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Abstract. In this paper we address the problem of finding similar coro-
nary angiograms from a database of angiograms using a new constrained
nonrigid shape model for the description of coronary arteries. The model
captures the non-rigid variations in the artery shapes while still pre-
serving the overall perceptual spatial layout based on the articulation
constraints between arteries. Shape matching involves testing for class
membership using the constraints specified in the model. The shape sim-
ilarity method is demonstrated in a similarity retrieval application on a
large database of angiogram images.

1 Introduction

Cardiologists use 2D X-ray coronary angiography routinely to image the coro-
nary arteries that supply blood and oxygen to the heart muscle. They grade
the severity of coronary artery disease by analyzing the coronary tree layouts,
detecting arterial lesions in key coronary artery segment locations, and assessing
their severity. The predominant way of using angiograms currently is in manual
diagnosis at the point of care, in a single sample-guided manner. That is, only the
data from the given patient is used along with a physician’s a priori knowledge
to make decisions. If the imaging data from the patient could be used to retrieve
similar cases, it can lead to enhanced diagnosis where physicians can validate
their current hypothesis, and check for any overlooked possibilities or alternate
interpretations. The use of imaging as a modality to do population analysis has
now become popular in cardiac decision support as evidenced by recent work
using a variety of modalities such as Doppler imaging [10]. A key subproblem
to be solved in such decision support is the development of a disease-specific
similarity metric to judge the similarity between images of similar patients. Our
paper focuses on characterizing the shapes of coronary arteries depicted in in-
dividual coronary angiogram video frames of a prior-labeled image database to
find similarities.

Characterizing shapes of coronary arteries is challenging. There is considerable
variation in the appearance of the arteries depending on the viewpoint (rotation
and skew of the imaging setup) at which the sequence was taken, or based on the
individual differences in the coronary anatomy of patients or due to effects of a
disease. Figure 1a shows the variation in the appearance of the same coronary
artery across persons for similar viewpoints. Figure 1b shows the difference in
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the appearance of the same coronary artery (left coronary) of the same per-
son under changes in viewpoint across runs of an angiogram study. Finally, the
matching should be robust to the effects of imaging conditions such as bright-
ness variations, background clutter and zoom that can also be seen in Figure 1.
In this paper we present a novel shape model for description and recognition

Fig. 1. (a) Illustration of variation in appearance of the left coronary artery across
patients under similar viewpoint. (b) Illustration of the variation in appearance of the
left coronary artery for the same patient under changes in viewpoint.

of coronary arteries that captures the non-rigid variations in their shapes un-
der the variations described above. The model captures the variations in artery
shapes while still preserving the overall perceptual spatial layout based on the
articulation constraints between arteries. We also demonstrate its application
for similarity retrieval on a large database of angiogram images.

2 Related Work

Although there are no commercial tools that can interpret coronary arteries in a
completely unattended fashion [1], there is a large body of work on interpretation
of 3D and 2D angiograms including filter based methods (derivative-based filter
[3], matching filter [7], etc.), deformable models, learning-based approaches (Neu-
ral Network [6], and Support Vector Machines [6]). The predominant way of cap-
turing shape layout of arteries has been through a graph formalism using built-in
knowledge of coronary artery tree [5]. Precise geometric modeling of the non-rigid
shapes of these articulated structures however, is lacking. There is large body of
work also in the field of shape descriptors. Besides rigid body recognitionmethods,
there are a considerable number of models that allow nonrigid shape matching for
regional shapes such as variants of 2D strings[12], region adjacency graphs, shape
context [2], super pixels, and more recently, variants of pyramid match kernels[4].
While recognition could be attempted by such methods, they are not as suitable
for capturing the correspondence of artery segments in the primarily long and thin
network of tubular structures found in coronary artery images.
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Thus although there are a number of shape models available for describing
2D and 3D shapes, automated recognition and retrieval from low visibility X-ray
coronary angiographic imagery has been difficult and to our knowledge, has only
been attempted recently using features such as tortuosity, lumen variations, etc.
without establishing correspondence between the coronary tree layouts.

3 Artery Pre-processing

Adopting the approach described in [9], we first pre-process the image using
a conventional edge detector (e.g. Canny edge detector). Since large intensity
gradients are more likely to correspond to edges, a thresholding is applied at
two levels to yield both weak (lower threshold) and strong (higher threshold)
edges. We extract curves from these edge maps using 8- connected neighbors
and tracing curves using depth-first search between junctions. We then detect
tube-like vessel structures looking for evidence of closely-spaced almost parallel
curves among the retained curves as described in [9]. Figure 4b shows the result
of vessel extraction on a raw image shown in Figure 4a after these operations.
Finally, corner features are extracted from the curves to serve as basic shape
features for later curve matching during shape correspondence. The result of
such corner extraction is overlaid on Figure 4b.

While the effect of background is minimized through this process, curves from
the background will still be present and will be accounted under matching where
we address spurious and missing features in the shape model as described below.

4 Modeling Shape Layout of Coronary Arteries

Since the viewpoint considerably changes the appearance of arteries, we factor
its effect out by using the azimuth and elevation angle information provided
in the DICOM annotation of the sequence. These angles can be clustered to
form viewpoint classes using straightforward K-means clustering. Each artery
image can then be classified into a viewpoint class and the following description
shows how correspondence can be found between two artery configurations of
the same viewpoint class (and artery). To motivate the need for articulated
non-rigid shape modeling for arteries, consider the left coronary artery system
consisting of three major arteries, left main (LMCA), left anterior-descending
(LAD), and left circumflex (LCX) along with their many branches as shown in
Figure 2a. Different patients may show variations in the number of branches
but the three major arteries are mostly visible as shown in Figure 2b for a
different person with the same disease. To reliably recognize such structures, the
shape model and the associated matching metric must take into account both
global and local deformations. Figure 2c illustrates this difficulty for the coronary
artery images of Figure 2a and b. Even by using a good correlation measure,
superposing the vessel structures from these images shows evidence of not only
residual global rotation and translation but also local translational shifts along
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a common direction which is roughly orthogonal to the dominant orientation of
the shape conveyed by the network of arteries.

Our goal is to capture this characteristic of artery networks in the shape
model. The key observation we make is that the coronary artery system is a
specific class of articulated non-rigid shapes in which the movement of arteries
is constrained to be a relative translation that preserves the ordering of the
arteries. Specifically, we model a coronary artery system SM as a collection of
curves {C1, C2, ...Cm}. Members of the same shape class obey the following shape
constraints:

Fig. 2. Illustration of articulated non-rigid shape matching. (a) Candidate image from
the database. (b) A query image showing the same artery but from a different person
with the same disease. (c) Registering with global translation shows nonrigid defor-
mations. (d) Result of nonrigid matching. The set of curves in the query that found a
valid match are shown in different colors.

Direction of Residual Translation. All corresponding curves belonging to two
shapes in the same class are related by a global translation along a common
direction θ, i.e.

Υijy = Υijxtanθ ∀i, j (1)

where Υijx = C
′
ix−Cjx and Υijy = C

′
iy−Cjy and C

′
ix,Cjx are the corresponding

points along the two corresponding curves C
′
i and Cj .

Extent of Residual Translation Constraint. The extent of translation of all cor-
responding regions is bounded by δ so that

‖Υijx‖ ≤ ‖ δcosθ‖and‖Υijy‖ ≤ ‖ δsinθ‖ (2)

for θ = 90, the bound on the extent of translation becomes ‖Υijy‖ ≤ δ. The
above bound includes those cases where the curves do not translate allowing for
non-rigid shifts in position along the common direction of translation.

Ordering of Curves Constraint. The ordering of corresponding curves along the
direction of residual translation remains the same across members of the shape
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class. The ordering of a set of curves {C1, C2, ..CM} is defined as a permutation
of the indices {i1, i2, ...iM} such that

Cik ≤ Cik+1 if ∃ p(t1) ∈ Cik (3)

q(t2) ∈ Cik+1

t1 ≤ t2

α(p) ≤ α(q).

where ik = j for some 1 ≤ j ≤ M and α(P ) is the α -coordinate representation
of a point P along the line of orientation θ so that P = αP1 + (1 − α)P2 and
P1, P2 are two reference points along the line of orientation θ.

Under the above constraints, individual curves of the candidate instances of
the model are allowed to undergo non-rigid shape warping in their parametric
representations. Thus any two members SM = {C1(t), C2(t), ...Cm(t)} and SN =
{C ′

1(t), C
′
2(t), ...C

′
n(t)} are related under the constrained nonrigid shape model

as

C
′
i(t) = ACj(Φij(t)) + Υij (4)

where Φij = bijt+ Γij(t).
The above shape model allows non-rigidity in the parametric representation

of the curves through Γij which is a function of t. Here A captures the global
rotation and scaling of the overall shape (e.g. due to a change in viewpoint).
Since Γ is also a function of the pair of curves C

′
i , Cj thus allowing individual

corresponding curves on the shape to stretch and compress to different extents.
In addition, using a translation Υij defined in Equation 1, we ensure that the
corresponding curves are also allowed nonuniform translations as long as such
translation does not disturb the spatial ordering of curves in Equation 3.

4.1 Shape Matching Using the Nonrigid Shape Model

Using the constrained nonrigid shape model, shape matching reduces to testing
membership in the shape class under the model. That is, it involves determining
if a sufficiently large set of corresponding curves can be found that satisfy the
class constraints. Consider first the simpler case when there is no global rotation
or scale. Given a model shape SM from the class, and a candidate member shape
SI , we find potential matches to candidate curves in SI within the model shape
SM that match to it under non-rigid shape warping while still preserving the
curve ordering and obeying other model constraints.

Handling Pair-Wise Non-Rigid shape Distortions. The goal of allowing non-rigid
distortion between corresponding curves for coronary vessel images is to allow for
variations in length and thickness across patients, as well tolerance to local shape
distortions due to stenosis. This means we must allow for gaps and insertions
while still finding the longest possible pairs of curves.

To achieve this, we adapt the well-known technique of dynamic time warp-
ing used for time series matching to find matching candidate curve fragments
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between a model shape and a candidate shape derived from a coronary artery
map. Details of this method are described in [8].

Checking Ordering Constraints. Using a suitable threshold the best pairwise
matches of curves can be retained. Since curves of shapes SM and SI are pre-
ordered with respect to the direction of residual translation (eigenvectors), we
obtain an ordered sequence of curves for each as SM = {Cr1, Cr2, ..CrM}, and
SI = {C ′

r1, C
′
r2, ...C

′
rN}. A subset of size T in SI was found as matching curves

in SM using dynamic shape warping earlier. For each curve C
′
i ∈ SI , the can-

didate match set can be denoted by Ri = {Ci1, Ci2, ..Cik} where Cij = Crl for
some 1 ≤ l ≤ M . The candidate sets can be combined with the curve ordering
information in SM by representing the match as a set sequence (R1, ...RT ).

Fig. 3. Illustration of similarity retrieval of angiogram images. In each case, the first
image is the query and the matches in ranked order are indicated in the same row. (a)
Case of left coronary system. (b) Case of right coronary system with right dominance.
(d) case of right coronary artery (RCA) with possibly left dominance (PDA is not
easily visible).

Using the set sequence, the largest set of corresponding curves that preserve
the spatial ordering with respect to the direction of residual translation can then
be found as the longest common subsequence (LCS) of ordered model curves in
SM that are also a member sequence of the set sequence above. It can be shown
that as in the case of LCS of two ordinary sequences [11], the problem of finding
an LCS of a pair of sequence and set sequence also has optimal substructure
property and can thus be derived using a similar algorithm as the dynamic
shape warping mentioned above.

5 Finding Similar Coronary Angiograms

The overall algorithm for similarity retrieval from angiogram images consists of
several offline processing steps and an online query-driven search. In the offline
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processing stage, all frames of incoming angiogram videos first segemented into
viewpoint classes as described earlier. An optional keyframe selection process
can be applied to prune the large number of very similar successive images
that are often present in the angiogram sequences as described in [9] so that
the viewpoint clusters could be formed from keyframes alone. Each viewpoint
cluster images are then processed to highlight vessel regions and their boundary
curves as described in Section 3.

Given a new patient study, similar processing is applied to all video frames
of an incoming angiogram study of a patient (query). Each image is then first
classified into its corresponding viewpoint cluster. For each query image, the
vessels are similarly extracted, the dominant orientation determined and curve
ordering sequence is similarly obtained. The match to candidate images of its
viewpoint cluster is then done serially using the constrained non-rigid shape
matching described in the previous section. Candidate matching curves are de-
termined using dynamic shape warping as described in Section 4.1. The longest
common set subsequence using the constraints of the nonrigid model are then
applied to the candidate matches to recover a curve correspondence of the query
curves. The fraction of the perimeter covered by the matched curves is used to
rank the images for retrieval.

6 Results

We assembled a large database of angiogram images from actual angiogram video
sequences recorded at a catheter lab at a medical center in our area. This dataset
depicts patients with various forms of coronary artery disease. A typical study
consists of 20-25 runs, with each run consisting of 15-120 images depending on
the complexity of the arteries being shown and their pathology. In our database
we have a collection of over 70 patients covering a total of 1628 runs and 80,000
images. For the purpose of the study, we automatically classified the collection
into 10 viewpoint classes using K-means clustering of viewpoint parameters in
the DICOM files. For enabling precision and recall studies, the images within
viewpoint classes were given a ground-truth label using a training process where
physician experts chose one of 8 artery class labels (and 3 outlier class labels)
including those that depict LMCA (left-main), LCX (circumflex), LAD (anterior-
descending), RCA (right coronary), RMA, and PDA (Posterior-descending) for
each depicted keyframe image. In cases where more than one artery was visible,
the image was multiply classified. Three outlier classes were also added including
a background class (BG) and incomplete depiction of artery class (INC) and an
ambiguous class (AMG) where even experts had difficulty identifying the artery
depicted due to noise, viewpoint or anatomic variation.

Retrieval Performance. We first illustrate results of similarity retrieval for exam-
ple images from the various classes. Figure 3 shows the top ranked images for
three queries corresponding to left main (LMCA), RCA with PDA and RCA.
As can be seen, in each case the top images depict another instance of the same
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(a) (b) (c)

Fig. 4. (a) Illustration of vessel extraction - original image. (b) extracted vessel fea-
tures. (c)precision-recall for similarity retrieval of angiogram images. Vertical axis is
Recall, horizontal axis is precision.

artery under changes in global pose, and non-rigid artery variations. The oc-
casional mismatches (4th match in row 3)are also reasonable depicting a PDA
dominant RCA. The performance of our similarity search algorithm is illustrated
by the ROC curve in Figure 4c. In general RCA variations are much less thus
explaining the higher recall (red curve). Due to the vesselness measure distin-
guishing between background and vessel-depicting images, the performance is
also good for rejecting outliers (green curve).

7 Conclusions

In this paper we have presented a new shape matching framework for similar-
ity retrieval of angiogram video sequence images. The model accounts for both
global and local deformations of arteries under changes in viewpoint, diseases
and patient-specific variations. Experiments show promising results on artery
recognition as an initial filter for decision support and diagnosis.
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