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Abstract. In this paper, we aim to improve the accuracy of LBP-based
operators by including texture image intensity characteristics in the oper-
ator. We utilize shifted step function to minimize the quantization error
of the step function to obtain more discriminative operators. Features
obtained from shifted step function are simply fused together to form
the final histogram. This model is generalized and can be integrated with
other existing LBP variants to reduce quantization error of the step func-
tion for texture classification. The proposed method is integrated with
multiple LBP-based feature descriptors and evaluated on publicly avail-
able texture databases (Outex TC 00012 and KTH-TIPS2b) for texture
classification. Experimental results demonstrate that it not only improves
the performance of operators it is integrated with but also achieves higher
accuracy compared to the state of the art in texture classification.
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1 Introduction

Algorithms proposed for texture classification [1], [2] have been applied to many
computer vision applications such as object recognition, remote sensing, and
even for recognizing people using biometric modalities [3]. In general texture is
defined without restriction on orientation, scale or direction. Rotation invariant
features are proposed to classify textures [4], [5]. However, performing texture
classification robust to image photometric changes is still an open problem.

Histograms of local descriptors computed from the image can be successfully
applied for texture analysis [4]. Local Binary Patterns, LBP describe the image
by the sign of subtracting the centre pixel from surrounding pixels. It is shown
to be computationally light and invariant to monotonic intensity changes. Some
researchers attempted to enhance the LBP in terms of rotation invariant his-
togram bin selection, multi-resolution feature extraction and image information
enrichment. Ojala et al. investigated which bins are robust to rotation that led
to rotation invariant patterns [4]. Maenp#d and Pietikiinen studied the effect of
various kernels and neighbourhood pixel selection to compute LBP features for
texture analysis [6].

J.-K. Kamariinen and M. Koskela (Eds.): SCIA 2013, LNCS 7944, pp. 66-[5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Incorporating Texture Intensity Information into LBP-Based Operators 67

Another direction of improving LBP distinctiveness that has recently at-
tracted researchers is to include the image intensity information in the LBP
operator. Image intensity information is embedded either by features character-
izing gray-scale information or directly utilizing its value with the LBP operator.

Among feature operators that were intended to enrich the information ex-
tracted by LBP, Guo et al. proposed LBP Variance (LBPV) to embed the local
gray-scale variance information into the LBP histogram [7]. Another solution
was to Complete the LBP (CLBP) by combining the sign, magnitude and cen-
tral pixel intensity information. [8]. However, the need for image illumination
normalization is one of the major drawbacks of using centre pixel gray level in
CLBP [9]. In another research work, Ghahramani et al. benefited from the in-
tensity level information of facial images by employing multiple thresholds in
the LBP operator to include the missing information of the centre pixel that
improved face and family verification performance [10].

The LBP operator calculates the local difference of the centre pixel and its
surrounding pixels independently from the centre pixel gray-scale information.
Figure 1 presents three samples of texture classes on which corresponding classes
are indicated. Using the conventional LBP descriptor the inter-class histogram
x? distance of samples in Figure 1 (b) and (c) is ‘0.0002’. It is apparent the
relative intensity levels of centre pixels and their neighbours are different in the
two provided texture samples. If centre pixel intensity level information is con-
sidered to calculate the histogram (when the step function is shifted by 20); the
histogram distance increases significantly by ‘73’ times. Note that the intra-class
x?2 histogram distance between samples in Figure 1 (a) and (b) only increases
by ‘1.7’ times, if the step function shifted by 20 is used for LBP descriptor.

In this paper we propose to reduce the step function quantization error in LBP
operator to include the relative intensity information in LBP-based operators
for texture classification. Unlike [8] and [10], The proposed approach is generally
applicable to various LBP modifications. We study the effect of shifting the
step function over the pixel intensity range. On selected texture databases we
achieve highest accuracy using the same number of neighbouring points ‘P’ and
in the neighbourhood of Radius ‘R’. It obtains higher accuracy than the previous
operators attempting to include the image intensity level in the LBP such as [8],
[9], [10] and [11] and other state-of-the-art operators.

Fig.1. Samples from Outex TC 00012 (a) Class A; (b) Class A; (c) Class B
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The rest of the paper is organized as follows, we review LBP based operators
in Section 2. In Section 3, we propose our solution to reduce the quantization
error of the LBP sign function. Experiments are conducted on well-known texture
databases to verify the accuracy improvement achieved by the proposed approach
compared to the state-of-the-art operators for texture classification in Section 4.
Finally, Section 5 concludes the paper.

2 A Review on LBP

The LBP operator encodes the gray-scale information of each image pixel and its
neighbour as a binary string [4]. Histogram of calculated binary codes represents
the LBP feature of the image that characterizes the texture pattern. The LBP
feature is calculated for centre pixel ‘g.” where it is surrounded by pixel ‘g, as
in equation (1),
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where ‘s’ is the sign function,

S(x):{l,ifx > 0; 2)

0, otherwise.

Due to the changes of binary code in case of image rotation, rotation invariant
patterns were introduced by Ojala et al. [4]. To benefit from training data, a
learning framework was proposed by Guo et al. to obtain discriminative pat-
terns among LBP patterns [11]. It was then formulated into a three-layered
model to estimate the optimal pattern subset of interest in terms of robustness,
discrimination power and feature representation capability [11]. It was claimed
that it can be integrated with existing LBP variants such as the conventional
LBP rotation invariant patterns, CLBP and Local Ternary Pattern (LTP) [12]
to obtain disLBP"*, dis(S+M)"" and disLTP" respectively [11]. In order to in-
corporate contrast of local image texture Ojala et al. proposed to measure the
local variance invariant to rotation as,

1 P-1 1 P-1
VARp r(c) = P Z(gp —n), where p= P Z 9p (3)
p=0 p=0

They stated that it is invariant against shifts in gray-scale by definition. The
feature was named VAR. Since LBP"**? and VAR are complementary operators,
they defined joint distribution of LBP"*? and VAR as LBP/VAR, a precise and
rotation invariant measure of local image texture [4]. It was shown to be robust
in terms of gray-scale variations based on the obtained experimental results. The
training was performed on a particular rotation angle and tested with samples
from other rotation angles.

Recently, LBP Histogram Fourier transform (LBP-HF) proposed by Zhao et
al. provided high accuracy in static and dynamic texture recognition [9]. It is
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computed from discrete Fourier transforms of LBP histograms. It can be easily
generalized to apply to other uniform operators. They proved it is more robust
against image rotation and photometric changes and achieved higher accuracy
than original domain histograms [9]. For example, LBP-HF, LBPHF M and
LBPHF S M can be developed by computing the discrete Fourier transforms
of LBP, LBP M and LBP S M, respectively. On the other hand, Texton-based
representations were also proposed for texture classification [13].

The one-level sign function employed in the LBP maximizes the quantization
error. This drawback exists in other approaches using the step function in the
literature as the output does not make any difference for all positive values or on
the other side for all negative values. Next, we illustrate our proposed method
to reduce quantization error of step function used in LBP-based operators by
increasing quantization level and fully incorporate image intensity pattern.

3 The Proposed Solution

Our purpose is to reduce quantization error of the sign function utilized in LBP-
based operators. As illustrated earlier, three samples of texture classes from
Outex TC 00012 [14] are depicted in Figure 1. Corresponding classes are indi-
cated on image samples. In fact, Class A contains pixels that their neighbours’
gray-values change significantly relative to the centre pixel compared to that
of Class B. Using the conventional LBP descriptor the inter-class histogram x?2
distance of samples in Figure 1 (b) and (c) is ‘0.0002". If we use a shifted step
function for LBP operator to consider the relative intensity difference between
centre pixel and its neighbour the histogram distance becomes ‘0.0146°. Their
x? distance increases by ‘73’ times to ‘0.0002’ while their average intra-class x2
distance is approximately equal for class A.

Henceforth, we aim to incorporate the missing information of texture’s local
relative gray-scale characteristics into the LBP operator. We propose to reduce
the quantization error of the step function generally used in the LBP operator.
As our goal is to incorporate the local relative intensity changes the resulting
operator will not affect illumination robustness of the operator.

Our solution involves selecting thresholds to shift the step function over the
possible gray-scale changes. Since intensity changes from pixel to pixel vary [- Py,
P,], it should span this range of Pixel depth ‘P,’. In general, quantization levels
could be Uniformly or Non-uniformly adjusted. We select Uniformly-sampled
Thresholds for the step function utilized in the LBP-based operators. Assume
that a General LBP-based operator denoted by GLBP is a function of s(x) in
equation (2) denoted by J(s(gp — gc)),

GLBPpr(c) = J(s(gp — gc)), (4)

We propose to use ‘K’ thresholds uniformly sampled in the range of [-Py, Py] to
shift the step function. The resulting Uniformly-sampled Thresholds for GLBP
operator denoted by UTGLBP is the union of features evaluated with different
thresholds as,
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UTGLBPp r(c) = UK utglbpp g(c, Thr;), (5)

where,
utglbpp p(c, Thr;) = J(s(gp — ge — Thr;)) (6)

This opens the problem how to adjust thresholds sampling steps, denoted by
“Thr;’, select distinctive thresholds among sampled thresholds and fuse features
evaluated using each threshold. Our answer to these questions is to select ‘Thr;’
and concatenate features evaluated from thresholds to create one vector. In cases
that testing set does not contain major unseen samples, distinctive thresholds
could be selected for each class to reduce feature dimension while maintaining the
accuracy. We choose to simply select threshold indices for feature concatenation
for odd number of thresholds. We assume that ‘Thr = 0’ is among thresholds
and its index is ‘(K+41)/2" where ‘K’ is odd. If total number of feature sets
extracted from thresholds to be concatenated is equal to ‘K=2n+1’ the UTGLBP
is evaluated as,

UTGLBPp r(c) = U? utglbpp r(c, Tth+ K41 ) (7)

j=-n

Feature Dimension Reduction

The proposed descriptor can be easily applied to LBP-based operators and im-
proves their accuracy in texture classification. LBP-HF produces 38, 138 and
302 features for ‘P’ equal to 8, 16 and 24 respectively compared to LBP"*“?
producing 10, 18 and 26 for the same settingsi. We suggested concatenating
‘n’ thresholds from ‘K’ uniformly sampled thresholds and it increases feature
dimension by ‘n’ times. Hence UTLBP-HF(24,3) produces very sparse feature
vector of size (n*302). To tackle this problem, we propose a simple hypothesis
to check among all histograms generated from ‘K’ thresholds which bins differ
among classes. We perform a simple inter-class histogram difference calculation
among the training set and calculate their summation. The calculated histogram
is then normalized and the bins that are smaller than 10~* are removed from the
overall concatenated histogram of all ‘K’ histograms. The performance achieved
after feature dimension reduction of UTLBP-HF is reported in parenthesis ‘()’
in Tables 2 and 3.

4 Experiments and Discussion

We evaluate the performance of various well-known high performance LBP-
based operators with/without integrating the proposed shifted step function
and comparisons are made among them. Experiments are conducted on two tex-
ture databases: Outex TC 00012 [14] and the challenging KTH-TIPS2b database
[15] for material classification. In the first set of experiments conducted on Ou-
tex TC 00012, we evaluate the performance of LBP [4], LBP-HF [11] with our
proposed multi-step function integrated with them. Results of multiple subsets
of histogram bins that are shown to be robust against rotation ‘ri’ [4] and ‘riu2’
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[4] are also included. In addition, other operators aiming to tackle the lack of
relative gray-scale difference information in the LBP step are examined. As the
first step, operators listed in Table 1 were all tested on Outex TC 00012 to ex-
amine which could obtain the highest accuracy while trying to benefit from pixel
intensity information.

In the second part of experiments we validate the performance obtained by
the most discriminative operator with Uniformly-sampled Thresholds for feature
operators on the Outex database on a more challenging texture database to
validate our results. We choose the material classification database that contains
samples of multiple classes of substances captured under illumination, pose and
scale changes known as KTH-TIPS2b the material database [15].

To have fair comparisons of operators performances which depend on their
distinctiveness, we adapt the same experimental settings as explained in [4].
Features of training samples are extracted and the non-weighted x? distance is
utilized to measure the dissimilarity between histograms. Based on standard pro-
tocols the nearest neighbour classifier (1-NN) decides which class in the training
set the query sample belongs to [14], [15].

Do note that, no illumination normalization is utilized to be fair to other
operators. In all experiments thresholds are selected for P;=256 and T hr;=10.
we consider thresholds from -100 to 100 as large pixel differences are quite rare to
happen in neighbourhood pixels. It generates ‘K=21’ thresholds where features
evaluated at 11*" shifted step function are equivalent to the original step function
and ‘n=10". We choose number of thresholds to be concatenated when adding
further shifted step functions does not improve the accuracy significantly.

4.1 Experiments on the Outex TC 00012

Outex TC 00012 contains 24 texture classes. Using the ‘inca’ illuminant, 20 sam-
ples were captured from each class and the training is done on 480 samples as
described in [14]. The test set comprises samples collected under two separate
scenarios. Problem ‘000’ contains rotated samples captured under the ‘t184° il-
luminant and Problem ‘001’ comprises samples illuminated by ‘horizon’. Each
problem consists of 4320 samples that results in 8640 samples. We report our
results as the mean accuracy obtained in both problems ‘000’ and ‘001°.

Using the feature operator abbreviations indicated in Table 1, we compare
accuracies of LBP M"“? [8], LBP M""? [8], LBPHF M [9], LBP S M"? [g],
LBPHF S M [9], VAR [4] and LBP/VAR [4] on the Outex TC 00012 database.
These results were adopted from [9] and we used the LBP MATLAB implementa-
tion from www.cse.oulu.fi/CMV /Downloads/LBPMatlab. We analyse the accu-
racy improvement achieved by integrating the proposed step function by compar-
ing the accuracy of LBP"*? [4], LBP-HF [9] with UTLBP""? and UTLBP-HF
respectively.

Moreover, Guo et al. [11] proposed disLBP", dis(S + M)"* and disLT P
features to select discriminative features of LBP, CLBP [8] and LTP [12] re-
spectively and we quote their results for further comparison. Note that perfor-
mance of LBP M“?, LBP M""? LBPHF M, LBP S M""2? LBPHF S M and
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Table 1. Notations and their corresponding definitions in this paper

Abbreviation| Method

LBP™ Uniform sign LBP

LBP™? Rotation invariant uniform sign LBP

LBP_M" Uniform magnitude LBP

LBP M™* Rotation invariant uniform magnitude LBP

LBP_S M™ | Concatenation of sign LBP™ and magnitude LBP™”
LBP-HF Uniform LBP histogram Fourier

LBPHF M Uniform magnitude LBP histogram Fourier

LBPHF S M| Concatenation of sign & magnitude LBP histogram Fourier
disLBP" The Discriminative Local Binary Patterns

dis(S +M)" The Discriminative Completed LBP

disLTP" The Discriminative Local Ternary Pattern

VAR Rotation Invariant Variance measure of the image contrast
LBP/VAR Joint distribution of LBP*™? and VAR

VZ-MR8 VZ algorithm obtained from (MRS) filters

VZ-Joint VZ algorithm obtained from original image patches

UTLBP Uniformly-sampled Thresholds for LBP

UTLBP-HI Uniformly-sampled Thresholds for LBP-HF

VAR, LBP/VAR and disLBP", dis(S + M)", disLTP" are quoted from [9],
[4] and [11] respectively. We also compare texton-based representation to model
the Markov Random Fields (MRF) joint neighbourhood distribution in [5]. The
early version of Varma-Zisserman (VZ) algorithm uses the Maximum Response
8 (MRS) filters with various pixel window sizes support, known as VZ-MRS [5].
The second version was then modified in the way that the source image patches
are directly utilized in the joint representation [13].

Texture classification accuracies are shown in Table 2 for all aforementioned
operators listed in Table 1 on this database using threshold concatenation. We
observe that improvements are achieved in several aspects:

1. Various feature operators aim to tackle the lack of relative pixel intensity
information in LBP-based operators, such as LBPHF M [9], LBP S M"2
8], LBPHF S M [9], VAR [4] and LBP/VAR [4]. Our proposed step func-
tion can successfully embed the missing information in the operators LBP
and LBP-HF to obtain more discriminative operators UTLBP and UTLBP-
HF respectively. The improvements achieved by UTLBP and UTLBP-HF
relative to LBP and LBP-HF are comparable to other LBP enhancements
independent from neighbour settings.

2. Unlike descriptors such as VAR for which the accuracy reduces when ra-
dius increases from 2 to 3, increasing the radius improves the accuracy on
proposed UTLBP-HF.

3. UTLBP-HF outperforms selected state-of-the-art descriptors. The proposed
feature dimension reduction method in Section 3 reduces UTLBP-HF di-
mension to 6 and 4 times of LBP-HF for ‘P’ equal to 16 and 24 respectively
and their performance is reported in parenthesis in Table 2.
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We test the most discriminative feature operators from the Outex TC 00012
i.e. UTLBP and UTLBP-HF, on a more demanding database to validate their
discrimination power with the well-known state-of-the-art operators.

Table 2. Performance of the state-of-the-art operators and the proposed method with
different (P,R) parameters on the Outex TC 00012. Accuracies in parenthesis are with
feature dimension reduction in Section 3.

Database Method (8,1) (16,2) (24,3)
LBP"™ 56.9 58.9 56.9
LBP™™ 64.6 78.9 83
UTLBP™ 81.1 92.3 93.6
LBP-HF 74.1 90.3 92.4
UTLBP-HF 85.9 97 (96.5) | 97.7 (97.8)
LBP M™ 49.6 56.7 59.4
LBP M ™ 61 73.1 79.9
Olggglgc [BPHEM | (23 85.6 874
LBP S M™ 71.4 86 90.4
LBPHF S M 78.6 94 94.9
VAR 64.5 69.5 65.8
LBP/VAR 77.8 85.4 86.9
disLBP" 68.3 84.5 91.6
dis(S +M)" 74.1 92.9 95.9
disL.TP" 69 89.1 95

4.2 Experiments on KTH-TIPS2b

The challenging KTH material database contains Textures under Illumination,
Pose and Scale variations known as KTH-TIPS2b. It consists of 11 materials
each with 4 different subcategories of physical characteristics [15]. We choose
the standard protocol as in [15]. We first train on ‘b’ number of subcategories
(1 < b < 3) for all materials and then test on the remaining ‘4-b’ subcategories.

This is repeated for all possible permutations of sets and the average of tex-
ture classification accuracy is reported. In this paper, only experimental results
for test 3 (b=3) are tabulated due to lack of space. For our proposed method, we
select thresholds as the same settings reported for Outex TC 00012. To prevent
from over fitting on training dataset, we report results of concatenating nine
thresholds (n=4) for all tests. We compare the results of the best features we
obtained from the Outex TC 00012 experiment on the KTH-TIPS2b database in
Table 3. The proposed feature dimension reduction method in Section 3 reduces
UTLBP-HF dimension to 3 times of LBP-HF for (R,P)=(3,24). The results in
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parenthesis report the performance by only reducing UTLBP-HF(24,3) features
in Table 3. The feature dimension reduction is only applied to radius 3 for multi-
resolution UTLBP-HF.

Table 3. Texture classification accuracies of the state-of-the-art operators and the
proposed operators on the KTH-TIPS2b database/tests

Database/Test| Method Parameters/types Accuracy
LBP™™ (24.3) 57.8
UTLBP™™ (24,3) 61.6
UTLBP-HF (24.3) 66.3 (68.9)
KTH-TIPS2b | UTLBP-HF (8,1)+(16,2) +(24,3) | 67.9 (69.6)
Test 3 LBP™™ (8,1)+ (16,2) +(24.3) 60.3
UTLBP™ (8,1)+(16,2) +(24,3) | 63
\V4 MRS 55.7
VZ Joint 60.7

The state-of-the-art performance is directly quoted for LBP™™? [15], with
radii suggested in [15]. Accuracies of VZ-MRS8 and VZ-Joint are also tabulated
in Table 3 where 40 textons per class are utilized to build the universal dictio-
nary for every texton [15]. The results show that not only utilizing the proposed
UTLBP and UTLBP-HF improves the accuracy of LBP and LBPHF respec-
tively, but also the UTLBP-HF outperforms other state-of-the-art operators on
the KTH-TIPS2b database experiments.

5 Conclusion

In this paper, we proposed to embed local relative intensity information of tex-
ture images to LBP-based operator. Our solution relies on reducing quantization
error of the sign function widely used in LBP and its enhanced operators. The
proposed method could be easily applied to the features based on LBP operator.
We evaluated the proposed method on two texture databases using their respec-
tive suggested testing protocols. The results show that the developed UTLBP-
HF achieves the highest accuracy among the stateof- the-art operators in the
literature. Moreover, integrating the proposed method to selected operators en-
hances their accuracy more than other modifications such as VAR, LBP/VAR
and CLBP proposed in the literature.
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