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Abstract. Spatially discordant T-wave alternans (TWA) has been
shown to be linked to the genesis of ventricular fibrillation. Identification
of discordant TWA through spatial characterization of TWA patterns in
the heart has the potential to improve sudden cardiac death risk strat-
ification. In this paper we present a method to solve a new variant of
the inverse problem in electrocardiography that is tailored to estimate
the TWA regions on the heart from non-invasive measurements on the
body surface. We evaluate our method using both body surface poten-
tials synthesized from heart surface potentials generated with ECGSIM
and from potentials measured on a canine heart, and we show that this
method detects the main regions in the heart undergoing TWA.

1 Introduction

Sudden cardiac death (SCD) is one of the leading causes of death in western
countries. T-wave alternans (TWA), which is defined as beat-to-beat alternation
in T-wave amplitude, has been linked to ventricular fibrillation (VF), one of the
known causes of SCD [1, 2]. Thus noninvasive TWA detection is of considerable
interest as a predictor of SCD risk, which currently have high sensitivity, but
their specificity is only approximately 50% [3]. An additional limitation of current
detectors is that they only report the presence or absence of TWA; they are
unable to identify whether the detected TWA is due to a spatially heterogeneous
(discordant) or homogeneous (concordant) distribution of alternations in the
heart [4]. Discordant alternans is thought to excite reentrant spiral circuits that
cause VF, which has been observed in computer simulations as well as in animal
experiments [5–7]. Most of the previous work in the detection of discordant
TWA has been focused on directly estimating TWA in heart potentials recorded
from animal experiments or on the detection of patterns on the body surface
that are characteristic of spatially discordant or concordant alternans [7–9]. In
an approach relating the body surface measurements to the heterogeneities on
the heart, Sassi et al. used a first order Taylor approximation of the T-wave to
extract an index of the action potential duration (APD) variability on the heart
[10,11]. Janusek et al. also published a study where they used the ECGSIMmodel
(www.ecgsim.org) to simulate APD alternation distributions that matched their
observations on the body [12, 13].
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In this paper, we propose a method of characterizing the spatial distribution
of TWA on the heart from body surface measurements and a model of the
heart-torso geometry by posing an inverse problem. We explicitly employ the
temporal characteristics of TWA as a regularization method. In particular, our
method differs from these previous approaches in that we estimate the spatial
distribution of the alternations on the heart without assuming any model for the
cellular basis of the TWA generation (e.g. APD alternation).

This paper first introduces some background theory in Sec. 2 on the standard
Spectral Method and forward and inverse methods. Using these as a base, we
explain our inverse spectral method for TWA detection in Sec. 3. Sec. 4 presents
experimental results, and a discussion on the algorithm and results is presented
in Sec. 5.

2 Background

In this section we will describe the standard spectral method to detect T-wave
alternans from body surface potential measurements, and in brief, the forward
and inverse problems of electrocardiography.

2.1 Spectral Method

The Spectral Method (SM) is the most widely used TWA detection method
[14, 15]. It assumes that time-aligned T-waves from a sequence of beats will
exhibit beat-to-beat alternations in potential amplitude at equivalent sample
times. Therefore the method computes a beat-to-beat Fourier transform at each
time sample during the T-wave and analyzes the beat-frequency spectrum at
each sample time for high amplitude oscillations with a period of 2 beats [16].
Mathematically, we can describe this method by first creating an order 3 tensor
Tl,t,b with the segmented T-waves such that each entry corresponds to the po-
tential at electrode l, sample time t and beat index b. On this structure, the SM
performs a Fourier transform in the beat index:

Fl,t,f =

B−1∑

b=0

Tl,t,bej2πfb/B. (1)

Since the method searches for period 2 oscillations, the Spectral Method con-
strains the previous transform to frequency f = 1

2 resulting in a matrix with
elements: Bl,t = Fl,t, 12

. A typical TWA detector computes a single score from
the matrix of Fourier transform coefficients and compares its value to a prede-
termined threshold [1, 17].

2.2 Forward and Inverse Problems

The relationship between potentials on the heart and the corresponding body
surface potentials can be calculated from geometrical and tissue conductivity
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modeling. Extracting this relationship solves the “forward problem” [18]. From
electromagnetic theory it can be shown that this relation between heart poten-
tials xt and body surface potentials yt is linear and static in time; thus the
forward solution determines the matrix A that defines the linear operator.

yt = Axt (2)

The problem of estimating the heart potentials from the body surface potentials
is called the inverse problem [19]. Because of the characteristics of the forward
propagation of potentials from heart to torso surface, the matrix A in (2) is ill-
conditioned, and thus the solutions to the inverse problem need regularization. A
classical method of regularizing this problem is Tikhonov regularization, which
consists of solving:

minxt‖yt −Axt‖22 + λt‖Rxt‖22 (3)

In Tikhonov regularization, the parameter λt > 0 determines the amount of
regularization imposed and the regularization matrix R determines the type of
regularization. Typical choices of R are the identity matrix, which tends to make
solutions small, and approximations to the Laplacian operator on the heart,
which tend to make solutions smooth [20].

3 Methods

This section explains our proposed method to estimate TWA epicardial distri-
butions. It is composed of two main blocks, the temporal regularization and the
inverse solution method. The temporal regularization is itself composed of two
parts, a spectral method calculation on the body surface data and a projection
to a low frequency Fourier basis. The input to the algorithm is a sequence of
B T-waves of length T sorted in a matrix Y , whose rows represent the elec-
trode index l and columns represent the sample time t. Then we can build a
sparse matrix SSM,f such that the multiplication B = Y SSM,f is equivalent to
applying the SM to the data, as in (1). The structure of this matrix is given by
SSM,f = I ⊗ Sf,B where I is the identity matrix of size T and Sf,B is:

Sf,B = [1, ej2πf
1
B , · · · , ej2πf

B−1
B ]T ∈ C

B. (4)

Then, the resulting matrix B are the same time varying Fourier coefficients as in
Sec. 2.1. To further regularize the problem, B is Fourier transformed over time
as well, and truncated to low frequencies in order to take advantage of the low
frequency nature of the T-wave signal. As in the previous step, this computa-
tion can be done with a right matrix multiplication, Ỹ = BSf,T , with Sf,T as
defined in (4). Thus, by the associative property, we can state the relationship
between the low-frequency Fourier coefficients of the SM applied to body surface
potentials, Ỹ , and heart surface potentials, X̃, as:

(Y SSM, 12
Sf,T ) =A(XSSM, 12

Sf,T )

Ỹ =AX̃.
(5)
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To solve for the low-frequency Fourier coefficients of the SM on the heart sur-
face potentials, we solve the inverse problem using Tikhonov regularization as
explained in Sec. 2.2, where the λ parameter is computed by choosing the value at
the corner of an L-curve [21] and the regularization matrix is chosen as either the
identity matrix or a 3D Laplacian operator on a combined epicardial/endocardial
heart surface [20]. Finally, we reconstruct the SM waveform on the heart sur-
face from its low-frequency Fourier coefficients, which can be compared to the
results of the SM directly applied to the heart surface signals, when such data
are available.

4 Experiments

In order to evaluate the capacity of our algorithm to characterize the spatial
distribution of TWA we have tested it on two different types of datasets. The
first type was composed of series of 128 heartbeats created with synthetic heart
potentials derived from the mathematical model in ECGSIM [12]. The exam-
ples were interactively generated in the simulation package SCIRUN [22,23] by
generating APD alternation (±20 ms) in chosen regions of the heart in both
endocardium and epicardium. This model allowed us to have complete control
over the amplitude and spatial distribution of the TWA, giving us a broad set
of cases to test and a well defined ground truth to compare to.

Fig. 1. Example of results for an ECGSIM case with TWA in the apex. a) and b) show
the anterior side of the heart three consecutive time instances for the SM reference
and the inverse solution respectively. The corresponding time instances are marked
with vertical lines in e) with the time waveforms of SM reference (green) and inverse
solution (red) corresponding to the node marked in pink on the heart images. Image
c) shows the solutions of the endocardium for a single time instance, here left is SM
and right is inverse SM. Finally, d) shows an example of two consecutive beats (blue
and cyan) and the iSM estimated TWA (green) on lead V2.
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The second dataset consisted of a single case of 84 heartbeats of measured
canine epicardial potentials recorded during an open chest experiment where
ischemia was induced by occluding the LAD artery. TWA was observed in this
dataset but we do not have a well defined ground truth region because our
assessment depends on the application of the SM to noisy measurements.

For all cases the procedure was the following: First we forward propagated
the heart potentials to the body surface using forward matrices obtained from
human torso and heart geometries. Then we added white Gaussian noise with a
power 15 dB below the rms of the simulated body surface signals during QRST
interval and we applied our method. A major difference between the ECGSIM
and the canine heart cases is that for the first we had endocardial surface data,
but not for the second. As a result, for the ECGSIM cases, we regularized with a
3D Laplacian matrix in order to detect epicardial and endocardial alternations,
for the canine case, we used an identity regularizer to detect epicardial TWA.
For comparisons, we also computed the Spectral Method on the heart potentials
as described in Sec. 2.1.

Figure 1 shows an example of results in an ECGSIM case with discordant
alternans regions on the epicardial and endocardial surfaces of the apex. Row a)
shows the isopotential maps from the SM applied directly to the heart data for
3 sample times during the T-wave. Row b) shows the corresponding results of
our method (iSM). For this same experiment, the endocardial results are shown
in (c) and the waveforms corresponding to a node on the epicardial surface of
the apex, marked with a pink dot, are in (e). In (d), we show an example of two
consecutive noisy T-waves in body surface lead V2, after time alignment, with
the corresponding TWA magnitude in green.

Fig. 2. Example of the anterior
view of the spatial distributions
of TWA for three different cases
(a,b,c) generated with ECGSIM
model. Top row shows SM refer-
ence (SM) and bottom row the
inverse solution (iSM).

Three more examples of different spatial distributions of TWA are shown in
Fig. 2, all taken at sample times at the peak of their respective TWA amplitudes.
The top row is the SM reference and the bottom row is the inverse estimate.

The results on the canine data are shown in Fig. 3. We show the spatial
distribution of TWA for a single time instance from both front and back views,
as well as the temporal waveforms for the nodes marked in pink, as before. The
rows are organized as in the previous figure.
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Fig. 3. Example of the spatial distributions of TWA for a single time instance in the
canine experiment. (a) shows SM reference (SM) and (b) the inverse solution (iSM).
In (c) are shown the amplitude of the TWA over time for the node marked in pink on
the heart. The green line is SM reference, the blue line is the inverse solution and the
black line indicates the sampling time of the images in (a) and (b).

5 Discussion

The results shown in Fig. 1 are representative of typical results obtained in our
experiments with ECGSIM cases. In this figure, we observe two well defined
discordant regions with both our method and the SM applied to heart data, and
the regions identified by both methods are largely congruent. The boundaries of
the regions are generally constant across time, although the edges of the regions
recovered by iSM are a blurred version of the results obtained by applying the
SM to heart potentials directly. The algorithm also detects the presence of TWA
in the endocardium, although with some loss of spatial accuracy compared to
the epicardium. An example waveform is shown in Fig. 1 c) and is similar to
the waveforms obtained for other nodes, with variations in amplitude, phase and
sign. Even though the low-frequency approximation captures the behavior of the
waveforms, the amplitudes at each time and location do not exactly match and
may need additional refinement.

For most cases, as shown in the examples in Fig. 2 a) and b), the detected
alternating regions generally matched those of the SM. However, the algorithm
has some limitations when trying to detect small discordant regions. An example
of this can be seen in Fig. 2 c), where the algorithm has failed to detect the
alternating region and instead finds TWA of opposite phase in a broader area
surrounding the affected region. We believe these errors have two main sources:
the first is the inverse method, which fails to detect small regions whose effect on
the body surface has small amplitudes and is thus concealed by noise. The second
is the spectral method itself, which also has troubles detecting this discordant
region when applied directly to the heart potentials. The second part of this can
be seen clearly in the top image in Fig. 2 c), where the true TWA region is in
light blue (labeled with a “-” symbol), but the SM detects a higher amplitude
alternations at the borders of the region than within it.
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For the canine experiment shown in Fig. 3, the detected regions in both the
inverse solution and the spectral method are broad and spatially smooth. As in
the ECGSIM cases, both methods agree on the main alternating areas while there
are differences on the exact region boundaries. The smoothness of the results in
both cases highlights a temporal resolution problem in the SM that is inherited
by the inverse SM. That is, to compute a reliable Fourier transform as part of
both methods, one needs enough beats to average out noise effects. However,
variations in the TWA distribution or timing during these beats may be causing
spatial smoothing of the alternating regions. This variations of timing can be
taken into account by instead averaging even and odd beats separately with the
technique in [24] and then taking their difference as the TWA measure. In terms
of temporal behavior, as shown in Fig. 3 c), the shapes of the waveforms are
quite similar in both methods, but their amplitudes differ. The main differences
between them occur at the peak of the waveform where our inverse solution, due
to regularization towards lower frequencies, fails to match the sharper shape of
the waveform obtained with the SM.

In conclusion, the inverse problem and solution method proposed here, in-
cluding the two types of temporal regularization, may help to localize the major
areas affected by TWA on the heart. In the future, we plan to further study this
method and its potential utility as a predictor of VF.
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