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Abstract. In this paper, a Bayesian framework for non-parametric den-
sity estimation with spatial smoothness constraints is presented for image
segmentation. Unlike common parametric methods such as mixtures of
Gaussians, the proposed method does not make strict assumptions about
the shape of the density functions and thus, can handle complex struc-
tures. The multiclass kernel density estimation is considered as an un-
supervised learning problem. A Dirichlet compound multinomial (DCM)
prior is used to model the class label prior probabilities and a Markov
random field (MRF) is exploited to impose the spatial smoothness and
control the confidence on the Dirichlet hyper-parameters, as well. The
proposed model results in a closed form solution using an expectation-
maximization (EM) algorithm for maximum a posteriori (MAP) esti-
mation. This provides a huge advantage over other models which utilize
more complex and time consuming methods such as Markov chain Monte
Carlo (MCMC) or variational approximation methods. Several experi-
ments on natural images are performed to present the performance of
the proposed model compared to other parametric approaches.

Keywords: Multiclass kernel density estimation, Dirichlet compound
multinomial distribution, Markov random field prior, Image
segmentation.

1 Introduction

Image segmentation techniques usually require some prior information about
the regions of interest through a human input to produce satisfactory results
[1]. However, in many cases, providing the prior knowledge about the present
objects or segments to the system is infeasible. Despite the performed research
during many decades, fully unsupervised image segmentation is still a challenging
problem due to the fact that there is no clear objective measure about how
a particular segment can be considered as meaningful. Moreover, parametric
methods e.g. Gaussian mixture models (GMM) [5] which aim to fit predefined
density functions to the existing distribution of the data may fail to capture
the underlying structure due to poor assumptions or complex density shapes
[3]. In these situations, an unsupervised method which can infer the required
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information only using the data itself without any severe assumptions that may
restrict the estimation process can be highly advantageous.

Along with different density estimation methods, spatial smoothness con-
straints have been used in image segmentation problems to take into account
the local commonality of the location while grouping the data together [2]. The
performance of the segmentation technique highly depends on using this a priori
knowledge about the image that the adjacent pixels presumably belong to the
same cluster. These constraints can be imposed on the prior probability of the
class labels [4] or alternatively, can be considered in a more meaningful sense on
the hyper-parameters of the prior distribution of the mixing portions through a
Markov random field (MRF) distribution [2]. In this paper, a Bayesian framework
for unsupervised image segmentation is presented which automatically infers the
required information about the regions through the local contextual analysis of
the data as well as considering its global distribution, at the same time. Addition-
ally, the proposed method allows incorporation of some partial prior information
on the assignment of the points through the posterior class label probabilities.

The remainder of the paper is organized as follows: The non-parametric den-
sity estimation method is presented in Section 2. Section 3 describes the Dirichlet
compound multinomial distribution on the class label variables. Spatial smooth-
ness constraints is given in Section 4 and in Section 5, MAP-EM estimation
algorithm for the proposed method is presented. A discussion on the feature
extraction for image segmentation is given in Section 6. Section 7 contains the
experimental results of the proposed method on a set of natural images and
finally, Section 8 discusses the results and concludes the paper.

2 Non-parametric Density Estimation

In non-parametric density estimation, only a few assumptions are made about
the shape of the distribution generating the data. The idea is to consider a proba-
bility bump around each data point using a kernel function [5]. With assumption
of an i.i.d. dataset, the probability density function in a particular point in the
space is then, estimated by summing up the effects of the surrounding data
points. Smoother density functions can be obtained by considering smoother
kernel functions. A common choice is the Gaussian kernel function defined by

Kσ(x,x
′) =

1√
2πσ2

exp

(
−‖x− x′‖2

2σ2

)
(1)

where σ2 is the variance and can be chosen separately for each point based on
local analysis of the data [10]. In case of multiple classes, the density function
of a class is estimated by using only the points belonging to that class. Let X =
{x1,x2, . . . ,xN} be the set of D-dimensional observations (features) generated
by K independent processes, Cj , j = 1, 2, . . . ,K and zi be the K-dimensional
binary latent random variable of point xi in which all the elements are equal to
zero except a particular element zij = 1, which represents the class label of the

point. The probability density function of class Cj can be estimated by
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f̂j(x) =
1

Nj

N∑
i=1

zijK(x,xi) (2)

where Nj =
∑N

i=1 z
i
j and it is used to have a valid probability density function.

In case of an incomplete dataset, the class labels are not available explicitly and
thus, zij in equation is replaced by its expected value, E[zij ].

The expected value of the indicator variable zij under the posterior distribution
is given by

E[zij ] =
πi
j f̂j(x

i)∑K
k=1 π

i
kf̂k(x

i)
= γ(zij) (3)

in which, πi
j = P (zij = 1) is the prior probability that xi belongs to class

Cj . Thus, γ(zij) is just the responsibility of jth process for data point xi [5].

Substituting zij in (2) with its expected value (3), we may have

f̂j(x) =
1

Ñj

N∑
i=1

γ(zij)K(x,xi) (4)

as the density estimate, where Nj in (2) is replaced by Ñj =
∑N

i=1 γ(z
i
j). Addi-

tional prior information on true class labels of some particular data points (e.g.
labeled by a human observer) can be incorporated by considering the responsi-
bility of the corresponding process for those points equal to 1.

3 Dirichlet Compound Multinomial Distribution

For each pixel (feature vector) xi =
[
xi
1, x

i
2, . . . , x

i
D

]T
, the class label zi is taken

to be a random variable having a multinomial distribution with a set of pa-
rameters ξi = {ξi1, ξi2, . . . , ξiK}, where K is the number of classes. By definition,

P (zi|ξi) = M !∏K
j=1(z

i
j)!

K∏
j=1

(ξij)
zi
j (5)

with

ξij ≥ 0,

K∑
j=1

ξij = 1, i = 1, 2, . . . , N (6)

Therefore, zi is considered as the outcome of M realizations of a multinomial
process with K possible outcomes. The conjugate prior distribution on ξi follows
a Dirichlet distribution with parameters αi = {αi

1, α
i
2, . . . , α

i
K}

P (ξi|αi) =
Γ(

∑K
j=1 α

i
j)∏K

j=1 Γ(α
i
j)

K∏
j=1

(ξij)
(αi

j−1) (7)
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where αi
j ≥ 0 and Γ(�) is the gamma function. The sum of the hyper-parameters

αi
0 =

∑K
j=1 α

i
j indicates the level of confidence in the prior information about the

processes generating the data. Larger values of αi
0 yields lower variance among

different realizations of the parameter ξi, i = 1, 2, . . . , N [11].
Under the Bayesian framework, the probability of class label zi given αi is

obtained by marginalizing over ξi

P (zi|αi) =

∫ 1

0

P (zi|ξi)P (ξi|αi)dξi, i = 1, 2, . . . , N (8)

Substituting (5) and (7) into (8), and considering the property

∫ 1

0

Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

K∏
j=1

(ξj)
(αj−1)dξ = 1 (9)

yields the following expression for label probabilities [11].

P (zi|αi) =
M !∏K

j=1(z
i
j)!

Γ(
∑K

j=1 α
i
j)

Γ(
∑K

j=1 α
i
j + zij)

K∏
j=1

Γ(αi
j + zij)

Γ(αi
j)

(10)

with i = 1, 2, . . . , N .

4 Spatial Smoothness Constraints

In case of a single image, the prior probability value of pixel xi generated by
process Cj is the outcome a Dirichlet compound multinomial process with only
one realization [2]. Therefore, M = 1 in (10) and considering the property that
Γ(x+ 1) = xΓ(x), the prior label probabilities for xi become

πi
j = P (zij = 1|αi) =

αi
j∑K

k=1 α
i
k

, j = 1, 2, . . . ,K (11)

The local smoothness constraints in the model is considered by assuming a
Markov random field (MRF) [12] spatial prior on the set of all hyper-parameters
A = {αi}, i = 1, 2, . . . , N of the model

P (A) ∝
K∏
j=1

(βj)
−N exp

[
−1

2

∑N
i=1

(
(αi

j − α̃i
j)

2 +
∑

m∈Ni
(αi

j − αm
j )2

)
β2
j

]
(12)

The second term in the energy function imposes the local smoothness of the
hyper-parameters in a neighborhood Ni of site α

i [2]. The first term controls the
confidence of the model by modifying the value of αi

j in each iteration of the EM

algorithm. The higher values of posterior probability γ(zij) = P (zij = 1|xi,A)

tend to increase the αi
j and vice versa. In this paper,

α̃(t+1) = α̃(t)φ(γ(zij)) (13)
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where α̃(t) is the value of α̃ in the previous iteration of the EM algorithm and
φ(γ(zij)) is a monotonically increasing function of γ(zij). A reasonable choice
of φ(�) is a shifted and scaled version of hyperbolic tangent function, because
of its interesting properties and non-linearity. It has a large slope for values
near the origin while its slope gets smaller for the larger values of the input.
The function is shifted and scaled so that for values of posterior probability
which equal to 1

K (uniform distribution), φ( 1
K ) = 1 and α̃(t+1) = α̃(t), since

the posterior probability equals to the case having maximum entropy and does
not provide any useful information for modifying the hyper-parameters. On the
other hand, the maximum value of φ(γ(zij)), which occurs when γ(zij) = 1, is

chosen in such a way that it increases the α̃(t) by 5%.

5 MAP-EM Estimation

Considering the prior distribution defined in (12), yields the following MAP
function to be maximized.

Q(A|X,Z) =

N∑
i=1

K∑
j=1

{
zij

[
log(

αi
j∑K

k=1 α
i
k

) + log(f̂j(x
i))

]
+ log(β−1

j )− 1

2

Δ

β2
j

}

(14)
where

Δ = (αi
j − α̃i

j)
2 +

∑
m∈Ni

(αi
j − αm

j )2 (15)

To maximize (14) at the M-step with respect to αi
j , its partial derivative with

respect to αi
j should be set to zero. By setting ∂Q

∂αi
j
= 0, we have the following

third degree polynomial equation in αi
j

(αi
j)

3 +

[
Ai

−j −
2
∑

m∈Ni
αm
j α̃i

j

2|Ni|+ 1

]
(αi

j)
2

−Ai
−j

[
2
∑

m∈Ni
αm
j + α̃i

j

2|Ni|+ 1

]
(αi

j)−
β2
jA

i
−jγ(z

i
j)

2|Ni|+ 1
= 0 (16)

where

Ai
−j =

K∑
k=1
k �=j

αi
k, i = 1, 2, . . . , N (17)

and |Ni| = 8 for a 8-neighborhood.
Based on the constraints in (7), that is αi

j ≥ 0, the constant term in (16) is
negative, therefore the product of the roots is positive. This implies that for real
valued roots, either all three roots should be positive or two of them be negative
and the other one be positive. Since the quadratic term is positive, the sum of
the roots should be negative and therefore, two of the roots are negative and one
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of them is positive. In case of a real root along with a pair of complex conjugate
roots, the real root should be positive since the product of the roots is positive.

Finally, the update equation for βj , j = 1, 2, . . . ,K can be obtained by

setting ∂Q
∂βj

= 0 which yields

β2
j =

1

N

N∑
i=1

[
(αi

j − α̃i
j)

2 +
∑

m∈Ni

(αi
j − αm

j )2

]
, j = 1, 2, . . . ,K. (18)

The overall procedure for MAP-EM estimation is summarized as follows:

• Initialize the posterior class label probabilities as well as the parameters
αi and α̃i, i = 1, 2, . . . , N of MRF. Moreover, find the kernel values
between each pair of pixels (features) in the image.

• Do until the MAP function (14) does not change significantly:

• Find likelihood values P (xi|Cj) = f̂j(x
i), j = 1, 2, . . . ,K for each

point xi using (4).
− E-Step

• Find posterior probabilities γ(zij) that pixel x
i belongs to class Cj .

• Update α̃i’s using (13).

− M-Step

• Update the parameters of the Dirichlet distribution by only keep-
ing the real non-negative roots of the polynomial equation (16).

• Update the prior probabilities for the pixel labels (11).
• Update the class variances β2

j , j = 1, 2, . . . ,K (18).

• End

6 Feature Extraction for Texture Representation

Extracting the proper features to represent meaningful textural properties is an
important step in image segmentation. In this paper, Blobworld features [9] were
used because of their good performance in natural image processing.

6.1 Blobworld Features

Blobworld features include a smoothed version of L*a*b* scale values as color
features, as well as three texture features (polarity, anisotropy and contrast) [9].
Unlike the color which is a point property, texture representation requires local
analysis of a pixel in its neighborhood. The process consists of finding the proper
smoothing scale in a pixel neighborhood and then, calculating the texture fea-
tures using the eigenvalues and first eigenvector of the second moment matrix
in the corresponding scale.
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Fig. 1. Segmentation results: a) Original image, b) Ground truth, c) Results the of
proposed method with K = 2, d) Results of the proposed method with K = 4

7 Experimental Results

Since the EM algorithm is sensitive to initialization, the experiments were per-
formed several times using random initializations of the parameters and the
termination criterion to be satisfied was defined as the percentage of change of
the value of (14) between two consecutive iterations be less than the predefined
threshold. Additionally, morphological smoothing operations were performed to
remove small isolated components in the final stage.

The experiments on natural images were carried out on a subset of 50 images
of Berkeley Segmentation Dataset [6, 7] which also contains the manual border
annotation of the images as the ground truth for comparison purpose. Examples
of segmentation results are shown in Fig. 1 and Fig. 2. As it can be seen, ob-
jects and background are separated accurately with respect to the ground truth.
Moreover, due to the smoothing property, increasing the number of clusters does
not simply produce larger number of isolated segments that are usually trivial
and may only confuse the result. Additionally, by using Blobworld features, the
boundaries between textured regions are maintained, as discussed in [2].

To obtain quantitative comparison of the results with conventional mixtures
of Gaussians method, for a subset of 25 image containing meaningful object
and background, the number of True Positive TP (classified as object by both
the algorithm and the ground truth), True Negative TN (classified as non-object
by both the algorithm and the ground truth), False Positive FP
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Fig. 2. Segmentation results: Continued

(non-object classified as object) and False Negative FN (object classified as non-
object) pixels were stored. Then, recall and fall-out,

recall =
TP

TP + FN
(19)

and

fall-out =
FP

FP + TN
(20)

were calculated as a measure of segmentation quality, as suggested in [8]. Addi-
tionally, the overall accuracy

accuracy =
TP + TN

TP + FP + TN + FN
(21)

was also considered for each image.

Table 1. Recall, fall-out and accuracy for 2-class segmentation

Recall Fall-out Accuracy

GMM 78.55% 19.14% 80.89%

Proposed method 85.25% 14.77% 85.79%
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The average values of recall, fall-out and accuracy over the subset of images
for 2-class segmentation for both methods are shown in Table 1. As can be
observed, the proposed method outperforms GMM in all the cases.

8 Conclusion

A fully unsupervised image segmentation method was presented in this paper.
Kernel density estimation was performed using posterior class label probabili-
ties of all data points and a MRF prior probability distribution was considered
to impose spatial smoothness on the adjacent pixels. Update equations of the
parameters were derived in a closed form solution in MAP-EM framework. The
experimental results on natural images show that the proposed method outper-
forms the conventional GMM method in all cases.
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