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Abstract. We present a new motion estimation approach for cardiac
Magnetic Resonance Imaging (Cine-MRI) data from variational frame-
work. The improved performance of this variational approach has been
achieved by designing a new regularization term that properly handles
motion discontinuities. This approach was applied to both synthetic and
real data. The quantitative evaluation revealed that the results of pro-
posed method on cine-MRI correlates with the results given by inTag1,
reference approach on tagged-MRI.

1 Introduction

Non-invasive image-based analysis and quantification of cardiac motion provide
important information of how a pathology affects local and global deformation
of the myocardium and its responses to a given therapy. The estimation of my-
ocardium deformations helps to detect its regions with abnormal contraction in
order to provide curative measures for recovery.

The accurate evaluation of the myocardium displacement plays an impor-
tant role to assess the regional function of myocardium in measuring the re-
gional strain. Several approaches have been proposed [2, 5, 10, 13] and references
therein, to address the problem of velocity measurement of myocardium from
the available imaging modalities. However, there is still lack of methods that
determine reliably the variations of transmural movement of the heart.

We propose a dense velocity field estimation in a variational framework which
consists of data term and regularization term to address this problem. In this
regard, we adopted a data term that resides on standard principle of pixel inten-
sity conservation of a moving point and regularization term has been designed
to account for the motion discontinuities accurately.

2 Method

The problem of motion estimation dates for more than two decades. Since the
time, Horn and Schunck [8], Lukas Kanade (1981) up to now, many researchers

1 inTag is an open-source OsiriX plugin developed by the CREATIS laboratory
(http://www.creatis.insa-lyon.fr/inTag/).
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continued to address this problem in different ways as surveyed by Mitiche and
Bouthemy [11], Stiller and Kornad [14], Weickert et al. [18] among others. Many
experiments proved superior performance of the variational motion estimation
approaches [1, 3]. These approaches rely on standard principle of intensity con-
servation between consecutive frames separated by a short time intervals.

Let I(x(t), y(t), t) be the intensity of pixel (x(t), y(t)) at time t, the intensity

conservation principle can be formulated as follows: dI(x(t),y(t),t)
dt = 0. Applying

chain differentiation rule leads to the following common optical flow constrain
equation (OFCE): Ixu+ Iyv+ It = 0, where Ix and Iy denote spatial derivatives

in x and y directions, It temporal derivatives and (u = ∂x
∂t , v = ∂y

∂t ) velocity field
to compute.

However such a single equation is not sufficient to determine two unknowns
u and v uniquely for each pixel. If used alone, it only allows to compute the
flow component parallel to ∇I, known as normal flow. For this, an arbitrary
tangential components might be added to satisfy the optical flow constraint. This
ambiguity illustrates the ill-posedness of optical flow computation formulated in
terms of the OFCE commonly known as aperture problem. Thus, additional
regularization assumption is needed to recover a unique flow field.

Horn and Schunck [8] proposed the regularization that consists in assuming
that the flow field varies smoothly in space. They introduced quadratic smooth-
ing of flow field requiring the following integral

∫
Ω

(‖∇u‖2 + ‖∇v‖2) dΩ to be
close to 0, Ω stands for image domain. Considering w ≡ (u, v)T , the flow field
is computed as follows:

(u, v) = argmin(u,v)

∫

Ω

(
(∇I.w+ It)

2 + α‖∇w‖2
)
dΩ, (1)

where α is a weighting parameter between data term and smoothing term. Un-
fortunately, the introduction of a quadratic smoothing leads to a continuous and
a smoothed solution for the flow field i.e, a solution where discontinuities are
destroyed. This is not an accurate solution in case one wants to preserve the
flow discontinuities and recover the flow field as accurately as possible. Such
discontinuities are present in cardiac imaging and it is much important to find
the reliable variations of transmural movement of heart.

Several researchers addressed the flow discontinuity problem using non-quadric
smoothing terms, like Nagel [12], Cohen [6], Deriche et al. [7], Weickert [17]. We
have investigated the significance of these non-quadratic smoothing terms math-
ematically, releasing their pros and cons and came up with a new smoothing term
that solves encountered problems.

The method proposed by Nagel is related to an image driven smoothness,
whereby diffusion across image boundaries with large gradient is reduced. Nagel’s
approach may misestimate flow discontinuities since they do not always coincide
with image ones. Cohen’s approach uses L1 norm minimization related to total
variation as image restoration. This approach has been widely used in different
applications [4]. Although the approach preserves flow discontinuities, the math-
ematical analysis revealed that it performs flow field smoothing only in direction
parallel to isophotes, which is unsuitable in homogeneous regions.



336 V. Tuyisenge, A. Albouy-Kissi, and L. Sarry

The non-quadratic smoothing approaches of Deriche and Weickert are related
to non-linear diffusion filtering and handle flow discontinuities. However, the user
has to ensure that the diffusion effects along the flow gradient are much smaller
than those associated with the diffusion along the isophotes for an inhomoge-
neous regions. This seems difficult to manage during numerical implementation.

2.1 Proposed Approach

We propose a new approach that provides the flow field smoothing accurately.
This is achieved by designing a regularization term that will simultaneously act
as both quadratic and total variation smoothing; i.e, the area with homogeneous
fields will be smoothed isotropically, while the area with high flow gradient,
smoothing across boundary will be stopped, keeping the one along the isophote.
We derive our approach starting from the following general equation:

(u, v) = argmin

∫

Ω

(
(∇I.w+ It)

2
+ αΦ(‖ ∇w ‖)

)
dΩ, (2)

where Φ is a robust function that helps to preserve the flow discontinuities.
This minimization is performed by Euler-Lagrange formulation, leading to the
following equation:

⎧
⎨

⎩

div
(

Φ′(‖∇u‖)
‖∇u‖ ∇u

)
= 2α(Ixu+ Iyv + It)Ix,

div
(

Φ′(‖∇v‖)
‖∇v‖ ∇v

)
= 2α(Ixu+ Iyv + It)Iy .

(3)

Let Φ′(‖∇u‖)
‖∇u‖ = g(‖∇u‖), the divergence term can be expanded as follows:

div

(
Φ′(‖∇u‖)
‖∇u‖ ∇u

)

=
∂

∂x
(g(‖∇u‖)ux) +

∂

∂y
(g(‖∇u‖)uy)

=
g′(‖∇u‖)
‖∇u‖

(
u2
xuxx + uxuyuxy

)
+ uxx g(‖∇u‖)

+
g′(‖∇u‖)
‖∇u‖

(
u2
yuyy + uxuyuxy

)
+ uyy g(‖∇u‖)

= g′(‖∇u‖)u
2
xuxx + 2uxuyuxy + u2

yuyy

‖∇u‖ + g(‖∇u‖) (uxx + uyy) . (4)

In Gauge coordinate system η and ξ, with η = ∇u
‖∇u‖ , a unit vector normal to

the flow gradient and ξT . η = 0, we can compute uηη = ∂2u
∂η2 = ∇ (∇u.η) .η =

u2
xuxx+2uxuyuxy+u2

yuyy

u2
x+u2

y
and uξξ = ∂2u

∂ξ2 = ∇ (∇u.ξ) .ξ =
u2
yuxx−2uxuyuxy+u2

xuyy

u2
x+u2

y
.

Equation (4) can be written as follows:

div

(
Φ′(‖∇u‖)
‖∇u‖ ∇u

)

= g′(‖∇u‖) (‖∇u‖) uηη + g(‖∇u‖) (uηη + uξξ)

=
[‖∇u‖ g′(‖∇u‖) + g(‖∇u‖)]uηη + g(‖∇u‖)uξξ. (5)
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Since g(‖∇u‖) = Φ′(‖∇u‖)
‖∇u‖ , g′(‖∇u‖) = Φ′′(‖∇u‖)

‖∇u‖ − Φ′(‖∇u‖)
‖∇u‖2 . Replacing g and g′

with their proper values in (5), we have the following equation:

div
(

Φ′(‖∇u‖)
‖∇u‖ ∇u

)
=

[Φ′(‖∇u‖)
‖∇u‖ + ‖∇u‖

(
Φ′′(‖∇u‖)

‖∇u‖ − Φ′(‖∇u‖)
‖∇u‖2

) ]
uηη +

Φ′(‖∇u‖)
‖∇u‖ uξξ

div
(

Φ′(‖∇u‖)
‖∇u‖ ∇u

)
= Φ′′(‖∇u‖)uηη +

Φ′(‖∇u‖)
‖∇u‖ uξξ. (6)

Equation (6) states that flow field smoothing is done simultaneously in two
directions, one in direction η with weight Φ′′(‖∇u‖), and the other in direction

ξ with weight Φ′(‖∇u‖)
‖∇u‖ .

The key idea here is to fix the smoothing weight in direction η and ξ in such
way that flow fields are smoothed properly without destroying the discontinu-
ities. This can be solved iteratively using non-linear diffusion equation:

∂u

∂t
= h(‖∇u‖)uηη + uξξ, (7)

where h(s) is a decreasing function, for instance h(s) = exp−( s2

2k2 ). The parameter
k is the contrast factor that controls the level of smoothing and it can be either
fixed by hand or automatically by parameter optimization techniques; s denotes
the norm of gradient flow [15]. Due to the limited space, the interested reader
may refer to [7] and references therein, for more details about the diffusion
functions. The weighting function h(s) controls the smoothness of the flow field
as follows:

• In region where flow gradient is high, the smoothing effect along its normal
direction will be stopped, i.e. h(s) → 0 as s → ∞. This leads to the flow
discontinuity preservation: ut = wξξ.

• In homogeneous region, i.e. areas with small flow gradients, the smoothing
is done isotropically because h(s) → 1 as s → 0: ut = uηη+uξξ = �u, where

� = ∂2

∂η2 + ∂2

∂ξ2 is the Laplacian operator.

Finally, combining the optical flow constraint equation and the above smooth-
ing term, after Euler-Lagrange equation, the proposed approach leads to the
following equations:

{
h(‖∇u‖)uηη + uξξ = 2α(Ixu+ Iyv + It)Ix,

h(‖∇v‖)vηη + vξξ = 2α(Ixu+ Iyv + It)Iy.
(8)

This large system of equations has been implemented numerically by Gauss-
Seidel relaxation method to move iteratively towards the solution of this prob-
lem.

2.2 Parameters Optimization

The proposed approach shows also how to tune parameters α and k to get
accurate results. Those parameters have been optimized by minimizing the error
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Algorithm 1. Gradient descent algorithm to find optimum values for α and k

1. initialization:
α← α0;
k← k0;
2. Compute: (u, v) with equation (8);
3. Evaluate: εm(α, k) = ‖Ξ(u, v)− ΞGtr(u, v)‖2;
while εm > Error Tolerance do

4. Compute:
(
∂εm
∂α

, ∂εm
∂k

)
;

5. Update α← α−Δt× ∂εm
∂α

; (Δt is the step size of gradient descent)

6. Update k ← k −Δt× ∂εm
∂k

;
7. Repeat number 2;
8. Repeat number 3;

end while

cost function between the estimated flow field Ξ(u, v) and the ground-truth
ΞGtr(u, v) as explained in algorithm (1).

The implementation was performed by writing a function to estimate flow
field from equations (8) and the Matlab R© (MathWorks, Natick, Massachussets,
US) function fminunc, was used to compute the global minimum of the error
with respect to ground truth.

2.3 Validation Protocol of the Estimated Field

In our previous initial work [16], a comparative study against optical flow meth-
ods in literature proved the superior performance of our method. This time, the
proposed approach on cine-MRI is evaluated against the flow field computed
with inTag on tagged-MRI, considered as gold standard. Since acquisition sys-
tems of cine-MRI and tagged-MRI on a subject are not properly synchronised,
we opted to use the slices acquired at the same position, with trigger times as
close as possible. The evaluation was only performed for radial displacements as
our approach is for now not designed to recover properly circumferential field
component (no spatial gradients exist in that direction).

2.4 Experiments

The experimental evaluations were performed on synthetic and real datasets.
The proposed method in previous section has been compared with results given
by inTag.

Experiments with Synthetic Data: the first experimental evaluations were
performed on synthetic data. The simulated data were generated using the follow-
ing transport equation: ∂ϕ

∂t +w∇ϕ = 0. Using this equation, in which a reference
image and a known radial displacement field were given as inputs, we have got a
deformed image as output. Afterwards, the flow field was computed between the
reference image and the deformed image using the proposed method. Note that



Variational Myocardial Tracking from Cine-MRI 339

the transport equation was implemented numerically using a third order upwind
scheme for its stable and non-diffusing solution among others.

Experiments with Real Dataset: the proposed method has been also applied
to real cardiac MRI images from 5 subjects and the comparison has been made
with results of inTag on tagged-MRI from the same subjects. Figure (1 : b)
shows that results are visually satisfying since displacement fields are mainly
significant over myocardium and globally divergent.

Fig. 1. Experimental results on simulated data and real cardiac MRI images: (a) super-
position of the simulated flow field in blue with the estimated one in red (top left) and
the corresponding error in magnitude (bottom left) (optimum values α = 0.0021 and
k = 0.20); (b) flow field in red and amplitude estimated from two cine-MRI datasets
(middle and right) (optimal values α = 0.008 and k = 0.02).

2.5 Performance Evaluation

The performance of methods for flow field estimation is quantitatively evaluated
by a so-called angular error as proposed by Barron et al. [3]. This is the angle
between the true flow and flow estimated by method to quantify. The angular
error is computed as follows:

Errang =
1

n

n∑

i=1

arccos

(
we.wc

‖we‖‖wc‖
)

, (9)

where we is the estimated flow field, wc the ground-truth and n represents the
total number of pixels. The calculation of the relative magnitude error associated
with flow field estimation is an additional measure proposed by Yeon et al. in
[9]. Its calculation is done by the following equation:
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Errvel =
1

n

∑n
i=1 |‖we‖ − ‖wc‖|

‖wc‖ . (10)

In table (1), Errvel stands for the relative magnitude error computed on real esti-
mated fields and Errvel−rad, the relative magnitude error computed on projected
fields in radial reference frame.

Table 1. Quantitative evaluation of the proposed method vs. simulated flow and the
ground truth provided by the inTag software for tagged-MRI. Angular error Errang is
expressed in degrees.

Dataset Errang (
◦) stdang Errvel (%) stdvel Errrad (%) stdrad

Simulated data : 1.31 1.04 12.15 1.78 - -
cine−MRI data 1 : 20.21 18.13 38.02 45.08 9.25 7.34
cine−MRI data 2 : 15.31 4.99 28.37 22.38 6.87 5.12
cine−MRI data 3 : 22.79 10.67 32.15 14.01 10.01 2.91
cine−MRI data 4 : 24.08 15.12 27.35 13.49 10.23 8.29
cine−MRI data 5 : 13.24 12.11 30.59 20.07 8.98 4.04

3 Discussion and Conclusion

The quantitative evaluation on simulated and real datasets is summarized in
table (1). For validation, cine-MRI and tagging-MRI datasets are available for 5
patients. The assessment of the estimated field is performed against the motion
field computed with inTag software from tagging-MRI data as gold standard.
Note that except tedious post-processing techniques needed, tagging-MRI is not
yet validated for clinical use. Figure 1 shows two samples of computed flow field
with proposed method.

Errors computed vs. tag motion tracking (Tab. 1) are reasonable in amplitude
(31.30% on average) but quite important in orientation (19.13◦). This makes sense
since proper motion estimation in circumferential direction would require spatial
intensity gradient insidemyocardium,whichdoes not exist.This is a commonprob-
lem encountered in algorithms operating on cine-MRI images, where additional
constraints shouldbeadded to improve their performance, for instance incompress-
ibility and elasticity constraints have been used in [10] to address this problem.

However, the relative error in projection on a radial reference frame computed
from the middle of left ventricular cavity is much smaller (9.07% on average).
Further research will be focused on improving the proposed method by adding
myocardium fibre orientation constraint in data assimilation framework. This
will help to recover circumferential twisting motions during cardiac contraction
and the method will be extended further to 3D.
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