4.

4 In fact, the same simulation has been used in Hon [5] (Chapter 5.1) to construct the
topology of a suffix tree with succinct working space. We include the details here for
the sake of completeness.
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Algorithm 3. Computing Q1

1: Initialize U as an empty stack;
2: for k ← 1 to n do
3: Output ‘()’ that represents the leaf of Sk;
4: � ← H [SAcirc[k]];

{ � is equal to Hgt[k], the length of LCP between Sk and Sk+1 }
5: while Top(U) > � do
6: Pop(U) and output ‘)’;
7: end while
8: if Top(U) < � then
9: Push(U, �);
10: end if
11: end for

Algorithm 4. Computing the parentheses encoding from Q1 and Q2

1: Scan Q1 and Q2 from left to right;
2: while Q1 and Q2 are not both empty do
3: if Q1 begins with ‘)’ then
4: Output ‘)’ and remove the symbol from the beginning of Q1;
5: else if Q2 begins with ‘(’ but not with ‘()’ then
6: Output ‘(’ and remove the symbol from the beginning of Q2;
7: else
8: {Both Q1 and Q2 begin with ‘()’}
9: Output ‘()’ and remove the symbols from the beginning of Q1 and Q2;
10: end if
11: end while

Theorem 2. Given the circular suffix array as represented in Lemma 2 and
the H array as represented in Theorem 1, the parentheses encoding of the cir-
cular suffix tree STcirc can be constructed in O(n log n) time, using O(n) bits of
working space.

Proof (sketch). The most time-consuming part of the algorithm is the computa-
tion of H [SAcirc [k]], where each such computation can be performed in O(log n)
time. The total time complexity is thus bounded by O(n logn). As for the space,
apart from the stack, we just need O(n) bits for storing each of the Q1, Q2, and
the final parentheses encoding. For the stack, it is easy to check that the entries
will always form a straightly increasing integer sequence (when reading the stack
from bottom to top), so that we can represent each entry by its difference with
the previous entry. Furthermore, the difference will be stored by using Elias’s
γ code or δ code [4], so that each entry can be encoded/decoded in O(1) time
during the push/pop operation, while the total number of bits required for rep-
resenting all entries in the stack can always be bounded by O(n). We defer the
details to the full paper.
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4 Marking the Nodes in STcirc

We describe two preprocessing steps for speeding up our marking algorithm.

– We obtain the parentheses encoding of STcirc from the previous section,
where briefly speaking, such an encoding represents each node by its pre-
order rank. Then, using O(n) time, we construct an auxiliary data structure
of O(n) bits, so that given any integer k, and any nodes u and v, we can
perform each of the following operations in constant time [17]: (1) return the
kth leftmost leaf; (2) return the parent of u; (3) return the lowest common
ancestor (LCA) of u and v; (4) return the circular suffix range [i, j] of a
node u, where Si, Si+1, . . . , Sj are exactly those circular suffixes with leaves
in the subtree rooted at u.

– We define an array L[1..n], where L[i] = ||Si|| stores the length of the cyclic
shift that corresponds to the circular suffix Si. The L array will not be
stored explicitly, but each entry can be retrieved in O(log n) time. Then, we
construct the o(n)-bit range-minimum-query (RMQ) data structure of [16]
on top of the array L; this structure can, on given any query range [i..j],
return the position k ∈ [i, j] such that L[k] is minimized among L[i..j], in
constant time. Immediately, this implies that the minimum of L[i..j] can
be reported in O(log n) time. The RMQ structure can be constructed in
o(n) time, in additional to O(n) accesses to the L array, making the total
construction time O(n log n).

After the above steps, we can apply Algorithm 5 to mark the desired nodes.

Algorithm 5. Marking nodes in STcirc

1: for k ← 1 to n− 1 do
2: u ← the LCA of the kth and k + 1th leaves;
3: Compute the circular suffix range [�u, ru] of u;
4: v ← parent of u;
5: Compute the circular suffix range [�v, rv] of v;
6: m1 ← minimum in L[�v..�u − 1]; m2 ← minimum in L[ru + 1..rv];
7: if either m1 or m2 is less than H [SAcirc[k]] then
8: Mark u;
9: end if
10: end for

Theorem 3. Given the circular suffix array as represented in Lemma 2, the
H array as represented in Theorem 1, and the auxiliary data structures as
constructed in the preprocessing steps, the marked nodes can be determined in
O(n log n) time and can be represented in O(n) bits. The working space is O(n)
bits.
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Proof (sketch). The construction time follows directly from the bounds of the in-
dividual data strucutres that are used. To mark a node u, we adopt the standard
technique of marking directly the parentheses that represent u in the parentheses
encoding, which can be done by using an additional copy of the original paren-
theses encoding. In the end, all the marked parentheses will form a parentheses
encoding for the marked nodes, and by constructing the auxiliary data struc-
ture of [17], we can support finding the lowest marked ancestor for each node in
constant time. We defer the details to the full paper.
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Abstract. We present an algorithm for computing the Lyndon factor-
ization of a string that is given in grammar compressed form, namely,
a Straight Line Program (SLP). The algorithm runs in O(n4 + mn3h)
time and O(n2) space, where m is the size of the Lyndon factorization,
n is the size of the SLP, and h is the height of the derivation tree of the
SLP. Since the length of the decompressed string can be exponentially
large w.r.t. n,m and h, our result is the first polynomial time solution
when the string is given as SLP.

1 Introduction

Compressed string processing (CSP) is a task of processing compressed string
data without explicit decompression. As any method that first decompresses the
data requires time and space dependent on the decompressed size of the data,
CSP without explicit decompression has been gaining importance due to the
ever increasing amount of data produced and stored. A number of efficient CSP
algorithms have been proposed, e.g., see [16,25,15,12,11,13]. In this paper, we
present new CSP algorithms that compute the Lyndon factorization of strings.

A string � is said to be a Lyndon word if � is lexicographically smallest among
its circular permutations of characters of �. For example, aab is a Lyndon word,
but its circular permutations aba and baa are not. Lyndon words have various
and important applications in, e.g., musicology [4], bioinformatics [8], approxi-
mation algorithm [22], string matching [6,2,23], word combinatorics [10,24], and
free Lie algebras [20].

The Lyndon factorization (a.k.a. standard factorization) of a string w, denoted
LF (w), is a unique sequence of Lyndon words such that the concatenation of the
Lyndon words gives w and the Lyndon words in the sequence are lexicograph-
ically non-increasing [5]. Lyndon factorizations are used in a bijective variant
of Burrows-Wheeler transform [17,14] and a digital geometry algorithm [3]. Du-
val [9] proposed an elegant on-line algorithm to compute LF (w) of a given string
w of length N in O(N) time. Efficient parallel algorithms to compute the Lyndon
factorization are also known [1,7].

We present a new CSP algorithm which computes the Lyndon factorization
LF (w) of a string w, when w is given in a grammar-compressed form. Let m

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 153–164, 2013.
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be the number of factors in LF (w). Our first algorithm computes LF (w) in
O(n4 + mn3h) time and O(n2) space, where n is the size of a given straight-line
program (SLP), which is a context-free grammar in Chomsky normal form that
derives only w, and h is the height of the derivation tree of the SLP. Since the
decompressed string length |w| = N can be exponentially large w.r.t. n,m and
h, our O(n4 + mn3h) solution can be efficient for highly compressive strings.

2 Preliminaries

2.1 Strings and Model of Computation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0, namely,
|ε| = 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗−{ε}. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
A prefix x of w is called a proper prefix of w if x �= w, i.e., x is shorter than
w. The set of suffixes of w is denoted by Suffix(w). The i-th character of a
string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position
i and ends at position j. For convenience, let w[i..j] = ε when i > j. For any
string w let w1 = w, and for any integer k > 2 let wk = wwk−1, i.e., wk is a
k-time repetition of w.

A positive integer p is said to be a period of a string w if w[i] = w[i + p] for
all 1 ≤ i ≤ |w| − p. Let w be any string and q be its smallest period. If p is a
period of a string w such that p < |w|, then the positive integer |w| − p is said
to be a border of w. If w has no borders, then w is said to be border-free.

If character a ∈ Σ is lexicographically smaller than another character b ∈ Σ,
then we write a ≺ b. For any non-empty strings x, y ∈ Σ+, let lcp(x, y) be the
length of the longest common prefix of x and y. We denote x ≺ y, if either
of the following conditions holds: x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1], or x is a
proper prefix of y. For a set S ⊆ Σ+ of non-empty strings, let min≺ S denote
the lexicographically smallest string in S.

Our model of computation is the word RAM: We shall assume that the com-
puter word size is at least �log2 |w|�, and hence, standard operations on values
representing lengths and positions of string w can be manipulated in constant
time. Space complexities will be determined by the number of computer words
(not bits).

2.2 Lyndon Words and Lyndon Factorization of Strings

Two strings x and y are said to be conjugate, if there exist strings u and v
such that x = uv and y = vu. A string w is said to be a Lyndon word, if w is
lexicographically strictly smaller than all of its conjugates of w. Namely, w is a
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Fig. 1. The derivation tree of SLP S = {X1 → a, X2 → b, X3 → X1X2, X4 →
X1X3, X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string S = val(X7) =
aababaababaab

Lyndon word, if for any factorization w = uv, it holds that uv ≺ vu. It is known
that any Lyndon word is border-free.

Definition 1 ([5]). The Lyndon factorization of a string w, denoted LF (w),
is the factorization �p1

1 · · · �pm
m of w, such that each �i ∈ Σ+ is a Lyndon word,

pi ≥ 1, and �i  �i+1 for all 1 ≤ i < m.

It is known that the Lyndon factorization is unique for each string w, and it was
shown by Duval [9] that the Lyndon factorization can be computed in O(N)
time, where N = |w|.

LF (w) can be represented by the sequence (|�1|, p1), . . . , (|�m|, pm) of integer
pairs, where each pair (|�i|, pi) represents the i-th Lyndon factor �pi

i of w. Note
that this representation requires O(m) space.

2.3 Straight Line Programs

A straight line program (SLP) is a set of productions S = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a variable and each expri is an
expression, where expri = a (a ∈ Σ), or expri = X�(i)Xr(i) (i > �(i), r(i)). It
is essentially a context free grammar in Chomsky normal form, that derives a
single string. Let val (Xi) represent the string derived from variable Xi. To ease
notation, we sometimes associate val (Xi) with Xi and denote |val (Xi)| as |Xi|,
and val (Xi)[u..v] as Xi[u..v] for 1 ≤ u ≤ v ≤ |Xi|. An SLP S represents the
string w = val (Xn). The size of the program S is the number n of productions
in S. Let N be the length of the string represented by SLP S, i.e., N = |w|.
Then N can be as large as 2n−1.

The derivation tree of SLP S is a labeled ordered binary tree where each
internal node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each
leaf is labeled with a terminal character in Σ. The root node has label Xn. An
example of the derivation tree of an SLP is shown in Fig. 1.
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3 Computing Lyndon Factorization from SLP

In this section, we show how, given an SLP S of n productions representing
string w, we can compute LF (w) of size m in O(n4 +mn3h) time. We will make
use of the following known results:

Lemma 1 ([9]). For any string w, let LF (w) = �p1

1 , . . . , �pm
m . Then, �m =

min≺ Suffix(w), i.e., �m is the lexicographically smallest suffix of w.

Lemma 2 ([18]). Given an SLP S of size n representing a string w of length
N , and two integers 1 ≤ i ≤ j ≤ N , we can compute in O(n) time another SLP
of size O(n) representing the substring w[i..j].

Lemma 3 ([18]). Given an SLP S of size n representing a string w of length
N , we can compute the shortest period of w in O(n3 logN) time and O(n2)
space.

For any non-empty string w ∈ Σ+, let LFCand(w) = {x | x ∈ Suffix(w), ∃y ∈
Σ+ s.t. xy = min≺ Suffix(wy)}. Intuitively, LFCand(w) is the set of suffixes of
w which are a prefix of the lexicographically smallest suffix of string wy, for
some non-empty string y ∈ Σ+.

The following lemma may be almost trivial, but will play a central role in our
algorithm.

Lemma 4. For any two strings u, v ∈ LFCand(w) with |u| < |v|, u is a prefix
of v.

Proof. If v[1..|u|] ≺ u, then for any non-empty string y, vy ≺ uy. However, this
contradicts that u ∈ LFCand(w). If v[1..|u|]  u, then for any non-empty string
y, vy  uy. However, this contradicts that v ∈ LFCand(w). Hence we have
v[1..|u|] = u. 
�

Lemma 5. For any string w, let � = min≺ Suffix(w). Then, the shortest string
of LFCand(w) is �p, where p ≥ 1 is the maximum integer such that �p is a suffix
of w.

Proof. For any string x ∈ LFCand(w), and any non-empty string y, xy =
min≺ Suffix(wy) holds only if y  �.

Firstly, we compare �p with the suffixes s of w shorter than �p, and show that
�py ≺ sy holds for any y  �. Such suffixes s are divided into two groups: (1) If
s is of form �k for any integer 1 ≤ k < p, then �py ≺ �ky = sy ≺ y holds for any
y  �; (2) If s is not of form �k, then since � is border-free, � is not a prefix of s,
and s is not a prefix of �, either. Thus �p ≺ s holds, implying that �py ≺ sy for
any y  �.

Secondly, we compare �p with the suffixes t of w longer than �p, and show
that �py ≺ ty holds for some y  �. By Lemma 4, t = �qu holds, where q ≥ p is
the maximum integer such that �q is a prefix of t, and u ∈ Σ+. By definition,
� ≺ u and � is not a prefix of u. Choosing y = �q−pu′ with u′ ≺ u, we have
�py = �qu′ ≺ �qu = t ≺ ty. Hence, �p ∈ LFCand(w) and no shorter strings exist
in LFCand(w). 
�
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By Lemma 1 and Lemma 5, computing the last Lyndon factor �pm
m of w =

val(Xn) reduces to computing LFCand(Xn) for the last variable Xn. In what fol-
lows, we propose a dynamic programming algorithm to compute LFCand(Xi) for
each variable. Firstly we show the number of strings in LFCand(Xi) is O(logN),
where N = |val (Xn)| = |w|.

Lemma 6. For any string w, let sj be the jth shortest string of LFCand(w).
Then, |sj+1| > 2|sj| for any 1 ≤ j < |LFCand(w)|.

Proof. Let � = min≺ Suffix(w), and y any string such that y  �. It follows from
Lemma 4 that � is a prefix of any string sj ∈ LFCand(w), and hence sj ≺ y
holds.

Assume on the contrary that |sj+1| ≤ 2|sj|. If |sj+1| = 2|sj|, i.e., sj+1 = sjsj ,
then sj+1y = sjsjy ≺ sjy holds, but this contradicts that sj ∈ LFCand(w).
Hence sj+1 �= sjsj . If |sj+1| < 2|sj |, by Lemma 4, sj is a prefix of sj+1, and
therefore sj has a period q such that sj+1 = ukv and sj = uk−1v, where u =
sj [1..q], k ≥ 1 is an integer, and v is a proper prefix of u. There are two cases
to consider: (1) If uvy ≺ vy, then ukvy ≺ uk−1vy = sjy. (2) If vy ≺ uvy, then
vy ≺ uvy ≺ u2vy ≺ · · · ≺ uk−1vy = sjy. It means that min≺{ukvy, vy} ≺ sjy for
any y  �, however, this contradicts that sj ∈ LFCand(w). Hence |sj+1| > 2|sj |
holds. 
�

Since sj is a suffix of sj+1, it follows from Lemma 4 and Lemma 6 that sj+1 =
sjtsj with some non-empty string t ∈ Σ+. This also implies that the number of
strings in LFCand(w) is O(logN), where N is the length of w. By identifying
each suffix of LFCand(Xi) with its length, and using Lemma 6, LFCand(Xi) for
all variables can be stored in a total of O(n logN) space.

For any two variables Xi, Xj of an SLP S and a positive integer k satisfying
|Xi| ≥ k + |Xj | − 1, consider the FM function such that FM (Xi, Xj , k) =
lcp(val (Xi)[k..|Xi|], val (Xj)), i.e., it returns the length of the lcp of the suffix of
val(Xi) starting at position k and Xj .

Lemma 7 ([21,19]). We can preprocess a given SLP S of size n in O(n3) time
and O(n2) space so that FM (Xi, Xj , k) can be answered in O(n2) time.

For each variable Xi we store the length |Xi| of the string derived by Xi. It
requires a total of O(n) space for all 1 ≤ i ≤ n, and can be computed in
a total of O(n) time by a simple dynamic programming algorithm. Given a
position j of the uncompressed string w of length N , i.e., 1 ≤ j ≤ N , we
can retrieve the jth character w[j] in O(n) time by a simple binary search on
the derivation tree of Xn using the lengths stored in the variables. Hence, we
can lexicographically compare val(Xi)[k..|Xi|] and val(Xj) in O(n2) time, after
O(n3)-time preprocessing.

The following lemma shows a dynamic programming approach to compute
LFCand(Xi) for each variable Xi. We will mean by a sorted list of LFCand(Xi)
the list of the elements of LFCand(Xi) sorted in increasing order of length.
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Xi

Xℓ Xr

h 

s val(Xr) 

Di = LFCand(Xr)…
 

h 

d

…
 

LFCand(Xℓ)

Fig. 2. Lemma 8: Initially Di = LFCand(Xr) and h = s · val(X�) with s being the
shortest string of LFCand(X�).

Lemma 8. Let Xi = X�Xr be any production of a given SLP S of size n. Pro-
vided that sorted lists for LFCand(X�) and LFCand(Xr) are already computed,
a sorted list for LFCand(Xi) can be computed in O(n3) time and O(n2) space.

Proof. Let Di be a sorted list of the suffixes of Xi that are candidates of elements
of LFCand(Xi). We initially set Di ← LFCand(Xr).

We process the elements of LFCand(X�) in increasing order of length. Let s
be any string in LFCand(X�), and d the longest string in Di. Since any string of
LFCand(Xr) is a prefix of d by Lemma 4, in order to compute LFCand(Xi) it
suffices to lexicographically compare s·val (Xr) and d. Let h = lcp(s·val (Xr), d)).
See also Fig. 2.

– If (s · val (Xr))[h + 1] ≺ d[h + 1], then s · val(Xr) ≺ d. Since any string in
Di is a prefix of d by Lemma 4, we observe that any element in Di that is
longer than h cannot be an element of LFCand(Xi). Hence we delete any
element of Di that is longer than h from Di, then add s · val(Xr) to Di, and
update d ← s · val (Xr). See also Fig. 3.

– If (s ·val (Xr))[h+1]  d[h+1], then s ·val (Xr)  d. Since s ·val (Xr) cannot
be an element of LFCand(Xi), in this case neither Di nor d is updated. See
also Fig. 4.

– If h = |d|, i.e., d is a prefix of s · val(Xr), then there are two sub-cases:
• If |s · val (Xr)| ≤ 2|d|, d has a period q such that s · val(Xr) = ukv and
d = uk−1v, where u = d[1..q], k ≥ 1 is an integer, and v is a proper
prefix of u. By similar arguments to Lemma 6, we observe that d cannot
be a member of LFCand(Xi) while s · val(Xr) may be a member of
LFCand(Xi). Thus we add s · val(Xr) to Di, delete d from Di, and
update d ← s · val (Xr). See also Fig. 5.

• If |s · val(Xr)| > 2|d|, then both d and s · val (Xr) may be a member of
LFCand(Xi). Thus we add s ·val(Xr) to Di, and update d ← s ·val (Xr).
See also Fig. 6.
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h 

Xi

Xℓ Xr

s val(Xr) 

Di

…
 

d

h 

h 

Fig. 3. Lemma 8: Case where (s · val(Xr))[h+1] = α ≺ d[h+1] = β. d and any string
in Di that is longer than h are deleted from Di. Then s · val(Xr) becomes the longest
candidate in Di.

Xi

Xℓ Xr

s val(Xr) 

Di…
 

h 

d

h 

Fig. 4. Lemma 8: Case where (s · val(Xr))[h + 1] = α � d[h + 1] = β. There are no
updates on Di.

We represent the strings in LFCand(X�), LFCand(Xr), LFCand(Xi), and Di

by their lengths. Given sorted lists of LFCand(X�) and LFCand(Xr), the above
algorithm computes a sorted list for Di, and it follows from Lemma 6 that the
number of elements in Di is always O(logN). Thus all the above operations on
Di can be conducted in O(logN) time in each step.

We now show how to efficiently compute h = lcp(s · val(Xr), d), for any
s ∈ LFCand(X�). Let z be the longest string in LFCand(X�), and consider to
process any string s ∈ LFCand(X�). Since s is a prefix of z by Lemma 4, we can
compute lcp(s · val(Xr), d) as follows:
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Xi

Xℓ Xr

h 

d

s val(Xr)

u … vu u 
h 

Fig. 5. Lemma 8: Case where h = |d| and |s · val(Xr)| ≤ 2|d|. Since s · val(Xr) = ukv
and d = uk−1v, d is deleted from Di and s · val(Xr) is added to Di.

Xi

Xℓ 

Xr

d

s val(Xr)

h 

h 

Fig. 6. Lemma 8: Case where h = |d| and |s · val(Xr)| > 2|d|. We add s · val(Xr) to
Di, and s · val(Xr) becomes the longest member of Di.

lcp(s · val(Xr), d) =

{
lcp(z, d) if lcp(z, d) < |s|,
|s| + lcp(Xr, d[|s| + 1..|d|]) if lcp(z, d) ≥ |s|.

To compute the above lcp values using the FM function, for each variable Xi of
S we create a new production Xn+i = XiXi, and hence the number of variables
increases to 2n. In addition, we construct a new SLP of size O(n) that derives
z in O(n) time using Lemma 2. Let Z be the variable such that val(Z) = z. It
holds that

lcp(z, d) = min{lcp(Z,Xn+i[|Xi| − |d| + 1..|Xn+i|]), |d|} and

lcp(Xr, d[|s|+1..|d|]) = min{lcp(Xr, Xn+r[|Xr| − |d| + |s| + 1..|Xn+r|]), |d| − |s|}.

See also Fig. 7 and Fig. 8.
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Xℓ 
Xr
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z

Xi

Xℓ 
Xr

Z

z

Fig. 7. Lemma 8: lcp(z, d) = min{lcp(Z,Xn+i[|Xi| − |d|+ 1..|Xn+i|]), |d|}.

By using Lemma 7, we preprocess, in O(n3) time and O(n2) space, the SLP
consisting of these variables so that the query FM (Xi, Xj , k) for answering
lcp(Xi[k..|Xi|], Xj) is supported in O(n2) time. Therefore lcp(s · val(Xr), d) can
be computed in O(n2) time for each s ∈ LFCand(X�). Since there exist O(logN)
elements in LFCand(X�), we can compute LFCand(Xi) in O(n3 + n2 logN) =
O(n3) time. The total space complexity is O(n2). 
�

Since there are n productions in a given SLP, using Lemma 8 we can compute
LFCand(Xn) for the last variable Xn in a total of O(n4) time. The main result
of this paper follows.

Theorem 1. Given an SLP S of size n representing a string w, we can compute
LF (w) in O(n4+mn3h) time and O(n2) space, where m is the number of factors
in LF (w) and h is the height of the derivation tree of S.

Proof. Let LF (w) = �p1

1 · · · �pm
m . First, using Lemma 8 we compute LFCand for

all variables in S in O(n4) time. Next we will compute the Lyndon factors from
right to left. Suppose that we have already computed �

pj+1

j+1 · · · �pm
m , and we are

computing the jth Lyndon factor �
pj

j . Using Lemma 2, we construct in O(n) time

a new SLP of size O(n) describing w[1..|w| −
∑m

k=j+1 pk|�k|], which is the prefix

of w obtained by removing the suffix �
pj+1

j+1 · · · �pm
m from w. Here we note that the

new SLP actually has O(h) new variables since w[1..|w|−
∑m

k=j+1 pk|�k|] can be
represented by a sequence of O(h) variables in S. Let Y be the last variable of
the new SLP. Since LFCand for all variables in S have already been computed,
it is enough to compute LFCand for O(h) new variables. Hence using Lemma 8,
we compute a sorted list of LFCand(Y ) = LFCand(w[1..|w| −

∑m
k=j+1 pk|�k|])
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lcp 

Xn+r

Xr Xr

Xi

Xℓ 

s val(Xr)

d

Xn+r[|Xr|-|d|+|s|+1.. |Xn+r|]s 

Xr

val(Xr)

Fig. 8. Lemma 8: lcp(Xr, d[|s| + 1..|d|]) = min{lcp(Xr, Xn+r[|Xr | − |d| + |s| +
1..|Xn+r |]), |d| − |s|}

in a total of O(n3h) time. It follows from Lemma 5 that the shortest element
of LFCand(Y ) is �

pj

j , the jth Lyndon factor of w. Note that each string in
LFCand(Y ) is represented by its length, and so far we only know the total length
pj |�j| of the jth Lyndon factor. Since �j is border free, |�j| is the shortest period
of �

pj

j . We construct a new SLP of size O(n) describing �
pj

j , and compute |�j | in

O(n3 logN) time using Lemma 3. We repeat the above procedure m times, and
hence LF (w) can be computed in a total of O(n4 +m(n3h+n3 logN)) = O(n4+
mn3h) time. To compute each Lyndon factor of LF (w), we need O(n2) space
for Lemma 3 and Lemma 8. Since LFCand(Xi) for each variable Xi requires
O(logN) space, the total space complexity is O(n2 + n logN) = O(n2). 
�

4 Conclusions and Open Problem

Lyndon words and Lyndon factorization are important concepts of combinatorics
on words, with various applications. Given a string in terms of an SLP of size
n, we showed how to compute the Lyndon factorization of the string in O(n4 +
mn3h) time using O(n2) space, where m is the size of the Lyndon factorization
and h is the height of the SLP. Since the decompressed string length N can be
exponential w.r.t. n,m and h, our algorithm can be useful for highly compressive
strings.

An interesting open problem is to compute the Lyndon factorization from a
given LZ78 encoding [26]. Each LZ78 factor is a concatenation of the longest
previous factor and a single character. Hence, it can be seen as a special class of
SLPs, and this property would lead us to a much simpler and/or more efficient
solution to the problem. Noting the number s of the LZ78 factors is Ω(

√
N), a

question is whether we can solve this problem in o(s2) + O(m) time.
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Abstract. We present a simple linear-time algorithm constructing
a context-free grammar of size O(g log(N/g)) for the input string of size
N , where g the size of the optimal grammar generating this string. The
algorithm works for arbitrary size alphabets, but the running time is
linear assuming that the alphabet Σ of the input string is a subset of
{1, . . . , Nc} for some constant c. Algorithms with such an approxima-
tion guarantees and running time are known, the novelty of this paper
is the particular simplicity of the algorithm as well as the analysis of
the algorithm, which uses a general technique of recompression recently
introduced by the author. Furthermore, contrary to the previous results,
this work does not use the LZ representation of the input string in the
construction, nor in the analysis.

Keywords: Grammar-based compression, Construction of the smallest
grammar, SLP.

1 Introduction

Grammar Based Compression. This paper presents an alternative linear-
time approximation algorithm for the construction of the smallest grammar
(CFG) generating a given string T . There are three known algorithms with an
approximation ratio O(log(N/g)), where N is the input-string length and g is
the size of the optimal grammar [14,1,15]. The novelty of the proposed algorithm
is its apparent simplicity (it uses only local replacement of strings) and an anal-
ysis that uses the recompression technique developed recently by the author. In
particular, neither the algorithm, nor its analysis relate to the LZ-compression,
which was the case for previously known algorithms.

In the grammar-based compression text is represented by a context-free gram-
mar generating exactly one string. The idea behind this approach is that a CFG
can compactly represent the structure of the text, even if this structure is not ap-
parent. Furthermore, the natural hierarchical definition of the CFGs make such
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a representation suitable for algorithms, in which case the string operations can
be performed on the compressed representation, without the need of the explicit
decompression [3,5,9,13,4,1]. Lastly, there is a close connection between block-
based compression methods and the grammar compression. To be more specific,
it fairly easy to rewrite the LZW definition as a context free grammar (with just
a multiplicative constant factor overhead), LZ77 can also be presented in this
way, but this is much less obvious (and introduces a log(N/�) blow-up, where �
is the size of the LZ77 representation) [14,1].

The main drawback of the grammar-based compression is that producing the
smallest CFG for a text is difficult: the decision problem is NP-hard [16] and
the size of the grammar cannot be approximated within a constant factor [1].
Furthermore, the connection with addition chains makes any algorithm with an
approximation guarantee o(logN/ log logN) unlikely [1].

Approximation. The twofirst algorithmswithapproximation ratioO(log(N/g))
were due to Rytter [14] and independently Charikar et al. [1]. They both applied
the LZ77 compression to the input string and transformed the obtained LZ77 rep-
resentation to a grammar. The main idea was to require that the derivation tree
of the intermediate constructed grammar was balanced, the former algorithm as-
sumedAVL-condition,while the latter imposed that for a ruleX → Y Z the lengths
of words generated by Y and Z are within a certain multiplicative constant factor
from each other.

Sakamoto [15] proposed a different approach, based on RePair [10], a prac-
tically implemented and used algorithm for grammar-based compression. His
algorithm iteratively replaced pairs of different letters and maximal blocks of
letters (a� is a maximal block if that cannot be extended by a to either side). A
special pairing of the letters was devised, so that it is ‘synchronising’: for any
two appearances of the same string w in the instance we can represent w as
w = w1w2w3, where w1, w3 = O(1) and w2 in both appearances are compressed
in the same way (though w1 and w3 in those appearances can be compressed
differently). The analysis considered the LZ77 representation of the text and
proving that due to ‘synchronisation’ the factors of LZ77 are compressed very
similarly as the text to which they refer.

However, to the author’s best knowledge and understanding, the presented
analysis [15] is incomplete, as the cost of nonterminals introduced for the rep-
resentation of maximal blocks is not bounded in the paper; the bound that the
author was able to obtain using there presented approach is O(log(N/g)2).

ProposedApproach: Recompression. In this paper another algorithm is pro-
posed, using the general approachof recompression, developedby theauthor, based
on iterative application of two replacement schemes performed on the text T :

pair compression of ab For two different symbols (i.e. letters or nonterminals)
a, b such that substring ab appears in T replace each of ab in T by a fresh
nonterminal c.

a’s block compression For each maximal block a� appearing in T , where a is
a letter or a nonterminal, replace all a�s in T by a fresh nonterminal a�.
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In one phase, all pairs (letters) appearing in the current text are listed in P
(L, respectively). Then pair compression is applied to an appropriately chosen
subset of P and all blocks of symbols from L, then the phase ends. If each pair
and each block is compressed, the length of T drops by half; in reality the text
length drops by some smaller, but constant, factor per phase. For the sake of
simplicity, we treat all nonterminals introduced by the algorithm as letters.

In author’s previous work it was shown that such an approach can be efficiently
applied to text represented in a grammar compressed form [6,5,7]. In this paper
a somehow opposite direction is followed: the recompression method is employed
to the input string. This yields a simple linear-time algorithm: Performing one
phase in O(|T |) running time is relatively easy, since the length of T drops by a
constant factor in each phase, the O(N) running time is obtained.

However, the more interesting is the analysis, and not the algorithm itself:
it is performed by applying the recompression to the optimal grammar G for
the input text. In this way, the current G always generates the current string
kept by the algorithm and the number of nonterminals introduced during the
construction can be calculated in terms of |G| = g. A straightforward analysis
yields that the generated grammar is of size O(g logN), when the recompression-
based algorithm is combined with a naive algorithm generating a grammar of
size O(N), the resulting algorithm outputs a grammar of size O(g log(N/g)+g).

We believe that the proposed algorithm is interesting, as it is very simple
and its analysis for the first time does not rely on LZ77 representation of the
string. Potentially this can help in both design of an algorithm with a better
approximation ratio and in showing a logarithmic lower bound: Observe that
the size � of the LZ77 representation is not larger than g, so it might be that
some algorithm produces a grammar of size o(g log(N/g)), even though this is
of size Ω(� log(N/�)). Secondly, as the analysis ‘considers’ the optimal grammar,
it may be much easier to observe, where any approximation algorithm performs
badly, and so try to approach a logarithmic lower bound.

Unlike Rytter’s [14] and Charikar’s et al. [1] algorithms, the grammar returned
by the here-proposed algorithm is not balanced in any sense and it can have
height ω(logN). This is disadvantageous, as many many data structures assume
some balanced form of the grammar. On the other hand, there is no evidence
that an optimal grammar is balanced and the only algorithms changing an SLP
into balanced once are adaptations of translations from LZ to SLP, in particular
they introduce an O(log(N/g)) blow-up in size. Thus beating the O(log(N/g))
approximation ratio might involve a construction of an unblanced grammar.

Comparison with Sakamoto’s algorithm. The general approach is similar to Sa-
kamoto’s method, however, the pairing of letters seems more natural. Also, the
construction of nonterminals for blocks of letters is different, the author failed
to show that the bound actually holds for the variant proposed by Sakamoto.
It should be noted that the analysis presented in this paper the calculation of
nonterminals used due to pair compression is fairly easy, while estimating the
number used for block compression is non-obvious. Also, the connection to the
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addition chains suggests that the compression of blocks is the difficult part of
the smallest grammar problem.

Computational model. When Σ can be identified with {1, 2, . . . , N c} for some
constant c (i.e. RadixSort can be performed on it in linear time) the presented
algorithm runs in linear time. The same applies to previous algorithms: when
a LZ77 representation is created using a suffix-tree the linear-time construction
for it assumes that the alphabet consists of integers and that these can be sorted
in linear time [2]. While Sakamoto’s method was designed for constant-size Σ,
it generalises to Σ = {1, 2, . . . , N c} with ease.

2 The Algorithm

The input sequence is T ∈ Σ∗ and N is its initial length; it is represented as
a doubly-linked list. We treat nonterminals of the constructed grammar in the
same way as the original letters and use common set Σ for both of them.

The smallest grammar generating T is denoted by G and its size, measured
as the length of the productions, is g. The crucial part of the analysis is the
modification of G, so that it always derives T (so in some sense according to
the compression performed on T ). In this way at each step the cost of new
nonterminals introduced by the algorithm can be related to G and moreover we
can amortise better the cost of the operations.

In the following, the terms nonterminal, rules, etc. always regard to the op-
timal grammar G (or its transformed version). Still, we need to estimate the
number of productions in the constructed grammar, to avoid confusion, we say
about representing a letter a and the cost of representation, i.e. whenever a re-
places string w, the representation of a is the subgrammar generating w from a
and the cost of representation is the size of this subgrammar. Note that when
we replace a pair ab by c then the cost of representation is constant (i.e. 2),
however, when a� replaces a block a�, the cost is much higher (roughly: O(log �),
but we try to amortise it whenever possible).

Blocks Compression. The blocks compression is very simple to implement:
We read T , for a block of as of length greater than 1 we create a record (a, �, p),
where � is a length of the block, and p is the pointer to the first letter in this
block. We then sort these records lexicographically using RadixSort (ignoring the
last component). There are only O(|T |) records and we can assume that Σ can
be identified with an interval, this is all done in O(|T |). Now, for a fixed letter a,
the consecutive tuples with the first coordinate a correspond to all blocks of a,
ordered by the size. It is easy to replace them in O(|T |) time with new letters.

We need to represent the a� replacing a�: suppose we are to replace the blocks
a�1 , a�2 , . . . , a�k , where 1 < �1 < �2 < · · · < �k, let �0 = 0. Then we first represent
each block of length �i+1 − �i using the the binary expansion: for each 2j , where
1 < j ≤ log(�k − �k−1) let a2j → a2j−1a2j−1 and a1 → a. Then each a�i−�i−1

can be represented as a concatenation of some of a1, a2, . . . , a2j , based on the
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Algorithm 1. TtoG: outline
1: while |T | > 1 do
2: L ← list of letters in T
3: for each a ∈ L do � Blocks compression
4: compress maximal blocks of a � O(|T |)
5: P ← list of pairs
6: find partition of Σ into Σ� and Σr

7: � Try to maximize the occurrences from Σ�Σr in T . O(|T |) time, see Lemma 2
8: for ab ∈ P ∩Σ�Σr do � These pairs do not overlap
9: compress pair ab � Pair compression

10: return the constructed grammar

binary notation of �i − �i−1. Next, a�i+1 is represented as a�i+1 → a�i+1−�ia�i .
The representation cost is O(k + maxk

i+1 log(�i − �i−1)).
Since no two maximal blocks of the same letter can be next to each other,

after the block compression there are no blocks of length greater than 1 in T .

Lemma 1. In line 5 there are no two consecutive identical letters in T .

Pair Compression. The pair compression is performed similarly as the block
compression. However, since the pairs can overlap, compressing all pairs at the
same time is not possible. Still, we can find a subset of non-overlapping pairs in
T such that a constant fraction of T is covered by appearances of these pairs.
This subset is defined by a partition of Σ into Σ� and Σr and choosing the pairs
with the first letter in Σ� and the second in Σr.

Observe that if each element of Σ is randomly assigned to Σ� or Σr (with
equal probabilities) then a fixed appearance of ab has a 1/4 chance of being
in Σ�Σr. Hence the expected number of pairs in this partition is (|T | − 1)/4,
and so there is a partition covering at least this amount of pairs in T . A simple
derandomisation (using the expected-value approach) yields the following:

Lemma 2. For T in O(|T |) time we can find in line 6 a partition of Σ into
Σ�, Σr such that number of appearances of pairs ab ∈ Σ�Σr in T is at least
(|T | − 1)/4 (or 1, if this less than 1). In the same running time we can provide,
for each ab ∈ P ∩Σ�Σr, a lists of pointers to appearances of ab in T .

When for each pair ab ∈ Σ�Σr the list of its appearances in T is provided, the
replacement of pairs is done going through and the list and replacing each of
the pair, which is done in linear time. Note, that as Σ�, Σr are disjoint, the
considered pairs cannot overlap. This ends the description of the construction.

Size and Running Time. From Lemma 2 it follows that

Lemma 3. In each phase |T | is reduced by a constant factor. In particular, TtoG
runs in linear time.

Note that there are known very fast implementations of algorithms creating an
SLP based on pair compression [8].
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3 Size of the Grammar: SLPs and Recompression

To bound cost of representing the letters introduced by TtoG we perform a
mental experiment, in which we start with the smallest grammar G generating
(the input) T and then modify it so that it generates T after each operation
performed on G. Thus if we take together the rules of the current G and the
representations introduced already by TtoG, we obtain a grammar generating
the input text. Hence we can think of this process as gradually transforming
G into the grammar returned by TtoG. The main advantage of this approach
is that at each step of TtoG we can bound the cost of representation in terms
of |G|.

We assume that G is a Straight Line Programme, however, we relax the notion
a bit: i.e. its nonterminals are numbered X1, . . . , Xm and each rule is of the
form Xi → w ∈ Σ∗ or Xi → uXjv or Xi → uXjvXkw, where u, v, w ∈ Σ∗ and
j, k < i (note that there is no bound on the lengths of u, v and w). Every CFG
generating a unique string can be transformed into such a form, with the size
increased only by a constant factor. We call the letters (strings) appearing in the
productions the explicit letters (strings, respectively). The unique string derived
by Xi is denoted by val(Xi); as already promised, the grammar G shall satisfy
the condition val(Xm) = T .

Idea of the Cost Analysis. With each explicit letter in rules of G we associate
a unit credit. When a letter is removed from a rule, it releases its credit, on the
other hand, when new letters appear in the rules for any reasons, their credit
needs to be paid. Several operations on G increase the credit of G, we say that
they introduce this additional credit. The main idea of the analysis is that when
a pair compression (say ab to c) is performed, the released credit (at least 2)
is enough to pay for the new letters (appearances of c) and there is a surplus,
which can be associated with c, i.e. the representation cost of c is also paid by
the credit. Similar approach works for blocks.

Since representation cost can be fully paid by credit, instead of trying to
estimate it, we just calculate the total amount of introduced credit. This upper-
bounds the cost of representation.

Pair Compression. A pair of letters ab has a crossing appearance in a non-
terminal Xi (with a rule Xi → αi) if ab is in val(Xi) but this appearance does
not come from an explicit appearance of ab in αi nor it is generated by any of
the nonterminals in αi. A pair is non-crossing if it has no crossing appearance.
Unless explicitly written, we use this notion only to pairs of different letters.

By PCab→c(w) we denote the text obtained from w by replacing each ab by
a letter c (we assume that a �= b). We say that a procedure properly implements
the pair compression of ab to c, if val(X ′

m) = PCab→c(val(Xm)). When a pair
ab is noncrossing, implementing the pair compression is easy, as it is enough to
replace each explicit ab with c, we refer to this procedure as PairCompNCr(ab, c).

In order to distinguish between the nonterminals, grammar, etc. before and
after the application of compression of ab (or, in general, any procedure) we use
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‘primed’ letters, i.e. X ′
i, G′, T ′ for the nonterminals, grammar and text after this

compression and ‘unprimed’, i.e. Xi, G T for the ones before.

Lemma 4. If ab is a noncrossing pair, then PairCompNCr(ab, c) properly im-
plements the compression of ab. The credit and cost of representing the new
letter c is paid by the released credit. If any other pair a′b′ appearing in T was
noncrossing in G, it is in G′.

The proof follows by a simple case inspection.
It is left to assure that the pairs from Σ�Σr are all noncrossing. Intuitively,

there are three types of ‘bad’ situations:

– there is a nonterminal Xi such that val(Xi) begins with b and aXi appears
in one of the rules;

– there is a nonterminal Xi such that val(Xi) ends with a and Xib appears in
one of the rules;

– there are nonterminals Xi, Xj such that val(Xi) ends with a and val(Xj)
begins with b and XiXj appears in one of the rules.

Consider the first case, let bw = val(Xi). Then we modify the rule for Xi so
that val(Xi) = w and replace each Xi in the rules by bXi, we call this action
the left-popping b from Xi. Similar operations can be done for other cases: when
val(Xj) ends with a and Xjb appears in G then we right-pop this a; in the last
case, when val(Xj) ends with b and val(Xi) begins with a, we left-pop this b and
right-pop the a. Such operations can be performed for many letters in parallel:
Pop(Σ�, Σr) ‘uncrosses’ all pairs from the set Σ�Σr, assuming that Σ� and Σr

are disjoint subsets of Σ; in particular, it takes care of all three listed above
cases.

Algorithm 2. Pop(Σ�, Σr)

1: for i ← 1 . .m− 1 do
2: let the production for Xi be Xi → αi

3: if the first symbol of αi is b ∈ Σr then
4: remove this b from αi

5: replace Xi in G’s productions by bXi

6: if val(Xi) = ε then
7: remove Xi from G’s productions
8: Do the symmetric right-popping

Lemma 5. After application of Pop(Σ�, Σr), where Σ� ∩ Σr = ∅, each pair
ab ∈ Σ�Σr is non-crossing. Furthermore, val(X ′

m) = val(Xm). The credit of G
increases by at most O(m).

The first claim follows by a case inspection and is identical as in author’s earlier
work using the technique [7,5,6]. The second and third are obvious.

In order to compress pairs from Σ�Σr it is enough to first uncross them all
and then compress them, we refer to this procedure as PairComp(Σ�, Σr).



172 A. Jeż

Lemma 6. PairComp implements pair compression for each ab ∈ Σ�Σr. The
credit of G is increased by O(m).

Blocks Compression. Similar notions and analysis are applied for blocks.
Consider appearances of maximal a-blocks in T and their derivation by G. Then
a block a� has a crossing appearance in Xi with a rule Xi → αi, if it is contained
in val(Xi) but this appearance is not generated by the explicit as in the rule
nor in the substrings generated by the nonterminals in αi. If as blocks have no
crossing appearances, then a has no crossing blocks. As for noncrossing pairs,
the compression of a blocks, when it has no crossing blocks, is easy: it is enough
to replace every explicit appearance of maximal block a� with a�.

Algorithm 3. BlockCompNCr(a)

1: for each a�m do
2: replace each maximal a�m in G by a�m

Lemma 7. Suppose that a has no crossing blocks. Then BlockCompNCr(a) prop-
erly compresses a’s blocks.

Furthermore, if a letter b from T had no crossing blocks in G, it does not have
them in G′.

It is left to ensure that no letter has a crossing block. The solution is similar to Pop,
this time thoughwe need to remove the whole prefix and suffix from val(Xi) instead
of a single letter: suppose that a has a crossing block because aXi appears in the
rule and val(Xi) begins with a. Left-popping a does not solve the problem, as it
might be that val(Xi) still begins with a. Thus, we keep on left-popping until the
first letter of val(Xi) is not a, i.e. we remove the a-prefix of val(Xi).

Lemma 8. After RemCrBlocks no letter has a crossing block.

The proof is fairly obvious: if a� was left-popped from Xi then the only letter to
the left of Xi is a and val(Xi) does not start with a, similar argument applies
to the ending letter.

Algorithm 4. RemCrBlocks: removing crossing blocks
1: for i ← 1 . .m− 1 do
2: let a, b be the first and last letter of val(Xi)
3: let �i, ri be the length of the a-prefix and b-suffix of val(Xi)
4: � If val(Xi) ∈ a∗ then ri = 0 and �i = | val(Xi)|
5: remove a�i from the beginning and bri from the end of the rule
6: replace Xi by a�iXib

ri in the rules
7: if val(Xi) = ε then remove Xi from the rules
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So the compression of all blocks of letters is done by first running RemCr-
Blocks and then compressing each of the block. We do not compress blocks of
letters that are introduced in this way. We call the resulting procedure Block-
Comp. Concerning the number of credit, the arbitrary long blocks popped by
RemCrBlocks are compressed (each into a single letter) and so only 4 credit per
rule is introduced.

Lemma 9. BlockComp properly compresses blocks of each letter a appearing in
T before its application and introduces at most O(m) credit.

Calculating the Cost of Representing Letters in Block Compression.
While the credits were enough to pay the cost of representing letters introducing
during the pair construction, this is not the case for block compression. The
appropriate analysis is presented in this section. The overall plan is as follows:
firstly, we define a scheme of representing the letters based on the grammar G
and the way G is changed by BlockComp. For such a representation schema, we
show that the cost of representation is O(g logN). Lastly, it is proved that the
actual cost of representing the letters by TtoG is smaller than the one based on
G, hence it is also O(g logN).

Representing blocks of letters using G. In most cases the new blocks are obtained
by concatenating letters a that appear explicitly in the grammar and in such a
case the credit can be used to pay for the creation of the new rule. This does
not apply when the new block is obtained by concatenating two different blocks
of a (popped from nonterminals) inside a rule. However, this cannot happen too
often.

We create a new symbol for each a block that is either popped from a nonter-
minal or is in a rule at the end of the BlockComp. Such a block is a power if a�
was popped from some Xi which was then removed or it is obtained by concate-
nation of two different powers of a� inside a rule (and perhaps some other explicit
letters a). The second case appears only when in the rule Xi → uXjvXkw the
popped suffix of Xj and popped prefix of Xk are blocks of the same letter, say a,
and furthermore v ∈ a∗. For each block a� that is not a power we may uniquely
identify another block ak (which may be a power or ε) such that a� was obtained
by concatenating explicit letters to ak.

We represent the blocks as follows:

– for a block a� that is a power we express a� using the binary expansion:
i.e. introduce a2j for j ≤ log � representing a2

j

and then represent a� as a
concatenation of appropriate a2j s, depending on the binary notation of �.
This costs O(1 + log �);

– for a block a� that is obtained by concatenating � − k explicit letters to ak

we express a� as aka . . . a, the cost O(�− k) is covered by the credit released
by the explicit letters.

Cost of G-based representation. We estimate the cost of representing the letters
based on G. The idea is that each nonterminal Xi can represent a block of length
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at most logN and so it should be enough to spend that amount of cost on the
representation.

Lemma 10. The total cost of representing powers is O(g logN).

The general idea of the proof is that each nonterminal Xi can represent a block
of length at most logN and so it should be enough to spend that amount of cost
on the representation. The actual proof is technical, as we need to take into the
account that block compression is performed several times on val(Xi); this proof
appears only in the full version of this paper.

Comparing the cost of representation induced by G and the one of TtoG. We
show that the cost of representing letters by actual strategy used by TtoG yields
a cost at most as much as the one used by the strategy defined for G (note that
the latter cost includes the credit released by explicit letters). Imagine all blocks
represented by grammar-based schema as a directed weighted graph, the weights
of edges correspond to the cost of representing a letter:

– when a� is a power, the node labelled with a� has an edge to ε with weight
1 + log � (recall that this is the cost of representing this power);

– when a� is represented as a concatenation of �− k letters to ak, the node a�
has an edge to ak of weight �− k (this is the cost of representing this block,
note that it was paid by the credit on the �− k explicit letters a).

Then the sum of the weight of such a graph is a cost of representing the blocks
using the grammar schema (up to a constant factor). We transform this graph
(not increasing the sum of weights) into a similar one that corresponds to the
actual representation cost of the TtoG: recall that when representing al1 ≤ a�2 ≤
· · · ≤ a�k we represented a�i+1 by concatenating a�i+1−�i to a�i , which had a cost
O(1 + log(�i+1 − �i)). So the representation can be depicted as a graph with
edges from a�i+1 to a�i with weight 1 + log(�i+1 − �i).

We sort the nodes according to the increasing length of the powers (we can
remove duplicates, redirecting incoming edges to the other copy). For each node
a�, we redirect its edge to its direct predecessor ak and label it with a cost
1+log(�−k). This cannot increase the cost. All blocks represented in TtoG appear
in T and so they were also represented by the G-based representation. On the
other hand, some of the blocks represented by G perhaps were not represented
by TtoG. For such a block a� we remove its node a� and redirect its unique
incoming edge to its predecessor, the weight cannot increase in this way.

Improved Analysis. The naive algorithm, which simply represents the word
as X1 → w results in a grammar of size N . We merge the naive approach with
the recompression-based algorithm: if at the beginning of a phase i TtoG already
paid k for representation of the letters and the remaining text has size |T | then a
grammar for the input string of the total size k+ |T |+ 1 can be easily given and
we choose the minimum over all possible i. We call the corresponding algorithm
TtoGImp. Additionally, we show that when |T | ≈ g then the cost of representing
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letters is O(g log(N/g)) and so corresponding grammar considered by TtoGImp
is of size O(g + g log(N/g)), and so, the grammar returned by TtoGImp is also
of this size.

Algorithm 5. TtoGImp: improved version outline
1: i ← 0
2: while |T | > 1 do
3: size[i]← |T |+ so-far cost of representing letters � Cost of grammar in phase i
4: i ← i+ 1 � Number of the phase
5: L ← list of letters in T � The compression is done as in TtoG
6: for each a ∈ L do
7: compress maximal blocks of a
8: P ← list of pairs
9: find partition of Σ into Σ� and Σr

10: for ab ∈ P ∩Σ�Σr do
11: compress pair ab

12: output grammar Gi, for which size[i] is smallest

Lemma 11. If at the beginning of the phase |T | ≥ g then so far the cost of
representing letters by TtoGImp is O(g + g log(N/g)).

Let t1 and t2 be the lengths of |T | at the beginning of two consecutive phases,
such that t1 > g ≥ t2. By Lemma 11 the cost of representing letters before the
|T | was reduced to t2 letters is O(g + g log(N/g)). Using similar techniques the
cost of representation in this phase can be upper-bounded by the same value:

Lemma 12. Consider a phase, such that at its beginning T has length t1 and
after it it has length t2, where t1 > g ≥ t2. Then the cost of representing letters
introduced during this phase is at most O(g + g log(N/g)).

From Lemmata 11 and 12 it follows that

Theorem 1. The TtoGImp returns a grammar of size at mostO (g + g log (N/g)),
where g is the size of the optimal grammar for the input text.
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Abstract. A factor u of a word w is a cover of w if every position in
w lies within some occurrence of u in w. A word w covered by u thus
generalizes the idea of a repetition, that is, a word composed of exact
concatenations of u. In this article we introduce a new notion of partial
cover, which can be viewed as a relaxed variant of cover, that is, a factor
covering at least a given number of positions in w. Our main result is an
O(n log n)-time algorithm for computing the shortest partial covers of a
word of length n.

1 Introduction

The notion of periodicity in words and its many variants have been well-studied
in numerous fields like combinatorics on words, pattern matching, data compres-
sion, automata theory, formal language theory, and molecular biology. However
the classic notion of periodicity is too restrictive to provide a description of a
word such as abaababaaba, which is covered by copies of aba, yet not exactly
periodic. To fill this gap, the idea of quasiperiodicity was introduced [1]. In a
periodic word, the occurrences of the single periods do not overlap. In contrast,
the occurrences of a quasiperiod in a quasiperiodic word may overlap. Quasiperi-
odicity thus enables the detection of repetitive structures that would be ignored
by the classic characterization of periods.

The most well-known formalization of quasiperiodicity is the cover of word.
A factor u of a word w is said to be a cover of w if u �= w, and every position in
w lies within some occurrence of u in w. Equivalently, we say that u covers w.
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Note that a cover of w must also be a border — both prefix and suffix — of w.
Thus, in the above example, aba is the shortest cover of abaababaaba.

A linear-time algorithm for computing the shortest cover of a word was pro-
posed by Apostolico et al. [2], and a linear-time algorithm for computing all
the covers of a word was proposed by Moore & Smyth [3]. Breslauer [4] gave
an online linear-time algorithm computing the minimal cover array of a word
— a data structure specifying the shortest cover of every prefix of the word. Li
& Smyth [5] provided a linear-time algorithm for computing the maximal cover
array of a word, and showed that, analogous to the border array [6], it actually
determines the structure of all the covers of every prefix of the word.

Still it remains unlikely that an arbitrary word, even over the binary alphabet,
has a cover; for example, abaaababaabaaaababaa is a word that not only has
no cover, but whose every prefix also has no cover. In this article we provide a
natural form of quasiperiodicity. We introduce the notion of partial covers, that
is, factors covering at least a given number of positions in w. Recently, Flouri
et al. [7] suggested a related notion of enhanced covers which are additionally
required to be borders of the word.

Partial covers can be viewed as a relaxed variant of covers alternative to ap-
proximate covers [8]. The approximate covers require each position to lie within
an approximate occurrence of the cover. This allows for small irregularities within
each fragment of a word. On the other hand partial covers require exact occur-
rences but drop the condition that all positions need to be covered. This allows
some fragments to be completely irregular as long as the total length of such
fragments is small. The significant advantage of partial covers is that they en-
joy a more combinatorial structure, and consequently the algorithms solving the
most natural problems are much more efficient than those concerning approxi-
mate covers, where the time complexity rarely drops below quadratic and some
problems are even NP-hard.

Let Covered(v, w) denote the number of positions in w covered by occurrences
of the word v in w; we call this value the cover index of v within w. For example,
Covered(aba, aababab) = 5. We primarily concentrate on the following problem,
but the tools we develop can be used to answer various questions concerning
partial covers.

PartialCovers problem
Input: a word w and a positive integer α ≤ |w|.
Output: all shortest factors v such that Covered(v, w) ≥ α.

Example 1. Let w = bcccacccaccaccb and α = 11. Then the only shortest
partial covers are ccac and cacc.

Our contribution. The following summarizes our main result.

Theorem 1. The PartialCovers problem can be solved in O(n log n) time
and O(n) space, where n = |w|.



Fast Algorithm for Partial Covers in Words 179

We extensively use suffix trees, for an exposition see [6,9]. A suffix tree is a
compact trie of suffixes, the nodes of the trie which become nodes of the suffix
tree are called explicit nodes, while the other nodes are called implicit. Each edge
of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path
of that kind. Then, each node of the trie can be represented in the suffix tree
by the edge it belongs to and an index within the corresponding path. Such a
representation of the unique node in the trie corresponding to a factor is called
the locus of that factor. Our algorithm finds the loci of the shortest partial
covers.

Informal Structure of the Algorithm. The algorithm first augments the
suffix tree of w, and a linear number of implicit extra nodes become explicit.
Then, for each node of the augmented tree, two integer values are computed.
They allow for determining the size of the covered area for each implicit node
by a simple formula, since limited to a single edge of the augmented suffix tree,
these values form an arithmetic progression.

2 Augmented and Annotated Suffix Trees

Let w be a word of length n over a totally ordered alphabet Σ. Then the suffix
tree T of w can be constructed in O(n log |Σ|) time [10,11]. For an explicit or
implicit node v of T , we denote by v̂ the word obtained by spelling the characters
on a path from the root to v. We also denote |v| = |v̂|. The leaves of T play an
auxiliary role and do not correspond to factors, instead they are labeled with
the starting positions of the suffixes.

We define the Cover Suffix Tree of w, denoted by CST (w), as an augmented
— new nodes are added — suffix tree in which the nodes are annotated with
information relevant to covers. CST (w) is similar to the data structure named
MAST (see [12,13]).

For a set X of integers and x ∈ X , we define

nextX(x) = min{y ∈ X, y > x},

and we assume nextX(x) = ∞ if x = maxX . By Occ(v) we denote the set of
starting positions of occurrences of v̂ in w. For any i ∈ Occ(v), we define:

δ(i, v) = nextOcc(v)(i) − i.

Note that δ(i, v) = ∞ if i is the last occurrence of v̂. Additionally, we define:

cv (v) = Covered(v̂, w), Δ(v) =
∣∣ {i ∈ Occ(v) : δ(i, v) ≥ |v|}

∣∣;
see, for example, Fig. 1.

In CST (w), we introduce additional explicit nodes called extra nodes, which
correspond to halves of square factors in w, i.e. we make v explicit if v̂v̂ is a factor
of w. Moreover we annotate all explicit nodes (including extra nodes) with the
values cv , Δ; see, for example, Fig. 2. The number of extra nodes is linear [14],
so CST (w) takes O(n) space.
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Fig. 1. Let w = bcccacccaccaccb and let v be the node corresponding to cacc. We
have Occ(v) = {4, 8, 11}, cv(v) = 11, Δ(v) = 2.

Lemma 1. Let v1, v2, . . . , vk be the consecutive implicit nodes on the edge from
an explicit node v of CST (w) to its explicit parent. Then

( cv(v1), cv(v2), cv (v3), . . . , cv(vk) ) =

(cv(v) −Δ(v), cv (v) − 2Δ(v), cv(v) − 3Δ(v), . . . , c(v) − k ·Δ(v)).

Proof. Consider any vi, 1 ≤ i ≤ k. Note that Occ(vi) = Occ(v), since otherwise
vi would be an explicit node of CST (w). Also note that if any two occurrences of
v̂ in w overlap, then the corresponding occurrences of v̂i overlap. Otherwise the
path from v to vi (excluding v) would contain an extra node. Hence, when we
go up from v (before reaching its parent) the size of the covered area decreases
at each step by Δ(v). 
�
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Fig. 2. CST (w) for w = bcccacccaccaccb. It contains four extra nodes that are
denoted by squares in the figure. Each node is annotated with cv(v),Δ(v). Leaves are
omitted for clarity.
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Example 2. Consider the word w from Fig. 2. The word cccacc corresponds to
an explicit node of CST (w); we denote it by v. We have cv (v) = 10 and Δ(v) = 1
since the two occurrences of the factor cccacc in w overlap. The word cccac

corresponds to an implicit node v′ and cv(v′) = 10− 1 = 9. Now the word ccca

corresponds to an extra node v′′ of CST (w). Its occurrences are adjacent in w
and cv(v′′) = 8, Δ(v′′) = 2. The word ccc corresponds to an implicit node v′′′

and cv (v′′′) = 8 − 2 = 6.

As a consequence of Lemma 1 we obtain the following result.

Lemma 2. Assume we are given CST (w). Then we can compute:

(1) for any α, the loci of the shortest partial covers in linear time;
(2) given the locus of a factor u in the suffix tree CST (w), the cover index

Covered(u,w) in O(1) time.

Proof. Part (2) is a direct consequence of Lemma 1. As for part (1), for each
edge of CST (w), leading from v to its parent v′, we need to find minimum
|v| ≥ j > |v′| for which cv(v)−Δ(v) · (|v| − j) ≥ α. Such a linear inequality can
be solved in constant time. 
�

Due to this fact the efficiency of the PartialCovers problem (Theorem 1)
relies on the complexity of CST (w) construction.

3 Extension of Disjoint-Set Data Structure

In this section we extend the classic disjoint-set data structure to compute the
change lists of the sets being merged, as defined below. First let us extend the
next notation. For a partition P = {P1, . . . , Pk} of U = {1, . . . , n}, we define

nextP(x) = nextPi(x) where x ∈ Pi.

Now for two partitions P ,P ′ let us define the change list (see also Fig. 3) by

ChangeList(P ,P ′) = {(x, nextP′(x)) : nextP(x) �= nextP′(x)}.

1 2 3 4 5 6 7 8 9

v

v1

v2
v3

7 5 2 6
9 8

4

3 1

Fig. 3. Let P be the partition of {1, . . . , 9} whose classes consist of leaves in the
subtrees rooted at children of v, P = {{1, 3, 4}, {2, 5, 6, 7}, {8, 9}}, and let P ′ =
{{1, . . . , 9}}. Then ChangeList(P ,P ′) = {(1, 2), (2, 3), (4, 5), (7, 8)} (depicted by dot-
ted arrows).
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We say that (P , id) is a partition of U labeled by L if P is a partition of U and
id : P → L is a one-to-one (injective) mapping. A label � ∈ L is called valid if
id(P ) = � for some P ∈ P and free otherwise.

Lemma 3. Let n ≤ k be positive integers such that k is of magnitude Θ(n).
There exists a data structure of size O(n), which maintains a partition (P , id)
of {1, . . . , n} labeled by L = {1, . . . , k}. Initially P is a partition into singletons
with id({x}) = x. The data structure supports the following operations:

– Find(x) for x ∈ {1, . . . , n} gives the label of P ∈ P containing x.
– Union(I, �) for a set I of valid labels and a free label � replaces all P ∈ P

with labels in I by their set-theoretic union with the label �. The change list
of the corresponding modification of P is returned.

Any valid sequence of Union operations is performed in O(n log n) time and
O(n) space in total. A single Find operation takes O(1) time.

Proof. Note that these are actually standard disjoint-set data structure opera-
tions except for the fact that we require Union to return the change list.

We use an approach similar to Brodal and Pedersen [15] (who use the results
of [16]) originally devised for computation of maximal quasiperiodicities.

Theorem 3 of [15] states that a subset X of a linearly ordered universe can be
stored in a height-balanced tree of linear size supporting the following operations:

X.MultiInsert(Y ): insert all elements of Y to X ,
X.MultiPred(Y ): return all (y, x) for y ∈ Y and x = max{z ∈ X, z < y},
X.MultiSucc(Y ): return all (y, x) for y ∈ Y and x = min{z ∈ X, z > y},

in O
(
|Y |max

(
1, log |X|

|Y |

))
time.

In the data structure we store each P ∈ P as a height-balanced tree. Ad-
ditionally, we store several auxiliary arrays, whose semantics follows. For each
x ∈ {1, . . . , n} we maintain a value next [x] = nextP(x) and a pointer tree[x] to
the tree representing P such that x ∈ P . For each P ∈ P (technically for each
tree representing P ∈ P) we store id[P ] and for each � ∈ L we store id−1[�], a
pointer to the corresponding tree (null for free labels).

Answering Find is trivial as it suffices to follow the tree pointer and return the
id value. The Union operation is perfomed according to the pseudocode given
below (for brevity we write Pi instead of id−1[i]).

Claim. The Union operation correctly computes the change list and updates the
data structure.

Proof. If (a, b) is in the change list, then a and b come from different sets Pi, in
particular at least one of them does not come from Pi0 . Depending on which one
it is, the pair (a, b) is found by MultiPred or MultiSucc operation. On the other
hand, while computing C, the table next is not updated yet (i.e. corresponds to
the state before Union operation) while S is already updated. Consequently the
pairs inserted to C indeed belong to the change list. Once C is proved to be the
change list, it is clear that next is updated correctly. For the other components
of the data structure, correctness of updates is evident. 
�
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Function Union(I, �)

i0 := argmax{|Pi| : i ∈ I}; S := Pi0 ;

foreach i ∈ I \ {i0} do

foreach x ∈ Pi do tree[x] := S;

S.MultiInsert(Pi);

C := ∅;
foreach i ∈ I \ {i0} do

foreach (b, a) ∈ S.MultiPred(Pi) do

if next[a] = b then C := C ∪ {(a, b)};
foreach (a, b) ∈ S.MultiSucc(Pi) do

if next[a] = b then C := C ∪ {(a, b)};
id−1[i] := null;

id[S] := �; id−1[�] := S;

foreach (x, y) ∈ C do next[x] := y;

return C;

Claim. Any sequence of Union operations takes O(n log n) time in total.

Proof. Let us introduce a potential function Φ(P) =
∑

P∈P |P | log |P |. We shall
prove that the running time of a single Union operation is proportional to the
increase in potential. Clearly

0 ≤ Φ(P) =
∑
P∈P

|P | log |P | ≤
∑
P∈P

|P | logn = n logn,

so this suffices to obtain a desired O(n log n) bound.
Let us consider a Union operation that merges partition classes of sizes p1 ≥

p2 ≥ . . . ≥ pk to a single class of size p =
∑k

i=1 pi. The most time-consuming
steps of the algorithm are the operations on height-balanced trees, which, for

single i, run in O
(

max
(
pi, pi log p

pi

))
time. These operations are not performed

for the largest set and for the remaining ones we have pi <
1
2p (i.e. log p

pi
≥ 1).

This lets us bound the time complexity of the Union operations as follows:

k∑
i=2

max
(
pi, pi log p

pi

)
=

k∑
i=2

pi log p
pi

≤
k∑

i=1

pi log p
pi

=

k∑
i=1

pi(log p− log pi) = p log p−
k∑

i=1

pi log pi,

which is equal to the potential growth. 
�

This concludes the proof of Lemma 3. 
�
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4 O(n logn)-time Construction of CST(w)

The suffix tree of w augmented with extra nodes is called the skeleton of CST (w),
which we denote by sCST (w). The following lemma follows from the fact that
all square factors can be computed in linear time [17,18], and the nodes corre-
sponding to them (a linear number) can be inserted into the suffix tree easily in
O(n log n) time.

Lemma 4. sCST (w) can be constructed in O(n log n) time.

We introduce auxiliary notions related to covered area of nodes:

cvh(v) =
∑

i∈Occ(v)
δ(i,v)<h

δ(i, v), Δh(v) = |{i ∈ Occ(v) : h ≤ δ(i, v)}|.

Observation 1. cv(v) = cv |v|(v) + Δ|v|(v) · |v|, Δ(v) = Δ|v|(v).

In the course of the algorithm some nodes will have their values c,Δ already
computed; we call them processed nodes. Whenever v will be processed, so will
its descendants.

The algorithm processes inner nodes v of sCST (w) in the order of non-
increasing height |v|. We maintain the partition P of {1, . . . , n} given by sets of
leaves of subtrees rooted at peak nodes. Initially the peak nodes are the leaves of
sCST (w). Each time we process v all its children are peak nodes. Consequently,
after processing v they are no longer peak nodes and v becomes a new peak node;
see, for example, Fig. 4. The sets in the partition are labeled with identifiers of
the corresponding peak nodes. Recall that leaves are labeled with the starting
positions of the corresponding suffixes. We allow any labeling of the remaining
nodes as long as each node of sCST (w) has a distinct label of magnitude O(n).
We maintain the following technical invariant.

v1 v2
v3 v4

v5

v

root

h
h′

i

Fig. 4. One stage of the algorithm, where the peak nodes are v1, . . . , v5 while
the currently processed node is v. If i ∈ List [d] and v3 = Find(i), then
d = δ(i, v3) = Dist[i]. The current partition is P = {Leaves(v1), Leaves(v2),
Leaves(v3), Leaves(v4), Leaves(v5)}. After v is processed, the partition changes to
P = {Leaves(v1), Leaves(v2), Leaves(v), Leaves(v5)}. The Union operation merges
Leaves(v4),Leaves(v3) and returns the corresponding change list.
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Invariant(h)

(A) For each peak node z we store:

cv ′[z] = cvh(z), Δ′[z] = Δh(z).

(B) For each i ∈ {1, . . . , n} we store Dist [i] = δ(i, Find(i)).
(C) For each d < h we store List [d] = {i : Dist [i] = d}.

Algorithm ComputeCST(w)

T := sCST (w);

P := partition of {1, . . . , n} into singletons;
foreach v : a leaf of T do cv ′[v] := 0;Δ′[v] := 1;

h := n+ 1;

foreach v : an inner node of T , in non-increasing order of |v| do
Lift(h, |v|); h := |v|;
{Now part (A) of Invariant(h) is satisfied}
cv ′[v] :=

∑
u∈children(v) cv ′[u];

Δ′[v] :=
∑

u∈children(v) Δ
′[u];

ChangeList(v) := Union(children(v), v)

foreach (p, q) ∈ ChangeList(v) do LocalCorrect (p, q, v);

cv [v] := cv ′[v] +Δ′[v] · |v|; Δ[v] := Δ′[v];

return T together with values of cv , Δ;

In the algorithm, h is the smallest height (the smallest value of |z|) among the
current set of peak nodes z; the height is not defined for leaves, so we start with
h = n + 1.

Description of the Lift(hold, hnew) Operation. The procedure Lift is of aux-
iliary nature but plays an important preparatory role in processing the current
node. According to part (A) of our invariant, for all peak nodes z we know the
values: cv ′[z] = cvhold

(z), Δ′[z] = Δhold
(z). Now we have to change hold to hnew

and guarantee validity of the invariant: cv ′[z] = cvhnew(z), Δ′[z] = Δhnew(z).
This is exactly what the following operation does.

Function Lift(hold, hnew)

for h := hold − 1 downto hnew do

foreach i in List [h] do

v := Find(i);

Δ′[v] := Δ′[v] + 1; cv ′[v] := cv ′[v]− h;



186 T. Kociumaka et al.

Description of the LocalCorrect(p, q, v) Operation. Here we assume that v̂
occurs at positions p < q and that these are consecutive occurrences. Moreover,
we assume that these occurrences are followed by distinct characters, i.e. (p, q) ∈
ChangeList(v). The LocalCorrect procedure updates Dist [p] to make part (B) of
the invariant hold for p again. The data structure List is updated accordingly
so that (C) remains satisfied.

Function LocalCorrect(p, q, v)

d := q − p; d′ := Dist [p];

if d′ < |v| then cv ′[v] := cv ′[v]− d′ else Δ′[v] := Δ′[v]− 1;
if d < |v| then cv ′[v] := cv ′[v] + d else Δ′[v] := Δ′[v] + 1;

Dist [p] := d;

remove(i,List [d′]); insert(i,List [d]);

Complexity of the Algorithm. In the course of the algorithm we compute
ChangeList(v) for each v ∈ T . Due to Lemma 3 we have:∑

v∈T

|ChangeList(v)| = O(n log n).

Consequently we perform O(n log n) operations LocalCorrect . In each of them at
most one element is added to a list List [d] for some d. Hence the total number
of insertions to these lists is also O(n log n).

The cost of each operation Lift is proportional to the total size of lists List [h]
processed in this operation. As for each h the list List [h] is processed once
and the total number of insertions into lists is O(n log n), the total cost of all
operations Lift is also O(n logn). This proves the following fact which, together
with Lemma 3, implies our main result (Theorem 1).

Lemma 5. Algorithm ComputeCST computes CST (w) in O(n log n) time and
O(n) space, where n = |w|.

5 Final Remarks

We have presented an algorithm which constructs a data structure, called the
Cover Suffix Tree, in O(n log n) time and O(n) space. In the algorithm, to sim-
plify its presentation, we used all halves of square factors as extra nodes. How-
ever, it suffices to consider primitive square halves only and all such nodes can
be shown to be necessary for Lemma 1 to hold. As such, they can be introduced
on the fly (in the Lift operation) without using the algorithms of [17,18].

The Cover Suffix Tree has been developed in order to solve the PartialCov-

ers problem, but it gives a well-structured description of the cover indices of all
factors. Consequently, various queries related to partial covers can be answered
efficiently. For example, with the Cover Suffix Tree one can solve in linear time a
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problem symmetric to PartialCovers: given constraints on factors of w (e.g.
on their length), find a factor that maximizes the number of positions covered.

An interesting open problem is to reduce the construction time to O(n). This
could be difficult, though, since this would yield alternative linear-time algo-
rithms finding primitively rooted squares and computing seeds (for a definition
see [19]); and the only known linear-time algorithms for these problems are rather
complex.
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Abstract. Computing the LZ factorization (or LZ77 parsing) of a string
is a computational bottleneck in many diverse applications, including
data compression, text indexing, and pattern discovery. We describe
new linear time LZ factorization algorithms, some of which require only
2n log n+O(log n) bits of working space to factorize a string of length n.
These are the most space efficient linear time algorithms to date, using
n log n bits less space than any previous linear time algorithm. The algo-
rithms are also simple to implement, very fast in practice, and amenable
to streaming implementation.

1 Introduction

In the 35 years since its discovery the LZ77 factorization of a string — named
after its authors Abraham Lempel and Jacob Ziv, and the year 1977 in which it
was published — has been applied all over computer science. The first uses of
LZ77 were in data compression, and to this day it lies at the heart of efficient
and widely used file compressors, like gzip and 7zip. LZ77 is also important as
a measure of compressibility. For example, its size is a lower bound on the size
of the smallest context-free grammar that represents a string [2]. Our particu-
lar motivation is the construction of compressed full-text indexes [15], several
recent and powerful instances of which are based on LZ77 [8,7,14]. In all these
applications (and in most of the many others we have not listed) computation
of the factorization is a time- and space-bottleneck in practice.

Related work. There exists a variety of worstcase linear time algorithms to com-
pute the LZ factorization [1,9,16]. All of them require at least 3n logn bits of
working space1 in the worstcase. The most space efficient linear time algorithm
is due to Chen et al. [3]. By overwriting the suffix array it achieves a working
space of (2n + s) logn bits, where s is the maximal size of the stack used in the
algorithm. However, in the worstcase s = Θ(n). Another space efficient solution
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1 Working space excludes input string, output factorization, and O(logn) terms.
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requiring (2n+
√
n) logn bits of space in the worstcase is from [6] but it computes

only the lengths of LZ77 factorization phrases. It can be extended to compute
the full parsing at the cost of extra n logn bits.

All of these algorithms rely on the suffix array, which can be constructed in
O(n) time and using (1 + ε)n logn bits of space (in addition to the input string
but including the output of size n logn bits) [11]. This raises the question of
whether the space complexity of linear time LZ77 factorization can be reduced
from 3n logn bits. In this paper, we answer the question in the affirmative by
describing a linear time algorithm using 2n logn bits.

In terms of practical performance, the fastest linear time LZ factorization
algorithms are the very recent ones by Goto and Bannai [9], all using at least
3n logn bits of working space. Other candidates for the fastest algorithms are
described by Kempa and Puglisi [13]. Due to nearly simultaneous publication,
no comparison between them exists so far. Experiments in this paper put the
algorithms of Kempa and Puglisi slightly ahead. Their algorithms are also very
space efficient; one of them uses 2n logn + n bits of working space and others
even less. However, their worstcase time complexity is Θ(n log σ) for an alphabet
of size σ. More details about these algorithms are given in Section 2.

Our contribution. We describe two linear time algorithms for LZ factorization.
The first algorithm uses 3n logn bits of working space and can be seen as a
reorganization of an algorithm by Goto and Bannai [9]. However, this reorgani-
zation makes it smaller and faster. In our experiments, this is the fastest of all
algorithms when the input is not highly repetitive.

The second algorithm reduces the working space to 2n logn bits, which is
at least n logn bits less than any previous linear time algorithm uses in the
worstcase. The space reduction does not come at a great cost in performance.
The algorithm is the fastest on some inputs and never far behind the fastest. It
relies on novel combinatorial observations that might be of independent interest.

Both algorithms share several nice features. They are simple and easy to im-
plement; they are alphabet-independent, using only character comparisons to
access the input; and they make just one sequential pass over the suffix array,
enabling streaming from disk. Our experiments show that streaming not only
reduces the working space by a further n logn bits, but also speeds up the com-
putation when the time for reading inputs from disk is taken into account.

2 Preliminaries

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of
|X| = n symbols drawn from an ordered alphabet of size σ.

For i = 1, . . . , n we write X[i..n] to denote the suffix of X of length n− i + 1,
that is X[i..n] = X[i]X[i + 1] . . .X[n]. We will often refer to suffix X[i..n] simply
as “suffix i”. Similarly, we write X[1..i] to denote the prefix of X of length i.
We write X[i..j] to represent the substring X[i]X[i+ 1] . . .X[j] of X that starts at
position i and ends at position j. Let lcp(i, j) denote the length of the longest-
common-prefix of suffix i and suffix j. For example, in the string X = zzzzzipzip,
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lcp(2, 5) = 1 = |z|, and lcp(5, 8) = 3 = |zip|. For technical reasons we define
lcp(i, 0) = lcp(0, i) = 0 for all i.

Suffix Arrays. The suffix array SA is an array SA[1..n] containing a permutation
of the integers 1..n such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in ascending lexicographical
order. The inverse suffix array ISA is the inverse permutation of SA, that is
ISA[i] = j iff SA[j] = i. Conceptually, ISA[i] tells us the position of suffix i in SA.

The array Φ[0..n] (see [12]) is defined by Φ[i] = SA[ISA[i]−1], that is, the suffix
Φ[i] is the immediate lexicographical predecessor of the suffix i. For completeness
and for technical reasons we define Φ[SA[1]] = 0 and Φ[0] = SA[n] so that Φ forms
a permutation with one cycle.

LZ77. The LZ77 factorization uses the notion of a longest previous factor (LPF).
The LPF at position i in X is a pair (pi, �i) such that, pi < i, X[pi..pi + �i− 1] =
X[i..i + �i − 1] and �i > 0 is maximized. In other words, X[i..i + �i − 1] is the
longest prefix of X[i..n] which also occurs at some position pi < i in X. If X[i]
is the leftmost occurrence of a symbol in X then such a pair does not exist. In
this case we define pi = X[i] and �i = 0. Note that there may be more than one
potential pi, and we do not care which one is used.

The LZ77 factorization (or LZ77 parsing) of a string X is then just a greedy,
left-to-right parsing of X into longest previous factors. More precisely, if the jth
LZ factor (or phrase) in the parsing is to start at position i, then we output
(pi, �i) (to represent the jth phrase), and then the (j + 1)th phrase starts at
position i + �i, unless �i = 0, in which case the next phrase starts at position
i + 1. We call a factor (pi, �i) normal if it satisfies li > 0 and special otherwise.
The number of phrases in the factorization is denoted by z.

For the example string X = zzzzzipzip, the LZ77 factorization produces:

(z, 0), (1, 4), (i, 0), (p, 0), (5, 3).

The second and fifth factors are normal, and the other three are special.

NSV/PSV. The LPF pairs can be computed using next and previous smaller
values (NSV/PSV) defined as

NSVlex[i] = min{j ∈ [i + 1..n] | SA[j] < SA[i]}
PSVlex[i] = max{j ∈ [1..i− 1] | SA[j] < SA[i]}.

If the set on the right hand side is empty, we set the value to 0. Further define

NSVtext[i] = SA[NSVlex[ISA[i]]] (1)

PSVtext[i] = SA[PSVlex[ISA[i]]]. (2)

If NSVlex[ISA[i]] = 0 (PSVlex[ISA[i]] = 0) we set NSVtext[i] = 0 (PSVtext[i] = 0).
If (pi, �i) is a normal factor, then either pi = NSVtext[i] or pi = PSVtext[i] is

always a valid choice for pi [4]. To choose between the two (and to compute the
�i component), we have to compute lcp(i,NSVtext[i]) and lcp(i,PSVtext[i]) and
choose the larger of the two. This is given as a procedure LZ-Factor in Fig. 1.
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Lazy LZ Factorization. The fastest LZ factorization algorithms in practice are
from recent papers by Kempa and Puglisi [13] and Goto and Bannai [9]. A com-
mon feature between them is a lazy evaluation of LCP values: lcp(i,NSVtext[i])
and lcp(i,PSVtext[i]) are computed only when i is a starting position of a phrase.
The values are computed by a plain character-by-character comparison of the
suffixes, but it is easy to see that the total time complexity is O(n). This is in
contrast to most previous algorithms that compute the LCP values for every
suffix using more complicated techniques. The new algorithms in this paper use
lazy evaluation too.

Goto and Bannai [9] describe algorithms that compute and store the full set
of NSV/PSV values. One of their algorithms, BGT, computes the NSVtext and
PSVtext arrays with the help of the Φ array. The LZ factorization is then easily
computed by repeatedly calling LZ-Factor. Two other algorithms, BGS and
BGL, compute the NSVlex and PSVlex arrays and use them together with SA and
ISA to simulate NSVtext and PSVtext as in Eqs. (1) and (2). All three algorithms
run in linear time and they use 3n logn (BGT), 4n logn (BGL) and (4n+s) logn
(BGS) bits of working space, where s is the size of the stack used by BGS. In
the worst case s = Θ(n). The algorithms for computing the NSV/PSV values
are not new but come from [16] (BGT) and from [4] (BGL and BGS). However,
the use of lazy LCP evaluation makes the algorithms of Goto and Bannai faster
in practice than earlier algorithms.

Kempa and Puglisi [13] extend the lazy evaluation to the NSV/PSV values
too. Using ISA and a small data structure that allows arbitrary NSV/PSV queries
over SA to be answered quickly, they compute NSVtext[i] and PSVtext[i] only when
i is a starting position of a phrase. The approach requires (2+1/b)n logn bits of
working space and O(n+zb+z log(n/b)) time, where b is a parameter controlling
a space-time tradeoff in the NSV/PSV data structure. If we set b = logn, and
given z = O(n/ logσ n), then in the worstcase the algorithm requires O(n log σ)
time, and 2n logn + n bits of space. Despite the superlinear time complexity,
this algorithm (ISA9) is both faster and more space efficient than earlier lin-
ear time algorithms. Kempa and Puglisi also show how to reduce the space to
(1 + ε)n logn + n + O(σ logn) bits by storing a succinct representation of ISA
(algorithms ISA6r and ISA6s). Because of the lazy evaluation, these algorithms
are especially fast when the resulting LZ factorization is small.

Optimized Parsing. Fig. 1 shows two versions of the basic parsing procedure. The
standard version is essentially how the computation is done in all prior imple-
mentations using lazy LZ factorization. The optimized version is the first, small
contribution of this paper. It is based on the observation that lcp(nsv, psv) =
min(lcp(i, nsv), lcp(i, psv)) and performs lcp(nsv, psv) fewer symbol comparisons
than the standard version.

3 3n logn-Bit Algorithm

Our first algorithm is closely related to the algorithms of Goto and Bannai [9],
particularly BGT and BGS. It first computes the NSVtext and PSVtext arrays and
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Procedure LZ-Factor(i, nsv, psv)
1: �nsv ← lcp(i, nsv)
2: �psv ← lcp(i, psv)
3: if �nsv > �psv then
4: (p, �)← (nsv, �nsv)
5: else
6: (p, �)← (psv, �psv)
7: if � = 0 then p ← X[i]
8: output factor (p, �)
9: return i+max(�, 1)

Procedure LZ-Factor(i, nsv, psv)
1: � ← lcp(nsv, psv)
2: if X[i+ �] = X[nsv + �] then
3: � ← �+ 1
4: (p, �)← (nsv, �+ lcp(i+ �, nsv + �))
5: else
6: (p, �)← (psv, �+ lcp(i+ �, psv + �))
7: if � = 0 then p ← X[i]
8: output factor (p, �)
9: return i+max(�, 1)

Fig. 1. The standard (left) and optimized (right) versions of the basic procedure for
computing a phrase starting at a position i given nsv = NSVtext[i] and psv = PSVtext[i].
The return value is the starting position of the next phrase.

uses them for lazy LZ factorization similarly to the BGT algorithm (lines 11–13
in Fig. 2). However, the NSV/PSV values are computed using the technique of
the BGS algorithm, which comes originally from [4].

The NSV/PSV computation scans the suffix array while maintaining a stack
of suffixes, which are always in double ascending order: both in ascending lex-
icographical order and in ascending order of text position. The following are
equivalent characterizations of the stack content after processing suffix SA[i]:

– SA[i], PSVtext[SA[i]], PSVtext[PSVtext[SA[i]]], . . ., 0
– 0 and all SA[k], k ∈ [1..i], such that SA[k] = min SA[k..i]
– 0 and all SA[k], k ∈ [1..i], such that NSVtext[SA[k]] �∈ SA[k + 1..i].

Our version of this NSV/PSV computation is shown on lines 1–10 in Fig. 2. It
differs from the BGS algorithm of Goto and Bannai in the following ways:

1. We write the NSV/PSV values to the text ordered arrays NSVtext and PSVtext

instead of the lexicographically ordered arrays NSVlex and PSVlex. Because
of this, the second phase of the algorithm does not need the SA and ISA
arrays.

2. BGS uses a dynamically growing separate stack while we overwrite the suffix
array with the stack. This is possible because the stack is never larger than
the already scanned part of SA, which we do not need any more (see above).
The worst case size of the stack is Θ(n) (but it is almost always much smaller
in practice).

3. Similar to the algorithms of Goto and Bannai, we store the arrays PSVtext

and NSVtext interleaved so that the values PSVtext[i] and NSVtext[i] are next
to each other. We compute the PSV value when popping from the stack
instead of when pushing to the stack as BGS does. This way PSVtext[i] and
NSVtext[i] are computed and written at the same time which can reduce the
number of cache misses.

Because of these differences, our algorithm uses between n logn and 2n logn
bits less space and is significantly faster than BGS, which is the fastest of the
algorithms in [9].
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Algorithm KKP3

1: SA[0]← 0 // bottom of stack
2: SA[n+ 1]← 0 // empties the stack at end
3: top ← 0 // top of stack
4: for i ← 1 to n+ 1 do
5: while SA[top] > SA[i] do
6: NSVtext[SA[top]]← SA[i]
7: PSVtext[SA[top]]← SA[top− 1]
8: top ← top− 1 // pop from stack
9: top ← top+ 1
10: SA[top]← SA[i] // push to stack
11: i ← 1
12: while i ≤ n do
13: i ← LZ-Factor(i,NSVtext[i],PSVtext[i])

Fig. 2. LZ factorization using 3n log n bits of working space (the arrays SA, NSVtext

and PSVtext)

4 2n logn-Bit Algorithm

Our second algorithm reduces space by computing and storing only the NSV
values at first. It then computes the PSV values from the NSV values on the fly.
As a side effect, the algorithm also computes the Φ array! This is a surprising
reversal of direction compared to some algorithms that compute NSV and PSV
values from Φ [16,9].

For t ∈ [0..n], let Xt = {X[i..n] | i ≤ t} be the set of suffixes starting at or
before position t. Let Φt be Φ restricted to Xt, that is, for i ∈ [1..t], suffix Φt[i]
is the immediate lexicographical predecessor of suffix i among the suffixes in Xt.
In particular, Φn = Φ. As with the full Φ, we make Φt a complete unicyclic
permutation by setting Φt[imin] = 0 and Φt[0] = imax, where imin and imax are
the lexicographically smallest and largest suffixes in Xt. We also set Φ0[0] = 0.
A useful way to view Φt is as a circular linked list storing Xt in the descending
lexicographical order with Φt[0] as the head of the list.

Now consider computing Φt given Φt−1. We need to insert a new suffix t
into the list, which can be done using standard insertion into a singly-linked
list provided we know the position. It is easy to see that t should be inserted
between NSVtext[t] and PSVtext[t]. Thus

Φt[i] =

⎧⎨⎩
t if i = NSVtext[t]
PSVtext[t] if i = t
Φt−1[i] otherwise

and furthermore

PSVtext[t] = Φt−1[NSVtext[t]] .

The pseudocode for the algorithm is given in Fig 3. The NSV values are computed
essentially the same way as in the first algorithm (lines 1–9) and stored in the
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array Φ. In the second phase, the algorithm maintains the invariant that after t
rounds of the loop on lines 12–18, Φ[0..t] = Φt and Φ[t+1..n] = NSVtext[t+1..n].

Algorithm KKP2

1: SA[0]← 0 // bottom of stack
2: SA[n+ 1]← 0 // empties the stack at end
3: top ← 0 // top of stack
4: for i ← 1 to n+ 1 do
5: while SA[top] > SA[i] do
6: Φ[SA[top]]← SA[i] // Φ[SA[top]] = NSVtext[SA[top]]
7: top ← top− 1 // pop from stack
8: top ← top+ 1
9: SA[top]← SA[i] // push to stack
10: Φ[0]← 0
11: next ← 1
12: for t ← 1 to n do
13: nsv ← Φ[t]
14: psv ← Φ[nsv]
15: if t = next then
16: next ← LZ-Factor(t, nsv, psv)
17: Φ[t]← psv
18: Φ[nsv]← t

Fig. 3. LZ factorization using 2n log n bits of working space (the arrays SA and Φ)

An interesting observation about the algorithm is that the second phase com-
putes Φ from NSVtext without any additional information. Since the suffix array
can be computed from Φ, the NSVtext array alone contains sufficient information
to reconstruct the suffix array.

5 Getting Rid of the Stack

The above algorithms overwrite the suffix array with the stack, which can be
undesirable. First, we might need the suffix array later for another purpose.
Second, since the algorithms make just one sequential pass over the suffix array,
we could stream the suffix array from disk to further reduce the memory usage.
In this section, we describe variants of our algorithms that do not overwrite SA
(and still make just one pass over it).

The idea, already used in the BGL algorithm of Goto and Bannai [9], is to
replace the stack with PSVtext pointers. As observed in Section 3, if j is the
suffix on the top of the stack, then the next suffixes in the stack are PSVtext[j],
PSVtext[PSVtext[j]], etcetera. Thus given PSVtext we do not need an explicit stack
at all. Both of our algorithms can be modified to exploit this:
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– In KKP3, we need to compute the PSVtext values when pushing on the stack
rather than when popping. The body of the main loop (lines 5–10 in Fig. 2)
now becomes:

while top > SA[i] do
NSVtext[top]← SA[i]
top ← PSVtext[top]

PSVtext[SA[i]]← top
top ← SA[i]

– KKP2 needs to be modified to compute PSVtext values first instead of NSVtext

values. The PSVtext-first version is symmetric to the NSVtext-first algorithm.
In particular, Φt is replaced by the inverse permutation Φ−1

t . The algorithm
is shown in Fig. 4.

Algorithm KKP2n

1: top ← 0 // top of stack
2: for i ← 1 to n do
3: while top > SA[i] do
4: top ← Φ−1[top] // pop from stack
5: Φ−1[SA[i]]← top // Φ−1[SA[i]] = PSVtext[SA[i]]
6: top ← SA[i] // push to stack
7: Φ−1[0]← 0
8: next ← 1
9: for t ← 1 to n do
10: psv ← Φ−1[t]
11: nsv ← Φ−1[psv]
12: if t = next then
13: next ← LZ-Factor(t, nsv, psv)
14: Φ−1[t]← nsv
15: Φ−1[psv]← t

Fig. 4. LZ factorization using 2n log n bits of working space (the arrays SA and Φ−1)
without an explicit stack. The SA remains intact after the computation.

The versions without an explicit stack are slightly slower because of the non-
locality of stack operations. A faster way to avoid overwriting SA would be to
use a separate stack. However, the stack can grow as big as n (for example when
X = an−1b) which increases the worst case space requirement by n logn bits.
We can get the best of both alternatives by adding a fixed size stack buffer to
the stackless version. The buffer holds the top part of the stack to speed up
stack operations. When the buffer gets full, the bottom half of its contents is
discarded, and when the buffer gets empty, it is filled half way using the PSV
pointers. This version is called KKP2b.

All the algorithm variants have linear time complexity.
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Table 1. Files used in the experiments. They are from the standard (S) Pizza&Chili
corpus (http://pizzachili.dcc.uchile.cl/texts.html) and from the repetitive (R)
Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl/repcorpus.html). We trun-
cated all files to 150MiB. The repetitive corpus files are either multiple versions of
similar data (R) or artificially generated (A). The value of n/z (the average length of
a phrase in the LZ factorization) is included as a measure of repetitiveness.

Name Abbr. σ n/z Source Description

proteins pro 25 9.57 S Swissprot database
english eng 220 13.77 S Gutenberg Project
dna dna 16 14.65 S Human genome
sources src 228 17.67 S Linux and GCC sources

coreutils cor 236 110 R/R GNU Coreutils sources
cere cer 5 112 R/R Baking yeast genomes
kernel ker 160 214 R/R Linux Kernel sources
einstein.en ein 124 3634 R/R Wikipedia articles

tm29 tm 2 2912K R/A Thue-Morse sequence
rs.13 rs 2 3024K R/A Run-Rich String sequence

6 Experimental Results

We implemented the algorithms described in this paper and compared their
performance in practice to algorithms from [13] and [9]. The main experiment
measured the time to compute the LZ factorization of the text. All algorithms
take the text and the suffix array as an input hence we omit the time to compute
SA. The data sets used in experiments are described in detail in Table 1. All al-
gorithms use the optimized version of LZ-Factor (Fig. 1), which slightly reduces
the time (e.g. for KKP3 by 2% on non-repetitive files). The implementations are
available at http://www.cs.helsinki.fi/group/pads/.

Experiments Setup. We performed experiments on a 2.4GHz Intel Core i5 CPU
equipped with 3072KiB L2 cache and 4GiB of main memory. The machine had
no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 10.04, 64bit) running kernel 2.6.32. All
programs were compiled using g++ version 4.4.3 with -O3 -static -DNDEBUG

options. For each combination of algorithm and test file we report the median
runtime from five executions.

Discussion. The LZ factorization times are shown in the top part of Table 2. In
nearly all cases algorithms introduced in this paper outperform the algorithms
from [9] (which are, to our knowledge, the fastest up-to-date linear time LZ
factorization algorithms) while using the same or less space. In particular the
KKP2 algorithms are always faster and simultaneously use at least n logn bits
less space. A notably big difference is observed for non-repetitive data, where
KKP3 significantly dominates all prior solutions.

http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://www.cs.helsinki.fi/group/pads/
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Table 2. Time and space consumption for computing LZ factorization/LPF array.
The timing values were obtained with the standard C clock function and are scaled
to seconds per gigabyte. The times do not include any reading from or writing to disk.
The second column summarizes the practical working space (excluding the output in
case of LZ factorization) of each algorithm assuming byte alphabet and 32-bit integers.
Note that LPF-online computes only the �i component of LPF array. If this is sufficient,
KKP2-LPF can be modified (without affecting the speed) to use only 9n bytes.

Alg. Mem pro eng dna src cor cer ker ein tm rs

L
Z
fa
ct
o
ri
za
ti
o
n

KKP3 13n 74.5 75.7 81.7 50.5 43.6 63.2 45.7 56.9 38.2 77.8
KKP2 9n 83.9 80.6 92.7 54.7 40.2 53.3 41.6 43.6 35.1 49.0
KKP2b 9n 84.1 80.6 92.7 54.8 40.2 53.2 41.5 43.5 35.1 49.4
KKP2n 9n 88.1 84.6 97.3 56.1 40.6 57.7 42.2 47.6 38.7 52.0
ISA6r 6n - - - - 43.3 51.8 39.2 31.1 34.2 34.8
ISA6s 6n 198.0 171.0 175.2 115.0 49.4 56.3 45.7 37.1 39.6 40.8
ISA9 9n 92.7 83.9 86.1 59.3 41.9 53.0 42.8 45.2 36.4 51.8
iBGS 17n 99.8 93.2 97.5 69.3 51.5 65.5 52.9 60.0 44.1 59.5
iBGL 17n 123.2 108.6 113.4 77.8 52.2 66.1 53.0 58.6 44.2 59.5
iBGT 13n 171.4 153.9 188.0 99.8 55.4 84.1 56.2 52.8 44.4 56.5

L
P
F

KKP3-LPF 13n 115.5 112.9 133.5 71.1 56.0 88.0 58.0 63.5 49.2 82.8
KKP2-LPF 13n 140.3 132.4 167.2 83.6 54.6 82.6 55.6 51.3 41.1 58.0
iOG 13n 210.1 188.0 243.7 121.3 66.8 104 66.4 60.6 50.3 62.7
LPF-online 13n 160.4 162.3 187.2 114.2 103 137 109 127 100 148

The new algorithms (e.g. KKP2b) also dominate in most cases the general
purpose practical algorithms from [13] (ISA9 and ISA6s), while offering stronger
worst case time guarantees, but are a frame slower (and use about 50% more
space in practice) than ISA6r for highly repetitive data.

The comparison of KKP2n to KKP2 reveals the expected slowdown (up to
16%) due to the non-local stack simulation. However, this effect is almost com-
pletely eliminated by buffering the top part of the stack (KKP2b). With a
256KiB buffer we obtained runtimes almost identical to KKP2 (< 1% differ-
ence in all cases). We observed a similar effect when applying this optimization
to the KKP3 algorithm but, for brevity, we only present the results for KKP2.

Full LPF array. All our algorithms can be modified to compute the full LPF ar-
ray, i.e. the set of longest previous factors (pi, �i) for i ∈ [1..n] in linear time. After
obtaining NSVtext and PSVtext values, instead of repeatedly calling LZ-Factor

to compute the LZ factorization, we compute all previous factors using the al-
gorithm of Crochemore and Ilie [4, Fig. 2]. We compared this approach to the
fastest algorithms for computing LPF array by Ohlebusch and Gog [16] (with
the interleaving optimization from [9]) and LPF-online from [5] (see [13] and [16]
for comparison). For LCP array computation we use the fastest version of Φ al-
gorithm consuming 13n bytes of space [12].

As shown in Table 2, modified KKP2 algorithm consistently outperforms old
methods. The LPF variant of KKP3 is even faster, when input is not repetitive.
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Table 3. Times for computing LZ factorization, taking into account the disk reading
time. The values are wallclock times scaled to seconds per gigabyte. KKP1s is a version
of KKP2b that streams the suffix array from disk, and so requires only n log n bits of
working space.

Alg. pro eng dna src cor cer ker ein tm rs

KKP1s 106.5 100.2 109.0 86.6 71.0 74.9 68.4 67.6 66.1 66.1
KKP2b 150.6 143.7 155.7 117.8 103.6 115.9 102.9 107.3 96.8 111.6

Streaming. As explained in Section 5 our new algorithms can be implemented
so that SA is only accessed sequentially in a read-only manner, allowing it to be
streamed from the disk. Furthermore, all algorithms (including full LPF variants)
can stream the output, which is produced in order, directly to disk. The stream-
ing versions of KKP2b and KKP2b-LPF, called KKP1s and KKP1s-LPF, use only
n lognbits of working space in addition to the text and small stack and disk buffers.
We have implemented KKP1s and compared its performance to KKP2b under the
assumption that SA is stored on the disk and the disk reading time is included in
the total runtime. Reading from the disk was performed with the standard C fread

function, either as a single read (KKP2b) or using a 32KiB buffer (KKP1s).
Surprisingly, in such setting, KKP1s is significantly faster than KKP2b, as

shown in Table 3. Further investigation revealed that the advantage of the
streaming algorithm is apparently due to the implementation of I/O in the Linux
operating system. The Linux kernel performs implicit asynchronous read ahead
operations when a file is accessed sequentially, allowing an overlap of I/O and
CPU computation (see [17]).

7 Future Work

We have reduced the working memory of linear time LZ factorization to 2n logn
bits, but one wonders if only (1 + ε)n logn bits (for an arbitrary constant ε)
is enough, as it is for suffix array construction [11]. In [13] working space of
(1 + ε)n logn+n bits is achieved, but at the price of O(n log σ) runtime. We are
also exploring even more space efficient (but slower) approaches [10].

Our streaming algorithms are a first step towards exploiting external memory
in LZ factorization. We are currently exploring semi-external variants of these
algorithms that keep little else than the input string in memory. This is achieved
by permuting the NSV/PSV values from lex order to text order using external
memory. Fully external memory as well as parallel and distributed approaches
would also be of high interest, especially given the recent pattern matching
indexes which use LZ77.

Finally, another problem is to find a scalable way to accurately estimate the
size of the LZ factorization in lieu of actually computing it. Such a tool would
be useful for entropy estimation, and to guide the selection of appropriate com-
pressors and compressed indexes when managing massive data sets.

Acknowledgments. We thank Keisuke Goto and Hideo Bannai for an early
copy of their paper [9].
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7. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

8. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern matching in
compressed repetitive texts. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653–662. Springer, Heidelberg (2011)

9. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: DCC 2013,
pp. 133–142. IEEE Computer Society (2013)
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Abstract. A suffix array is a data structure that, together with the
LCP array, allows solving many string processing problems in a very
efficient fashion. In this article we introduce eGSA, the first external
memory algorithm to construct both generalized suffix and LCP arrays
for sets of strings. Our algorithm relies on a combination of buffers,
induced sorting and a heap. Performance tests with real DNA sequence
sets of size up to 8.5 GB showed that eGSA can indeed be applied to
sets of large sequences with efficient running time on a low-cost machine.
Compared to the algorithm that most closely resembles eGSA purpose,
eSAIS, eGSA reduced the time spent to construct the arrays by a factor
of 2.5−4.8.

Keywords: generalized suffix array, generalized LCP array, external
memory algorithms, text indexes, DNA indexing.

1 Introduction

Suffix arrays [1] play an important role in several string processing tasks, from
pattern matching to data compression and information retrieval [2]. The suffix
array combined with the longest common prefix (LCP) array provides a powerful
data structure to solve many string processing problems in optimal time and
space [3].

Many algorithms have been proposed for internal memory suffix arrays con-
struction, including linear ones [4, 5]. This is also the case for LCP arrays con-
struction [6, 7]. These algorithms are limited by internal memory size, but there
is a significant number of applications that deal with a huge amount of strings
that may impair the use of existing algorithms for internal memory suffix ar-
rays construction. An example is sequence comparisons and pattern searching in
molecular sequences, a field where databases have been growing at exponential
rate for years. For instance, GenBank1 has more than 150 million sequences with
more than 140 billion characters.

1 ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
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Several algorithms have been developed for external memory suffix array con-
struction [8–10]. More recently, Bingmann et al. [11] proposed eSAIS, the first
external memory algorithm that constructs both suffix and LCP arrays for a
single string.

Suffix arrays were also generalized to index sets of strings [12]. In the lit-
erature, works that use generalized suffix arrays do not use external memory,
e.g. [13, 14]. On the other hand, works that investigate suffix arrays on external
memory are not specifically aimed to index sets of strings. In this article we fill
this gap. We introduce eGSA, an external memory algorithm to construct both
generalized suffix and LCP arrays for a set of strings. We also show that eGSA
can indeed be applied to sets of large sequences efficiently.

The rest of the article is organized as follows. Section 2 introduces concepts
and notation, Section 3 describes the proposed algorithm, Section 4 shows per-
formance tests that validate the algorithm, and Section 5 concludes the article
and highlights future work.

2 Background

Let Σ be an ordered alphabet of symbols and let $ be a symbol not in Σ that
precedes every symbol in Σ. We denote the reflexive and transitive closure of Σ
by Σ∗ and the concatenation of strings or symbols by the dot operator (·). We
define Σ$ = {T · $|T ∈ Σ∗}.

Let T = T [1]T [2] . . . T [n] be any string of length n. A substring of T is denoted
T [i, j] = T [i] . . . T [j], 1 ≤ i ≤ j ≤ n. A prefix of T is a substring T [1, k] and a
suffix is a substring T [k, n]. We denote a suffix starting with a symbol α as an
α-suffix.

A suffix array for a string T is an array of integers that provides the lexico-
graphic order for all suffixes of T . We use the symbol < for the lexicographic
order relation between strings. Formally, a suffix array for a string T ∈ Σ$

of size n, called SA, is an array of integers SA = [i1, i2, . . . , in] such that
T [i1, n] < T [i2, n] < . . . < T [in, n]. The function pos(T [k, n]) maps the posi-
tion of T [k, n] in SA. We define an α-bucket as a block of a partition of SA that
contains only α-suffixes.

Let lcp(S, T ) be the length of the longest common prefix of S and T , where
S, T ∈ Σ$. The LCP array for T is an array of integers such that LCP [i] =
lcp(T [SA[i], n], T [SA[i− 1], n]) and LCP [0] = 0.

The Burrows-Wheeler transform of a string allows its efficient compres-
sion [15]. It may be stored in an array such that BWT [i] = T [SA[i] − 1] if
SA[i] �= 1 or BWT [i] = $ otherwise. BWT has a close relationship to SA and can
be trivially obtained from it [10].

Suffix arrays have been generalized to index sets of strings. Given a set of k
strings T = {T1, . . . , Tk} from Σ$ with lengths n1, . . . , nk, the generalized suffix
array of T , denoted GSA, is an array of pairs of integers (i, j) that specifies the
lexicographic order of all suffixes Ti[j, ni] of strings in T . An order relation is
defined for the tail suffixes Ti[ni − 1, ni] = $ as Ti[ni − 1, ni] < Tj [nj − 1, nj] if
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i < j. LCP and BWT can also be generalized for sets of strings. The generalized
LCP will be denoted GLCP .

3 Proposed Algorithm: eGSA

Our algorithm is called eGSA (External Generalized Suffix and LCP Arrays
Construction Algorithm) and is based on the two-phase, multiway merge-sort
presented by Garcia-Molina et al. [16]. The input for eGSA is a set of k strings
T = {T1, . . . , Tk} with lengths n1, . . . , nk stored in the external memory and
the output, which is written to external memory, is composed both by GSA and
GLCP arrays for T .

In a glance, eGSA works as follows. In the first phase it sorts the suffixes
of each Ti in internal memory, obtaining SAi, LCPi and other auxiliary arrays,
that are written to external memory. In the second phase, eGSA uses internal
memory buffers to merge the previously computed arrays, obtaining GSA and
GLCP . We detail each phase next.

3.1 Phase 1: Sorting

The first phase of eGSA builds SAi and LCPi for every Ti ∈ T , using any internal
memory algorithm for suffix sorting [4, 5] and lcp computing [6, 7]. Note that,
if there is not enough internal memory available for this phase, we can use any
external memory algorithm to construct them. Furthermore, two other arrays
are computed, BWTi and PREi, which are used to improve the second phase.
The computation of all these arrays is performed in internal memory. At the
end of this first phase, the arrays are written to external memory in a sequential
fashion.

The prefix array for Ti, PREi, is defined by Barsky et al. [17] such that PREi[j]
is the prefix of Ti[SAi[j], ni] of length p, for a configurable constant p. We notice
that the probability that PREi[j] is equal to PREi[j+1] is large, since the suffixes
are sorted in SAi. Then, to avoid redundancy, we adopt a different strategy,
similar to the lef-justified approach in [18], and construct PREi through non-
overlapping substrings as PREi[j] = Ti[SAi[j] + hj , SAi[j] + hj + p], where hj =
min(LCPi[j], hj−1 + p) and h0 = 0.

Figure 1 shows the output structures of this phase of eGSA for T1 =
GATAGA$ and p = 3. The last column is merely illustrative and shows the
suffixes T1[SA1[j], n1]. For simplicity when SA1[j] + hj + p > n1 = 7 we consider
T [SA1[j] + hj + p] = $.

3.2 Phase 2: Merging

The second phase of eGSA merges the arrays computed in the first phase to
obtain GSA and GLCP for T , as follows.

Let Ri = 〈SAi,LCPi,BWTi,PREi〉. Each Ri is partitioned into ri blocks
R1

i , . . . , R
ri
i , having b consecutive elements from each array except perhaps for
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j SA1[j] LCP1[j] BWT 1[j] PRE1[j] T1[SA[j], n1]
1 6 - A $$$ $
2 5 0 G A$$ A$
3 3 1 T GA$ AGA$
4 1 1 G TAG ATAGA$
5 4 0 A GA$ GA$
6 0 2 $ TAG GATAGA$
7 2 0 A TAG TAGA$

Fig. 1. Output structures of phase 1, for T1 = GATAGA$ and p = 3

Rri
i . For each Ri the algorithm uses two internal memory buffers: a string buffer

Si, which stores substrings up to s symbols of Ti, and a partition buffer Bi, which
stores a block Rj

i . Bi[j] is composed of 〈SAi[k],LCPi[k],BWTi[k],PREi[k]〉, for
j = k mod b. We also use two other buffers. The output buffer stores d elements
from the GSA and GLCP arrays. The induced buffer has size c and stores infor-
mation that is necessary in the inducing strategy, to be discussed below. The
values of s, b, d and c determine the amount of internal memory used in this
phase.

Each block R1
i is initially loaded into its buffer Bi. Then the heading elements

of each buffer Bi are inserted into a binary heap. The smallest suffix in the heap
is moved to the output buffer and replaced by the next element from the same
buffer Bi. This operation is repeated until all partition blocks are empty. When
the output buffer is full, it is written to external memory.

The most sensitive operation in this phase is the comparison of elements
from each buffer. Using a näıve approach may require too many random disk
accesses. This is due the fact that for every SAi involved in the comparison, the
corresponding suffixes must be accessed in external memory, loaded into string
buffers and then compared.

To reduce disk accesses, we propose an enhanced comparison method com-
posed of three strategies: (i) prefix assembling; (ii) lcp comparisons; and (iii)
inducing suffixes. These strategies are described below.

Prefix Assembly. Let j be the index of the smallest element in the buffer
Bi. PREi is used to load the initial prefix of Ti[SAi[j], ni] into Si with no disk
accesses, just concatenating previous PREi[k], for k = 1, 2, . . . , j. As j changes,
buffer Si is updated such that Si[1, hj + p + 1] = Si[1, hj] · PREi[j] · #, where
hj = min(LCPi[j], hj−1 + p), h0 = 0, and # is an end-of-buffer marker not in
Σ. Thus, if a string comparison does not involve more than hj + p symbols, a
disk access is not necessary. Otherwise # is reached and Ti is accessed in the
external memory.

The last column of Figure 1 illustrates in bold the prefixes recovered by prefix
assembly. For instance, if j = 5 then h5 = 0 and S1 stores GA$. Next, when
j = 6 then h6 = min(LCPi[6], h5 + p) = min(2, 0 + 3) = 2, and S1[3, 3 + 3− 1] =
S1[3, 5] receives PREi[5] = TAG . In this case, S1 = S1[1, 2] · S1[3, 5] · # =
GA · TAG · # = GATAG#.
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LCP Comparisons. Let X , Y and Z be nodes in the binary heap storing Ba[i],
Bb[j] and Bc[k], respectively. Suppose that node X is the parent of Y and Z.
As X < Y and X < Z, then Ta[SAa[i], na] < Tb[SAb[j], nb] and Ta[SAa[i], na] <
Tc[SAc[k], nc]. The lcp values can be used to speed up suffix comparisons in the
heap [19]. The following lemma formalizes this relation. The proof is simple and
will be omitted.

Lemma 1. Let S1, S2 and S3 be strings, such that S1 < S2 and S1 < S3. If
lcp(S1, S2) > lcp(S1, S3) then S2 < S3. If lcp(S1, S2) < lcp(S1, S3) then S2 > S3.
Otherwise, if lcp(S1, S2) = lcp(S1, S3) = l then lcp(S2, S3) ≥ l.

The order of Y and Z can be determined using Lemma 1, and if lcp(X,Y ) =
lcp(X,Z) then lcp(Y, Z) ≥ lcp(X,Y ) = l, and Y and Z can be compared directly
starting from position l. As X is removed from the heap, Ba[i] is moved to the
output buffer and X is replaced by another node W storing Ba[i+ 1]. The order
of W with respect to its children can also be determined by Lemma 1 along
the heap, as the right position for W is searched. The lcp values in the heap are
updated as nodes are swapped. Hence, using lcp values many direct comparisons
of strings that are in the external memory are avoided.

Inducing Suffixes. Induced sorting is the determination of the order of un-
sorted suffixes from already sorted suffixes that is used by many internal mem-
ory algorithms [4]. We apply an induced sorting approach based on the following
lemma, whose proof is straightforward.

Lemma 2. Let Suff be the set of all suffixes of T , Ti ∈ T , 1 ≤ j ≤ ni and
α ∈ Σ. If Ti[j, ni] is the smallest element of Suff (w.r.t. the lexicographic order)
then Ti[j − 1, ni] = α · Ti[j, ni] is the smallest α-suffix of Suff \ {Ti[j, ni]}.

Lemma 2 can be used to sort the suffixes of Ti as follows. Suff starts with every
suffix of Ti and as the smallest suffix Ti[j, ni] = α · Ti[j + 1, ni] is found, Ti[j, ni]
is removed from Suff and inserted into the smallest available position of the
α-bucket. Then Ti[j − 1, ni] = β · Ti[j, ni] is induced to the smallest available
position in the β-bucket, α, β ∈ Σ.

Note that if α > β the suffix Ti[j − 1, ni] was already sorted. Moreover, the
induced suffixes Ti[j− 1, ni] = β ·Ti[j, ni] cannot be removed from Suff because
they must induce suffixes Ti[j − 2, ni] as well. To this end, when the smallest
β-suffix Ti[j − 1, ni] is the smallest suffix in Suff , the β-bucket is read starting
from the second element. As the suffixes Ti[j−2, ni] are analyzed to be induced,
the suffixes Ti[j − 1, ni] are removed from Suff . Also, if α = β, then reading
induced suffixes from the β-bucket can cause the induction of already induced
suffixes. So no induction is done when α ≥ β.

However, this approach is not efficient to sort a single string Ti, since it is
always necessary to find the smallest suffix Ti[j, ni]. But in a merge algorithm,
the smallest suffix is one of those remaining in buffer Bi, and can be determined
efficiently using the heap. Let Suff be the set of all suffixes of T and suppose
that Bi[k] is at the root of the heap. Then Ti[j, ni] is the smallest suffix in Suff ,
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and using the approach described previously we can induce Ti[j−1, ni] if α < β.
For this, we use BWTi to determine if Ti[j] < Ti[j − 1] and whether or not
Ti[j − 1, ni] can be induced.

The smallest suffixes are moved to the output buffer, and the induced suffixes
are written to the induced buffer, which is written to external memory as it gets
full. When the smallest β-suffix Ti[j− 1, ni] is the smallest in Suff , the β-bucket
is read from external memory, and induces other suffixes as necessary. Note that
there is no need to compare the induced suffixes in this step, it is sufficient only
to follow the order imposed by the β-bucket in the heap.

The LCP values of the induced suffixes must also be induced, since they
are not calculated when the induced suffixes are not compared in the heap.
Let Ta[i, na] be a suffix that induces an α-suffix and let Tb[j, nb] be the suf-
fix that induces the following α-suffix. Then LCP(Ta[i − 1, na], Tb[j − 1, nb]) =
LCP(Ta[i, na], Tb[j, nb]) + 1. But since the suffixes Ta[i, na] and Tb[j, nb] may
not be consecutive in GSA, the value of LCP (Ta[i, na], Tb[j, nb]) may not
be obtained directly. For that, let the range minimum query on GLCP be
rmq(i, j) = mini≤k≤j{GLCP [k]}. Since Ta[i, na] and Tb[j, nb] are already sorted,
LCP(Ta[j, na], Tb[j, nb]) = rmq(pos(Ta[j, na] + 1, pos(Tb[j, nb])). The rmq values
may be computed as GLCP is moved to the output buffer storing the min func-
tion for each α ∈ Σ∗.

Therefore, when a suffix Ti[j, ni] is induced in the second phase, its corre-
sponding LCP is also induced from the rmq values. As induced suffixes may also
induce, the corresponding LCP must be stored in the induced buffer together
with the induced suffixes in their α-bucket. As the induced suffixes are recovered
from the external memory, the LCP must also be recovered to update rmq.

4 Performance Evaluation

The performance of eGSA was analyzed through tests with real DNA sequences
from the genomes of (1) Human, (2) Medaka, (3) Zebrafish, (4) Cow, (5) Mouse
and (6) Chicken, which were obtained from the Ensembl genome database2. We
generated 5 datasets, described in Table 1. We preprocessed these datasets to
remove the character N (unknown). Each character in a dataset uses one byte.
The mean and maximum LCP values provide an approximation of suffix sorting
difficulty [9].

Our algorithm was implemented in ANSI/C. The construction of the suffix
and LCP arrays in the first phase of eGSA was performed by the inducing+sais-
lite algorithm [6], which uses approximately 9 × |Ti| bytes. We used p = 23 for
the size of PRE i. The buffers Si, Bi, output and induced were set to use 200
KB, 10 MB, 64 MB and 16 MB of internal memory, respectively. We remark that
eGSA uses 1 byte for each character in Si. The output produced by eGSA was
validated using a trivial checking algorithm. The source code is freely available
from http://code.google.com/p/egsa/.

2 http://www.ensembl.org/

http://code.google.com/p/egsa/
http://www.ensembl.org/
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Table 1. Datasets used in our experiments. Column 2 indicates the genomes that
compose each dataset. Column 3 shows the number of strings (i.e. chromosomes).
Columns 4 and 5 show the computed mean and maximum lcp values. Column 6 reports
the dataset size.

Dataset Genomes Number of strings mean LCP max. LCP Input size (GB)

1 2 24 19 2,573 0.54
2 6 30 17 5,476 0.92
3 3, 6 56 58 71,314 2.18
4 2, 3, 4 80 44 71,314 4.26
5 1, 4, 5, 6 105 59 168,246 8.50

We compared our algorithm with the eSAIS algorithm [11], which is the fastest
algorithm to date that computes both suffix and LCP arrays in external memory.
However, eSAIS is aimed at indexing only one string Ti. To use this algorithm to
index a set of strings, we concatenated all strings in T , replacing $ of each Ti by
a new terminal symbol $i, such that $i < $j if i < j and $i < α for each α ∈ Σ.
This approach limits the number k of strings that can be indexed. For DNA
sequences, using 1 byte for each character, k is limited by 256− |{A,C,G, T }| =
252. We are aware of the existence of the algorithms by Bauer et al. [20, 21] that
aim at indexing sets of fixed size, small strings in external memory. However,
we did not consider comparing them with eGSA because they solve a different
problem.

The eGSA was compiled by GNU gcc compiler, version 4.6.3, with optimizing
option -O3. The experiments were conducted in the Linux Ubuntu 12.04/64 bits
operating system, running on an Intel Core i7 2.67 GHz processor 8MB L2 cache,
12 GB of internal memory and a 1 TB SATA hard disk with 5900 RPM and
64MB cache. The amount of internal memory usage across the experiments was
restricted to 4 GB.

Table 2 shows the experimental results of eGSA and eSAIS execution. Al-
though the comparison is not totally fair because eSAIS was not designed for
multiple strings, eGSA have consistently outperformed eSAIS by a factor of
2.5−4.8 in time (columns μs/input byte). Then we may safely conclude that
eGSA is an efficient algorithm for generalized suffix and LCP arrays construc-
tion on external memory. Moreover, phase 2 of eGSA used only 1.1 GB of internal
memory for dataset 5.

In the same fashion, we can analyze eGSA through efficiency, that is the
proportion of time for which the CPU busy, not waiting for I/O. As shown in
Table 2, the efficiency decreases for dataset 5, while still more efficient than
eSAIS. This is not caused only by the dataset size but also by the maximum lcp
value for the dataset. We can see that the CPU time ratio for both algorithms on
datasets 4 and 5 is close, what indicates that I/O is probably related to efficiency
loss. We believe that adjusting buffer sizes may improve efficiency, and that, in
particular, the string buffer size s is more closely related to this issue. As with
many other external memory algorithms, buffer size adjust is often necessary.
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Table 2. Results for the comparison of eGSA and eSAIS. Columns 2 and 3 report
the running time in microseconds per input byte. Columns 4 and 5 report the total
running time (wallclock) in seconds. Columns 6 and 7 report the total cputime time
not accounting for the time of I/O. Columns 8 and 9 report the efficiency of each
algorithm, that is the proportion of cputime by wallclock. Finally, column 10 reports
the ratio of eSAIS cputime by eGSA cputime.

Dataset
μs/input byte wallclock (sec) cputime (sec) efficiency cputime ratio
eSAIS eGSA eSAIS eGSA eSAIS eGSA eSAIS eGSA eSAIS/eGSA

1 5.86 1.72 3,413 1,005 1,236 687 0.36 0.68 1.80
2 5.97 1.24 5,883 1,228 2,110 715 0.36 0.58 2.95
3 6.23 2.27 14,596 5,314 4,385 3,349 0.30 0.63 1.31
4 6.41 2.31 29,383 10,590 8,542 7,566 0.29 0.71 1.13
5 7.24 2.79 66,106 25,502 16,652 13,003 0.25 0.51 1.28

Furthermore, we also registered that the proportion of induced suffixes is
37.4% on the average, what shows that inducing suffixes is a major improvement
strategy in eGSA.

The theoretical cost of phase 1 of eGSA is dominated by the algorithms used
to construct SAi and LCPi. In phase 2, the number of node swaps in the heap is
bounded by N log k, where N is the sum of the k string lengths. Each node swap
requires comparing a number of characters that is equal to the maximum value
of lcp for T (maxlcp). The cost of this phase is dominated by the (N log k)maxlcp
comparisons, beyond I/O operations.

5 Conclusions and Future Work

In this article we proposed eGSA, which is the first external memory algorithm
to construct both generalized suffix and LCP arrays for a set of strings. The
proposed algorithm was validated through performance tests using real DNA
sequences from different species, which were combined in datasets with different
number of strings and data volume.

The results showed that eGSA is efficient. Compared to the eSAIS algorithm,
the algorithm that most closely resembles eGSA purpose, eGSA reduced the
time spent to construct the arrays by a factor of 2.5−4.8.

Another advantage of eGSA is that it may be employed to build general-
ized suffix and LCP arrays from suffix and LCP arrays that have already been
computed individually for strings in a dataset. Moreover, eGSA may be used to
construct the core data structures used by LOF-SA search algorithms [18] and
to build generalized suffix trees in external memory [17]. Furthermore, it may
be applied to construct the Longest Previous Factor array, which is used in text
compression and for detecting motifs and repeats [22].

We are currently extending the eGSA algorithm to also construct a generalized
Burrows-Wheeler transform of a set of strings. Another future work is redesigning
the algorithm for multiple disks, one for write operations and the others for read
operations. The data structures and algorithms used in our approach suggest
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that the running time of eGSA is subquadratic, but a remaining task is to
formalize the asymptotic analysis both for memory and I/O operations and to
compare them with experimental results for this and other datasets.

Acknowledgments. This work has been supported by the Brazilian agencies
FAPESP, CNPq and CAPES.
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Abstract. We study the Integer-weighted Grid All Paths Scores (IGAPS)
problem, which is given a grid graph, to compute the maximum weights
of paths between every pair of a vertex on the first row of the graph and
a vertex on the last row of the graph. We also consider a variant of this
problem, periodic IGAPS, where the input grid graph is periodic and
infinite. For these problems, we consider both the general (dense) and
the sparse cases.

For the sparse IGAPS problem with 0-1 weights, we give an
O(r log3(n2/r)) time algorithm, where r is the number of (diagonal)
edges of weight 1. Our result improves upon the previous O(n

√
r) re-

sult by Krusche and Tiskin for this problem.
For the periodic IGAPS problem we give an O(Cn2) time algorithm,

where C is the maximum weight of an edge. This improves upon the
previous O(C2n2) algorithm of Tiskin. We also show a reduction from
periodic IGAPS to IGAPS. This reduction yields o(n2) algorithms for
this problem.

1 Introduction

String comparison is a fundamental problem in computer science that has ap-
plications in computational biology, computer vision, and other areas. String
comparison is often performed using string alignment : The characters of two
input strings are aligned to each other, and a scoring function gives a score to
the alignment according to pairs of the aligned characters and unaligned char-
acters. The goal of the string alignment problem is to seek an alignment that
maximizes (or minimizes) the score. In this paper we consider maximal scores to
be optimal, but minimization problems can be solved symmetrically. The prob-
lem can be solved in O(n2) time [27], where n is the sum of lengths of A and
B. Common scoring functions are the edit distance score, and the LCS (longest
common subsequence) score.

A grid graph is a directed graph G = (V,E) whose vertex set is V = {(i, j) :
0 ≤ i ≤ m, 0 ≤ j ≤ n}, and whose edge set consists of three types:
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1. Diagonal edges ((i, j), (i + 1, j + 1)) for all 0 ≤ i < m, 0 ≤ j < n.

2. Horizontal edges ((i, j), (i, j + 1)) for all 0 ≤ i ≤ m, 0 ≤ j < n.

3. Vertical edges ((i, j), (i + 1, j)) for all 0 ≤ i < m, 0 ≤ j ≤ n.

In the Grid All Paths Scores (GAPS) problem, the input is a grid graph and
the goal is to compute the maximum weights of paths between every pair of a
vertex on the first row of the graph and a vertex on the last row of the graph.
For simplicity of presentation, we will assume in some parts of this paper that
m = n.

The Integer GAPS (IGAPS) problem is a special case of GAPS in which
the weights of the edges are integers in the range 0 to C, and additionally, the
weights of all the horizontal (resp., vertical) edges between two columns (resp.,
rows) of vertices are equal. The Binary GAPS (BGAPS) problem is a special
case of IGAPS in which the horizontal and vertical edges have weight 0, and
diagonal edges have weight 0 or 1.

The alignment problem on strings A and B can be represented by using an
(|A| + 1) × (|B| + 1) grid graph, known as the alignment grid graph (cf. [21]).
Vertical (respectively, horizontal) edges correspond to alignment of a character
in A (respectively, B) with a gap, and diagonal edges correspond to alignment
of two characters in A and B. Each edge of the graph has a weight. A path from
the j-th vertex on row i to the j′-th vertex on row i′ corresponds to an alignment
of A[i..i′] and B[j..j′].

The GAPS problem was introduced by Apostolico et al. [3] in order to obtain
fast parallel algorithms for LCS computation. It has since been studied in sev-
eral additional papers [1,2,7,11–15,21–23]. Schmidt [21] showed that the GAPS
problem can be solved in O(n2 logn) time. In the same paper, Schmidt showed
that IGAPS can be solved in O(Cn2) time. An O(n2) algorithm based on a
similar approach for the BGAPS problem was also given by Alves et al. [1] and
Tiskin [23]. Tiskin [22, p. 60] gave an O(n2(log logn/ logn)2) time algorithm for
a special case of BGAPS, in which the grid graph corresponds to an LCS prob-
lem on two strings. Tiskin also showed that IGAPS can be reduced to BGAPS.
However, this reduction increases the size of the grid graph by a factor of C2.
Thus, the time for solving IGAPS with this reduction is either O(C2n2) (for gen-
eral grid graphs) or O(C2n2(log logn/ logn)2) (for grid graphs that correspond
to alignment problems on two strings).

A special case of the BGAPS problem is when the number of diagonal edges
with weight 1 is significantly smaller than n2. We call this problem sparse
BGAPS. Krusche and Tiskin [12] showed that sparse BGAPS can be solved
in O(n

√
r) time, where r is the number of edges of weight 1. For the special case

of a permutation grid graph (namely, each column and each row have exactly
one edge of weight 1), Tiskin [22] gave an O(n log2 n) time algorithm. Another
special case of BGAPS is when the grid graph corresponds to the LCS computa-
tion of two strings with little similarity. Landau et al. [15] gave an algorithm for
this variant with time complexity O(nL), where L is the LCS of the two strings.

Efficient computations and storage of GAPS provide very powerful tools that
can be also used for solving many problems on strings: optimal alignment
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computation [5], approximate tandem repeats [17, 21], approximate non-
overlapping repeats [4,9,21], common substring alignment [16,18], sparse spliced
alignment [10, 20], alignment of compressed strings [6], fully-incremental string
comparison [8, 19, 22], and other problems.

Additional types of computations are useful in some of the applications. A
periodic grid graph is an infinite graph obtained by concatenating horizontally
an infinite number of a (finite) grid graph. The periodic IGAPS problem is
a variant of the IGAPS problem, in which the input is a periodic grid graph.
Note that while there are an infinite number of vertex pairs whose maximum
path score need to be computed, due to the periodicity of the graph, the output
can be represented in finite space. The periodic IGAPS problem was studied by
Tiskin [25] who gave an O(C2n2) time algorithm for the problem.

1.1 Our Contribution and Road Map

In this work we address several variants of the IGAPS problem. Our contribu-
tion includes generalizations and improvements to previous results as follows
(summarized in Table 1).

We start by working out some of the previously vague details from Schmidt’s
algorithm [21] for a special case of the IGAPS problem (the assumption in [21] is
that all horizontal and vertical edges have weight w1, and each diagonal edge has
weight w1 or w2, for some fixed w1 and w2). We generalize Schmidt’s algorithm
to yield an O(Cn2) algorithm for the general IGAPS problem (Sections 2 and 3).

In Section 4 we consider the sparse BGAPS problem. We give anO(r log3(n2/r))
time algorithm, which improves the previous result of Krusche and Tiskin for this
problem.

Next, we turn to address the periodic IGAPS problem in Section 5. Our
first result on this front is obtained by extending the O(Cn2) algorithm for
IGAPS to handle the periodic variant of the problem (Section 5.1). This im-
proves Tiskin’s O(C2n2) result for periodic IGAPS. We then show, in Section 5.2,
that periodic IGAPS can be reduced to BGAPS. Therefore, we
obtain an O(C2n2(log logn/ logn)2) time algorithm for periodic IGAPS (when
the grid graph corresponds to an alignment problem), and an O(r log3(n2/r))
time algorithm for periodic sparse BGAPS.

Due to space limitation, proofs were omitted.

2 Preliminaries

A sequence is an ordered list of integers. For a sequence S, let S[k] denote
the k-th element of S, and let S[k : k′] denote the sequence (S[k], . . . , S[k′])
(if k > k′ then S[k : k′] is an empty sequence). Let merge(S1, S2) denote the
sequence obtained from merging two sorted sequences S1 and S2 into one sorted
sequence.

Let G be an m×n grid graph with weights on the edges. Let (i, j) denote the
vertex on row i and column j of the graph. The grid graph G[i1..i2, j1..j2] is the
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Table 1. Results for GAPS and periodic IGAPS. The results of this paper are marked
by asterisks. The results for periodic IGAPS are based on reducing the periodic prob-
lems to the non-periodic problems and using the corresponding non-periodic algo-
rithms. The results in the third row are for the IGAPS problem when the grid graph
corresponds to an alignment problem.

Type Non-periodic Periodic

IGAPS O(Cn2) [21] O(C2n2) [25]
O(Cn2) *

O(C2n2(log log n/ log n)2) [22] O(C2n2(log log n/ log n)2) *

Sparse BGAPS O(n
√
r) [12]

O(r log3(n2/r)) * O(r log3(n2/r)) *

Permutation O(n log2 n) [22] O(n log2 n) *

subgraph obtained by taking the subgraph of G induced by the vertices {(i, j) :
i1 ≤ i ≤ i2, j1 ≤ j ≤ j2} and then renumbering the vertices by subtracting i1
from each row number and j1 from each column number. Let G1 and G2 be two
grid graphs with the same number of rows. The horizontal concatenation of G1

and G2 is the grid graph obtained by merging the vertices in the last column
of G1 with the vertices of the first column of G2 (each vertex is merged with
a vertex with the same row number). The removal of a column j in G means
taking the two subgraphs G1 = G[0..m, 0..j] and G2 = G[0..m, j + 1..n], and
concatenating G1 and G2 horizontally. Vertical concatenation and removal of a
row are defined analogously.

For a grid graph G, we will denote the weights of the diagonal, horizontal,
and vertical edges leaving a vertex (i, j) by Wi,j ,W

H
i,j ,W

V
i,j , respectively. Recall

that we assume that WH
i,j = WH

i′,j for all i, i′, j, and WV
i,j = WV

i,j′ for all i, j, j′.
We now claim that we can assume without loss of generality that all horizontal
and vertical edges have weight 0. We show this by giving a reduction from the
general case to the restricted case.1 The first step of the reduction is to replace the
weight of each diagonal edge leaving (i, j) by W ′

i,j = max(Wi,j ,W
H
i,j + WV

i,j+1).
Clearly, every path in G has the same weight under the new and original weights.
The next step is to replace the weight of each diagonal edge leaving (i, j) by
W ′′

i,j = W ′
i,j − (WH

i,j + WV
i,j+1) and replace the weights of all horizontal and

vertical edges by 0. It is easy to verify that the weight of a path from (i, j) to
(i′, j′) in the original graph is equal to the weight of the path in the new graph

plus
∑j′−1

k=j WH
i,k +

∑i′−1
k=i WV

k,j . Thus, we shall assume throughout the paper that

WH
i,j = 0 and WV

i,j = 0 for all i and j.
We define Opti(k, j) to be the maximum weight of a path from (0, k) to (i, j).

If k > j then Opti(k, j) is not defined. Define

DiffCi,j(k) = Opti(k, j + 1) −Opti(k, j)

1 This reduction was suggested by an anonymous referee.
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and
DiffRi,j(k) = Opti+1(k, j) −Opti(k, j).

Note that DiffCi,j and DiffRi,j are defined for 0 ≤ k ≤ j. The DiffCm,j

functions give an implicit representation of the all-scores matrix of G. Thus, our
goal is to show how to compute all values of these functions. The algorithm for
computing the values of the DiffCm,j functions also computes all values of all
DiffCi,j and DiffRi,j functions.

We now give some properties of the DiffCi,j and DiffRi,j functions.

Lemma 1 (Schmidt [21]). For every i and j, DiffCi,j(k− 1) ≤ DiffCi,j(k)
and DiffRi,j(k − 1) ≥ DiffRi,j(k) for all k.

In the next lemma we give upper and lower bounds for DiffCi,j and DiffRi,j .

Lemma 2. 0 ≤ DiffCi,j(k) ≤ C and 0 ≤ DiffRi,j(k) ≤ C for all 0 ≤ k ≤ j.

In the following lemmas, we will show that DiffCi+1,j and DiffRi,j+1 can
be computed efficiently from DiffCi,j and DiffRi,j . For every k, the values
DiffCi+1,j(k) and DiffRi,j+1(k) depend on Opti+1(k, j+1). The optimal path
from (0, k) to (i + 1, j + 1) passes through either (i + 1, j), (i, j), or (i, j + 1).
Thus,

Opti+1(k, j + 1) = max{Opti+1(k, j),Opti(k, j) + Wi,j ,Opti(k, j + 1)}.

From the equality above, we obtain the following equality for Opti+1(k, j+1)−
Opti(k, j).

Lemma 3. Opti+1(k, j + 1) −Opti(k, j) = Maxi,j(k), where

Maxi,j(k) = max{DiffRi,j(k),Wi,j ,DiffCi,j(k)}.

Lemma 4. For 0 ≤ k ≤ j,

DiffCi+1,j(k) = Maxi,j(k) −DiffRi,j(k) (1)

DiffRi,j+1(k) = Maxi,j(k) −DiffCi,j(k). (2)

Recall that the functions DiffCi,j and DiffRi,j were defined only for k ≤ j. We
now extend the definition of the DiffCi,j and DiffRi,j functions so that these
functions will be defined for every integer k, 0 ≤ k ≤ n. We want to extend each
function in a way that preserves the monotonicity property and also preserves
the correctness of Lemma 4. This is done by defining DiffCi,j(k) = C and
DiffRi,j(k) = 0 for j < k ≤ n. By Lemma 2, the monotonicity of the DiffCi,j

and DiffRi,j functions is kept.

Lemma 5. Equations (1) and (2) hold for all 0 ≤ k ≤ n.

The DiffCi,j and DiffRi,j functions are monotone functions with integer values
in the range 0 to C. We define a compact representation for these functions.
Intuitively, SCi,j and SRi,j are sequences that contain the “step” indices of the
corresponding DiffCi,j and DiffRi,j functions, i.e., the indices in which the
values of these sequences change. The elements of each such sequence are sorted
in non-decreasing order. Formally,
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– The sequence SCi,j contains DiffCi,j(0) elements with value −∞,
DiffCi,j(k) − DiffCi,j(k − 1) elements with value k for every 1 ≤ k ≤ n,
and C −DiffCi,j(n) elements with value ∞.

– The sequence SRi,j contains C − DiffRi,j(0) elements with value −∞,
DiffRi,j(k − 1) −DiffRi,j(k) elements with value k for every 1 ≤ k ≤ n,
and DiffRi,j(n) elements with value ∞.

Each element of SCi,j and SRi,j is called a step. From the extended definition
of the DiffCi,j and DiffRi,j functions it follows that each sequence SCi,j and
SRi,j has exactly C elements.

Recall that by Lemma 5, DiffCi+1,j(k) = Maxi,j(k) −DiffRi,j(k). There-
fore, the steps of DiffCi+1,j(k) depend on the steps of Maxi,j and DiffRi,j .
Based on this observation, our main result of this section shows how to compute
SCi+1,j and SRi,j+1 from SCi,j and SRi,j . For the following theorem denote
SCi,j [C + 1] = ∞ and SRi,j [0] = ∞.

Theorem 1. Let i1 = 1+C−Wi,j and i2 = 1+Wi,j . If Wi,j = C or SRi,j [i1−
1] < SCi,j [i2] then

SCi+1,j = merge(SCi,j [i2 : C],SRi,j [i1 : C]) (3)

SRi,j+1 = merge(SCi,j [1 : i2 − 1],SRi,j [1 : i1 − 1]), (4)

and otherwise

SCi+1,j = S[C + 1 : 2C] (5)

SRi,j+1 = S[1 : C], (6)

where S = merge(SRi,j ,SCi,j).

3 Algorithm for IGAPS

The algorithm for IGAPS follows directly from Theorem 1.

(1) For j = 0, . . . , n− 1 do SC0,j ← (j + 1, . . . , j + 1).
(2) For i = 0, . . . , n− 1 do
(3) SRi,0 ← (−∞, . . . ,−∞).
(4) For j = 1, . . . , n− 1 do
(5) Compute SCi+1,j and SRi,j+1 using Theorem 1.

By Theorem 1, the computation in line 5 takes O(C) time, so the overall time
complexity of the algorithm is O(Cn2).

4 Algorithm for Sparse BGAPS

In what follows, an edge of weight 1 is called active. A row (resp., column) of G
is called inactive if there is no active edge that starts at this row (resp., column).
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In this section we give an algorithm for sparse BGAPS. Our algorithm is based
on the algorithm of Krusche and Tiskin [12]. Both algorithms use a divide and
conquer approach, namely they divide the input grid graph into subgraphs and
solve the problem recursively on each subgraph. There are two differences between
these algorithms. First, the algorithm of Krusche and Tiskin stops the partitioning
when a subgraph of the grid graph has no active edges, whereas our algorithm
stops the partitioning when the number of active edges is at most the size of the
subgraph. Furthermore, the conquer steps of the two algorithms are different. The
rest of this section is organized as follows. We first describe a result of Tiskin [26]
which is used for the conquer step of our algorithm. Then, we give an algorithm
for handling the case when the number of active edges is at most the size of the
subgraph. Finally, we describe the algorithm for sparse BGAPS and analyze its
time complexity.

Due to the assumption of 0-1 weights, each sequence SCi,j or SRi,j contains
a single element. We shall therefore refer to SCi,j or SRi,j as an integer rather
than a sequence. Theorem 1 then reduces to the following simplified form.

Theorem 2 (Tiskin [24]). If Wi,j = 1 then SCi+1,j = SRi,j and SRi,j+1 =
SCi,j. Otherwise, SCi+1,j = max(SCi,j ,SRi,j) and SRi,j+1 = min(SCi,j ,SRi,j).

According to the definitions in Section 2, the initialization of SC0,j is SC0,j =
j+1. For SRi,0 we use the initialization SRi,0 = −i. Note that this initialization
is different from the one used in Section 2. For an m× n grid graph G we define

Out(G) = (SCm,0,SCm,1, . . . ,SCm,n−1,SRm−1,n,SRm−2,n, . . . ,SR0,n).

With the initialization given above and by Theorem 2, Out(G) is a permutation
of (−m + 1,−m + 2, . . . , n).

The algorithm of Section 3, restricted for the case of 0-1 weights, has an
interpretation as a transposition network [12] (or using a different terminology, as
seaweeds [22]). We now describe this interpretation using different terminology.
Start with m + n balls located on the edges in the first column and first row
of G. The balls are numbered by −m + 1,−m + 2, . . . , n according to their
anti-clockwise order. The balls are then moved along the edges of the graph.
When the horizontal and vertical edges leaving a vertex (i, j), denoted e1 and
e2, contain each a ball, these two balls are moved to the horizontal and vertical
edges entering (i + 1, j + 1), denoted e3 and e4 (the numbers of these balls
represent the values SCi,j and SRi,j , respectively). If Wi,j = 1 then the ball
in e1 is moved to e4, and the ball in e2 is moved to e3. In other words, the
ball in e1 moves to the right, and the ball in e2 is moved down. We call this
movement non-crossing. If Wi,j = 0 then the movement of the balls depends on
their numbers. If the ball in e1 has smaller number than the ball in e2 (indicating
that the corresponding paths have already crossed once) then the movement of
the ball is non-crossing. Otherwise, the movement is crossing: the ball in e1 is
moved to e3 and the ball in e2 is moved to e4. We say in this case that the paths
of the balls cross. Note that in both cases, exactly one ball is moved to e3 and
one ball is moved to e4. Thus, for each edge on the last column and last row of
the graph there is a distinct ball that reaches the edge.
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When two balls reach the edges leaving some vertex and the movement for
this vertex is crossing, the ball entering the horizontal edge must have a number
greater than the number of the ball entering the vertical edge. If afterward these
two balls reach the edges leaving another vertex, then the ball entering the
horizontal edge has a number smaller than the number of the ball entering the
vertical edge. Therefore, by definition, the movement in this step is non-crossing.
In other words, the paths of two balls can cross at most once. Therefore, an
alternative way to define the movement of the balls in e1 and e2 for the case
Wi,j = 0 is: If the paths of the balls crossed before, then the movement is non-
crossing, and otherwise the movement is crossing. The computation of Out(G)
is equivalent to computing the destination edges of all balls.

We will use the following results.

Theorem 3 (Tiskin [26]). Let G be a grid graph obtained by horizontal or
vertical concatenation of two m×n grid graphs G1 and G2. Given Out(G1) and
Out(G2), Out(G) can be computed in O(n + m logm) time.

Lemma 6 (Tiskin [22]). Let G be an n×n grid graph. Let G′ be the grid graph
obtained from G by removal of inactive rows and columns. Then Out(G) can be
computed from Out(G′) in O(n) time.

We now give an algorithm that computes Out(G) for an n × n grid graph G
with at most n active edges. This algorithm will later be used as a subroutine in
our solution for the sparse BGAPS problem. The algorithm is an extension of an
algorithm of Tiskin [22] for permutation grid graphs. Let G be a grid graph with
at most n active edges. If G has at most n/2 active edges, then there are at least
n/2 inactive rows and at least n/2 inactive columns. Choose n/2 inactive rows
and n/2 inactive columns and remove them from G to obtain a grid graph G′.
Recursively compute Out(G′) and then use Lemma 6 to obtain Out(G). Oth-
erwise, let i be the maximum index such that G1 = G[0..i, 0..n] has at most n/2
active edges. Note that i is well defined since G[0..0, 0..n] has no active edges,
and G[0..n, 0..n] has more than n/2 active edges. Let G2 = G[i..i + 1, 0..n] and
G3 = G[i + 1..n, 0..n]. The usage of G2 ensures that G3 has at most n/2 active
edges (note that G1 also has at most n/2 edges by definition). Thus, we can
remove n/2 inactive rows and n/2 inactive columns in each graph and obtain
graphs G′

1 and G′
3. Using recursion, Out(G′

1) and Out(G′
3) are computed, and

then Out(G1) and Out(G3) are obtained. Moreover, since Out(G2) is of size
1× n, Out(G2) can be computed in O(n) time. Finally, compute Out(G) from
Out(G1), Out(G2), and Out(G3) using Theorem 3. The time complexity func-
tion T2(n) of the algorithm satisfies the recurrence T (n) = 2T (n/2)+O(n logn).
Thus, T (n) = O(n log2 n).

Our algorithm for sparse BGAPS is as follows. Let G be an input graph of
size n× n. We assume that we are given as input a list of the active edges of G.
For simplicity, we assume that n is a power of two.
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(1) If the number of active edges is at most n, compute Out(G) and stop.
(2) Partition G into four subgraphs G1 = G[0..n/2, 0..n/2], G2 =

G[0..n/2, n/2..n], G3 = G[n/2..n, 0..n/2], and G4 = G[n/2..n, n/2..n].
(3) Recursively compute Out(Gi) for each of the subgraphs.
(4) Compute Out(G) by application of Theorem 3 three times.

Time complexity analysis. Consider the total time the algorithm spends on level
j of the recursion. The size of each subgraph in this level is n′ × n′, where
n′ = n/2j. Clearly, the number of graphs handled in level j is at most 4j .
Moreover, the number of subgraphs in level j−1 on which line 3 of the algorithm
operates is at most r/ n

2j−1 as each such subgraph contains at least n
2j−1 active

edges, and these subgraphs are disjoint. It follows that the number of subgraphs
in level j is at most 4 r

n/2j−1 . The time complexity of handling one subgraph in

level j is either O(n′ · log2 n′) if step 1 is performed, and O(n′ logn′) if steps 2–4
are performed. Therefore, the total time of the algorithm is

O

⎛⎝logn∑
j=0

min

(
4j ,

r2j

n

)
· n

2j
log2

n

2j

⎞⎠ = O

(
r log3 n2

r

)
.

5 Algorithms for Periodic IGAPS

We begin with some notations. Let G be an n× n grid graph. The periodic grid
graph G∞ is the graph obtained by taking an infinite number of copies of G
and concatenating them horizontally. The columns of G∞ are numbered by all
(positive and negative) integers.

For the periodic IGAPS problem, we use the same notation as for the non-
periodic problem, with minor differences. The DiffCi,j(k) and DiffRi,j(k)
functions are defined for all integers k ≤ j and these functions are extended for all
integers k > j as before. The step sequences are defined as follows. SCi,j is a se-
quence that contains mink DiffCi,j(k) elements with value −∞, DiffCi,j(k)−
DiffCi,j(k − 1) elements with value k for every k, and C − DiffCi,j(j) ele-
ments with value ∞. The elements of SCi,j are sorted in non-decreasing order.
The sequence SRi,j is defined similarly. Theorem 1 also holds for the periodic
problem.

Since Lemma 6 also holds for the periodic problem, we will assume without
loss of generality that G does not contain inactive rows.

5.1 Direct Algorithm

In this section we describe a quadratic time algorithm for periodic IGAPS. The
following lemma shows that the SCi,j and SRi,j sequences have a periodic prop-
erty. Thus, it suffices to compute SCi,j and SRi,j only for 0 ≤ j ≤ n− 1.

Lemma 7. For all i, j, l, SCi,j−n[l] = SCi,j [l]−n and SRi,j−n[l] = SRi,j [l]−n,
where −∞− n = −∞ and ∞− n = ∞.
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Similarly to the non-periodic problem, the algorithm processes a subgraph of
the input graph (corresponding to 0 ≤ j ≤ n − 1) in top-to-bottom traversal
order. The initialization of the SC0,j sequences is the same as in the non-periodic
problem (namely, SC0,j contains C elements with value j+1). In the non-periodic
problem, the initialization of the SRi,0 sequences is trivial (see Section 3). In the
periodic problem, it may not be easy to determine SRi,0. However, the following
lemma shows that in each row i there is at least one j for which the sequence
SRi,j can be easily determined.

Lemma 8. Suppose that Wi,j = maxj′ Wi,j′ . Then, for all k ≤ j + 1 there is a
maximum weight path P from (0, k) to (i+ 1, j + 1) such that the last edge in P
is diagonal or vertical.

Lemma 9. Suppose that Wi,j = maxj′ Wi,j′ . Then, SRi,j+1 contains C −Wi,j

elements with value −∞, and then the elements of SCi,j [1 : Wi,j ].

Based on Lemma 9, the algorithm processes row i of the graph as follows. First, it
finds an index j∗ such that Wi,j∗ = maxj′ Wi,j′ , and computes SRi,j∗+1 accord-
ing to Lemma 9. Then, it computes SCi+1,j and SRi,j+1 for j = j∗ +1, . . . , n−1
using Theorem 1. Next, the algorithm computes SRi,0 from SRi,n according
to Lemma 7. Finally, it computes SCi+1,j and SRi,j+1 for j = 0, . . . , j∗ using
Theorem 1.

5.2 Reduction to BGAPS

In this section, we show that periodic IGAPS can be reduced to BGAPS. Since
Tiskin showed a reduction from integer weights to 0-1 weights [22], it suffices to
show a reduction from periodic BGAPS to BGAPS. We will use SC

G
i,j and SR

G
i,j

to denote the sequences SCi,j and SRi,j with respect to a grid graph G.
Let G be an n×n grid graph. We extend the definition of Out(·) to periodic

grid graphs as follows:

Out(G∞) = (SCG∞
n,0 ,SC

G∞
n,1 , . . . ,SC

G∞
n,n−1).

To solve periodic BGAPS, it suffices to compute Out(G∞).
The grid graph Gk is the graph obtained by horizontal concatenation of k

copies of G. Let ji denote the minimum index j such that Wi,j = 1. The reduction
from periodic IGAPS to GAPS is based on the following lemma.

Lemma 10. Let k ≥ 1. Let 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1 be indices such
that either

1. i ≤ k − 1, or
2. i = k and j > ji

then SC
Gk

i,j+α = SC
G∞
i,j + α, where α = (k − 1)n. Moreover, for 0 ≤ i ≤ n − 1

and 0 ≤ j ≤ n, if either
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1. i ≤ k − 2, or
2. i = k − 1 and j > ji

then SR
Gk

i,j+α = SR
G∞
i,j + α.

Corollary 1. If k ≥ n + 1 then Out(G∞) = (SCGk

n,α − α,SCGk

n,1+α − α, . . . ,

SC
Gk

n,n−1+α − α).

Our goal is to show how to compute (SCGk

n,α,SC
Gk

n,1+α, . . . ,SC
Gk

n,n−1+α) for some
k ≥ n + 1. Define

Out
′(Gk)=(SCGk

n,α,SC
Gk

n,1+α, . . . ,SC
Gk

n,n−1+α,SR
Gk

n−1,kn,SR
Gk

n−2,kn, . . . ,SR
Gk

0,kn).

The following lemma follows from Theorem 3.

Lemma 11. Given Out
′(Gk), Out

′(G2k) can be computed in O(n logn) time.

Based on Corollary 1 and Lemma 11, we obtain the following algorithm for
solving periodic BGAPS.

(1) Compute Out
′(G).

(2) Let n′ be the smallest power of 2 which is greater than or equal to n.
(3) For k = 1, 2, 4, . . . , n′/2 do
(4) Compute Out

′(G2k) from Out
′(Gk).

(5) Output (Out
′(Gn′

)[1] − (n′ − 1)n, . . . ,Out
′(Gn′

)[n] − (n′ − 1)n).

We have shown the following theorem.

Theorem 4. The periodic BGAPS problem on a grid graph G can be solved in
T (G) + O(n log2 n) time, where T (G) is the time complexity of solving BGAPS
on G.
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Abstract. The Longest Common Substring problem is to compute the
longest substring which occurs in at least d ≥ 2 of m strings of total
length n. In this paper we ask the question whether this problem allows
a deterministic time-space trade-off using O(n1+ε) time and O(n1−ε)
space for 0 ≤ ε ≤ 1. We give a positive answer in the case of two
strings (d = m = 2) and 0 < ε ≤ 1/3. In the general case where 2 ≤
d ≤ m, we show that the problem can be solved in O(n1−ε) space and
O(n1+ε log2 n(d log2 n+ d2)) time for any 0 ≤ ε < 1/3.

1 Introduction

The Longest Common Substring (LCS) Problem is among the fundamental and
classic problems in combinatorial pattern matching [6]. Given two strings T1

and T2 of total length n, this is the problem of finding the longest substring that
occurs in both strings. In 1970 Knuth conjectured that it was not possible to
solve the problem in linear time [10], but today it is well-known that the LCS
can be found in O(n) time by constructing and traversing a suffix tree for T1

and T2 [6]. However, obtaining linear time comes at the cost of using Θ(n) space,
which in real-world applications might be infeasible.

In this paper we explore solutions to the LCS problem that achieve sublinear,
i.e., o(n), space usage1 at the expense of using superlinear time. For example,
our results imply that the LCS of two strings can be found deterministically in
O(n4/3) time while using only O(n2/3) space. We will also study the time-space
trade-offs for the more general version of the LCS problem, where we are given
m strings T1, T2, . . . , Tm of total length n, and the goal is to find the longest
common substring that occurs in at least d of these strings, 2 ≤ d ≤ m.

1.1 Known Solutions

For m = d = 2 the LCS is the longest common prefix between any pair of
suffixes from T1 and T2. Naively comparing all pairs leads to an O(n2|LCS|)
time and O(1) space solution, where |LCS| denotes the length of the LCS.

1 We assume the input is in read-only memory and not counted in the space usage.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 223–234, 2013.
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As already mentioned we can also find the LCS in O(n) time and space by
finding the deepest node in the suffix tree that has a suffix from both T1 and T2

in its subtree. Alternatively, we can build a data structure that for any pair
of suffixes can be queried for the value of their longest common prefix. Build-
ing such a data structure is known as the Longest Common Extension (LCE)
Problem and it has several known solutions [2,7]. If a data structure for a string
of length n with query time q(n) and space usage s(n) can be built in time
p(n), then this implies a solution for the LCS problem using O(q(n)n2 + p(n))
time and O(s(n)) space. For example using the deterministic data structure of
Bille et al. [2], the LCS problem can be solved in O(n2(1+ε)) time and O(n1−ε)
space for any 0 ≤ ε ≤ 1/2.

In the general case where 2 ≤ d ≤ m, the LCS can still be found in O(n)
time and space using the suffix tree approach. Using Rabin-Karp fingerprints [9]
we can also obtain an efficient randomised algorithm using sublinear space. The
algorithm is based on the following useful trick: Suppose that we have an efficient
algorithm for deciding if there is a substring of length i that occurs in at least
d of the m strings. Moreover, assume that the algorithm outputs such a string
of length i if it exists. Then we can find the LCS by repeating the algorithm
O(log |LCS|) times in an exponential search for the maximum value of i. To
determine if there is a substring of length i that occurs in at least d strings,
we start by checking if any of the n1−ε first substrings of length i occurs at
least d times. We can check this efficiently by storing their fingerprints in a
hash table and sliding a window of length i over the strings Tj, j = 1, . . . ,m.
For each substring we look up its fingerprint in the hash table and increment an
associated counter if it is the first time we see this fingerprint in Tj. If at any time
a counter exceeds d, we stop and output the window. In this way we can check
all i length substrings in O(nε) rounds each taking time O(n). Thus, this gives
a Monte Carlo algorithm for the general LCS problem using O(n1+ε log |LCS|)

Table 1. The first half summarises solutions for d = m = 2, and the second half
summarises solutions for the general case. The complexity bounds are worst-case unless
otherwise stated; w.h.p. means with probability at least 1− 1/nc for any constant c.

Space Time Trade-Off Description
Interval

d
=

m
=

2

O
(
1
)

O
(
n2|LCS|) Naive solution.

O
(
n1−ε

)
O
(
n2(1+ε)

)
0 ≤ ε ≤ 1

2
Deterministic LCE d.s. [2]

O
(
n1−ε

)
O
(
n2+ε log |LCS|) w.h.p. 0 ≤ ε ≤ 1 Randomised LCE d.s. [2]

O
(
n1−ε

)
O
(
n1+ε

)
0 < ε ≤ 1

3
Our solution, d=m=2.

2
≤

d
≤

m

O
(
n1−ε

)
O
(
n1+ε log |LCS|) 0 ≤ ε ≤ 1 Randomised fingerprints.

Correct w.h.p.

O
(
n1−ε

)
O(n1+ε log2 n(d log2 n+d2)) 0 ≤ ε < 1

3
Our solution, 2≤d≤m.

O(n) O(n) Suffix tree.
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time and O(n1−ε) space for all 0 ≤ ε ≤ 1. From the properties of fingerprinting
we know that the algorithm succeeds with high probability. The algorithm can
also be turned into a Las Vegas algorithm by verifying that the fingerprinting
function is collision free in O(n2) time. Table 1 summarises the solutions.

1.2 Our Results

We show the following main result:

Theorem 1. Given m strings T1, T2, . . . , Tm of total length n, an integer 2 ≤
d ≤ m and a trade-off parameter ε, the longest common substring that occurs in
at least d of the m strings can be found in

(i) O(n1−ε) space and O(n1+ε) time for d=m=2 and 0<ε≤ 1
3 , or in

(ii) O(n1−ε) space and O(n1+ε log2 n(d log2 n+d2)) time for 2≤d≤m, 0≤ε< 1
3 .

The main innovation in these results is that they are both deterministic. More-
over, our first solution improves over the randomised fingerprinting trade-off by
removing the log |LCS| factor. The basis of both solutions is a sparse suffix ar-
ray determining the lexicographic order on O(n1−ε) suffixes sampled from the
strings T1, T2, . . . , Tm using difference covers.

2 Preliminaries

Throughout the paper all logarithms are base 2, and positions in strings are
numbered from 1. Notation T [i..j] stands for a substring T [i]T [i + 1] · · ·T [j] of
T , and T [i..] denotes the suffix of T starting at position i. The longest common
prefix of strings T1 and T2 is denoted by lcp(T1, T2).

2.1 Suffix Trees

We assume a basic knowledge of suffix trees. In order to traverse and construct
suffix trees in linear time and space, we will assume that the size of the alphabet
is constant. Thus, the suffix tree for a set of strings S, denoted ST (S), together
with suffix links, can be built in O(n) time and space, where n is the total length
of strings in S [6]. We remind that a suffix link of a node labelled by a string �
points to the node labelled by �[2..] and that suffix links exist for all inner nodes
of a suffix tree. We need the following lemma:

Lemma 1. Let ST (S) be the suffix tree for a set of strings S, and A be a set of
all nodes (explicit or implicit) of ST (S) labelled by substrings of another string
T . I.e., the labels of the nodes in A are exactly all common substrings of T and
strings from S. Then ST (S) can be traversed in O(|T |) time so that

(i) All nodes visited during the traversal will belong to A, and
(ii) Every node in A will have at least one visited descendant.
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Proof. We first explain how the tree is traversed. We traverse ST (S) with T
starting at the root. If a mismatch occurs or the end of T is reached at a node
v (either explicit or implicit) labelled by a string � we first jump to a node v′

labelled by �[2..]. We do that in three steps: 1) walk up to the higher end u of the
edge v belongs to; 2) follow the suffix link from u to a node u′; 3) descend from
u′ to v′ comparing only the first characters of the labels of the edges with the
corresponding characters of �[2..] in O(1) time. Then we proceed the traversal
from the position of T at which the mismatch occurred. The traversal will end
at the root of the suffix tree.

All nodes visited during the traversal are labelled by substrings of T , and thus
belong to A. For each i the traversal visits the deepest node of ST (S) labelled
by a prefix of T [i..]. Hence, conditions (i) and (ii) of the lemma hold. We now
estimate the running time. Obviously, the number of successful matches is no
more than |T |. We estimate the number of operations made due to unsuccessful
matches by amortised analysis. During the traversal we follow at most |T | suffix
links and each time the depth of the current node decreases by at most one [6].
Hence, the number of up-walks is also bounded by |T |. Each up-walk decreases
the current node-depth by one as well. On the contrary, traversal of an edge at
step 3) increases the current node-depth by one. Since the maximal depth of a
node visited by the traversal is at most |T |, the total number of down-walks is
O(|T |). 
�

2.2 Difference Cover Sparse Suffix Arrays

A difference cover modulo τ is a set of integers DCτ ⊆ {0, 1, . . . , τ−1} which for
any i, j contains two elements i′, j′ such that j− i ≡ j′− i′ (mod τ). For any τ a
difference cover DCτ of size at most

√
1.5τ + 6 can be computed in O(

√
τ) time

[4]. Note that this size is optimal to within constant factors, since any difference
cover modulo τ must contain at least

√
τ elements.

For a string T of length n and a fixed difference cover modulo τ , DCτ , we
define a difference cover sample DCτ (T ) as the subset of T ’s positions that are
in the difference cover modulo τ , i.e.,

DCτ (T ) = {i | 1 ≤ i ≤ n ∧ i mod τ ∈ DCτ} .

The following lemma captures two important properties of difference cover sam-
ples that we will use throughout the paper. The proof follows immediately from
the above definitions.

Lemma 2. The size of DCτ (T ) is O(n/
√
τ ), and for any pair p1, p2 of positions

in T there is an integer 0 ≤ i < τ such that both (p1 + i) and (p2 + i) are in
DCτ (T ).

We will consider difference cover samples of the string T = T1$1T2$2 · · ·Tk$k,
i.e., the string obtained by concatenating and delimiting the input strings with
unique characters $1, . . . , $k. See Figure 1 for an example of a difference cover
sample of two input strings.
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t
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t
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$1
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a

15

c
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a

17

c

18

c
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t

20

a

21

c

22

c

23

c

24

t

25

a

26

g

27

$2

28

DCτ DCτ DCτ DCτ DCτ DCτ

SAτ = 14 21 17 26 6 1 16 22 11 12 19 24 4 27 7 2 9[ , , , , , , , , , , , , , , , , ]

LCPτ = 0 3 1 2 2 0 1 2 1 2 3 4 0 1 1 0[ , , , , , , , , , , , , , , , ]

SAR
τ = 14 1 17 21 26 6 16 22 11 19 12 24 4 2 27 7 9[ , , , , , , , , , , , , , , , , ]

LCPR
τ = 0 1 1 4 3 0 2 4 1 3 2 1 0 2 4 0[ , , , , , , , , , , , , , , , ]

Fig. 1. The string T = T1$1T2$2 = aggctagctacct$1acacctaccctag$2 sampled with
the difference cover DCτ = {1, 2, 4} modulo 5. The resulting difference cover sample is
DCτ (T ) = {1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 26, 27}. Below the arrays SAτ ,
LCPτ , SA

R
τ and LCPR

τ are shown. Sampled positions in T1 and T2 are marked by
white and black dots, respectively.

The difference cover sparse suffix array, denoted SAτ is the suffix array re-
stricted to the positions of T sampled by the difference cover, i.e., it is an array
of length n/

√
τ containing the positions of the sampled suffixes, sorted lexico-

graphically. Similarly, we define the difference cover sparse lcp array, denoted
LCPτ , as the array storing the longest common prefix (lcp) values of neigh-
bouring suffixes in SAτ . Moreover, for a sampled position p ∈ DCτ (T ) we de-
note by RB(p) the reversed substring of length τ ending in p, i.e., RB(p) =
T [p]T [p − 1] . . . T [p − τ + 1], and we refer to this string as the reversed block
ending in p. As for the sampled suffixes, we define arrays SAR

τ and LCPR
τ for

the reversed blocks. The first contains the sampled positions sorted according
to the lexicographic ordering of the reversed blocks, and the latter stores the
corresponding longest common prefix values. See Figure 1 for an example of the
arrays SAτ , LCPτ , SAR

τ and LCPR
τ .

The four arrays can be constructed in O(n
√
τ + (n/

√
τ ) log(n/

√
τ )) time and

O(n/
√
τ ) space [3,11]. To be able to compute the longest common prefix between

pairs of sampled suffixes and pairs of reversed blocks in constant time, we use
the well-known technique of constructing a linear space range minimum query
data structure [5,1] for the arrays LCPτ and LCPR

τ .

3 Longest Common Substring of Two Strings

In this section we prove Theorem 1(i). We do so by providing two algorithms
both using O(n/

√
τ ) space which are then combined to obtain the desired trade-

off. The first one correctly computes the LCS if it has length at least τ , while the
second one works if the length of the LCS is less than τ . In the second algorithm
we must assume that τ ≤ n2/3, which translates into the ε ≤ 1/3 bound on the
trade-off interval.
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SAτ = 14 21 17 26 6 1 16 22 11 12 19 24 4 27 7 2 9[ , , , , , , , , , , , , , , , , ]

I1 I2 I3 I4

LCPτ = 0 3 1 2 2 0 1 2 1 2 3 4 0 1 1 0[ , , , , , , , , , , , , , , , ]

Fig. 2. The intervals of SAτ containing the pairs with lcp values at least � = 2 for
the string shown in Figure 1. The pair maximising the lcp value of the corresponding
reversed blocks is p′1 = 11, p

′
2 = 22, which happens to be the LCS of T1 and T2: ctacc.

3.1 A Solution for Long LCS

We first compute a difference cover sample with parameter τ for the string
T = T1$1T2$2, where $1, $2 are special characters that do not occur in T1 or
T2. We then construct the arrays and the range minimum query data structures
described in Section 2.2 for computing longest common prefixes between pairs
of sampled suffixes or pairs of reversed blocks in constant time.

The LCS is the longest common prefix of suffixes T [p1..] and T [p2..] for some
p1 ≤ |T1| and p2 > |T1| + 1. If |LCS| ≥ τ then from the property of difference
cover samples (Lemma 2) it follows that there is an integer r < τ such that
p′1 = p1 + r and p′2 = p2 + r are both in DCτ (T ), and the length of the LCS is
thus r + lcp(T [p′1..], T [p′2..]) − 1. In particular, this implies that

|LCS| = max
p′
1≤|T1|
p′
2>|T1|+1

(
lcp
(
RB(p′1), RB(p′2)

)
+ lcp

(
T [p′1..], T [p′2..]

)
− 1
)
.

The −1 is necessary since a sampled suffix overlaps with the reversed block in
one position. We will find the LCS by computing a pair of sampled positions
p∗1 ≤ |T1|, p∗2 > |T1| + 1 that maximises the above expression. Obviously, this
can be done by performing two constant time range minimum queries for all
O((n/

√
τ)2) pairs of sampled positions, but we want to do better.

The main idea of our algorithm is to exploit the observation that since
lcp(RB(p∗1), RB(p∗2)) ≤ τ , it must hold that lcp(T [p∗1..], T [p∗2..]) is in the interval
[�max − τ + 1; �max], where �max is the longest common prefix of two sampled
suffixes of T1 and T2. Thus, we can ignore a lot of pairs with small lcp values.

First, we compute �max in O(n/
√
τ ) time by one scan of LCPτ . We then

compute the pair p∗1, p
∗
2 in τ rounds. In a round i, 0 ≤ i ≤ τ−1, we only consider

pairs p′1 ≤ |T1|, p′2 > |T1| + 1 such that the length of the longest common prefix
of T [p′1..] and T [p′2..] is at least � = �max − i. Among these pairs we select the
one maximising lcp

(
RB(p′1), RB(p′2)

)
.

The candidate pairs with a longest common prefix of length at least � are
located in disjoint intervals I1, I2, . . . , Ik of SAτ . We compute these intervals by
scanning LCPτ to identify the maximal contiguous ranges with lcp values greater
than or equal to �. For each interval Ij we will find a pair p′1 ≤ |T1|, p′2 > |T1|+1
in Ij that maximises lcp

(
RB(p′1), RB(p′2)

)
. If lcp

(
RB(p′1), RB(p′2)

)
+ � − 1 is

greater than the maximum value seen so far, we store this value as the new
maximum. See Figure 2 for an example.
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Instead of searching the k intervals one by one, we process all intervals simul-
taneously. To do so, we first allocate an array A of size n/

√
τ and if r is the rank

of a reversed block RB(p), p ∈ Ij , we set A[r] to be equal to j. We then scan A
once and compute the longest common prefixes of every two consecutive reversed
blocks ending at positions p′1 ≤ |T1|, p′2 > |T1| + 1 from the same interval. We
can do this if we for each interval Ij keep track of the rightmost r such that
A[r] = j.

The intervals considered in each round are disjoint so each round takesO(n/
√
τ)

time and never uses more than O(n/
√
τ) space. The total time is O(n

√
τ ) in addi-

tion to the O(n
√
τ + (n/

√
τ) log(n/

√
τ )) time for the construction. Hence we have

showed the following lemma:

Lemma 3. Let 1 ≤ τ ≤ n. If the length of the longest common substring
of T1 and T2 is at least τ , it can be computed in O(n/

√
τ ) space and O(n

√
τ +

(n/
√
τ) log n) time, where n is the total length of T1 and T2.

3.2 A Solution for Short LCS

In the following we require that τ ≤ n2/3, or, equivalently, that τ ≤ n/
√
τ . Let us

assume, for simplicity, that n1 = |T1| is a multiple of τ . Note that if |LCS| ≤ τ
then the LCS is a substring of one of the following strings: T1[1..2τ ], T1[τ +
1..3τ ], . . . , T1[n1−2τ+1..n1]. Therefore, we can reduce the problem of computing
the LCS to the problem of computing the longest substring of T2 which occurs
in at least one of these strings.

We divide the set S =
{
T1[1..2τ ], T1[τ + 1..3τ ], . . . , T1[n1 − 2τ + 1..n1]

}
into

disjoint subsets Si, i = 1, . . . ,
√
τ , such that the total length of strings in Si is no

more 2n/
√
τ (note that we can do this since τ ≤ n/

√
τ ). For each Si we compute

the longest substring t∗i of T2 which occurs in one of the strings in Si, and take
the one of the maximal length.

To compute t∗i for Si we build the generalised suffix tree ST (Si) for the strings
in Si. We traverse ST (Si) with T2 as described in Lemma 1. Any common sub-
string of T2 and one of the strings in Si will be a prefix of the label of some
visited node in ST (Si). It follows that t∗i is the label of the node of maximal
string depth visited during the traversal.

We now analyse the time and space complexity of the algorithm. Since the
total length of the strings in Si is at most 2n/

√
τ , the suffix tree can be built

in O(n/
√
τ ) space and time. The traversal takes O(n) time (see Lemma 1).

Consequently, t∗i can be found in O(n/
√
τ) space and O(n) time. By repeating

for all i = 1, . . . ,
√
τ , we obtain the following lemma:

Lemma 4. Let 1 ≤ τ ≤ n2/3. If the length of longest common substring of T1

and T2 is at most τ , it can be computed in O(n/
√
τ ) space and O(n

√
τ) time,

where n is the total length of T1 and T2.

Combining the Solutions. By combining Lemma 3 and Lemma 4, we see that
the LCS can be computed in O

(
n/
√
τ
)

space and O
(
n
√
τ + (n/

√
τ ) logn

)
time
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for 1 ≤ τ ≤ n2/3. Substituting τ = n2ε the space bound becomes O(n1−ε) and
the time O(n1+ε + n1−ε logn), which is O(n1+ε) for ε > 0. This concludes the
proof of Theorem 1(i).

4 Longest Common Substring of Multiple Strings

In this section we prove Theorem 1(ii). Similar to the case of two strings, the
algorithm consists of two procedures that both use space O(n/

√
τ ). The first

one correctly computes the LCS if its length is at least τ ′ = 1
11τ log2 n, while

the second works if the length of the LCS is at most τ ′. We then combine the
solutions to obtain the desired trade-off. The choice of the specific separation
value τ ′ comes from the fact that we need τ ′ ≤ n, and since the general solution
for long LCS requires a data structure with a superlinear space bound.

4.1 A General Solution for Long LCS

Note that we cannot use the same idea that we use in the case of two strings
since the property of difference cover samples (Lemma 2) does not necessarily
hold for d positions. Instead we propose a different approach described below.

If d > n/
√
τ , the algorithm returns an empty string and stops. This can be

justified by the following simple observation.

Lemma 5. If d > n/
√
τ then |LCS| < τ .

Proof. From d > n/
√
τ it follows that among any d strings from T1, T2, . . . , Tm

there is at least one string shorter than
√
τ . Therefore, the length of LCS is

smaller than
√
τ < τ . 
�

This leaves us with the case where d ≤ n/
√
τ . We first construct the difference

cover sample with parameter τ ′ for the string T = T1$1T2$2 · · ·Tm$m, where $i,
1 ≤ i ≤ m, are special characters that do not occur in T1, T2, . . . , Tm. We also
construct the arrays and the range minimum query data structures described
in Section 2.2 for computing longest common prefixes between pairs of sampled
suffixes or pairs of reversed blocks in constant time.

Suppose that the LCS is a prefix of Ti[pi..], for some 1 ≤ i ≤ m, 1 ≤ pi ≤ |Ti|.
Then to compute |LCS| it is enough to find (d − 1) suffixes of distinct strings
from T1, T2, . . . , Tm such that the lcp values for them and Ti[pi..] are maximal.
The length of the LCS will be equal to the minimum of the lcp values. Below we
show how to compute the minimum.

Let N1 stand for zero, and Ni, i ≥ 2, stand for the length of T1$1 · · ·Ti−1$i−1.
Consider the sampled positions p1i , p

2
i , . . . , p

z
i in an interval [Ni +pi, Ni +pi + τ ′]

(see Figure 3).
From the property of the difference cover samples it follows that there is an

integer r < τ ′ such that both p′i = (Ni + pi) + r and p′j = (Nj + pj) + r are in

DCτ ′(T ) — in particular, p′i = pki for some k. Moreover, if lcp
(
Ti[pi..], Tj [pj ..]

)
≥
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T
T1$1 . . . Ti−1$i−1 Ti+1$i+1 . . . Tm$m

Ni p1i ...p
k
i...p

z
i Ni+1

RB(pki )

Fig. 3. Sampled positions p1i , p
2
i , . . . , p

z
i of T in an interval [Ni + pi, Ni + pi + τ ′], and

a reversed block RB(pki )

τ ′, then the length of the longest common prefix of RB(pki ) and RB(p′j) is at

least r = (pki −Ni) − pi.
Let lcpk

j be the maximum length of the longest common prefix of Ti[p
k
i −Ni..]

and Tj [p
′
j − Nj ..], taken over all possible choices of p′j , Nj < p′j ≤ Nj+1, such

that lcp
(
RB(pki ), RB(p′j)

)
≥ ((pki −Ni) − pi). For each k we define a list Lk to

contain values ((pki −Ni) − pi) + lcpk
j −1, j �= i, in decreasing order. Note that

since the number of the sampled positions in [Ni + pi, Ni + pi + τ ′] is at most√
1.5τ ′ + 6 (see Section 2.2), the number of the lists does not exceed

√
1.5τ ′ + 6

as well.
We first explain how we use the lists to obtain the answer and then how

their elements are retrieved. The lists Lk are merged into a sorted list L un-
til it contains values corresponding to suffixes of (d − 1) distinct strings from
T1, T2, . . . , Tm. The algorithm maintains a heap Hval on the values stored in the
heads of the lists and a heap Hid on the distinct identifiers of strings already
added to L. At each step it takes the maximum value in Hval and moves it from
its list to L. Then it updates Hval and Hid and proceeds. The last value added
to L will be equal to the length of the LCS.

We now explain how to retrieve values from Lk. Consider a set S of |DCτ ′(T )|
coloured points in the plane, where a point corresponding to a position p ∈
DCτ ′(T ) will have x-coordinate equal to the rank of T [p..] in the lexicographic
ordering of the sampled suffixes, y-coordinate equal to the rank of RB(p) in the
lexicographic ordering of the reversed blocks, and colour equal to the number of
the string T [p..] starts within.

We will show that after having retrieved the first � − 1 elements from Lk,
the next element can be retrieved using O(log n) coloured orthogonal range re-
porting queries on the set S. For an integer � and an axis-parallel rectangle
[a1, b1]×[a2, b2], such a query reports � points of distinct colours lying in the rect-
angle. We need only to consider the positions p such that lcp

(
RB(pki ), RB(p)

)
≥

((pki −Ni)− pi). These positions form an interval Ik of the reversed block array,
SAR

τ . For each Lk we maintain a rectangle R = [x1;x2]× Ik such that x1 ≤ x ≤
x2, where x is the x-coordinate of the point corresponding to the position pki .
After the first (� − 1) elements of Lk have been retrieved, R contains points of
(�− 1) colours besides i and Lk[�− 1] = ((pki −Ni)− pi) + lcp

(
x1, x2)− 1, where

lcp
(
x1, x2) is the longest common prefix of suffixes of T with ranks x1 and x2

(see Figure 4). To retrieve the next element we extend R until it contains points
of � colours not equal to i. We do this by extending either its left or right side
until it includes a point of a new colour. We keep the rectangle that maximises
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Suffixes

Reversed blocks

Ik

x
(rank of T [pki ..])

x1 x2

Fig. 4. Retrieving the �th element of Lk. A rectangle R = [x1;x2]× Ik contains points
of (�−1) colours besides i. The two points of new colours shown in bold are the closest
points of new colours from the left and from the right. We extend either the left or
right side of the rectangle until it includes one of these points.

lcp(x1, x2). Finding the two candidate rectangles can be done by performing
two separate binary searches for the right and left sides using O(log n) coloured
orthogonal range queries. Note that in each query at most � points are to be
reported.

The procedure described above is repeated for all 1 ≤ i ≤ m and 1 ≤ pi ≤ |Ti|.
The maximum of the retrieved values will be equal to the length of the LCS. We
can compute the LCS itself, too, if we remember i and pi on which the maximum
is achieved.

Lemma 6. Let 1 ≤ τ ≤ 11n/ log2 n, and let LCS denote the longest substring
that appears in at least d of the strings T1, T2, . . . , Tm of total length n. In the
case where |LCS| ≥ 1

11τ log2 n, the LCS can be found in O(n/
√
τ ) space and

O(nd
√
τ log2 n(log2 n + d)) time.

Proof. If d > n/
√
τ , the algorithm returns an empty string and thus is correct.

Otherwise, τ ′ = 1
11τ log2 n ≤ n, and correctness of the algorithm follows from its

description. The data structures for performing constant time lcp computations
require O(n/

√
τ ) space and can be built in O(n

√
τ logn) time.

Suppose that i and pi are fixed. Each interval Ik can be found using O(log n)
lcp computations. To perform coloured orthogonal range queries on the set S of
size |DCτ ′(T )| = O(n/(

√
τ logn)), we use the data structure [8] that can be con-

structed in O(|S| log2 |S|) = O((n log n)/
√
τ) time and O(|S| log |S|) = O(n/

√
τ)

space and allows to report � points of distinct colours in time O(log2 |S| + �) =
O(log2 n + �). Thus retrieving Lk[�] takes time O(log n(log2 +�)). The merge
stops after retrieving at most d elements from each of the O(

√
τ ′) lists, which

will take O(d
√
τ ′ logn(log2 n + d)) = O(d

√
τ log2 n(log2 n + d)) time.

Merging the lists into L will take O(log τ ′ + log d) time per element, i.e.,

O(d
√
τ ′(log τ ′ + log d)) = O(d

√
τ log3/2 n) time in total, and O(

√
τ ′ + d) =

O(n/
√
τ ) space (remember that we are in the case d ≤ n/

√
τ ). Therefore, com-

puting the longest prefix of Ti[pi..] which occurs in at least (d− 1) other strings
will take O(d

√
τ log2 n(log2 n + d)) time. The lemma follows. 
�



Time-Space Trade-Offs for the Longest Common Substring Problem 233

4.2 A General Solution for Short LCS

We start by proving the following lemma:

Lemma 7. Given input strings T1, T2, . . . , Tm of total length n and a string S
of length |S|. The longest substring t of S that appears in at least d of the input
strings can be found in O((|S| + n) log |t|) time and O(|S|) space.

Proof. We prove that there is an algorithm that takes an integer i, and in O(|S|+
n) time and O(|S|) space either finds an i-length substring of S that occurs in at
least d input strings, or reports that no such substring exists. The lemma then
follows, since by running the algorithm O(log |t|) times we can do an exponential
search for the maximum value of i.

We construct the algorithm as follows. First we build the suffix tree ST (S)
for the string S, together with all suffix links. For every node of the suffix tree
we store a pointer to its ancestor of string depth i (all such pointers can be
computed in O(|S|) time by post-processing the tree). Besides, for every node
v ∈ ST (S) of string depth i (explicit or implicit), we store a counter c(v) and an
integer id(v), both initially set to zero. These nodes correspond exactly to the
i-length substrings of S, and we will use c(v) to count the number of distinct
input strings that the label of v occurs in. To do this, we traverse ST (S) with
the input strings T1, T2, . . . , Tm one at a time as described in Lemma 1. When
matching a character a of Tj , we always check if a node v of string depth i above
our current location has id(v) < j. In that case, we increment the counter c(v)
and set id(v) = j to ensure that the counter is only incremented once for Tj .

To prove the correctness note that for any i-length substring � of Tj that
also occurs in S there exists a node of ST (T ) labelled by it, and one of the
descendants of this node will be visited during the matching process of Tj (see
Lemma 1). The converse is also true, because any node v′ ∈ ST (T ) visited during
the traversal implies that all prefixes of the label of v′ occur in Tj .

The suffix tree for S can be constructed in O(|S|) time and space. The traversal
with Tj can be implemented to take time O(|Tj |), i.e., O(n) time for all the input
strings. In addition to the suffix tree, at most |S| constant space counters are
stored. Thus the algorithm requires O(n + |S|) time and O(|S|) space. 
�

We now describe the algorithm for finding the LCS when |LCS| ≤ τ ′ = 1
11τ log2 n.

Consider the partition of T into substrings of length δn/
√
τ overlapping in τ ′

positions, where δ is a suitable constant. Assuming that τ ≤ n2/3−γ for some
constant γ > 0, implies that these strings will have length at least 2τ ′, and thus
the LCS will be a substring of one of them. We examine the strings one by one
and apply Lemma 7 to find the longest substring that occurs in at least d input
strings. It follows that we can check one string in O(n/

√
τ ) space and O(n log n)

time, so by repeating for all O(
√
τ) strings, we have:

Lemma 8. Let 1 ≤ τ ≤ n2/3−γ for some constant γ > 0, and let LCS denote
the longest substring that appear in at least d of the strings T1, T2, . . . , Tm of
total length n. If |LCS| ≤ 1

11 τ log2 n, the LCS can be found in O(n/
√
τ ) space

and O(
√
τn logn) time.
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Combining the Solutions. Our specific choice of separation value ensures that
the assumption on τ of Lemma 8 implies the assumption of Lemma 6 (because
n2/3−γ ≤ 11n/ log2 n for all n and γ > 0). Thus by combining the two solutions
the LCS can be computed in O(n/

√
τ ) space and O(d

√
τn log2 n(log2 n + d))

time for 1 ≤ τ ≤ n2/3−γ , γ > 0. Substituting τ = n2ε, we obtain the bound
stated by Theorem 1(ii) with the requirement that 0 ≤ ε < 1/3.

5 Open Problems

We conclude with some open problems. Is it possible to extend the trade-off
range of our solutions to ideally 0 ≤ ε ≤ 1/2? Can the time bound for the general
LCS problem be improved so it fully generalises the solution for two strings? The
difference cover technique requires Ω(

√
n) space, so the most interesting question

is perhaps whether the LCS problem can be solved deterministically in O(n1−ε)
space and O(n1+ε) time for any 0 ≤ ε ≤ 1?

Acknowledgements. T. Starikovskaya has been partly supported by a grant
10-01-93109-CNRS-a of the Russian Foundation for Basic Research and by Dy-
nasty foundation.
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Abstract. We solve an open problem related to an optimal encoding of
a straight line program (SLP), a canonical form of grammar compression
deriving a single string deterministically. We show that an information-
theoretic lower bound for representing an SLP with n symbols requires
at least 2n + log n! + o(n) bits. We then present a succinct representa-
tion of an SLP; this representation is asymptotically equivalent to the
lower bound. The space is at most 2n log ρ(1 + o(1)) bits for ρ ≤ 2

√
n,

while supporting random access to any production rule of an SLP in
O(log log n) time. In addition, we present a novel dynamic data struc-
ture associating a digram with a unique symbol. Such a data structure
is called a naming function and has been implemented using a hash ta-
ble that has a space-time tradeoff. Thus, the memory space is mainly
occupied by the hash table during the development of production rules.
Alternatively, we build a dynamic data structure for the naming func-
tion by leveraging the idea behind the wavelet tree. The space is strictly
bounded by 2n log n(1+ o(1)) bits, while supporting O(log n) query and
update time.

1 Introduction

Grammar compression has been an active research area since at least the seven-
ties. The problem consists of two phases: (i) building the smallest1 context-free
grammar (CFG) generating an input string uniquely and (ii) encoding an ob-
tained CFG as compactly as possible.

The phase (i) is known as an NP-hard problem which can not be approx-
imated within a constant factor [21]. Therefore, many researchers have made
considerable efforts to design grammar compressions achieving better approxi-
mation results in the last decade. Charikar et al. [6] and Rytter [29] indepen-
dently proposed the first O(log u

g )-approximation algorithms based on balanced
grammar construction for the length u of a string and the size g of the smallest
CFG. Later, Sakamoto [31] also developed an O(log u

g )-approximation algorithm

based on an idea called pairwise comparison. In particular, Lehman [21] proved

� This study was supported by KAKENHI(23680016,20589824) and JST PRESTO
program.

1 This is almost equal to minimizing the number of variables in G.

J. Fischer and P. Sanders (Eds.): CPM 2013, LNCS 7922, pp. 235–246, 2013.
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that LZ77 [35] achieved the best approximation of O(log n) under the condition
of an unlimited window size. Since the minimum addition chain problem is a
special case of the problem of finding the smallest CFG [20], modifying the ap-
proximation algorithms proposed so far is a difficult problem. Thus, the problem
of grammar compression is pressing in the phase (ii).

A straight line program (SLP) is a canonical form of a CFG, and has been used
in many grammar compression algorithms [36,19,35,1,23]. The production rules
in SLPs are in Chomsky normal form where the right hand side of a production
rule in CFGs is a digram: a pair of symbols. Thus, if n symbols are stored in an
array called a phrase dictionary consisting of 2n fixed-length codes each of which
is represented by logn bits, the memory of the dictionary is 2n logn bits, result-
ing in the memory for storing an input string usually being exceeded. Although
directly addressable codes achieving entropy bounds on strings whose memory
consumption is the same as that of the fixed-length codes in the worst case
have been presented [8,30,11], there are no codes that achieve an information-
theoretic lower bound of storing an SLP in a phrase dictionary. Since a nontrivial
information-theoretic lower bound of directly addressable codes for a phrase dic-
tionary remains unknown, establishing the lower bound and developing novel
codes for optimally representing an SLP are challenges.

We present an optimal and directly addressable SLP within a strictly bounded
memory close to the amount of a plain representation of the phrase dictionary.
We first give an information-theoretic lower bound on the problem of encoding
an SLP, which has been unknown thus far. Let C be a class of objects. Repre-
senting an object c ∈ C requires at least log |C| bits. A representation of c is
succinct if it requires at most log |C|(1+o(1)) bits. Considering the facts and the
characteristics of SLPs indicated in [23], one can predict that the lower bound
for the class of SLPs with n symbols would be between 2n and 4n + logn!. By
leveraging this prediction, we derive that a lower bound of bits to represent SLPs
is 2n + logn!.

We then present an almost optimal encoding of SLPs based on monotonic
subsequence decomposition of a sequence. Any permutation of [1, n] is decom-
posable into at most ρ ≤ 2

√
n monotonic subsequences in O(n1.5) time [33] and

there is a 1.71-approximation2 algorithm in O(n3) time [9]. While the previous
encoding method for SLPs presented in [32] is also based on the decomposition,
the size is not asymptotically equal to the lower bound when ρ "

√
n. We im-

prove the data structure by using the wavelet tree (WT) [12] and its improved
results [3,10] such that our novel data structure achieves the smaller bound
of min{2n + n logn + o(1), 2n log ρ(1 + o(1))} bits for any SLP with n symbols
while supporting O(log log ρ) access time. Our method is applicable to any types
of algorithm generating SLPs including Re-Pair [19] and an online algorithm
called LCA [24]. Barbay et al. [4] presented a succinct representation of a se-
quence using the monotonic subsequence decomposition. Their method uses the

2 Minimizing ρ is NP-hard.
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representation of an integer function built on a succinct representation of integer
ranges. Its size is estimated to be the degree entropy of an ordered tree [14].

Another contribution of this paper is to present a dynamic data structure
for checking whether or not a production rule in a CFG has been generated
in execution. Such a data structure is called a naming function, and is also
necessary for practical grammar compressions. When the set of symbols is static,
we can construct a perfect hash as a naming function in linear time, which
achieves an amount of space within around a factor of 2 from the information-
theoretical minimum [5]. However, variables of SLPs are generated step by step
in grammar compression. While the function can be dynamically computed by a
randomization [17] or a deterministic solution [16] in O(1) time and linear space,
a hidden constant in the required space was not clear. We present a dynamic
data structure to compute function values in O(log n) query time and update
time. The space is strictly bounded by 2n logn(1 + o(1)) bits.

2 Preliminaries

2.1 Grammar Compression

For a finite set C, |C| denotes its cardinality. Alphabet Σ is a finite set of letters
and σ = |Σ| is a constant. X is a recursively enumerable set of variables with
Σ ∩ X = ∅. A sequence of symbols from Σ ∪ X is called a string. The set of all
possible strings from Σ is denoted by Σ∗. For a string S, the expressions |S|,
S[i], and S[i, j] denote the length of S, the i-th symbol of S, and the substring
of S from S[i] to S[j], respectively. Let [S] be the set of symbols composing S.
A string of length two is called a digram.

A CFG is represented by G = (Σ, V, P,Xs) where V is a finite subset of X ,
P is a finite subset of V × (V ∪ X )∗, and Xs ∈ V . A member of P is called
a production rule and Xs is called the start symbol. The set of strings in Σ∗

derived from Xs by G is denoted by L(G).
A CFG G is called admissible if exactly one X → α ∈ P exists and |L(G)| = 1.

An admissible G deriving S is called a grammar compression of S for any X ∈ V .
We consider only the case |α| = 2 for any production rule X → α because

any grammar compression with n variables can be transformed into such a re-
stricted CFG with at most 2n variables. Moreover, this restriction is useful for
practical applications of compression algorithms, e.g., LZ78 [36], REPAIR [19],
and LCA [24], and indices, e.g., SLP [7] and ESP [22].

The derivation tree of G is represented by a rooted ordered binary tree such
that internal nodes are labeled by variables in V and the yields, i.e., the sequence
of labels of leaves is equal to S. In this tree, any internal node Z ∈ V has a left
child labeled X and a right child labeled Y , which corresponds to the production
rule Z → XY .

If a CFG is obtained from any other CFG by a permutation π : Σ ∪ V →
Σ ∪ V , they are identical to each other because the string derived from one is
transformed to that from the other by the renaming. For example, P = {Z →
XY, Y → ab,X → aa} and P ′ = {X → Y Z,Z → ab, Y → aa} are identical each
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other. On the other hand, they are clearly different from P ′′ = {Z → aY, Y →
bX,X → aa} because their depths are different. Thus, we assume the following
canonical form of CFG called straight line program (SLP).

Definition 1. (Karpinsk-Rytter-Shinohara [18]) An SLP is a grammar com-
pression over Σ ∪ V whose production rules are formed by either Xi → a or
Xk → XiXj, where a ∈ Σ and 1 ≤ i, j < k ≤ |V |.

2.2 Phrase/Reverse Dictionary

For a set P of production rules, a phrase dictionary D is a data structure for
directly accessing the phrase XiXj for any Xk ∈ V if Xk → XiXj ∈ P . Re-
garding a triple (k, i, j) of positive integers as Xk → XiXj , we can store the
phrase dictionary consisting of n variables in an integer array D[1, 2n], where
D[2k − 1] = D[2k] = 0 if k belongs to an alphabet i.e., 1 ≤ k ≤ |Σ|. Xi and Xj

are accessible as D[2k − 1] and D[2k] by indices 2k − 1 and 2k for Xk, respec-
tively. A plain representation of D using fixed-length codes requires 2n logn bits
of space to store n production rules.

Reverse dictionary D−1 is a data structure for directly accessing the variable
Xk given XiXj for a production rule Xk → XiXj ∈ P . Thus, D−1(XiXj)
returns Xk if Xk → XiXj ∈ P . A hash table is a representative data structure
for D−1 enabling O(1) time access and achieving O(n logn) bits of space.

2.3 Rank/Select Dictionary

We present a phrase dictionary based on the rank/select dictionary, a data struc-
ture for a bit string B [13] supporting the following queries: rankc(B, i) returns
the number of occurrences of c ∈ {0, 1} in B[1, i] and selectc(B, i) returns the po-
sition of the i-th occurrence of c ∈ {0, 1} in B. For example, if B = 10110100111
is given, then rank1(S, 7) = 4 because the number of 1s in B[1, 7] is 4, and
select1(S, 5) = 9 because the position of the fifth 1 in B is 9. Although naive
approaches require the O(|B|) time to compute a rank, several data structures
with only the |B| + o(|B|) bit storage to achieve O(1) time [26,27] have been
presented. Most methods compute a select query by a binary search on a bit
string B in O(log |B|) time. A data structure for computing the select query in
O(1) time has also been presented [28].

2.4 Wavelet Tree

A WT is a data structure for a string S ∈ Σ∗, and it can be used to compute the
rank and select queries on a string S over an ordinal alphabet in O(log σ) time
and n log σ(1 + o(1)) bits [12]. Data structures supporting the rank and select
queries in O(log log σ) time with the same space have been proposed [10,3]. WT
also supports access(S, i) which returns S[i] in O(log σ) time. Recently, WT has
been extended to support various operations on strings [25].
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Sroot=342112243
Broot=110000011

Sleft(root)=21122
Bleft(root)=10011

Sright(root)=3443
Bright(root)=0110

1 2 3 4

Fig. 1. Example of wavelet tree for a sequence S = 342112243 over an alphabet
{1, 2, 3, 4}

A WT for a sequence S over Σ = {1, ..., σ} is a binary tree that can be, recur-
sively, presented over a sub-alphabet range [a, b] ⊆ [1, σ]. Let Sv be a sequence
represented in a node v, and let left(v) and right(v) be left and right children of
node v, respectively. The root vroot represents Sroot = S over the alphabet range
[1, σ]. At each node v, Sv is split into two subsequences Sleft(v) consisting of the

sub-alphabet range [a, � (a+b)
2 �] for left(v) and Sright(v) consisting of the sub-

alphabet range [� (a+b)
2 �+ 1, b] for right(v) where Sleft(v) and Sright(v) keep the

order of elements in Sv. The splitting process repeats until a = b. Each node v
in the binary tree contains a rank/select dictionary on a bit string Bv. Bit Bv[k]
indicates whether Sv[k] should be moved to left(v) or right(v). If Bv[k] = 0,
Sleft(v) contains Sv[k]. If Bv[k] = 1, Sright(v) inherits Sv[k]. Formally, Bv[k] with
an alphabet range [a, b] is defined as:

Bv[k] =

{
1 if Sv[k] > �(a + b)/2�
0 if Sv[k] ≤ �(a + b)/2� .

An example of a WT is shown in Figure 1. In this example, since Sroot[2] = 4
belongs to the higher half [3, 4] of an alphabet range [1, 4] represented in the
root; therefore, it is the second element of Sroot that must go to the right child
of the root, Broot[2] = 1 and Sright(root)[2] = Sroot[2] = 4.

3 Succinct SLP

3.1 Information-Theoretic Lower Bound

In this section, we present a tight lower bound to represent SLPs having a set
of production rules P consisting of n = |Σ ∪ V | symbols. Each production rule
Z → XY ∈ P is considered as two directed edges (Z,X) and (Z, Y ), the SLP
can be seen as a directed acyclic graph (DAG) with a single source and |Σ|
sinks. Here, we consider (Z,X) as the left edge and (Z, Y ) as the right edge.
In addition, P can be considered as a DAG with the single source and with a
single sink by introducing a super-sink s and drawing directed left and right
edges from any sink to s (Figure 2). Let DAG(n) be the set of all possible Gs
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CFG G DAG representation 
of G

TL TR

Fig. 2. Example of DAG representation of an SLP and its spanning tree decomposition.
An SLP is represented by a DAG G. G is decomposed into the left tree TL and right
tree TR.

with n nodes and DAG =
⋃

n→∞DAG(n). Since two SLPs are identical if an
SLP can be converted to the other SLP by a permutation π : Σ ∪ V → Σ ∪ V ,
the number of different SLPs is |DAG(n)|. Any internal node of G ∈ DAG(n)
has exactly two (left/right) edges. Thus, the following fact remarked in [22] is
true.

Fact 1. An in-branching spanning tree is an ordered tree such that the out-degree
of any node except the root is exactly one. For any in-branching spanning tree
of G, the graph consisting of the remaining edges and their adjacent vertices is
also an in-branching spanning tree of G.

The in-branching spanning tree consisting of the left edges (respectively the
right edges) and their adjacent vertices is called the left tree TL (respectively
right tree TR) of G. Note that the source in G is a leaf of both TL and TR, and
the super-sink of G is the root of both TL and TR. We shall call the operation
of decomposing a DAG G into two spanning trees TL and TR spanning tree
decomposition. In Figure 2, the source x5 in G is a leaf of both TL and TR, and
the super-sink s in G is the root of both TL and TR.

Any ordered tree is an elements in T =
⋃

n→∞ Tn where Tn is the set of all
possible ordered trees with n nodes. As shown in [2,34], there exists an enumer-
ation tree for T such that any T ∈ T appears exactly once. The enumeration
tree is defined by the rightmost expansion, i.e., in this enumeration tree, a node
T ′ ∈ Tn+1, which is a child of T ∈ Tn, is obtained by adding a rightmost node to
T . In our problem, an ordered tree T ∈ Tn+1 is identical to a left tree TL with
n + 1 nodes for n = |Σ ∪ V | symbols.

Let G ⊕ (u, v) be the DAG obtained by adding the edge (u, v) to a DAG G.
If necessary, we write G⊕ (u, v)L to indicate that (u, v) is added as a left edge.
For a set E of edges, the DAG G⊕E is defined analogously. The DAG G⊕E is
defined as adding all the edges (u, v) ∈ E to G. The DAG G$E is also defined
as deleting all the edges (u, v) ∈ E from G.

Theorem 1. The information-theoretic lower bound on the minimum number
of bits needed to represent an SLP with n symbols is 2n + logn! + o(n).
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Proof. Let S(n) be the set of all possible DAGs with n nodes and a single
source/sink such that any internal node has exactly two children. This S(n) is a
super set of DAG(n) because the in-degree of the sink of any DAG in DAG(n)
must be exactly 2σ, whereas S(n) does not have such a restriction. By the
definition, |S(n)|/nσ ≤ |DAG(n)| ≤ |S(n)| holds.

Let S(n, T ) = {G ∈ S(n) | G = T ⊕ TR, TR ∈ Tn}. We show |S(n, T )| =
(n − 1)! for each T ∈ Tn by induction on n ≥ 1. Since the base case n = 1 is
clear, we assume that the induction hypothesis is true for some n ≥ 1.

Let T ′
L be the rightmost expansion of TL such that the rightmost node u is

added as the rightmost child of node v in TL, and let G′ ∈ S(n + 1, T ′
L) with a

left tree T ′
L. By the induction hypothesis, the number of G ∈ S(n, TL) is (n−1)!

and TL is embedded into G as the left tree. Then, G′ is constructed by adding
the left edge (u, v) and a right edge (u, x) for a node x in TL.

Let s be the source of G. For v = s, each G′ = G ⊕ (u, v)L ⊕ (u, x)R ∈
S(n + 1, T ′

L) is admissible, and the number of them is clearly n|S(n, TL)| = n!.
For v �= s, if x = s, G′ = G ⊕ (u, v)L ⊕ (u, x)R ∈ S(n + 1, T ′

L) is admissible.
Otherwise, there exists the lowest common ancestor y of s and x on TR with
G = TL⊕TR. Then, G′ = G⊕(u, v)L⊕(u, x)R$(y′, y)R⊕(y′, u)R is an admissible
DAG in S(n+ 1, T ′

L) where y′ is the unique child of y in the path from y to s in
TR. In this case, the number of such G′s is also n! because no edge is changed
in TL and the pair (T ′

L, T
′
R) containing the edge (u, x)R is unique for any fixed

T ′
L. Thus, |S(n + 1, T )| = n! is true for each T ∈ Tn+1.
This result derives |S(n)| = Cn(n − 1)! where Cn = 1

n+1

(
2n
n

)
" 22nn−3/2 is

the number of ordered trees with n+ 1 nodes. Combining this with |S(n)|/nσ ≤
|G(n)| ≤ |S(n)| as well, we get the result that the information-theoretic minimum
bits needed to represent G ∈ DAG(n) is at least 2n + logn! + o(n). �

3.2 An Optimal SLP Representation

We present an optimal reresentation of an SLP as an improvement of the data
structure recently presented in [32]. We apply the spanning tree decomposition
to the DAG G of a given SLP, and obtain the DAG TL⊕TR(= G). We rename the
variables in TL by breadth-first order and also rename variables in TR according
to the TL. Let G′ be the resulting DAG from G. Then, for the array represen-
tation D[1, 2n] of G′, we obtain the condition D[1] ≤ D[3] ≤ . . . ≤ D[2n − 1].
Since this monotonic sequence is encoded by 2n + o(n) bits, D is represented
by 2n + n logn + o(n) bits supporting access(D, k) (1 ≤ k ≤ 2n) in O(1) time.
We focus on the remaining sequence of length n, i.e., D[2], D[4], . . . , D[2n]. For
simplicity, we write D instead of [D[2], D[4], . . . , D[2n]].

Let S = {s1, . . . , sρ} be a disjoint set of subsequences of [1, n] such that any i ∈
{1, 2, ..., n} is contained in some sk and any si, sj (i �= j) are disjoint. Such an S is
called a decomposition of D. A sequence D[sk1 ], . . . , D[skp ] is weakly monotonic
if it is increasing, i.e., D[sk1 ] ≤ . . . ≤ D[skp ] or decreasing, i.e., D[sk1 ] ≥ . . . ≥
D[skp ]. In addition, S is called monotonic if the sequence D[sk1 ], . . . , D[skp ] is
weakly monotonic for any sk = [sk1 , . . . , skp ] ∈ S.
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based on

index 1 2 3 4 5 
0 1 1 0 4
1 2 1 2 1
1 2 2 1 1

= 110110001

is obtained by 

weakly monotonic 
D[1], D[3], D[5], D[6]

= 01

Fig. 3. Encoded phrase dictionary: D indicates the remaining sequence
D[2], D[4], . . . , D[2n]. D is encoded by (Dρ, Dπ ,B,b) based on a monotonic decom-
position S of D, i.e., each s ∈ S indicates a weakly monotonic subsequence in D; Dρ is
the sequence of i indicating the membership for some si ∈ S , Dπ is a permutation of
Dρ with respect to the corresponding value in D, B is a binary encoding of the sorted
D in increasing order. We show only the case that D[i] is a member of an increasing
s ∈ S , but the other case is similarly computed by b.

Theorem 2. Any SLP with n symbols can be represented using 2n log ρ(1+o(1))
bits for ρ ≤ 2

√
n, while supporting O(log log ρ) access time.

Proof. It is sufficient to prove that any D of length n can be represented using
2n log ρ + o(n) bits for some ρ ≤ 2

√
n. By the result in [33], we can construct a

monotonic decomposition S of D such that ρ = |S| ≤ 2
√
n.

We represent the sequence D as a four-tuple (Dρ, Dπ,B,b) using S. For each
1 ≤ p ≤ n, Dρ[p] = k iff p is a member of sk ∈ S for some 1 ≤ k ≤ ρ.
Let (D[1], Dρ[1]), . . . , (D[n], Dρ[n]) be the sequence of pairs (D[p], Dρ[p]) (1 ≤
p ≤ n). We sort these pairs with respect to the keys D[p] (1 ≤ p ≤ n) and
obtain the sorted sequence (D[�1], Dρ[�1]), . . . , (D[�n], Dρ[�n]). We define Dπ as
the permutation Dρ[�1] · · ·Dρ[�n].

B ∈ {0, 1}∗ is defined as the bit string

B = 0D[�1]10D[�2]−D[�1] · · · 10D[�n]−D[�n−1]1.

Finally, b[k] = 0 if sk ∈ S is increasing and b[k] = 1 otherwise for 1 ≤
k ≤ ρ. D and Dρ are represented by WTs, respectively, and B is a rank/select
dictionary.

We recover D[p] using (Dρ, Dπ,B,b). When Dρ[p] = k and b[k] = 0, i.e.,
D[p] is included in the k-th monotonic subsequence sk ∈ S that is increasing,
we obtain

D[p] = rank0(B, select1(B, �))

by � = selectk(Dπ, rankk(Dρ, p)). When Dρ[p] = k and b[k] = 1, we can similarly
obtain D[p] replacing � by r = selectk(Dπ, (rankk(Dρ, n) + 1 − rankk(Dρ, p))).
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The total size of the data structure formed by (Dρ, Dπ,B,b) is at most
2n log ρ(1 + o(1)) bits. The rank/select/access operations of the WT for a static
sequence over ρ ≤ 2

√
n symbols can be improved to achieve O(log log ρ) time

for each query [3,10]. �

In Figure 3, for the sequence (0, 1), (1, 2), (1, 1), (0, 2), (4, 1) of pairs (D[p], Dρ[p])
(1 ≤ p ≤ 5), the sorted sequence is (0, 1), (0, 2), (1, 2), (1, 1), (4, 1). Thus, Dπ is
12211. B = 0010(0−0)10(1−0)10(1−1)10(4−1)1 = 110110001. b[1] = 0 because s1 is
increasing, and b[2] = 1 because s2 is decreasing.

4 Data Structure for Reverse Dictionary

In this section, we present a data structure for simulating the naming function
H defined as follows. For a phrase dictionary D with n symbols,

H(XiXj) =

{
D−1(XiXj), if D[k] = XiXj for some 1 ≤ k ≤ n,
Xn+1, otherwise.

For a sufficiently large V , we set a total order on (Σ ∪ V )2 = {XY | X,Y ∈
Σ∪V }, i.e., the lexicographical order of the n2 digrams. This order is represented
by the range [1, n2]. Then, we recursively define WT TD for a phrase dictionary D
partitioning [1, n2]. On the root node, the initial range [1, n2] is partitioned into
two parts: a left range L[1, �(1+n2)�/2] and a right range R[�(1+n2)�/2+1, n2].
The root is the bit string B such that B[i] = 0 if D[i] ∈ L and B[i] = 1 if D[i] ∈
R. By this, the sequence of digrams, D, is decomposed into two subsequences
DL and DR; they are projected on the roots of the left and right subtrees,
respectively. Each sub-range is recursively partitioned and the subsequence of D
on a node is further decomposed with respect to the partitioning on the node.
This process is repeated until the length of any sub-range is one. Let Bi be
the bit string assigned to the i-th node of TD in the breadth-first traversal. In
Figure 4, we show an example of such a data structure for a phrase dictionary D.

Theorem 3. The naming function for phrase dictionary D over n = |Σ ∪ V |
symbols can be computed by the proposed data structure DT in O(log n) time for
any digram. Moreover, when a digram does not exist in the current D, DT can
be updated in the same time and the space is at most 2n logn(1 + o(1)) bits.

Proof. DT is regarded as a WT for a string S of length n such that any symbol
is represented in 2 logn bits. Thus, H(XY ) is obtained by selectXY (S, 1). The
query time is bounded by the number of rank and select operations for bit strings
performed until the operation flow returns to the root. Since the total range is
[1, n2], i.e., the height of TD is at most 2 logn, the query time and the size
are derived. When XY does not exist in D, let i1, i2, . . . , ik be the sequence of
traversed nodes from the root i1 to a leaf ik and let Bij be the bit string on
ij. Given an access/rank/select dictionary for Bij , we can update it for Bijb
and b ∈ {0, 1} in O(1) time. Therefore, the update time of TD for any digram is
O(k) = O(log n). �
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Fig. 4. WT for reverse dictionary: The bit string Bi is assigned to the i-th node
in breadth-first order. For each internal node i, we can move to the left child by rank0
and to the right child by rank1 on Bi. The upward traversal is simulated by select0
and select1 as shown. The leaf for an existing digram is represented by 1 and null is
represented by 0, whereas these bits are omitted in this figure.

5 Discussion

We have investigated three problems related to the construction of an SLP: the
information-theoretic lower bound for representing the phrase dictionary D, an
optimal representation of a directly addressable D, and a dynamic data structure
for D−1. Here, we consider the results of this study from the viewpoint of open
questions.

For the first problem, we approximately estimated the size of a set of SLPs
with n symbols, which is almost equal to the exact set. This problem, however,
has several variants, e.g., the set of SLPs with n symbols deriving the same string,
which is quite difficult to estimate owing to the NP-hardness of the smallest CFG
problem. There is another variant obtained by a restriction: Any two different
variables do not derive the same digram, i.e., Z → XY and Z ′ → XY do not
exist simultaneously for Z �= Z ′. Although such variables are not prohibited in
the definition of SLP, they should be removed for space efficiency. On the other
hand, even if we assume this restriction, the information-theoretic lower bound
is never smaller than logn! bits because, given a directed chain of length n as
TL, we can easily construct (n− 1)! admissible DAGs.

For the second problem, we proposed almost optimal encoding of SLPs. From
the standpoint of massive data compression, one drawback of the proposed en-
coding is that the whole phrase dictionary must be stored in memory beforehand.
Since symbols must be sorted, we need a dynamic data structure to allow the
insertion of symbols in an array, e.g., [15]. Such data structures, however, require
O(n log n) bits of space.

For the last problem, the query time and update time of proposed data struc-
ture are both O(log n). This cost is considerable and it is difficult to improve
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it to O(log logn) because D is not static. When focusing on the characteristics
of SLPs, we can improve the query time probabilistically; since any symbol X
appears in D at least once and |D| = 2n, the average of frequency of X is at most
two. Thus, using an additional array of size n logn bits, we can check H(XY )
in O(1) time with probability at least 1/2. However, improving this probability
is not easy. For this problem, achieving O(1) amortized query time is also an
interesting challenge.
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LNCS, vol. 7354, pp. 2–26. Springer, Heidelberg (2012)

26. Navarro, G., Providel, E.: Fast, small, simple rank/Select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012)

27. Okanohara, D., Sadakane, K.: Practical Entropy-Compressed Rank/Select Dictio-
nary. In: ALENEX (2007)

28. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

29. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302, 211–222 (2003)

30. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: SODA, pp. 1230–1239 (2006)

31. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3, 416–430 (2005)

32. Takabatake, Y., Tabei, Y., Sakamoto, H.: Variable-Length Codes for Space-Efficient
Grammar-Based Compression. In: Calderón-Benavides, L., González-Caro, C.,
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works on a word RAM with a word size of logL bits.
Here we prove that for such data structures, if the space is poly(n), the

query time must be at least (logL)1−ε/ log S where S is the space used,
for any constant ε > 0. As a function of n, our lower bound is Ω(n1/2−ε).
Our proof holds in the cell-probe model with a word size of logL bits, so
in particular it holds in the word RAM model. We show that no lower
bound significantly better than n1/2−ε can be achieved in the cell-probe
model, since there is a data structure in the cell-probe model that uses
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1 Introduction

In many modern databases, strings are stored in compressed form. Many com-
pression schemes are grammar-based, in particular Lempel-Ziv [6,11,12] and its
variants, as well as Run-Length Encoding.

A natural desire is to store a text using space close to its compressed size,
but to still allow fast access to individual characters: can we do something faster
than simply extracting the whole text each time we need to access a character?
This question was recently answered in the affirmative by Bille et al. [3] and by
Claude and Navarro [5]. These two works investigate the problem of storing a
string that can be represented by a small CFG (context-free grammar) of size n,
while allowing some basic stringology operations, in particular random access to
a character in the text. The data structure of Bille et al. [3, Theorem 1] stores
the text in space linear in n, while allowing access to an individual character in
time O(logL), where L is the text’s uncompressed size.1 But is that the best
upper bound possible?

In this paper we show a (logL)1−ε lower bound on the query time when the
space used by the data structure is poly(n), showing that the result of Bille et
al. is close to optimal. Our lower bounds are proved in the cell-probe model of
Yao [10], with word size logL, therefore they in particular hold for the model
studied by Bille et al. [3], since the cell-probe model is strictly stronger than
the RAM model. Our lower bound is proved by a reduction from Lopsided
Set Disjointness (LSD), a problem for which Pǎtraşcu has recently proved an
essentially-tight randomized lower bound [8]. The idea is to prove that gram-
mars are rich enough to effectively “simulate” a disjointness query: our class of
grammars, presented in Section 3.1, might be of independent interest as a class
of “hard” grammars for other purposes as well.

In terms of n, our lower bound is n1/2−ε. The results of Bille et al. imply an
upper bound of O(n) on the query time, since logL ≤ n, therefore in terms of n
there is a curious quadratic gap between our lower bound and Bille et al.’s upper
bound. We show that this gap can be closed by giving a better data structure: we
show a data structure which takes space O(n) and has query time O(

√
n logn),

showing that no significantly better lower bound is possible. This data structure,
however, comes with a big caveat – it runs in the highly-unrealistic cell-probe
model, thus serving more as an impossibility proof for lower bounds than as
a reasonable upper bound. The question remains open of whether such a data
structure exists in the more realistic word RAM model.

Our lower bound holds for a particular, “worst-case”, dependence of L on
n. Namely, L is roughly 2

√
n. It might also be interesting to explicitly limit

the range of allowed parameters to other regimes, for example to non-highly-
compressible text; in such a regime it might be that L = n1+ε. The above result
does not imply any lower bound for this case. Furthermore, we show in another
result that for any data structure in that regime, if the space is n · polylogn,

1 The result of Bille et. al. also allows other query operations such as pattern matching;
we do not discuss those in this paper.
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the query time must be Ω(logn/ log logn). This lower bound holds, again, in
the cell probe model with words of size logn bits, and is proved by a reduction
from two-dimensional range counting (which, once again, was lower bounded by
a reduction from LSD [8]).

2 Preliminaries

In this paper we denote [N ] = {1, . . . , N}. All logarithms are in base 2 unless
explicitly stated otherwise.

Our lower bounds are proved in Yao’s cell-probe model [10]. In the cell-probe
model, the memory is an array of cells, where each cell consists of w bits each.
The query time is measured as the number of cells read, while all computations
are free. This model is strictly stronger than the word RAM, since in the word
RAM the operations allowed on words are restricted, while in the cell-probe
model we only measure the number of cells accessed. The cell-probe model is
widely used in proving data structure lower bounds, especially by reduction from
communication complexity problems [7]. In this paper we prove our result by a
reduction from the Blocked-LSD problem introduced by Pǎtraşcu [8].

An SLP (straight line program) is a collection of n derivation rules, defining
the symbols g1, . . . , gn. Each rule is either of the form gi → ‘σ′, i.e. gi is a
terminal, which takes the value of a character σ from the underlying alphabet,
or of the form gi → gjgk, where j < i and k < i, i.e. gj and gk were already
defined, and we define the nonterminal symbol gi to be their concatenation. The
symbol gn is the start symbol. To derive the string we start from gn and follow
the derivation rules until we get a sequence of characters from the alphabet. The
length of the derived string is at most 2n. W.l.o.g. we assume it is at least n. As
the same in Bille et al. [3], we also assume w.l.o.g. that the grammars are in fact
SLPs and so on the righthand side of each grammar rule there are either exactly
two variables or one terminal symbol. In this paper SLP, CFG and grammar all
mean the same thing.

The grammar random access problem is the following problem.

Definition 1 (Grammar Random Access Problem). For a CFG G of size
n representing a binary string of length L, the problem is to build a data structure
to support the following query: given 1 ≤ i ≤ L, return the i-th character (bit)
in the string.

We study two other data structure problems, which are closely related to their
communication complexity counterparts.

Definition 2 (Set Disjointness, SDN). For a set Y ⊆ [N ], the problem is
to build a data structure to support the following query: given a set X ⊆ [N ],
answer whether X ∩ Y = ∅.

Given a universe [BN ] = {1, . . . , BN}, a set X is called blocked with cardinality
N if when we divide the universe [BN ] into N equal-sized consecutive blocks, X
contains exactly one element from each of the blocks while Y could be arbitrary.
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Definition 3 (Blocked Lopsided Set Disjointness, BLSDB,N). For a set
Y ⊆ [BN ], the problem is to build a data structure to support the following
query: given a blocked set X ⊆ [BN ] where |X | = N containing 1 element from
each size B block, answer whether X ∩ Y = ∅.

For proving lower bound for near-linear space data structures, we also need
reductions from a variant of the range counting problem.

Definition 4 (Range Counting). The range counting problem is a static data
structure problem. We need to preprocess a set of n points on a [n] × [nε] grid.
A query (x, y) asks to count the number of points in a dominance rectangle
[1, x]× [1, y] (a rectangle contains the lower left corner (1, 1)). Return the answer
modulo 2.

Note that the above problem is “easier” than the classical 2D range-counting
problem, since it is a dominant query problem, it is a grid n×nε, and it is modulo
2. However, the (tight) lower bound that is known for the general problem, given
by Pǎtraşcu [8], could be generalized for the problem we define.

3 Lower Bound for Grammar Random Access

In this section we prove the main lower bound for grammar random access. In
Section 3.1 we show the main reduction from SD and BLSD. In Section 3.2 we
prove lower bounds for SD and BLSD, based on reductions to communication
complexity (these are implicit in the work of Pǎtraşcu [8]). Finally, in Section
3.3 we tie these together to get our lower bounds.

3.1 Reduction from SD and LSD

In this section we show how to reduce the grammar access problem from SD
or BLSD, by considering a particular type of grammar. The reductions tie the
parameters n and L to the parameters B and N of BLSD (or just to the pa-
rameter N of SD). In Section 3.3 we show how to choose the relation between
the various parameters in order to get our lower bounds. We remark that the
particular multiplicative constants in the lemmas below will not matter, but we
give them nonetheless, for concreteness.

These reductions might be confusing for the reader, but they are in fact al-
most entirely tautological. They just follow from the fact that the communication
matrix of SD is a tensor product of the 2 by 2 communication matrices for the

coordinates, i.e., it is just a N -fold tensor product of the matrix

(
1 1
1 0

)
. For

BLSD, the communication matrix is the N -fold tensor product of the (2B) ×B
communication matrix for each block (for example, for B = 3 this matrix is⎛⎝1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

⎞⎠). We do not formulate our arguments in the language of
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communication matrices and tensor products, since this would hide what is
really going on. To aid the reader, we give an example after each of the two
constructions.

Lemma 1 (Reduction from SDN). For any set Y ⊆ [N ], there is a grammar
GY of size n = 2N + 1 deriving a binary string sY of length L = 2N such that
for any set X ⊆ [N ], it holds that sY [X ] = 1 iff X ∩ Y = ∅.

Note that in this lemma we have indexed the string s by sets: there are 2N

possible sets X , and the length of the string sY is also 2N – each set X serves as
an index of a unique character. The indexing is done in lexicographic order: the
set X is identified with its characteristic vector, i.e., the vector in {0, 1}N whose i-
th coordinate is ‘1’ if i ∈ X , and ‘0’ otherwise, and the sets are ordered according
to lexicographic order of their characteristic vectors. For example, here is the
ordering for the case N = 3: ∅, {1} , {2} , {1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3}.

Proof. We now show how to build the grammar GY . The grammar has N sym-

bols for the strings 0, 02, 04, . . . , 02
N−1

, i.e., all strings consisting solely of the
character ‘0’, of lengths which are all powers of 2 up to 2N−1. Then, the gram-
mar has N + 1 additional symbols g0, g1, . . . , gN . The terminal g0 is equal to the
character 1. For any 1 ≤ i ≤ N , we set gi to be equal to gi−1gi−1 if i /∈ Y , and

to be equal to gi−102
i−1

if i ∈ Y . The start symbol of the grammar is gN .
We claim that the string derived by this grammar has the property that

sY [X ] = 1 iff X ∩ Y = ∅. This is easy to prove by induction on i, where the
induction claim is that for any i, gi is the string that corresponds to the set
Y ∩ {1, . . . , i} over the universe {1, . . . , i}. 
�

Example 1. Consider the universe N = 4. Let Y = {1, 3}. The string sY is
1010000010100000. The locations of the 1‘s correspond exactly to the sets that
don’t intersect Y , namely to the sets ∅, {2}, {4} and {2, 4}, respectively.

We now show the reduction from blocked LSD. It follows along the same general
idea, but the grammar is slightly more complicated.

Lemma 2 (Reduction from BLSDB,N). For any set Y ⊆ [BN ], there is a
grammar GY of size n = 2BN + 1 deriving a binary string sY of length L = BN

such that for any blocked set X ⊆ [BN ] of cardinality N , it holds that sY [X ] = 1
iff X ∩ Y = ∅.

Recall that by “a blocked set X ⊆ [BN ] of cardinality N” we mean a set such
that the universe [BN ] is divided into N equal-sized blocks, and X contains
exactly one element from each of these blocks.

Note that in this lemma we have again indexed the string s by sets: there
are BN possible sets X and the length of the string is BN . The indexing is
done in lexicographic order, this time identifying a set X with a length-N vec-
tor whose i-th coordinate is chosen according to which element it contains in
block i, and the sets are ordered according to lexicographic order of their char-
acteristic vectors. For example, here is the ordering for the case N = 2, B = 3:
{1, 4} , {2, 4} , {3, 4} , {1, 5} , {2, 5} , {3, 5} , {1, 6} , {2, 6} , {3, 6}.
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The construction in this reduction is similar to that in the case of SD, but
instead of working element by element, we work block by block.

Proof. We now show how to build the grammar GY . The grammar has N sym-

bols for the strings 0, 0B, 0B
2

, 0B
3

, . . . , 0B
N−1

, i.e., all strings consisting solely of
the character ‘0’, of lengths which are all powers of B up to BN−1. We cannot
simply obtain the symbols directly from each other: e.g., to obtain 0B

2

from
0B, we need to concatenate 0B with itself B times. Thus we use BN rules to
derive all of these symbols. (In fact, O(N logB) rules can suffice but this does
not matter).

Then, beyond these, the grammar has N+1 additional symbols g0, g1, . . . , gN ,
one for each block. The terminal g0 is equal to the character 1. For any 1 ≤ 1 ≤
N , gi is constructed from gi−1 according to which elements of the i-th block are
in Y : we set gi to be a concatenation of B symbols, each of which is either gi−1

or 0B
i−1

. In particular, gi is the concatenation of g
(1)
i , . . . , g

(B)
i , where gji is equal

to gi−1 if the j-th element of the i-th block is not in Y , and it is equal to 0Bi−1

if the j-th element of the i-th block is in Y . To construct these symbols we need
at most BN rules, because we need B− 1 concatenation operations to derive gi
from gi−1. (Note that here we cannot get down to O(N logB) rules – Θ(BN)
seem to be necessary.) The start symbol of the grammar is gN .

We claim that the string produced by this grammar has the property that
sY [X ] = 1 iff X ∩ Y = ∅. This is easy to prove by induction on i, where the
induction claim is that for any i, gi is the string that corresponds to the set
X ∩ {1 . . . , iB} over the universe {1, . . . , iB}. 
�

Example 2. Consider the values B = 3 and N = 3. Let Y = {1, 3, 5, 9}. The
string sY is “010000010 010000010 000000000”2. The locations of the 1’s cor-
respond exactly to the blocked sets that don’t intersect Y , namely to the sets
{2, 4, 7}, {2, 6, 7}, {2, 4, 8} and {2, 6, 8}, respectively. A brief illustration for this
example is in Figure 1.

g2 = 010000010

g3 = 010000010 010000010 000000000

{7} ∩ Y = ∅ {8} ∩ Y = ∅ {9} ∩ Y = {9}

Fig. 1. An illustration of Example 2

3.2 Lower Bounds for SD and BLSD

In this subsection we show lower bounds for SD and BLSD that are implicit
in the work of Pǎtraşcu [8]. Recall the notations from Section 2: in particular,
in all of the bounds, w, S, and t denote the word size (measured in bits), the

2 The spaces are just for easier presentation.
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size of the data structure (measured in words) and the query time (measured in
number of accesses to words), respectively.

Theorem 1. For any 2-sided-error data structure for SDN , t ≥ Ω(N/(w +
logS)).

Note that this theorem does not give strong bounds when w = O(logL), but it
is meaningful for bit-probe (w = 1) bound and a warm-up for the reader.

Theorem 2. Let ε > 0 be any small constant. For any 2-sided-error data struc-
ture for BLSDB,N ,

t ≥ Ω

(
min

(
N logB

logS ,
B1−εN

w

))
. (1)

The proofs follow by standard reductions from data structure to communication
complexity, using known lower bounds for SD and BLSD (the latter is one of
the main results in [8]).

We now cite the corresponding communication complexity lower bounds:

Lemma 3 (See [2,9,1]). Consider the communication problem where Alice and
Bob each receive a subset of [N ], and they want to decide whether the sets are
disjoint. Any randomized 2-sided-error protocol for this problem uses communi-
cation Ω(N).

Lemma 4 (See [8], Lemma 3.1). Let ε > 0 be any small constant. Consider
the communication problem where Bob gets a subset of [BN ] and Alice gets a
blocked subset of [BN ] of cardinality N , and they want to decide whether the sets
are disjoint. In any randomized 2-sided-error protocol for this problem, either
Alice sends Ω(N logB) bits or Bob sends B1−εN bits. (The Ω-notation hides a
multiplicative constant that depends on ε.)

The way to prove the data structure lower bounds from the communication lower
bounds is by reductions to communication complexity: Alice and Bob execute
a data structure query; Alice simulates the querier, and Bob simulates the data
structure. Alice notifies Bob which cell she would like to access; Bob returns that
cell, and they continue for t rounds, which correspond to the t probes. At the
end of this process, Alice knows the answer to the query. Overall, Alice sends
t logS bits and Bob sends tw bits. The rest is calculations, which we include
here for completeness:

Proof (Lemma 3 ⇒ Theorem 1). We know that the players must send a total of
Ω(N) bits, but the data structure implies a protocol where t logS + tw bits are
communicated. Therefore t logS + tw ≥ Ω(N) so t ≥ Ω(N/(logS + w)). 
�

Proof (Lemma 4 ⇒ Theorem 2). We know that either Alice sends Ω(N logB)
bits or Bob sends B1−εN bits. Therefore, either t logS ≥ Ω(N logB) or tw ≥
B1−εN . The conclusion follows easily. 
�
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3.3 Putting It Together

We now put the results of Section 3.1 and 3.2 together to get our lower bounds.
Note that in all lower bounds below we freely set the relation of n and L in
any way that gives the best lower bounds. Therefore, if one is interested in only
a specific relation of n and L (say L = n10) the lower bounds below are not
guaranteed to hold. The typical “worst” dependence in our lower bounds (at
least for the case where w = logL and S = poly(n)) is roughly L = 2

√
n.

Theorem 1 together with Lemma 1 immediately give:

Theorem 3. For any 2-sided-error data structure for the grammar random ac-
cess problem, t ≥ Ω(n/(w+log S)). And in terms of L, t ≥ Ω(logL/(w+logS)).

When setting w = 1 and S = poly(n) (polynomial space in the bit-probe
model), we get that t ≥ Ω(n/ logn). And in terms of L, t ≥ Ω(logL/ log logL).

Proof. Trivial, since n = Θ(N) and L = 2Θ(N). 
�

Theorem 2 together with Lemma 2 give:

Theorem 4. Assume w = ω(logS). Let ε > 0 be any arbitrarily small constant.
For any 2-sided-error data structure for the grammar random access problem,

t ≥ n/w
1+ε
1−ε . And in terms of L, t ≥ logL

log S·w
ε

1−ε
.

When setting w = logL and S = poly(n) (polynomial space in the cell-probe
model with cells of size logL), there is another constant δ such that t ≥ n1/2−δ.
And in terms of L, t ≥ (logL)1−δ.

The condition w = ω(logS) is a technical condition, which ensures that the
value of B we choose in the proof is at least ω(1). For w ≤ log S one gets the
best results just by reducing from SD, as in Theorem 3.

Proof. For the first part of the theorem, substituteB = (w/ logS)1/(1−ε) log(w/S),
N = n/B, L = BN into (1). For the second part of the theorem, substitute

N = B1−ε logn
log2 B

, n = BN and L = BN . And for the result, set δ = 2ε
1−ε . 
�

4 Lower Bound for Less-Compressible Strings

In the above reduction, the worst case came from strings that can be compressed
superpolynomially. However, for many strings we expect to encounter in practice,
superpolynomial compression is unrealistic. A more realistic range is polynomial
compression or less. In this section we discuss the special case of strings of length
O(n1+ε). We show that for this class of strings, the Bille et al. [3] result is also
(almost) tight by proving an Ω(log n/ log logn) lower bound on the query time,
when the space used is O(n ·polylog n). This is done by reduction from the range
counting problem on a 2D grid. We have the following lower bound for the range
counting problem (see Definition 4 for details). Due to lack of space, we omit
the proof. A similar proof for a problem with slightly different parameters could
be found in [8, Section 2.1+Appendix A].
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Lemma 5. Any data structure for the 2D range counting problem for n points
on a grid of size [n]× [nε] using O(n polylogn) space requires Ω(logn/ log logn)
query time in the cell probe model with cell size logn.

Recall that the version of range counting we consider is actually dominance
counting modulo 2 on the n × nε grid. The main idea behind our reduction is
to consider the length-n1+ε binary string consisting of the answers to all n1+ε

possible dominance range queries (in the natural order, i.e. row-by-row, and in
each row from left to right); call this the answer string of the corresponding
range counting instance. We prove that the answer string can be derived using a
grammar of size O(n log n). The reduction follows obviously, since a dominance
prange query can be answered by querying one bit of the answer string.

Lemma 6. For any range counting problem in 2D, the answer string can be
derived by a grammar of size O(n logn).

The idea behind the proof of is to simulate a sweep of the point set from top to
bottom by a dynamic one-dimensional range tree. The symbols of the grammar
will correspond to the nodes of the tree. With each new point encountered, only
2 logn new symbols will be introduced. Since there are n points, the grammar
is of size O(n log n).

Proof. Assume w.l.o.g.p that n is a power of 2. It is easy to see that the answer
string could be built by concatenating the answers in a row-wise order, just as
illustrated in Figure 2.

0 0

1

0

0

(1, 1) 2 3 4

0 0

1 10

0

0

0 1

1 0

3

2

4

x

y

Fig. 2. The answer string for this instance is 0000 0111 0001 0010. The value in the
grids are the query results for queries falling in the corresponding cell, including the
bottom and left boundaries, excluding the right and top boundaries.

We are going to build the string row by row. Think of a binary tree represent-
ing the grammar built for the first row of the input. The root of the tree derives
the first row of the answer string, whose two children respectively represent the
answer string for the left and the right half of the row. In this way the tree is
built recursively. The leaves of the tree are terminal symbols from {0, 1}. Thus
there are 2n− 1 symbols in total for the whole tree. At the same time we also
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maintain the negations of the symbols in the tree, i.e., making a new symbol g′i
for each symbol gi in the tree, where g′i = 1 − gi if gi is a terminal symbol; or
g′i = g′jg

′
k if gi = gjgk.

The next row in the answer string will be derived by changing at most 2p logn
symbols in the grammar of the previous row, where p is the number of new
points in the row. We process the new points one by one. For each point, the
new symbols needed all lie in a path from a leaf to the root of the tree. Assuming
the update introduced by the point is the path h1, h2, . . . , hlogn, the new tree
will contain an update of h1, h2, . . . , hlogn. Also, all the right children of these
nodes will be switched to their negations (this switching step does not actually
require introducing any new symbols). An intuitive picture of the process is given
in Figure 3. The first row has a grammar g7 = g5g6, g5 = g1g2, g6 = g3g4 and
g1 = g2 = g3 = g4 = 0, as well as rules for g′i when 1 ≤ i ≤ 7. The second row
has a grammar with new rules h3 = h2g

′
6, h2 = g1h1, g′3 = g′4 = h1 = 1.

g1 = 0

g5 = 00 g6 = 00

g7 = 0000

g2 = 0 g3 = 0 g4 = 0 g1 = 0

h2 = 01 g′6 = 11

h3 = 0111

h1 = 1 g′3 = 1 g′4 = 1

(a) The trees built for the first and second
rows for the example in Figure 2.

(b) The general process illustrated
by picture. The black parts stands
for the negations of corresponding
symbols.

Fig. 3. Examples for building answer strings

It is easy to see for each new point, 2 logn additional rules are created. logn
of them are the new symbols (h1, . . . , hlogn), and another logn of them are their
negations (h′

1, . . . , h
′
logn). After all, we use 2(2n − 1) + n · 2 logn = O(n log n)

symbols to derive the whole answer string. 
�
By using the above lemma, we have the lower bound of the grammar random
access problem when L = n1+ε.

Theorem 5. Fix ε > 0, any data structure using space O(n polylogn) for the
grammar random access problem with n rules on strings of length Ω(n1+ε) re-
quires Ω(logn/ log logn) query time.

Proof. For inputs of the range counting problem, we compress the answer string
to a grammar of size O(n logn) according to Lemma 6. After that we build a
data structure for the random access problem on this grammar using Lemma 8.
For any query (x, y) of the range counting problem, we simply pass the query
result on the index (y − 1)n + x − 1 on the answer string as an answer. As-
suming there is a data structure using O(n log n) space and query time t, then
it will also solve the range counting problem. According to Lemma 5 the lower
bound for range counting is Ω(log n/ log logn) for O(n polylog n) space, thus
t = Ω(logn/ log log n). 
�
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Note that natural attempt is to replace the 1D range tree that we used above by
a 2D range tree and perform a similar sweep procedure, but this does not work
for building higher dimensional answer strings.

5 LZ-Based Compression

In this section we discuss about what the lower bound means for LZ-based
compression, which is a typical case for grammar-based compression by Lempel-
Ziv [11,6]. First we look at LZ77. For LZ77 we have the following lemma.

Lemma 7 (Lemma 9 of [4]). The length of the LZ77 sequence for a string is
a lower bound on the size of the smallest grammar for that string.

The basic idea of this lemma is to show that each rule in the grammar only
contribute one entry for LZ77. Since LZ77 could compress any string with small
grammar size into a smaller size, it can also compress the string sY in Lemma 1
and the answer string in Theorem 5 into a smaller size. Thus the both lower
bounds for grammar random access problem also holds for LZ77.

The reader might also be curious about what will happen for the LZ78 [12]
case. Unfortunately the lower bound does not hold for LZ78. This is because
LZ78 is a “bad” compression scheme that even the input is 0n of all 0’s, LZ78
can only compress the string to length of

√
n. But a random access on an all 0

string is trivially constant with constant space. So we are not able to have any
lower bounds for this case.

6 Optimality

In this section, we show that the upper bound in Bille et al. [3] is nearly optimal,
for two reasons. First, it is clear that by Theorem 5, the upper bound in Lemma 8
is (almost) optimal, when the space used is O(n polylog n).

Lemma 8. There is a data structure for the grammar random access problem
with O(n) space and O(logL) time. This data structure works in the word RAM
with words of size logL.

Second, in the cell-probe model with words of size logL we also have the following
lemma by Bille et al. [3].

Lemma 9. There is a data structure for the grammar random access problem
with O(n) space and O(n logn/ logL) time.

Proof. This is a trivial bound. The number of bits to encode the grammar isO(n log n)
since each rule needs O(log n) bits. The cell size is O(logL), so in O(n log n/ logL)
time the querier can just read all of the grammar. Since computation is free in the
cell-probe model, the querier can get the answer immediately. 
�
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Thus, by using Lemma 8 when n = Ω(log2 L/ log logL) and Lemma 9 in the case
n = O(log2 L/ log logL), we have the following corollary. This corollary implies
that our lower bound of Ω(n1/2−ε) is nearly the best one can hope for in the
cell-probe model.

Corollary 1. Assuming w = logL, there is a data structure in the cell-probe
model with space O(n) and time O(

√
n logn).
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