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Abstract. This manuscript presents a novel, data-driven approach to
reduce a detailed cellular model of cardiac myofilament (MF) for effi-
cient and accurate cellular simulations towards cell-to-organ computa-
tion. Based on 700 different sarcomere dynamics calculated using Rice
model, we show through manifold learning that sarcomere force (SF) dy-
namics lays surprisingly in a linear manifold despite the non-linear equa-
tions of the MF model. Then, we learn a multivariate adaptive regression
spline (MARS) model to predict SF from the Rice model parameters
and sarcomere length dynamics. Evaluation on 300 testing data showed
a prediction error of less than 0.4 nN/mm2 in terms of maximum force
amplitude and 0.87 ms in terms of time to force peak, which is com-
parable to the differences observed with experimental data. Moreover,
MARS provided insights on the driving parameters of the model, mainly
MF geometry and cell mechanical passive properties. Thus, our approach
may not only constitute a fast and accurate alternative to the original
Rice model but also provide insights on parameter sensitivity.

1 Introduction

Advances in experimental protocols and in computational modeling of heart
function are enabling the community to investigate functional relationships be-
tween sub-cellular mechanisms and organ function [1,5]. In brief, the output
of detailed sub-cellular models of cardiac myocyte are linked to a multi-scale,
continuum framework [4,11]. Recent numerical schemes, such as the “update”
method [4], can now overcome the numerical instabilities that rise due to the mul-
tiple feedbacks between the models. However, these models are computationally
demanding due to the numerous and coupled algebraic and ordinary differential
equations, which span several temporal and spatial scales (one cell calculation
can take ≈ 1 s/heart beat). Another yet important challenge to be addressed
for clinical uses is the personalization of these models to genetic groups, at a
population level (be animal or human), or for a specific patient [5]. To that end,
it is necessary 1) to quantify the sensitivity of model predictions with respect to
their parameters, and 2) to design models whose parameters can be identified,
directly or statistically, from clinical data.
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In parallel, model reduction techniques that rely on statistical learning have
been investigated, in particular in the chemometrics community. Often referred
to as meta-modeling, the idea is to derive a statistical model that is able to
capture the output of complex, non-linear computational models while being
expressed with fewer parameters and being extremely computationally efficient
(computation time in the order of the ms or less) [9]. Meta-modeling has been
used to analyze the interactions between parameters [10] but also to estimate
them using libraries of models [3]. Partial least squares regression (PLSR) is
probably the preferred method owing to its good generalization properties [9].
More advanced manifold learning can also prove useful in that context, as sug-
gested by the excellent performance recently achieved in computer vision [2].

Motivated by the recent model reduction progresses, we aim to develop a data-
driven approach to 1) reduce the number of parameters of a multi-scale cellular
model of cardiac myofilament (MF) and 2) to learn a data-driven generative
model suitable for cell-to-organ simulations while still capturing the output of
the original model. To the best of our knowledge, this is the first time such a
strategy is applied to multiscale cardiac modeling. In this work, we focus on the
sarcomere force (SF) computed by the validated Rice MF model [6] (Sec. 2.1).
We first use manifold learning techniques to reduce the dimensionality of SF.
Among the tested methods, we report here the results obtained using principal
component analysis (PCA) and locally linear embedding (LLE), for which we
obtained the best results (Sec. 2.2). Next, we learn a forward, generative model
of SF dynamics given a set of Rice model parameters and sarcomere length
(SL) dynamics (Sec. 2.3 and Sec. 2.4). As reported in Sec. 3, SF manifold was
surprisingly linear despite being the output of a non-linear system: only four PCA
components were necessary to capture it. Our generative model also provided
promising predictive results while being extremely fast to compute. Furthermore,
it suggested a strong effect of MF geometry, cell mechanical passive properties
and SL on SF dynamics. Sec. 4 discusses these results and concludes the paper.

2 Methods

2.1 Overview of Cardiac Myofilament Model

The Rice model is a lumped model of cardiac myofilament (MF) especially de-
signed to capture a wide range of experimental observations (see [6] for futher
details). In particular, it models the main regulatory processes involved in cross-
bridge cycling to compute bulk myoplasmic calcium transient ([Ca2+]), sarcom-
ere length (SL), sarcomere force (SF) and their inter-dependence over the cardiac
cycle.

From a dynamic system point of view (Fig. 1, left panel), the input u(t) at
time t of the system comprises np = 39 free constant parameters θ ∈ R

np ,
the large majority being related to sub-cellular mechanisms, and a time vary-
ing trans-membrane potential v(t), which can be computed using any cellular
electrophysiology model [8]. System states x(t) are SL(t), shortening velocity
SV (t), [Ca2+](t), and the numerous transition rates κi(t) that characterize the
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Fig. 1. Left panel : Dynamic system schematic of the Rice model (see text for details).
Mid and Right panels: ten examples of sarcomere force (SF) and sarcomere length (SL)
simulations over one heart cycle.

cross-bridge cycle. The output y(t) is SL(t), SV (t) and SF (t). Importantly, the
system presents with a feedback loop as SF results in SL and SV changes (see
Eq. 38 in [6]). The model comprises 64 coupled ODE’s, which makes its resolu-
tion at the organ scale particularly challenging. In this study, the potential v(t)
is fixed as we are interested in MF dynamics only. As a result, all simulations
are temporally registered by construction. Furthermore, we focus on the steady
SF dynamics: analysis of transient phenomena are subject of future work.

2.2 Sarcomere Force Manifold Analysis through Model Reduction

First, we analyze the dimensionality of the SF manifold ΩSF , i.e. the number of
intrinsic parameters nq �= np that are necessary to capture the observed SF (t)
(the reader is referred to [2] for details on statistical learning and the meth-
ods used in the following sections). Let N be the number of simulations (the
observations). For each observation i, SF i(t) is calculated with a unique set of
parameters θi and sampled in ns samples (t ∈ [t0, tend = nsdt], where t0, tend and
dt are the initial time, final time and time step of the observed cardiac cycle re-
spectively). We define the observation vector yi = [SF i(t0) . . . SF

i(tend)] ∈ R
ns ,

which are gathered in an N×ns observation matrix Y. To identify potential non-
linear structures, several manifold learning techniques were tested. We report
here the two methods that provided best results in terms of data compression
while being interpretable.

Principal Component Analysis. (PCA) computes the reduced space Ωpca
SF

by finding the orthonormal basis formed by the principal components vT
l , l ∈

{1 . . . ns}, that maximizes the observed covariance [2]. The vT
l ’s are the eigen-

vectors of the covariance matrix (Y − ȳ)(Y − ȳ)T , ordered by decreasing en-

ergy (ȳ = 1/N
∑N

i=1 y
i). Dimensionality reduction is achieved by choosing a

reduced set of components vT
l , l ∈ {1 . . . nq}, nq ≤ np � ns and by projecting

the observations onto that new space, zipca = (yi − ȳ)V, where V is the ma-

trix V = (vT
1 . . .vT

nq
). Now, given new PCA coefficients ẑpca, the related ŜF (t)

encoded by the vector ŷ ∈ ΩSF is reconstructed through ŷ = ȳ + ẑpcaV.

Locally Linear Embedding. (LLE) [7] calculates a low-dimensional space
Ωlle

SF that preserves the barycentric coordinates of each data point with respect
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to its klle nearest neighbors. Because the mapping is computed using local neigh-
borhoods, the method can capture non-linear manifold structures. The algo-
rithm has three steps: 1) find the klle nearest neighbors of each data point yi,

{yNklle (yi)}, according to the Euclidean distance; 2) compute the barycentric co-
ordinates wi of yi with respect to the klle neighbors; 3) compute the embedding
coordinates zille ∈ Ωlle

SF of nq ≤ np � ns dimensions using the barycentric coor-
dinateswi, which amounts to solving an eigenvalue problem. Although LLE does
not provide an explicit mapping between ΩSF and Ωlle

SF , it can be extended to
new data easily by taking advantage of the preservation of the barycentric coordi-
nates. Let ŷ be a new data sample in ΩSF . We first find its klle nearest neighbors
within the training set. The barycentric coordinates ŵ are calculated and used
as interpolation weights to estimate the embedding coordinates ẑlle ∈ Ωlle

SF from
those of the klle nearest neighbors. New observations ŷ are reconstructed from
the embedding coordinates ẑlle in a similar way.

2.3 Static, Data-Driven Model of Sarcomere Force

We then learn a data-driven model of SF from the computed simulations. As
in Sec. 2.2, the dynamics of the problem is ignored at this stage: all variables
are known throughout the cardiac cycle. Sec. 2.4 extends the method to predict
SF (tc + dt) given θ and SL(t), t ∈ [t0, tc].

Model Input. In addition to the free parameters θ, we also consider SL(t)
as an input of our model to capture SL dependence on SF. This assumption is
not limiting as SL is an observable state of the MF system (Fig. 1). Because
consecutive SL values over time are highly correlated, we express SL in terms of
PCA coefficients zSL ∈ Ωpca

SL = R
nSL , with nSL � ns.

Model Output. To optimize model construction, the reduced SF representation
computed in Sec. 2.2 is considered as output: Our model predicts the embedding
coordinates z, which are then used to reconstruct the SF curve y.

Model Estimation. Based on the previous assumptions, the data-driven model
to estimate writes z = f(θ, zSL), f : Rnp × R

nSL �→ R
nq . In this study, f is esti-

mated using multivariate adaptive regression splines (MARS), a non-parametric
regression methods with explicative capabilities [2]. Intuitively, MARS extends
linear regression by fitting splines (linear or cubic) to the predictors to capture
data non-linearities and variable interactions. The model is estimated in two
steps. A forward pass fits the splines to the data in a greedy approach such that
the mean square error (MSE) on the training set diminishes. The backward pass,
which aims to minimize over-fitting and optimize generality, prunes the model
by removing the splines that less decrease MSE. This step, similar to model se-
lection techniques in linear regression, enables one to identify the most relevant
predictors in the model, thus providing indications on the input parameters that
have most impact on SF dynamics. In this work, f is estimated component-wise,
i.e. f = [f1 . . . fnq ], the fk∈{1...nq} : Rnp×R

nSL �→ R being nq independent MARS
models. The most important parameters of the MARS algorithm to setup are
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the maximum number of splines included in the model (maxFun), the penalty
weight (c) and the number of variable interactions (vInt).

Prediction Algorithm. The final prediction algorithm is as follows. We first
project ŜL(t) onto Ωpca

SL , yielding the reduced representation ẑSL. We then com-

pute ẑ = f(θ̂, ẑSL) and reconstruct SF from ẑ as described in Sec. 2.2.

2.4 Extension to the Dynamic Scenario

In practice, sarcomere length SL(t) is known from t = [t0, tc] only (tc is the
current time). We thus adapt the previous framework to the dynamic scenario
as follows. Intuitively, we use the past SL dynamics to find the closest training
candidates on the SF manifold. We then use these candidates to predict the
entire SL dynamics, which is finally utilized as input to our forward model to
compute SF at the next time steps. Let xSL be the vector of dimension ntc < ns

that encodes SL(t), t ∈ [t0, tc]. We first find the k closest SL dynamics x
N (xSL)
SLtrain

within the training set from xSL based on the Euclidean distance computed
between t0 and tc, denoted dN (xSL). To ensure smooth predictions, we compute

the interpolated SL, xSLtrain =
∑

j

(
d
N (xSL)
j

)−2

x
N (xSL)
SLtrain,j . We then replace the

values of xSLtrain between t = [t0, tc] by those of the actual xSL and project the
result into the SL subspace Ωpca

SL to get the predicted coordinates zSL. We finally
compute z = f(θ, zSL) and reconstruct SF from z to determine SF (tc + dt),
which can then be used to calculate SL(tc + dt) (according to the constitutive
law of the whole-heart model for instance). The process is iterated throughout
time-steps to compute the entire SF dynamics.

3 Experiments and Results

The Rice MF model was computed using the freely available source code provided
by the authors1. The setup used to get Fig. 9 in [6] was employed except that
trabeculae dynamics was computed instead of single cell to be as close as possible
to the whole-heart scenario. MF cross-bridge was coupled to the Chicago model
of cardiac electrophysiology [8] and computed at 37oC. 1000 MF simulations
were calculated by randomly varying the 39 MF parameters between ±10% of
their original values according to a uniform distribution (see Table 1 in [6]), with
the following constraints to ensure physiologically plausible simulations:

– The length of the thin filament was lengththin = SLmax/2

– The length of the thick filament lengththick was always shorter than SLmax

– SL at rest was midway between SLmax and SLmin

– Initial SL was SLset = SLmin + 0.8 (SLmax − SLmin), as in [6]

– Collagen effects started at SLcol = SLmin+0.85 (SLmax−SLmin), as in [6].

1 http://researcher.watson.ibm.com/researcher/view_project.php?id=2992

http://researcher.watson.ibm.com/researcher/view_project.php?id=2992
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Non-reported experiments with fewer simulations yielded similar results. Ten
cycles were computed at 1 beat/s to reach steady state but only the last cycle
was considered for the statistical analyses. Numerical noise in SF was smoothed
out using Fourier transform by zeroing the 101th and beyond Fourier coeffi-
cients. Finally, the dataset was randomly split into training (70% of the obser-
vations) and testing sets for unbiased evaluation. Two metrics were employed
to estimate the goodness of fit of the predicted SF: Maximum Amplitude Differ-
ence (MAD, in nN/mm2) and Time to Peak Difference (TPD, in ms), defined by
MAD(yi,yj) = |max(yi(t))−max(yj(t))| and TPD(yi,yj) = | argmaxt(y

i(t))−
argmaxt(y

j(t))|. In the following, values are reported as mean ± SD (90-tile).
MAD and TPD variations around the mean were 5.64 ± 3.89 (11.29) nN/mm2

and 5.9± 4.32 (11) ms respectively. Fig. 1, mid and right panels illustrate some
examples of SF and SL dynamics.

PCA Coefficients LLE Coefficients 
z2 z3 z4 

z1 

z2 

z3 

z2 z3 z4 

Fig. 2. Pairwise plot of data coefficients in the estimated subspaces. PCA and LLE
distributions are qualitatively similar, suggesting a linear SF manifold.

Sarcomere Force Manifold Analysis. PCA and LLE spaces were computed
using the training set. Four PCA components were sufficient to capture SF dy-
namics. Successive projection / reconstruction of the testing set yielded an MAD
of 0.92 ± 0.83 (1.84) % of MAD standard deviation between reconstructed and
ground truth and a TPD of 0.81 ± 0.84 (2) ms was obtained. Thus, both peak
value and time to peak could be accurately captured by PCA reduction. LLE
reached the same accuracy with four components as well when the number klle of
neighbors became higher than 20 (results were worse for klle < 20 and nq < 4).
With klle = 20, testing accuracy was 1.23±1.32 (2.76) % for MAD and 1.12±1.22
(2) ms for TPD. This result, along with pair-wise plots of embedding coefficients
(Fig. 2) surprisingly suggested a linear structure of the SF manifold, although
SF was the result of a non-linear model. Indeed, both LLE and PCA coeffi-
cients exhibited similar distribution patterns (Fig. 2). As a result, using non-
linear manifold learning did not bring much information. We could draw similar
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Fig. 3. Modes of variation around the mean of the first four PCA components, from
−3 SD (black) to +3 SD (red). See text for detail.

conclusions using other manifold learning techniques like ISOMAP (non reported
here). Fig. 3 illustrates the modes of SF variations estimated by PCA. In par-
ticular, the first mode captured SF amplitude, whereas the second one captured
variations in time to peak due to different contraction and relaxation patterns.
It should be noted that the non-physiologial SF behavior captured by the first
mode at large negative coefficients can be easily avoided by using explicit thresh-
olding. Based on these results, we used PCA model reduction in all subsequent
experiments.

Evaluation of the Data-Driven Forward Model. We then estimated the
forward model zpca = f(θ, zSL) from the training set. Five PCA coefficients
were enough to capture SL, nSL = 5. Using 5-fold cross-validation on the train-
ing set, we identified the optimal MARS parameters: c = 2, vInt = 2 and
maxFun = 50, 80, 80 and 70 for the first, second, third and fourth PCA com-
ponent respectively. We also estimated two additional models: fθ whose input
was θ only, and fSL whose input was SL only. We then evaluated the predictive
power of each model on the testing set. As one can see from Table 1, both SL
and θ were necessary to correctly estimate SF dynamics. This result agrees with
the feedback process of the MF model. Quantitatively, obtained predictions were
very promising, both in terms of maximum amplitude (absolute average MAD
of 0.15 nN/mm2) and time to peak (average TPD of 0.87ms), comparable to dif-
ferences reported with experimental data. The good performances of the model
could also be verified qualitatively, as illustrated in Fig. 4. Interestingly, ANOVA
analysis on the MARS model [2] showed that the driving input parameters were
mostly related to sarcomere geometry, SL dynamics, passive properties, and at a
lower extents to cross-bridge detachment. This finding may guide further model
reduction strategies.

We finally tested the proposed dynamic model. In this first experiment, we
used the precomputed SL, i.e. we did no update SL(t + dt) according to the
predicted SF (t+ dt) (this step is subject of future work). In that way, we could
quantify the predictive power of the model in terms of SF exclusively, without
being influenced by potentially changing SL dynamics. As it can be seen from
Table 1, the proposed dynamic algorithm achieved promising predictions, with
absolute average MAD of 0.35 nN/mm2. These results are encouraging towards
full integration of our data-driven model into rheological continuous frameworks.
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Static Forward Model Dynamic Forward Model Dynamic SF in One Case

Fig. 4. Data-driven SF results on seven randomly selected testing data (left and middle
panels) and one typical case (right panel) (input: θ and SL). As one can see, the model
was able to compute SF accurately (plain line: prediction, circles: ground truth). Right
panel shows computed SF dynamics (colors encode time, ground truth in black).

Table 1. Performances of data-driven forward models. Both SL and θ, the free parame-
ters, are necessary to predict SF accurately (MAD in % of data SD). Good performances
are still achieved even in the dynamic scenario.

90-ptile Median Mean SD 90-ptile Median Mean SD
Input: θ (static) Input: θ and SL (static)

MAD (%) 20.52 7.31 9.52 8.20 8.43 2.83 3.91 4.30
TPD (ms) 3 1 2 8.77 2 1 0.87 1.58

Input: SL (static) Input: θ and SL (dynamic)
MAD (%) 46.41 15.06 20.74 19.35 16.75 6.37 8.35 8.44
TPD (ms) 2 1 1.05 3.79 1 0 0.32 0.55

4 Discussion and Conclusion

In this paper, we have proposed a manifold learning method to identify the in-
trinsic dimensionality of the SF manifold computed by the Rice model and learn,
for the first time to the best of our knowledge, a forward model of SF. Our first,
surprising finding is that SF appears to lay on a linear manifold despite being
generated by complex non-linear systems. Moreover, two of the identified PCA
components have a clear dynamic signature, which could be used to infer MF
parameters from observations. The second important finding is that data-driven
approaches are able to capture the dynamics of complex cellular models, here
SF. By learning the observed dynamics, we could reproduce it without hav-
ing to explicitly solve the complex ODEs involved in cellular models. Various
methods have been tried, like partial least squares or gradient boosting trees.
The MARS method yielded the most promising prediction accuracy, while be-
ing computationally efficient (the evaluation of one cycle takes milliseconds in
Matlab). It also suggested that the main parameters that drive SF are related to
the geometry of the sarcomere, SL dynamics, passive properties and cross-bridge
detachment. In this study, we chose to vary all parameters around ±10% of their
nominal value as a first step. In the future, parameters would need to be studied
on a case by case basis based on the observed variations in experimental setups.
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For such studies, the method discussed in this paper allows for creation of a se-
ries of reduced models that could be invoked in the appropriate ranges. Finally,
shortening velocity (SV) was implicitly taken into account through SL curves.
Explicit modeling of SV may improve prediction accuracy, which we will inves-
tigate in future work. In conclusion, our approach can provide efficient reduced
models while still being accurate, opening the way to efficient cell-to-whole-heart
frameworks for -omics / phenotype studies.
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