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Abstract. Detecting smaller elevated objects, like chimneys, in high resolution
images has several important applications, such as collision warning. On the other
hand, the already existing 3D models (that already include the terrain, buildings
and vegetation) can be enriched by new instances. There are not many contribu-
tions about extracting fine roof details in the literature. Therefore, we developed
a new, modularized algorithm for detecting these details as hot spots in the local
elevation maps; such a map is typically obtained by a multi-view dense match-
ing method. We use explicit and implicit assumptions on data in order to tighten
the search range for chimneys and reduce the number of false alarms. Finally,
filtering hot spots by means of color or intensity images takes place. Thus, good
detection rates can be achieved for a data set consisting of several high resolution
images taken over a residential area.

Keywords: Chimneys, depth map, hot spot detection, multi-view, modeling, roof
details, urban terrain.

1 Introduction and Previous Work

Automatic detection and reconstruction of urban terrain from aerial images has been
studied for several decades and has a wide field of applications. Some of them are
urban planning, surveillance, but also obstacle and collision warning. For this reason,
it is often an advantage to extract not only large elevated objects, such as buildings and
vegetation, but also smaller ones, e. g. chimneys or high-voltage transmission lines. The
state-of-the-art offers many approaches for detailed reconstruction of buildings [1–3] in
aerial images (possibly supported by other sources of information, like airborne laser
point clouds), but there are not many contributions for detecting chimneys and other
fine roof structures to find, in spite of their good visibility in more than one image. In
[4, 5] and other comparable sources, the authors either arrive at the conclusion that too
small details can hardly be extracted, or they marginally report about their detection
without sufficient quantitative analysis. Indeed, it is not easy to extract these details if
the only input is a set of optical images. Even the case of Nadir images, these details
can be easily confused with roof-lights, solar cells, shadows of trees or street lamps,
and many others.

Beside a pure scientific interest of being able to detect smaller objects – one of the
most interesting and challenging topics of image analysis – and thus enrich the 3D
models of urban terrain, detection of small objects is useful for various applications.
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For example, in [6, 7] chimneys are recognized to be a disturbing entity for change de-
tection respectively building reconstruction. Moreover, automatic detection of chimneys
is also an interesting topic in verification of heat pictures with regard to heat isolation of
roofs, placing telecommunication lines, and, concerning military and police activities,
choice of launching and landing site for helicopters as well as possible hide-outs.

Recently, by combining the generic probabilistic approach for multi-view depth maps
computation [8] and a context-based approach of building reconstruction from elevation
maps [9], it was possible to create a reconstruction procedure that goes the entire way
from image sequences to semantic 3D models of urban terrain. They consist of build-
ings (modeled by polygons), vegetation (trees) and digital terrain model (DTM). This
procedure and its modifications are described in [10, 11]. In this work, we propose an
additional module for extracting small elevated objects by a hot spot detector. We use
discretized elevation maps as the main input. To avoid the problem of oversmoothing
such hot spots using some non-local method, we use the local result of the elevation
map in combination with the so called confidence maps. These maps are a measure of
how reliable the depth value of a given pixel is. The texture image will only be used to
verify the hypothesis. The modeling step is the only one for which it becomes relevant
what kind of elevated roof details we are dealing with. For the rest of this paper, we
identify ”small roof segments” with ”chimneys” which are modeled by 3D cuboids.

The paper is structured as follows: The necessary background on our procedure for
urban terrain reconstruction will be given in Sec. 2 and the step of detecting chimneys –
our main contribution – in Sec. 3. Qualitative and quantitative results are given in Sec. 4.
Finally, Sec. 5 summarizes main ideas and research directions of the future work.

2 Multi-view Dense Reconstruction and Urban Terrain Modeling

Suppose we have several images with corresponding camera matrices. It has been an
important area of research how to obtain precise and reliable 3D positions for a dense
set of pixels in these images. Many of the state-of-the-art methods mentioned in the
survey [12] presuppose retrieving (discrete) depth or disparity values j ∈ {1, ...,L} for
pixels i ∈ {1, ...,N} in some reference image. The collection of depth and disparity
values, D(i) = j, is called depth or disparity map D. In order to treat occlusions in a
robust way, the method [8] uses simultaneously a multi-view configuration and starts
by computing a data-cost term Edata( j, i) for every pixel i and every label of the dis-
cretized depth scale j. To do this, dissimilarities (for example, absolute differences of
gray values) between pairs of images are measured and Edata( j, i) is the average value
of the lower among them. The term Edata( j, i) is perturbed by a triangle-based term
Emesh( j, i) that penalizes the difference between j and j0, the initialization of the depth
label that may stem from triangle interpolation of depths of several available 3D points.
Finally, a smoothness term E smooth( j, i) that penalizes the difference of depth labels for
neighboring pixels, transfers the geometric problem of depth map computation into a
multi-labeling problem: Find the mapping D(i) that minimizes the total energy term
over a two-dimensional graph:

E =
N

∑
i=1

(
Edata +Emesh +E smooth

)
(D(i), i). (1)
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This problem has LN solutions in total and cannot be solved in a polynomial time.
Therefore, approximating algorithms must be considered. In the current work, the semi-
global optimization method of [13] was replaced by the graph-based alpha-beta-swap
procedure due to [14, 15] that is available online, because it yields slightly better results
for Nadir images where many 3D points lie in fronto-parallel planes. However, because
a non-local method often oversmoothes some small hot spots treating them as noise, we
will use the local result – that is, the minimum value within the i-th column in the L×N
matrix Edata( j, i) – as the main input for a hot spot detector (hence solving (1) is not
needed here). From Edata( j, i), we can also compute a confidence map C , see e. g. [8]. If
the confidence value for a pixel lies below a threshold, this means that the minimum of
the corresponding column of Edata is rather shallow. All such pixels are excluded from
the detection of hot spots.

Since depth value of a pixel codes a 3D coordinate of the surface point, the local or
global result for the depth map can be transformed into an elevation map or digital sur-
face model (DSM), denoted by Z or Zloc, respectively. The procedure for detection and
reconstruction of buildings remains roughly the same as in [9], though several modules
are modified as indicated in [10, 11]. The building detection part consists of extracting
DTM, separating buildings from vegetation as well as filtering and labeling elevated
regions of the difference DSM – (DTM + Vegetation). This labeled image B comprises
our building hypotheses. The building reconstruction part contains modules for bound-
ary extraction, roof detail analysis and texturing of the resulting 3D polygons by means
of the input images. In the roof detail analysis step that we address here, we replaced
the normal vector extraction and clustering from local gradient information proposed
in [9] by the more global RANSAC procedure [16], modified in an appropriate way.
Three points are chosen randomly to constitute a plane and the set of inliers (points that
are close enough to the plane) is determined. After evaluation of several such plane hy-
potheses, the plane with the biggest number of inliers is chosen. With a Least Squares
optimization, the plane is adapted successively to the set of inliers after which a new
set of inliers is generated. These two subroutines – inlier set (re)computation and non-
linear refinement – are repeated iteratively over the whole point cloud. The resulting set
of inliers is temporarily removed from the point cloud and the procedure of dominant
planes extraction begins again with the remaining points. This technique can be applied
either on whole buildings, or, in case the building ground polygon can be cut into pieces
in a reasonable way along its diagonals, on each building part.

Because RANSAC often oversmoothes small roof details (dormers, chimneys), we
make an effort to identify them in advance, model them separately, and exclude the
corresponding 3D-points from further consideration.

3 Detecting and Modeling Chimneys

The road-map of the algorithm with an emphasis on input for chimneys detection mod-
ule (Zloc,B ,C and the reference image I ) is visualized in Fig. 1. The three main steps,
namely, hypothesis generation (hot spots detection), hypothesis verification and model-
ing chimneys is described in subsections 3.1, 3.2 and 3.3, respectively.
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Fig. 1. Road-map for urban terrain reconstruction with a focus on chimney detection

3.1 Hypothesis Generation

Though any hot spot detector can be used for detecting small elevated regions in the
difference of Zloc and the DTM, we decided to use the MSER (Maximally Stable Ex-
tremal Regions) method [17]. Its performance has shown advantages in comparison to
a similar procedure, namely, an enhanced version of [18]. Also, a fast implementation
of this algorithm [19] is available. As a main input, MSER requires a discretized (8-bit)
intensity image. In the first step, its pixels are sorted by their intensity levels. Then, a
temporary image is flooded level by level allowing components to be built, extended
and merged. The most stable components are those with very slowly growing areas as
a function of the current intensity level g:

g = argmin
g′

A(g′+ δ)−A(g′ − δ)
A(g′)

+ ε|A(g′)−A0|, (2)

where A is the area function, A0 = 1m2 · image resolution2 is a typical chimney size in
pixel, δ = 1 or 2 is an algorithm parameter and ε is a negligibly small scalar needed to
resolve ambiguities for the case the numerator in (2) is zero. For a chimney that has a
height z0, the absolute difference in pixels between the intensity values of its seed and
the background in the 8-bit image will be:

d = 255
z0

Δh
, (3)

where Δh is the height range in the elevation image. In order to increase the resolution of
elevations for a better detection of chimneys, our goal must be to reduce Δh. To do this,
the minimum and maximum values for elevation (zmin and zmax = zmin +Δh) are given
by the minimum and maximum elevations, respectively, of the building with chimneys
in B . In case that many buildings in the data set have too different heights, one can
subdivide the image in smaller parts or even rescale the data for every single building.
In the data set presented in Sec. 4, it was not needed, and an empiric value between 4 and
5 meters was used for zmin. Moreover, all pixels for which the confidence map C < c0

and B = 0 are excluded from consideration. Here c0 is a user-specified threshold and
B is the morphological closing of B followed by an erosion. This is done to avoid false
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alarms at the building borders that are caused by sudden jumps in the local elevation
map (see Fig. 2, top row, middle). The hot spot detector is applied at the image

Z ′
loc =

255z0

Δh
(Zloc −DTM− zmin) · (C > c0) · (B > 0), (4)

which is only non-zero inside of buildings of sufficient elevation and confidence.

Fig. 2. Top row, left: Part of the reference image. Middle: Part of the local elevation map Zloc.
Right: Result of non-local optimization (oversmoothing noise, but also some fine details). Bottom
row, left: Confidence map from the local result as a color map. Middle: Binary mask with MSERs
colored white. Three of four chimneys of this building were detected. Right: Ground truth of roof
plane segmentation.

Finally, we are concerned about the choice of other parameters for the MSER algo-
rithm. The issue of interest is given by fair components on the dark background. The
minimum and maximum area of a component is given by A0 from (2). The difference
of intensity values within the component and the contrast are given by the maximal
height of a chimney in the data set and equation (3) while a filter on intensity values in
the component restricts the position of a chimney. We keep track of these parameters
within the computation of MSERs in order to collect only components of suitable prop-
erties and to perform necessary filtering afterwards. In Fig. 2, we show for a test data set
discussed in the results section: A fragment of the reference image, the corresponding
fragments of the local and non-local elevation maps, confidence mapuadra as well as of
the result of the MSERs detection with the ground truth of roof plane segmentation.

3.2 Hypothesis Verification

So far we have not used the RGB-image. In this section, we show two possibilities how
to reduce the number of false alarms among detected components. In the majority of
cases, the false alarms are provoked by noise in the depth map and correspond to rather
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homogeneously textured areas in the original image. On the other hand, presence of
chimneys exhibits some variations of the color distribution in I . Therefore, the simplest
kind of verification consists of considering the standard deviation σ of color or intensity
values of pixels in the component: f = σ(I (i ∈ C)), where C is the connected compo-
nent previously detected, · denotes a morphological dilatation and I (·) can denote a
scalar or vector function, in the case of intensity or color images, respectively. Only
components for which ‖ f‖ exceeds a threshold (≈ 20 for an 8-bit image) are accepted
and modeled as chimneys.

An alternative approach consists of computing MSERs in the original image. We
compute here both fair and dark hot spots for the gray image I , but only reduced to the
regions around the previously detected components. This helps saving computation time
and verifying which hypotheses result from the noise and which ones exhibit structure
in the textured image and are therefore most likely to be true positives.

3.3 Modeling Chimneys

The height of a chimney is given by the average local elevation value of all pixels –
of sufficient confidence – that lie in the corresponding connected component. Since
we are only concerned about detecting and not about retrieving the exact structure of
the chimney, we consider a quadratic segment whose size is calculated from the area
of the component (in pixels) and image resolution. Such an open cuboid, provided a
typical texture of a chimney, is added to the model at the position that corresponds to
the centroid of the component, as depicted in Fig. 3.

Fig. 3. A detailed view of the 3D model for the data set Vaihingen. House roofs and surrounding
terrain are textured with the image of Fig. 4, left, and wall textures are standard. Trees are detected
and modeled as proposed in [10].
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4 Test Data and Computational Results

The test data set is the test area 3 of the ISPRS WG III/4 benchmark on object detection
(ISPRS, 2012). Seven 16 bit pan-sharpened color infrared images showing the village
Vaihingen in southern Germany are given. Moreover, also the corresponding camera
matrices, as well as a very detailed ground truth result are available. The area of interest
contains 56 buildings and the number of chimneys is 61. The reference image is taken
from the almost Nadir perspective and will therefore serve as the coordinate system for
the elevation map. The data set is very suitable for the evaluation of results. On the
one hand, the detailed ground truth segmentation is available. On the other hand, the
data set contains many buildings with almost all kinds of challenges that are charac-
teristic for the discussed task: Shadowy regions (partly shadow of trees on the building
roofs), overexposed and underexposed segments, high voltage transmission lines over
the house roofs and many others. The data set thus offers a lot of examples all of which
should be tackled with the same parameters. The depth map was computed and build-
ings were extracted as explained in Sec. 2; these input data and intermediate results are
visualized in Fig. 4. The subsequent evaluation measures the correctness (ratio of true
positives among the total number of all detected objects) and the completeness (ratio of
true positives among all objects of interest in the ground truth) of the extracted candi-
dates. It is clear that in most cases, a choice of parameters that contributes to enhancing
correctness (that is, reducing false alarms) will reduce completeness, and vice versa.

Fig. 4. Left: Part of the reference image from the data set Vaihingen and the intermediate results
of the buildings (green polygon interiors) and vegetation (yellow) detection. Right: The corre-
sponding elevation map (without vegetation) computed from seven images with [8].

In case of filtering based on standard deviation, as proposed in the first paragraph
of Sec. 3.2, up to 40 out of 61 chimneys could be detected, and there were 12 false
alarms. Tightening thresholds yields 36 correct and six false alarms. In other words, the
correctness rate of our algorithm takes on values between 0.77 and 0.85 while the com-
pleteness is little lower, between 0.59 and 0.66. The result of detecting MSERs in the
reference image and considering intersection yields 42 true alarms and 16 false alarms
or in values 0.74 and 0.75 for completeness and correctness, respectively. Finally, using
the enhanced version of [18] for detection of hot spots instead of MSERs deteriorates
the results: The number of false alarms grows (correctness 0.60) while the completeness
measure remains at 0.61.
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As mentioned before, the main source of false positives lies in image noise: Shadows
of the trees or other objects on the building roofs often result in mismatches of our dense
matching procedure; neither can they be filtered out by means of the RGB image. In the
first strategy, filtering based on standard deviation, roof ridges sometimes provide an
additional source of errors. These are actually elevated regions, but the colors of the
roof are not the same due to different angles of incidence of the sun. Another reason
of obtaining false alarms lies in different kinds of elevated objects on the roof (open
garret windows, TV antennas, flower pots on the balconies) that are spuriously accepted
as chimneys. The main reason for missed chimneys lies in shortcomings of the hot
spot detection. Several chimneys can be filtered out after computation of MSERs in
original images because the algorithm in its original implementation can either detect
dark regions with a fair background or fair regions with the dark background. Probably,
another segmentation algorithm would be more suitable here. Also, because we perform
an erosion of B , several chimneys near building outlines have also been lost. This step
is, however, necessary since local depth maps have many outliers in shadowy, partly
occluded regions around buildings.

5 Summary and Outlook

We presented a fast, straight-forward and fully automatic procedure for chimneys de-
tection in multi-view configurations of high resolution images of urban terrain. To our
knowledge, it is the first method that explicitly extracts fine roof details although several
possible applications can be outlined. Although we assumed in this work that the cam-
era matrices corresponding to these images and the depth ranges are available, this in-
formation can be obtained from images by means of a structure-from-motion approach
(such as [20, 21]) in a relative coordinate system; since orientation and scaling is an
easy task, one can state that no further information beside images is actually needed.
The procedure has a modular structure: Its modules for hot spot detection, verification
etc. can easily be replaced or modified if needed.

The procedure uses explicit assumptions – that is, we search for small elevated re-
gions of the DSM, usually with a certain contrast with respect to the background – but
also implicit assumptions; for example, the fact that chimneys are usually visible in
more than one image of the sequence reflects in a high confidence. Another implicit
assumption, namely, that chimneys usually cast shadows, justifies the application of
the hypothesis verification module of Sec. 3.2. It was possible to achieve a satisfactory
result for completeness and correctness while evaluating a test data set with many build-
ings and containing a large number of problems the algorithm has to deal with. In Sec. 2,
we mentioned that roof planes segmentation is carried out by means of RANSAC, with
a consequence that smaller regions tend to be oversmoothed. However, if care is taken
and these regions are pre-computed in advance and excluded from further considera-
tion, the qualitative and quantitative results of the reconstruction will become better
and an appealing and accurate 3D model (see Fig. 5) can be enriched by new instances.

As a consequence, in our future work, we shall not only trail the results of detection
of chimneys but also their reconstruction (height and exact position) as proposed in
[22]. In addition, we shall adapt our algorithm for other kinds of small elevated objects
(vehicles, transmission lines) and to test its performance on a broader class of data sets.
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Fig. 5. A view of the 3D model for the data set Vaihingen
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