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Abstract. Cardiovascular magnetic resonance (CMR) perfusion data are suitable 
for quantitative measurement of myocardial blood flow. The goal of perfusion-
CMR post- processing is to recover tissue impulse-response from observed signal-
intensity curves. While several deconvolution techniques are available for this  
purpose, all of them use models with varying parameters for the representation of 
the impulse-response. However this variation influences the accuracy of the decon-
volution and introduces possible variations in the results. Using an appropriate or-
der for quantification is essential to allow CMR-perfusion-quantification to develop 
into a useful clinical tool. The aim of this study was to evaluate the effect of para-
meter variation in Fermi modelling, autoregressive moving-average model 
(ARMA), B-spline-basis and exponential-basis deconvolution. Whilst Fermi is the 
least dependent method on the modelling parameter determination, the B-spline 
and ARMA were the most sensitive models to this variation. ARMA upon a cor-
rect choice of order showed to be the superior to other methods. 
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1 Introduction 

First pass cardiac magnetic resonance (CMR) perfusion, is capable of providing a 
quantitative measurement of myocardial blood flow (MBF) that could yield functional 
information allowing for a more accurate diagnosis and for optimization of therapy. 

                                                           
* Corresponding author. 
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Perfusion CMR measures the level of signal intensity which is assumed to be linearly 
proportional to concentration of a contrast agent, , in a myocardial region of 
interest (ROI)[1, 2]. This concentration depends on perfusion rate and arterial concen-
tration of the agent, , which is also acquired in the form of signal intensity in 
the perfusion CMR process, through a convolution integral 

 

where  is the response function of the myocardial ROI and characterizes its per-
fusion properties(i.e. MBF)[3, 4]. The goal of perfusion MRI post processing is to 
recover  from observed , and . The most common technique is to 
find   through solving a least square minimization problem:        

This task is challenging because it amounts an ill-posed inverse problem [5-7] and there-
fore needs regularisation. Several techniques have been used in other studies to solve this 
ill posed problem and favourable results have been reported [4, 8-14]. These techniques 
use different strategies to represent tissue impulse response, but a common feature of each 
of these techniques is dependency of perfusion estimate accuracy on the mathematical 
model. The mathematical models, utilized for  approximation, use varying parame-
ters. Development of these models consists of several logical steps, one of which is the 
determination of parameters which are exerting the most influence on the model results. 

Although estimating MBF values from the available mathematical models have 
been reported in several studies, rarely they have investigated the influence of model 
parameter changes on the outcome of deconvolution.  

The purpose of this study was to systematically examine how changes in each 
model's varying parameter will influence the deconvolution outcome and affect its 
accuracy and precision. These results are important for the implementation and inter-
pretation of future studies aimed at modelling of the myocardial impulse response. 

2 Theory 

The mathematical models used here for representation of the  include series of 
B-spline functions[11], autoregressive moving average model (ARMA)[14], series of 
exponential functions[7] and Fermi function modelling[12].  

2.1 Series of B-spline Functions 

Jerosch-Herold et.al[11] developed a model of independent deconvolution approach 
to estimate myocardial perfusion from tissue impulse response, which parameterized 

 as a sum of weighted B-spline functions as [11, 15]. 

 

Here the degree of splines ( ), the number of splines ( ) and the positions of the 
break points (control points) ( ) are the varying parameters in the B-spline functions. 
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In order to keep the inverse problem linear, only the position of control points will be 
estimated by the least square minimization problem.  

2.2 ARMA 

The ARMA model assumes that the discrete time samples of measured C t , and  C t  are related together according to[10]: 
   
in ARMA modelling, the only factors which have influence on the model accuracy 
are the auto-regressive and moving average order ( and ). Estimation of the ARMA 
model order requires that the model to be fitted for many L and Q orders to find the 
smallest values of L and Q which provide an acceptable fit to the data. The value of Q 
and L should be chosen large enough, not to exclude the efficient model. 

2.3 Series of Exponential Basis   

Hautvast et.al [16] recently demonstrated that can be parameterized as sum of 
exponential decaying function and the regularization of the inverse problem can be  

 

The regularization of this inverse problem can be performed by constraining the esti-
mated kernel to be monotonic. To keep the minimization problem in linear range, the 
total number of exponential functions ( ) and the decay rates of the exponential func-
tions ( ) is prefixed and any perturbation will have an effect on the accuracy of the 
regularization outcome. 

2.4 Fermi 

Jerosch- Herold et al. [12] and Wilke et al. [17] fitted time curves for tissue impulse 
response function to the Fermi function with the following analytical expression:  . 1exp . 1   

using a Marquardt-Levenberg nonlinear least square algorithm by letting  kr and F 
vary and keeping other parameters fixed. In the above equation  is the unit 
step is function and  accounts for the delay between arrival of the contrast 
agent in LV and myocardium ROI. kr is the decay rate of due to contrast agent 
washout. As nonlinear least square method has been used for regularization when the 
Fermi function modelling is used, all of the varying parameters of Fermi function 
including , and  will be calculated from the least square minimization 
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problem[12]. The only user dependent parameter in Fermi modelling is , which 
can be calculated for each ROI using its corresponding SI curves[18]. 

3 Material and Method 

The four approaches - series of B-spline functions, ARMA, series of exponential 
function and Fermi function modelling were tested on two sets of data.  The first set 
of data was simulated so that there was a known reference to assess the sensitivity of 
the models to additive noise. The second test of data was acquired from an MR com-
patible blood perfused pig heart model. For each data set, we have changed the regu-
larization independent parameter of the models in order to find the best parameter 
which gives the most accurate results. 

3.1 Simulated Data 

Simulated data allows for the examination of the influence of variation in quantifica-
tion-method-orders on the perfusion estimates by calculating the absolute error of 
quantification. The unit step function has been chosen as a noiseless tissue impulse 
response, .  used in this experiment is a convolution of many exponen-
tials as suggested in [7] to model the propagation of an impulsive bolus injection 
through several compartments of the cardiovascular system.  

n
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Initial  was then obtained by convolving  with the simulated  
[7]. Finally the constructed and have been corrupted by additive 
white Gaussian noise with a selected standard deviation. 

3.2 Explanted Pig Heart 

Experiments were performed using the set up described by Shuster et.al [19]. Perfu-
sion‐CMR was performed at rest and during pharmacological vasodilation with adeno-
sine. During adenosine infusion the flow was altered to maintain the same coronary  
perfusion pressure as during the resting state. The scans (n=5) were performed on a 3 
Tesla (Achieva TX, Philips, Best, The Netherlands) clinical MR scanners. We used a 
saturation recovery gradient echo pulse sequence accelerated with k–t BLAST (k-t factor 
5 and 11 training profiles) with a repetition time of 2.7 ms, echo time of 0.9 ms, flip an-
gle 20°, spatial resolution at 1.3 x 1.3 x 8 mm. Perfusion CMR was performed using a 
dual-bolus scheme with 5 ml of neat (0.07 mmol/ml) and 5 ml of dilute (0.007 mmol/ml) 
gadobutrolum bolus injections (Gadovist, Bayer Healthcare, Leverkusen, Germany)[20]. 
Immediately after the gadolinium injection a total of approximately 100,000 micro-
spheres were injected into the circulation at the same site used for gadolinium injection. 
Up to 3 different colours of microspheres were used during the experiments. Quantitative  
analysis of the microtome images was performed in the same standard segments used for 
perfusion quantification according to previously described methods [21]. Flow was cal-
culated in ml/gr/min of tissue from the following equation: 
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average model (i.e 1: 4 where 0) provided accurate and reliable estimates. 
However when the moving average part (MA) is added to the model, ARMA with a 
higher AR order achieved a better accuracy (figure 2.b). Compared to all models, the 
Fermi function was most accurate with an absolute error equal to 0.0035 (figures 2.d).  

Table 2 represents the coefficient of variation (CV) for each deconvolution model 
varying parameters. For an AR model, CV of L increases proportionally to the order 
of MA part. The highest CV belongs to Q=3(CV=55%), and the lowest belongs to 
Q=0 (CV=4%).However for the MA part of ARMA (where AR order (L) is constant 
and MA order (Q) varies), L=1 has the highest CV (CV=23%). In the B-spline model, 
variation in order of the splines (k) had a CV of 5%, whereas the variation in number 
of nodes (P) had higher CV (58% for k=3 and 66% for k=4). For exponential model 
time scales (M) CV was equal to 40%.  

Table 2. Coefficient of variation (CV) of deconvolution models varying parameters for 
synthetic data 

      

To determine the number of spline nodes (control points) and exponential basis 
function time scales, the L-curve approach was adapted from the least square context. 
A plot of   versus  is shown in figure 3.a and 3.b for 
varying number of regularly spaced B-spline nodes and Exponential time scales, re-
spectively. 

Of note, it is important to appreciate that for the examples demonstrated in this 
work, the number of B-spline nodes which delivers the best match to the exact tissue 
curve is small. The latter is the same for exponential functions. The higher absolute 
error demonstrated in fig 2.b (due to overestimation of the initial value) is typical of 
results achieved with a large number of time scales. 

Sensitivity of the ARMA model to order of AR and MA parts has been tested by 
keeping the orders of one part (for instance AR part) fixed and varying the other part 
order. In each stage of the process, MBF has been estimated and absolute error has 
been calculated. Mean and standard deviation of absolute error is represented in  
figure 4.  
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ARMA model correlation with microspheres was stronger when the order of the AR 
part was stronger than the MA part ( 0.833 to 0.926). Fourthly, correlation was 
stronger for Fermi ( 0.911) and ARMA model compare to B-spline and expo-
nential basis model. 

The pig heart relative MBF error: 
 |CMR delivered perfusion values  microspheres||CMR delivered perfusion values| | | 
 
is represented in figure 5 as bar plots. Analysis show excellent result for Fermi de-
convolution with small error in estimation of perfusion ( 0.21  ).  AR model 
with (L = 2 ,  3 ) and ARMA with ( L = 2 ,  Q = 1 )  had almost similar level of accu-
racy as Fermi model. Exponential deconvolution showed excellent results at M=5 
( 0.21  ) and M=10 ( 0.19  ). B-spline deconvolution showed high accu-
racy in flow estimation for P=5 and 10 ( 0.21  ). 
Table 3. The table shows the correlation strength of the individual algorithms order with 
microspheres 

                                         

 

Algorithm  r2 

AR L=1 .740 

L=2 .897 

L=3 .926 

L=4 .872 

ARMA  Q=1 L=1  .85 

L=2  .920 

L=3 .890 

L=4  .890 

ARMA Q=2 L=1  .780 

L=2 .833 

L=3  .903 

L=4  .843 

FERMI .911 

EXP M=5 .860 

M=10 .885 

M=15 .539 

M=20 .657 

B-spline k=3 P=5 .836 
P=10 .731 

P=15 .764 

B-spline k=4 P=5 .877 

P=10 .793 

P=15 .748 
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Fig. 5. The bar plots represents relative MBF error for the explanted pig heart 

5 Discussion 

Modelling of systems typically proceeds by adopting a class of systems capable of 
producing the observed outputs and having a structure compatible with our prior 
knowledge of the nature of the system or source. The problem of model order estima-
tion is one of determining the number and value of the real parameters required to 
characterize a system. 

In this paper we have addressed the issue of the determination of the dimension of 
the parameters characterizing the myocardial tissue impulse response. 

This study has two points of strength. First of these is utilisation of simulated syn-
thetic data with known tissue impulse response, which has allowed us to examine the 
accuracy and precision of different model orders. The second is the existence of a 
very controlled animal environment where myocardial blood flow to the heart is 
known and its distribution over time within the myocardium is quantified with CMR 
and validated versus microspheres. In this study, the relationship between the esti-
mated perfusion values and the true perfusion values for all four fully quantitative 
methods with different orders are reported. In general , the low perfusion estimation 
absolute error in both synthetic simulated data and pig heart and the good correla-
tion between the CMR derived perfusion estimates assessed with either Fermi, 
ARMA, Exponential basis or B-spline basis deconvolution and the fluorescent-
labeled microspheres demonstrate the reliability of the quantification methods for 
MBF estimation.  

While, Fermi function modelling had the lowest average absolute error amongst all 
methods, B-spline model with 5 control points (P=5), second and third order AR, 
ARMA with (L=2,Q=1) and exponential basis with M=10 showed to have similar or 
better accuracy compare to Fermi function modelling. Amongst all four deconvolu-
tion algorithms, Fermi function modelling is favourable for its rigidity and indepen-
dency from modelling parameter determination, whereas all other methods accuracy 
and precision showed to be very dependent on the modelling parameter. The high 
value of coefficient of variation for B-spline total number of control points (P) in 
synthetic data shows its sensitivity to total number of break points. While the degree 
of piecewise linear spline functions seems not to be very important factor in accuracy 
of the deconvolution results. 
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L-curve approach, statistical analysis and the correlation results in both synthetic 
data and explanted pig heart recommend that the total numbers of nodes which deliver 
the best match to the exact kernel and give the most accurate results for B-spline basis 
deconvolution are rather small. The modelling parameter variation sensitivity for 
exponential basis deconvolution in synthetic data was an inverted bell shape with the 
local minimum at M=. Choosing a value large or smaller than this value will lead to 
over estimation or under estimation of the initial value of the tissue impulse response, 
respectively. Our investigation demonstrated that the accuracy of the ARMA models 
it highly depend on the order of MA part of the ARMA (i.e Q). For Q =0, all AR or-
ders (L) showed to have almost similar accuracy. When Q>0, the impact of the AR 
order on perfusion estimation accuracy increases. For noiseless clean data and when 
Q>0, higher AR orders archived better accuracy compare to low order AR models. 
Whereas for noisy data (which is the case for CMR perfusion assessment), the lower 
AR orders showed to be more accurate. An explanation, in the simplest sense, for this 
behavior of ARMA model would the number of poles used for the system transfer 
function characterization (AR order). In fact by using smaller AR orders, we are using 
less exponential function to model the tissue impulse response and thus we increase 
the system degree of the freedom and smoothness. As a result ARMA model will be 
able to model the system more accurately. Furthermore the values of the poles and the 
zeros of a system determine how well the system performs. Physically realisable 
proper systems must have a number of poles greater than or equal to the number of 
zeros (L Q). Any system with number of zeros greater than pole would deliver out-
put signals of arbitrary high amplitude for input signals of arbitrary high frequency, 
which are physically not realisable.  (i.e. ∞   ∞). A proper transfer 
function always follows    ∞ . Therefore for ARMA model to be 
realisable and accurate, the order of AR should be greater than the order of MA part.  
Our investigations demonstrated that for ARMA Model, a strictly proper transfer 
function (L>Q) will result in more accurate estimation of MBF. The best results have 
been achieved with second and third order autoregressive (L=2, 3) and with (L=2, 
Q=1). With reference to given evidences above, we believe that ARMA model with 
the correct choice of order is clearly superior to other methods with higher correlation 
coefficients, better accuracy and less computational burden. 

Limitations: The fact that the explanted heart is less physiological and free from 
external influences such as heart rate and cardiac output makes it an ideal validation 
platform for quantitative perfusion. However this model oversimplifies in vivo physi-
ological conditions with complex nervous cardiac regulation, breathing motion during 
stress and dilution of contrast in the LV and aorta. 

6 Conclusion 

Using an appropriate order for quantification algorithms is essential to allow CMR 
perfusion quantification to develop into a useful clinical tool.  

The choice model order depends on several factors including signal to noise ratio 
of the data, computational burden and desired accuracy of the results. Fermi function 
modelling was the least dependent method on modelling parameter determination. 
This characteristic makes Fermi model the most favorable method.  
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