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Abstract. In the current study we show how texture mapping to the
surface of the heart’s left ventricle(LV) can be used to demonstrate
the ventricle’s complex kinematics and highlight impaired regions. The
method uses isometric spherical embedding to map a uniform and ori-
ented texture into a reference phase of the LV’s mesh. The texture, at-
tached to the deformed mesh, deforms with it and allows the visualization
of rotation, strain and torsion in the circumferential and longitudinal co-
ordinates. Such visualization demonstrates the absolute and relative val-
ues of these kinematic parameters and aids in the assessment of regional
myocardial function.

1 Introduction

Cardiac pathologies such as myocardial ischemia are generally associated with
regional ventricular dysfunction. The contraction of the heart’s left ventricle (LV)
is strongly related to its unique structure of fibers, allowing it to deform simul-
taneously in the longitudinal, radial, and circumferential directions. Noninvasive
assessment of global and regional myocardial function provides valuable infor-
mation for detecting and staging cardiac pathologies. Major effort is currently
invested in developing methods for accurate 3D tracking of the left ventricle
from images acquired by various imaging modalities (Echo, MR, CT). The re-
sults of these methods require 4D visualization techniques that can demonstrate
the complex kinematics of the myocardium. In current usage, the resulting kine-
matic parameters (e.g. displacement, velocity and strain) are demonstrated sep-
arately by color maps or graphs. Each parameter is scaled according to absolute
standard values or as a relative distribution. Thus, the relative part of each pa-
rameter is not always clear. Different parameters are sometimes contradictory,
making it hard to determine the true regional function. In the current study we
propose a texture mapping method for demonstrating the complex kinematics
of the left ventricle at once, in a single view.

Texture mapping, in which an image is mapped onto a surface and deforms
with it, is a fundamental technique in computer graphics and animation. The
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problem of texture mapping is closely related to the embedding of high dimen-
sional data in a low dimensional space, such that a certain distortion measure is
minimized. Uniform textures such as checkerboards are generally used for visual-
izing embedding errors (distortions). However, when the embedding error is very
small compared to the object’s deformation, such a texture can be utilized to
reliably demonstrate the deformation. Since the heart’s LV is close in shape to a
sphere, spherical embedding may be advantageous since it can be obtained with-
out partitioning the surface and with less distortion. Several main approaches
[11] have been introduced for the problem of isometric spherical embedding. One
approach aims at finding a bijective map while minimizing length distortions.
Several methods of this approach split the mesh into two, map the cut onto a
great circle and embed each half-mesh onto a hemisphere. Each half-mesh can
be embedded using a planar embedding [6,10] followed by a stereographic pro-
jection. The disadvantage of these methods is the introduction of discontinuities
near the partition cuts, which in the current context can be falsely interpreted as
deformations. Another approach for isometric spherical embedding uses multi-
resolution techniques. These methods [9] start by simplifying the model until
it becomes a tetrahedron, trivially embed it on the sphere, and then progres-
sively add back the vertices with local vertex relaxation aimed at minimizing the
stretch metric. However, this approach is limited to genus-0 surfaces. Constrain-
ing genus-zero topology to the left ventricle may result in larger distortions. In
another approach [5,2], geodesic distances between pairs of points on the surface
are first computed. Then, Multi-Dimensional Scaling (MDS) is applied to mini-
mize the distortion of geodesic distances in the embedding spherical space. The
presented method belongs to this approach.

Several optimization methods were used for solving the spherical MDS prob-
lem. Elad et al., [5] used gradient descent with line search in a multi-resolution
framework. Bronstein et al., [2] used the BFGS quasi-Newton optimization for
embedding of facial surfaces into S3. These optimizations generally require large
computation time. Another approach for solving MDS with less computation
time is by SMACOF (Scaling by Minimization of Convex Function) [4]. SMA-
COF is a widely used gradient-descent algorithm for solving the MDS into Eu-
clidean space that guarantees a monotonic decreasing convergence to the local
minimum. Since some distances are monotonic with Euclidean distance, an effort
was made to generalize SMACOF to solving non-Euclidian MDS problems. One
such approach is to add various constraints to the MDS functional. For spherical
MDS, a constraint that all the points be equi-distant from a central point was
suggested by [1].

The current study proposes a texture mapping technique for demonstrating
the complex kinematics of the LV in a single view. The method performs isomet-
ric spherical embedding of the endocardial LV surface using a constrained MDS
approach. A fast approximation to the embedding radius is suggested and sev-
eral optional textures are investigated. The current article is organized as follows:
Section 2 describes the formulation of spherical embedding using MDS, includ-
ing SMACOF algorithm and its expansion to spherical embedding. Section 3
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demonstrates the results of the algorithm on disk and genus-zero topologies.
The deforming texture on the LV endocardial surface of different heart phases
is also demonstrated.

2 Method

The subendocardium is vulnerable to change early in the course of disease for
a number of reasons. It is the layer furthest from the coronary blood supply.
Moreover, it undergoes extreme transitions in pressure and compression in both
the contraction (systole) and relaxation (diastole) phases, and it also appears
prone to early structural microvascular architectural change such as fibrosis.
Thus, the subendocardium is often the earliest myocardial layer affected in many
disease processes [12]. This observation suggests that the regional measurement
of contraction in the endocardial surface can serve as an indication for early
diagnosis of cardiac diseases. Therefore, the following analysis refers to the LV’s
endocardial surface.

2.1 Isometric Spherical Embedding of LV’s Subendocardial Surface

We begin the analysis with a 4D point cloud or mesh of the LV’s endocardial
surface. The points or vertices represent physical locations on the LV and may be
obtained by various tracking techniques applied to any Echo MR and CT image
data. The data is initially transformed into the heart axis system in order for
the texture to be appropriately mapped. The second-order geometric moments
[3] can be used to find the principal directions. In case of a point cloud, a surface
mesh is reconstructed to the 3D points of reference phase. A relaxed phase
should be selected rather than a contracted phase, since the shape is closer to
a sphere and the points are more equidistant, a feature that is useful both for
better embedding and for better triangulation. The mesh can have either disk or
zero-genus topology, with preference to geodesic-convex disk topology since this
may yield less embedding error. In the next stage, spherical embedding of the
reference mesh is performed. Isometric embedding is used to preserve distances,
so that the relative deformation will be consistent with the regional true strain.
A texture with a uniform oriented pattern is then mapped onto the reference
mesh. We assume that the embedding error is very small compared to the LV
deformation. This allows the attached texture to deform with the mesh and
demonstrates the regional rotation, strain and torsion. The next section describes
the process of isometric spherical embedding using MDS which requires the
computation of geodesic distances between the vertices. An efficient algorithm
for computing geodesic distances on triangulated manifolds is the Fast Marching
Method [7].

2.2 Isometric Spherical Embedding Using MDS

We start this section by describing the mathematical formalism of MDS.
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Given a shape X and a metric dX with the shortest distances between the
surface points, find a map f : (X, dX) → (Sm, ds) such that dX(x, x′) =
dS(f(x), f(x

′)) for all x, x′ ∈ X .
It can be shown [8] that even a very simple discrete metric space consisting of

only four points cannot be isometrically embedded into a space of constant Gaus-
sian curvature of any finite dimension. However, by allowing small distortions
we can still obtain a representation of the surface in an embedded space.

The MDS L2 norm minimization can be expressed as:

σ2(Z) = argmin
f :X→S2

∑

i>j

|dS(zi, zj)− dX(xi, xj)|2 (1)

A two-dimensional sphere can be parameterized by a pair of coordinates (u1, u2)
∈ [0, 2π)× [−π

2 ,
π
2 ].

The corresponding vector in R3 is given by:

z1(u1, u2) = r cos(u1) cos(u2)

z2(u1, u2) = r sin(u1) cos(u2)

z3(u1, u2) = r sin(u2)

(2)

The shortest path between two points on the sphere’s surface is a segment of a
planar section of the sphere, called the great circle. The geodesics on the sphere
are therefore arcs centered at the origin. The geodesic distance between any two
points u and u on the sphere is given by the length of the arc connecting them,

dS(u, u
′) = r · arccos(z(u)

T z(u′)
r2

) (3)

2.3 SMACOF Algorithm

The current section describes the SMACOF algorithm for solving the MDS
problem.

The MDS L2 stress expression can be written in a more convenient matrix
form,

σ2(Z) = trace(ZTV Z)− 2trace(ZB(Z;Dx)Z) +
∑

i>j

d2X(xi, xj) (4)

where, V is a constant N ×N matrix with elements

vij =

{−1 if i �= j;
N − 1 if i = j.

and B(Z;Dx) is an N ×N matrix depending on Z and Dx with elements,

bij(Z;Dx) =

⎧
⎨

⎩

−dX(xi, xj)d
−1
ij (Z) if i �= j and d−1

ij (Z) �= 0;

0 if i �= j and d−1
ij (Z) �= 0;∑

k �=i bik if i = j.
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The gradient of f with respect to Z is,

∇Zσ2 = 2V Z − 2B(Z;Dx)Z (5)

Jan De Leeuw [4] noticed that trace(ZB(Z;Dx)Z) is bounded below by
trace(ZB(Q;Dx)Q) for all Q ∈ Rm×n. This observation leads to the inequality:

h(Z,Q) = trace(ZTV Z)− 2trace(ZB(Q);Dx)Q +
∑

i>j

d2X(xi, xj)

≥ trace(ZTV Z)− 2trace(ZB(Z(k);Dx)Z
(k)) +

∑

i>j

d2X(xi, xj)
(6)

The function h(Z,Q) is convex and quadratic with respect to Z, that touches
σ2(Z) at the point Q = Z. Therefore,h(Z,Q) serves as a majorizing function for
σ2(Z).

By using the iterative majorization algorithm for minimizing the stress, at the
(k + 1)st iteration, the solution Z(k+1) is found as the minimizer of h(Z,Z(k)).
Since the majorizing function is quadratic the minimizer can be obtained ana-
lytically by imposing 2V Z − 2B(Z(k);Dx)Z

(k) = 0.
By rearranging the expression we obtain the update rule

Z(k+1) = V †B(Z(k);Dx)Z
(k) (7)

where, V † is the pseudo inverse of V .

2.4 Generalizing SMACOF to Spherical Embedding

In order to generalize SMACOF to spherical spaces [1], an extra point x0 is
introduced into the MDS problem requiring all points to be equi-distant from it.

σ(Z) = minσ2(X,Dx) + k ·minσC(X,Dx0) (8)

where, σC is the constraint on the distances from x0 and k is a non-negative
penalty parameter. The update formula becomes

Z(k+1) = (V + k · I)−1(V Z(k) − Ẑ(k)) (9)

where, ẑl
(k) = r ẑl

(k)

‖ẑl(k)‖ .

2.5 Selection of Embedding Radius

Bronstein et al. [3] showed a procedure for calculating the optimal embedding
in which the MDS was run over a grid of radiuses and then the radius with the
minimal stress was selected. While this process assures an optimal selection of
embedding radius, it might also take a long runtime. Since in our case the LV
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surface is not far from a spherical shape, a good approximation to the optimal
radius can be made.

Notice that arccos( z(u)
T z(u′)
r2 ) = arccos( z(u)

T z(u′)
‖ZT ‖‖Z‖ ), we can therefore switch

between the two expressions.
We assume that the vertices are close to their final position; thus, by freezing

them a quadratic expression for the stress with respect to r is obtained:

∑
(dS − dX)2 =

∑

i>j

(r · arccos(z(u)
T z(u′)

‖ZT‖‖Z‖ )− dX)2

=
∑

i>j

(arccos(
z(u)T z(u′)
‖ZT‖‖Z‖ ) · r2 − 2 arccos(

z(u)T z(u′)
‖ZT ‖‖Z‖ )dX · r + d2X)

= r2 ·
∑

i>j

(arccos(
z(u)T z(u′)
‖ZT‖‖Z‖ )− 2r ·

∑

i>j

arccos(
z(u)T z(u′)
‖ZT‖‖Z‖ )dX +

∑

i>j

d2X

(10)

A minimum is obtained at:

rmin =

∑
i>j arccos(

z(u)T z(u′)
‖ZT ‖‖Z‖ )dX

∑
i>j(arccos(

z(u)T z(u′)
‖ZT ‖‖Z‖ )

(11)

3 Experiments

We ran the algorithm on several surfaces of the LV reconstructed from computed
tomography (CT) image data. Figure 1 demonstrates the spherical embedding of
the genus-zero surface with color mapping of the rendered mean curvature of the
trabeculle and papillary muscles. Figure 2 show the mapping of the checkerboard
texture on the disk topology surface of the LV at phase 0% (left-most) and its
propagation to the rest of the cardiac phases. Figure 3 demonstrates color coding
of principal strains of the LV surface, with and without fusing it with a grid
texture.

4 Discussion and Conclusions

The current study proposes a texture mapping technique for demonstrating the
complex kinematics of the LV. The method performs isometric spherical em-
bedding of the endocardial LV surface using a constrained MDS approach. The
visualization of the complex kinematics, as seen in Figure 2 and Figure 3, be-
comes easier when running a movie of the deforming surface with checkerboard
texture. We also tested vertical lines texture and soccer ball texture, but the de-
formation was less apparent with them. Mapping of the 17-segments bull’s-eye
image on a patient’s LV surface as demonstrated in Figure 4, show how results
from different modalities can be fused and analyzed with a pixelwise correspon-
dence. We conclude that mapping a uniform texture into the reference phase of
a deformed object is an efficient way to demonstrate its deformation and thus
can aid in assessing regional myocardial function.
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Fig. 1. Left ventricle endocardial genus-0 surface mesh of 200 vertices before (left)
and after (right) spherical embedding. The colored texture is a projection of the mean
curvature of the trabeculle and papillary muscles on mesh faces. The green area is the
septum.

Fig. 2. Mapping of checkerboard texture on phase 0%. The texture deformation during
the contraction and back to relaxation (from left to right) demonstrates the LV strain
and torsion. The mid-apex part shows more circumferential strain compared to the
mid-base.

Fig. 3. Upper: principal strain in color (scale of blue to red strain values are [-0.5, 0.1]).
The principal strain was calculated from the mesh with respect to phase 0%. Lower:
fusion of grid texture (mapped on phase 0%) with principal strain. The grid texture
highlights the LV’s strain and torsion.
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Fig. 4. An image of the ’AHA17-segments’ was mapped into a patient’s LV surface
mesh

References

1. Borg, I., Lingoes, J.C.: A model and algorithm for multidimensional scaling with
external constraints on the distances. Psychometrika 45(1), 25–38 (1980)

2. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Isometric embedding of facial sur-
faces into formula image. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-
Space 2005. LNCS, vol. 3459, pp. 622–631. Springer, Heidelberg (2005)

3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid
shapes. Springer (2008)

4. De Leeuw, J.: Multidimensional scaling (2011)
5. Elad, A., Kimmel, R.: Spherical flattening of the cortex surface. In: Geometric

Methods in Bio-medical Image Processing, pp. 77–89 (2002)
6. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for

3d meshes. ACM Transactions on Graphics (TOG) 22, 358–363 (2003)
7. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proceedings

of the National Academy of Sciences 95(15), 8431–8435 (1998)
8. Morrison, A., Ross, G., Chalmers, M.: Fast multidimensional scaling through sam-

pling, springs and interpolation. Information Visualization 2(1), 68–77 (2003)
9. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Transac-

tions on Graphics (TOG) 22(3), 340–349 (2003)
10. Saba, S., Yavneh, I., Gotsman, C., Sheffer, A.: Practical spherical embedding of

manifold triangle meshes. In: 2005 International Conference on Shape Modeling
and Applications, pp. 256–265. IEEE (2005)

11. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applica-
tions. Foundations and Trends R© in Computer Graphics and Vision 2(2), 105–171
(2006)

12. Stanton, T., Marwick, T.H.: Assessment of subendocardial structure and function.
JACC: Cardiovascular Imaging 33(8), 867–875 (2010)


	Texture Mapping by Isometric Spherical Embedding for the Visualization and Assessment of Regional Myocardial Function
	1 Introduction
	2 Method
	2.1 Isometric Spherical Embedding of LV's Subendocardial Surface
	2.2 Isometric Spherical Embedding Using MDS
	2.3 SMACOF Algorithm
	2.4 Generalizing SMACOF to Spherical Embedding
	2.5 Selection of Embedding Radius

	3 Experiments
	4 Discussion and Conclusions
	References




