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Abstract. In this work, we propose to estimate rule-based myocardial
fiber model (RBM) parameters from measured image data, with the goal
of personalizing the fiber architecture for cardiac simulations. We first de-
scribe the RBM, which is based on a space-dependent angle distribution
on the heart surface and then extended to the whole domain through an
harmonic lifting of the fiber vectors. We then present a static Unscented
Kalman Filter which we use for estimating the degrees of freedom of the
fiber model. We illustrate the methodology using noisy synthetic data
on a real heart geometry, as well as real DT-MRI-derived fiber data. We
also show the impact of different fiber distributions on cardiac contrac-
tion simulations.

1 Introduction

In the last decades several studies about the cardiac fiber nature were made by
performing dissections on mammalian hearts and inspecting the extracted tissue
[1–4], concluding that in the human heart the fiber direction varies across the
wall from about−60◦ to −70◦ in the epicardium to 60◦ to 70◦ in the endocardium
regarding the circumferential direction.

These experimental observations have been classically translated into math-
ematical models for describing the fibers field, the so-called rule-based models
(RBM). They mainly consist in given fiber directions on the epi- and endocar-
dial surfaces and then interpolated inwards the heart domain by using surface
distance functions (see, e.g., [5, 6]) or harmonic liftings [7, 8] in order to define
the fiber vectors in the whole myocardium. RBMs have been extensively used in
several works dealing with beating heart simulations (see, e.g., [9–12]).

Alternatively, Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) al-
low observing the fiber structure non-invasively [13] and has been shown to be
able to represent the fiber organization of the heart [14, 15]. Unfortunately, a
full three-dimensional reliable acquisition and reconstruction of the fiber data
through DT-MRI requires extremely long times, and therefore it can only be ap-
plied to ex-vivo heart samples [16–18]. Moreover, DT-MRI data is usually very
noisy, in particular close to heart surface, and many uncertainties are added to
the data during the segmentation, registration and postprocessing. Hence, the
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direct usage of DT-MRI into, e.g., cardiac mechanics simulations, results in a
nonsmooth, unphysiological stress field, making the computational model finally
unreliable.

Recently, in vivo DT-MRI techniques were reported (see, e.g., [19] and refer-
ences therein) allowing, however, only to acquire the fiber information just along
some slices. Hence, a three-dimensional reconstruction of the DT-MRI data is
required and further assumptions about the fiber structure and ventricular ge-
ometry are necessary [20].

The aforementioned facts motivate the methodology presented in this work
for bridging RBMs and DT-MRI by fitting the model parameters from the image
data, with the aim to truly personalize the myocardial architecture for patient-
specific cardiac electromechanical simulations. The methodology is based on the
estimation, through solving an inverse problem, the degrees-of-freedom of a RBM
(namely the parameters of the angle distribution on the epi- and endocardial
surfaces) from data coming, e.g., from DT-MRI, using a static Unscented Kalman
Filter.

The rest of the paper is organized as follows. Section 2 describes the RBM.
Section 3 presents the Unscented Kalman Filter algorithm. Section 4 shows sev-
eral numerical examples. First, we test the fiber estimation scheme using noisy
synthetic data. Then, numerical examples for some contraction simulations with
fibers obtained through a classical RBM, fibers directly derived from DT-MRI
and a RBM fibers calibrated from DT-MRI using the ROUKF are presented.
Finally, we give then some conclusions and perspectives in Section 5.

2 The Fiber Model

We now summarize the RBM proposed. It is inspired from [7] and its creation
consists mainly of two substeps: (a) deriving fiber values at the surfaces, and (b)
domain interpolation via solving a Poisson equation.

Lets denote the computational domain of the heart as Ω, and define the

surface Γ ⊆ ∂Ω, with Γ
def
= S1 ∪ . . . Sn, and nΩ the normal vector to ∂Ω. In our

context, Si are subdivisions of the epi- and endocardium. Defining also the usual
long-axis vector �, namely the normal vector to the plane estimated from the
heart base, we proceed as follows: For given degrees of freedom Θ = [θi,�], i =
1, . . . , n, � = 0, . . . , p, with p the given order of the global angle polynomial, do

1. For each surface Si, i = 1 . . . n, do
(a) Identify the point xa,i ∈ Si closest to the apex and find the last node

xb,i ∈ Si in direction � starting from xa,i. Define the normalized distance
function ξi : Si �→ [0, 1] such that

ξi(x) = ‖x− xa,i‖/‖xb,i − xa,i‖ , x ∈ Si .

(b) For a given order p, define the angle field as φi : [0, 1] �→ [0, π] such that

φi(ξi) =

p∑

�=0

β�ξ
�
i (1)
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with the coefficients βk computed such that

φi(�/p) = θi,�.

(c) For each node xj ∈ Si do
i. Compute nodal pseudo-normal nj

ii. Compute circumferential direction cj = cross(λjnj , �) with

λj =

{
+1 for xj on epicardium

−1 for xj on endocardium

so that the circumferential direction remains counterclockwise.
iii. Evaluate the angle δj = φi(ξi(xj)) and the compute normalized fiber

direction gj

g̃j = (cos δj)cj + (sin δj)
cross(nj , cj)

|| cross(nj , cj)|| , gj =
g̃j

||g̃j || .

2. Reconstruct the fiber field f = f(x), x ∈ Ω by solving the harmonic lifting

Δf̃ = 0 in Ω, (2)

f̃ = g on Γ, (3)

∂nΩ f̃ = 0 on ∂Ω\Γ, (4)

and normalize f = f̃/||̃f ||.

3 Fiber Angles Estimation Algorithm

In practice, the degrees of freedom Θ are uncertain, but we also have access to
(noisy) measurements of the fiber directions fm. We aim then to reduce these
uncertainties by minimizing a cost function like:

J(Θ) = ‖fm − f(Θ)‖2W−1 + ‖Θ − Θ̂−‖2P−1 ,

where Θ̂− is a given a priori value and ‖ · ‖W−1 and ‖ · ‖P−1 denote the norms
used to weight both terms.

The solution techniques for this nonlinear least squares problem are classi-
cally separated in two groups: variational and filtering approaches. Variational
approaches minimize this cost function by an optimization algorithm, which re-
quires the computation of the gradient of the functional and several solutions of
the forward problem f(Θ). Here, we consider a filtering approach, namely the
Reduced-Order Unscented Kalman Filter (ROUKF) [21], inspired from [22, 23],
but in its static version, which does not require any tangent operator and the
realizations f(Θ) are independent, so that it is highly parallelizable.

The static ROUKF algorithm can be summarized as follows. Consider the

simplex sigma-points I
(i)
k , 1 ≤ i ≤ k + 1 (see [24, 25]), namely

[I
(∗)
1 ] =

(
− 1√

2α
,

1√
2α

)
, α =

1

k + 1
,
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[I
(∗)
d ] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

[I
(∗)
d−1]

...

0

1√
αd(d+ 1)

· · · 1√
αd(d+ 1)

−d√
αd(d + 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 2 ≤ d ≤ k .

Then, for given values of Θ̂− and P , perform

C =
√
P (Cholesky factorization) (5)

Θ̂
(i)
− = Θ̂− + CT I

(i)
k , 1 ≤ i ≤ k + 1 (6)

Γ (i) = fm − f(Θ̂
(i)
− ), 1 ≤ i ≤ k + 1 (7)

LΘ = α[Θ̂
(∗)
− ][I

(∗)
k ]T (8)

LΓ = α[Γ (∗)][I(∗)k ]T (9)

U = α[I
(∗)
k ][I

(∗)
k ]T + (LΓ )TW−1LΓ (10)

so that the estimated degrees-of-freedom can be computed as

Θ̂+ = Θ̂− − LΘU−1
(
LΓ

)T
W−1α

k+1∑

i=1

Γ (i) (11)

with, e.g., W−1 = γmI and γm a postive scalar.

4 Numerical Experiments

4.1 Cardiac Model

The cardiac geometry used in this study was created from high-resolution, ECG-
triggered Computer-Tomography (CT) data. All four chambers were segmented
using MIMICS (Materialise, Leuven, Belgium). Then, a finite element mesh of
about 2.3 million tetrahedral elements, with 1.5 and 0.8 million elements for
ventricles and atrias, respectively, was produced using Gmsh [26]. Here, several
surfaces for the ventricles were defined for the later usage in the RBM framework,
see Figure 1.

4.2 Estimation of Fiber Distributions from Synthetic and Real Data

Now we present some estimation results of the degrees-of-freedom of the fiber
model presented in Section 2. We consider a reference fiber distribution for the
subdivision of Γ described in Figure 1, with a linear variation of the surface fiber
angle (i.e., p = 1), see values “Ref.” in Table 1.

We applied the static ROUKF procedure to estimate the RBM degrees-of-
freedom from the data generated with the reference fiber distribution, perturbed
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(a) Global view (b) Cut view

Fig. 1. Division of the surfaces of the ventricular geometry: left epicardium (yellow,
S1), right epicardium (red, S2), left endocardium (green, S4), right endocardium part
1 (cyan, S3), right endocardium part 2 (orange, S5)

by a gaussian noise with zero mean and standard deviation σ at each vector
component, and finally normalized (see Figure 2). We give as an initial guess X̂−
a constant value of 50◦, an initial covariance of P = 102 I, namely a standard
deviation of 10◦, and a weight γm = 0.012 chosen large enough so that the results
are not sensitive to this value. The estimation results are summarized in Table
1. Note that even in the prescence of an important amount of noise, the fiber
distribution is satisfactory recovered.

Fig. 2. Fiber distributions for reference σ = 0 (left), σ = 0.2 (center) and estimated
from σ = 0.2 (right), colored by the scalar product with long axis

4.3 Estimation from DT-MRI Data and Contraction Simulations

The aim of this section is to illustrate the contraction patterns arising from
different fiber organizations, in order to highlight its relevance for biophysical
cardiac modeling. Within the nonlinear solid mechanics framework, we induce
an active contraction in the ventricles through a classical (additive) active stress
formulation [9–12] of time and space dependent magnitude (in MKS) of 2 · 105·
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Table 1. Results of the estimation of the fiber model degrees-of-freedom from noisy
synthetic data for different levels of noise

θ̂1,0 θ̂1,1 θ̂2,0 θ̂2,1 θ̂3,0 θ̂3,1 θ̂4,0 θ̂4,1 θ̂5,0 θ̂5,1
Ref. 39 62 39 53 42 52 54 60 42 50
σ = 0 38.83 62.72 41.06 52.53 42.25 52.11 44.96 60.60 42.75 49.76
σ = 0.1 39.10 62.46 42.29 52.12 42.72 51.91 45.19 60.28 43.69 49.39
σ = 0.2 39.99 61.67 45.92 50.99 44.02 51.30 45.70 59.49 46.23 48.50

·f(t− ||x−xapex||
0.5 ), with f(τ) = (0.5 tanh(τ) + 0.5) tanh(10τ) exp(−0.5τ10) chosen

to emulate typical active stress curves, see, e.g., [27]. The passive response of the
extra-fiber matrix is modeled with a nearly incompressible, hyperelastic, neo-
hookean material with stiffness 20 kPa and bulk modulus 104 kPa. Moreover,
we do not restrict any part of the boundary in order to highlight the effect of
the fiber orientations in the contraction pattern. We consider then three families
of fiber architectures, see Figure 3-top:

– Model 1: A constant angle of 60◦, i.e., p=0 in Equation (1), with θi,0 = 60◦

on the endocardium and θi,0 = −60◦ on the epicardium.
– Model 2: DT-MRI derived fibers1 registered to the CT-derived geometry.
– Model 3: A fiber field obtained from the ROUKF procedure using the

DT-MRI data and RBM with a linear variation of the angle in the long-
axis direction as in Section 4.2, i.e.: θ̂1,0 = −32.3◦, θ̂1,1 = −35.7◦, θ̂2,0 =

−92.7◦, θ̂2,1 = −30.8◦, θ̂3,0 = −109.7◦, θ̂3,1 = −59.0◦, θ̂4,0 = 66.6◦, θ̂4,1 =

61.7◦, θ̂5,0 = 71.1◦, θ̂5,1 = 19.6◦.

The results for the contraction simulation are shown in Figure 3. Please note
first that, as mentioned in the introduction, the resulting stress distribution
with Model 2 is non-smooth and with unphysiological stress peaks, in opposite
to Models 1 and 3. Also the dynamics of the heart differs substantially with
the different fiber models. In Models 2 and 3 the apex moves mainly paralell to
the short-axis staying close to its original position, something that can actually
also be observed in-vivo. In contrast, in Model 1 the appex moves towards the
base. To the authors best knowledge, the constant fiber angle distribution like
in Model 1 is actually the most used approach in current cardiac simulation
practice, which “obligates” modelers to fix the apex in order to obtain more
physiological contraction dynamics, see, e.g., [10, 11]. Let us also remark that
the estimated fibers (Model 2) are in good agreement with DT-MRI data in
the left ventricle, so that for this region the contraction pattern is similar for
both Models 2 and 3. However, in the right ventricle there is still an important
mismatch between Model 2 and 3 (in both fibers and contraction), probably due
to the fact that the chosen RBM is not detailed enough to reproduce such a fiber
pattern, which encourages the developement of more general RBMs.

1 Openly available on http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/

http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/
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Fig. 3. Top: Short-axis view of the ventricular fiber organization, colored by the mag-
nitude of long-axis component. Bottom: Snapshots of the contraction simulation at
time 0.3 s, superposed with the original geometry (grey). From left to right: Models 1
to 3.

5 Conclusions and Perspectives

We introduced a methodology for estimating the degrees-of-freedom of a Ruled
Based Model (RBM) for cardiac fiber architecture from DT-MRI data. We first
detailed the mathematical fiber RBM. Then, we outlined the estimation algo-
rithm, namely a reduced-order Unscented Kalman Filter (ROUKF), in order
to minimize the discrepancy between measured and model fiber distribution by
optimizing the degrees-of-freedom of the RBM. Next, we showed some estima-
tion results from noisy synthetic data, emulating DT-MRI. Finally, we presented
fiber estimation results with real DT-MRI data and we illustrated the impact
of different fiber organizations in cardiac contraction simulations. Ongoing work
involves: (a) the improvement of the RBM based, e.g., on the observations re-
ported in [18] in order to better match more realistic fiber architectures, and (b)
the estimation of the RBM degrees-of-freedom from multi-slice DT-MRI data.
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for Advanced Study (TU München) and one of its fellow Prof. Michael Ortiz
(Caltech), whom we sincerely thank.

References

1. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber
orientation in the canine left ventricle during diastole and systole. Circulation
Research 24(3), 339–347 (1969)



Personalization of Cardiac Fiber Orientations from Image Data 139

2. Armour, J., Randall, W.: Structural basis for cardiac function. American Journal
of Physiology – Legacy Content 218(6), 1517–1523 (1970)

3. Greenbaum, R.A., Ho, S.Y., Gibson, D.G., Becker, A.E., Anderson, R.H.: Left
ventricular fibre architecture in man. British Heart Journal 45(3), 248–263 (1981)

4. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Lam-
inar structure of the heart: ventricular myocyte arrangement and connective tissue
architecture in the dog. American Journal of Physiology - Heart and Circulatory
Physiology 269(2), H571–H582 (1995)

5. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of mon-
odomain and bidomain reaction-diffusion models for action potential propagation
in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)

6. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J.,
Zemzemi, N.: Numerical simulation of the electromechanical activity of the heart.
In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528,
pp. 357–365. Springer, Heidelberg (2009)

7. Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models
using poisson interpolation. Computer Methods in Biomechanics and Biomedical
Engineering, 1–10, PMID: 23210529 (2012)

8. Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for
assigning myocardial fiber orientation to computational heart models. Annals of
Biomedical Engineering 40, 2243–2254 (2012)

9. Goektepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the
strongly coupled excitation contraction problem. Computational Mechanics 45,
227–243 (2010)

10. Chabiniok, R., Moireau, P., Lesault, P.F., Rahmouni, A., Deux, J.F., Chapelle,
D.: Estimation of tissue contractility from cardiac cine-mri using a biomechan-
ical heart model. Biomechanics and Modeling in Mechanobiology, 1–22 (2011),
doi:10.1007/s10237-011-0337-8

11. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duck-
ett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The es-
timation of patient-specific cardiac diastolic functions from clinical measurements.
Medical Image Analysis (2012)

12. Lafortune, P., Ars, R., Vázquez, M., Houzeaux, G.: Coupled electromechanical
model of the heart: Parallel finite element formulation. International Journal for
Numerical Methods in Biomedical Engineering 28(1), 72–86 (2012)

13. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion ten-
sor from the nmr spin echo. Journal of Magnetic Resonance, Series B 103(3),
247–254 (1994)

14. Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.:
Magnetic resonance myocardial fiber-orientation mapping with direct histological
correlation. American Journal of Physiology - Heart and Circulatory Physiology
274(5), H1627–H1634 (1998)

15. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of my-
ocardial microstructure obtained from diffusion tensor magnetic resonance imag-
ing. American Journal of Physiology - Heart and Circulatory Physiology 275(6),
H2308–H2318 (1998)

16. Helm, P., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac
fiber and laminar architecture using diffusion tensor MR imaging. Annals of the
New York Academy of Sciences 1047(1), 296–307 (2005)



140 A. Nagler et al.

17. Helm, P.A., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D
diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic
Resonance in Medicine 54(4), 850–859 (2005)

18. Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F.,
Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac
fiber architecture: study on a healthy population. IEEE Transactions on Medical
Imaging 31(7), 1436–1447 (2012)

19. Gamper, U., Boesiger, P., Kozerke, S.: Diffusion imaging of the in vivo heart us-
ing spin echoes considerations on bulk motion sensitivity. Magnetic Resonance in
Medicine 57(2), 331–337 (2007)

20. Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: in vivo
human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation
of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A.
(eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg
(2010)

21. Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with appli-
cation to parameter identification in large-dimensional systems. COCV 17, 380–405
(2011), doi:10.1051/cocv/2010006

22. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear
systems. In: American Control Conference, pp. 1628–1632 (1995)

23. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear trans-
formation of means and covariances in filters and estimators. IEEE Transactions
on Automatic Control 45(3), 477–482 (2000)

24. Pham, D.-T., Verron, J., Gourdeau, L.: Filtres de Kalman singuliers évolutifs pour
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