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Abstract. This paper presents an unsupervised method to detect and
segment anomalies and novel patterns in sequential data, images and
volumetric data. The proposed Multiscale Phase-Only Transformation
(MPHOT) addresses the case when no prior knowledge about the data
or even its dimensionality is provided. It is based on the fusion of the
Phase-Only Transform (PHOT) in scale space using only one adaptive
sensitivity parameter. The PHOT uses the Discrete Fourier Transform
(DFT) to remove all regularities while it detects small defects and pat-
tern boundaries. The proposed multiscale extension allows the precise
segmentation of large anomalies as well. We present experiments on syn-
thetic and measured data in fields of time series analysis, image process-
ing and volumetric data segmentation to show the universality of our
approach.

Keywords: Unsupervised Anomaly Detection, Novelty Detection, Tex-
ture Segmentation, Volumetric Segmentation, Data Mining.

1 Introduction

The detection of “novel” or abnormal patterns in sequence or spatial data has
many applications in signal processing and data mining. For one-dimensional
time series there are applications in sensor monitoring tasks or audio data pro-
cessing. In the two-dimensional case there is the huge field of image processing
with applications in surface quality inspection as well as the detection of salient
objects for e.g. robot vision systems. In the three-dimensional domain there are
possible applications in analysis of medical MRI/CT images or meteorological
data.

In many applications, sensors collect large amounts of data which mostly con-
tains regions with unremarkable background patterns. However, it is possible
that certain regions show significantly different patterns which potentially indi-
cate the need for further analysis. The human vision system can rapidly detect
abnormal patterns in images or 2D-visualizations of data without the need to be
specially trained. In real-world applications, manual inspection of huge amounts
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of data is usually undesired because it is repetitive, time consuming and also
subjective and therefore potentially error-prone. Hence, there is a high demand
for the automation of such tasks.

Aiger and Talbot proposed the Phase-Only Transform (PHOT) [I] to auto-
matically detect defects in textured images using the phase information from
the Discrete Fourier Transform (DFT). Their results are already promising and
resemble the human perception of abnormal patterns in images. Motivated by
the simplicity and effectiveness of the PHOT, we analyze further properties and
also limitations. We present improvements of the PHOT to achieve not only the
detection of anomalies but also a precise segmentation. Furthermore, we extend
the algorithm to n-dimensional data which opens new application fields.

2 Related Work

A lot of research has been made in the fields of novelty or anomaly detection.
General overviews of state-of-the-art research can be found in [2] and [3]. First,
the type of input data is important for choosing a certain approach. Data for
novelty detection can be separated into unrelated data, such as feature vectors
for classification, and spatial, temporal or graph-based related data. To detect
abnormal patterns in time series, grayscale images and volumetric data, we as-
sume that these anomalies can be characterized by their salient patterns which
are defined by a significantly different spatial or temporal distribution.

A popular approach for anomaly detection in data streams is the extraction
of problem-specific features, such as statistical, structural, filter based or model
based features [4]. These features are analyzed with statistical or machine learn-
ing methods to detect anomalies. Usually a set of well-chosen features outper-
forms generalized methods for a particular application. But these features need
to be adapted when the patterns in the data may change dynamically. Another
aspect is the availability of data labels as methods are generally separated into
supervised, semi-supervised and unsupervised approaches. In applications where
samples of both normal and abnormal classes can easily be generated, a super-
vised approach is normally preferred. Since it is often impossible to train all
possible normal and abnormal patterns that might occur, unsupervised methods
require less maintenance. In case of unsupervised anomaly detection in sequen-
tial data, various approaches have been proposed, such as time series bitmaps
[5], symbolic representations [6] and time frequency analysis in combination with
support vector machines [7].

It is believed that a fast preattentive stage is responsible for the extraordinary
pattern recognition capabilities of the human (or mammalian) vision system [g].
This stage processes basic features like color, contrast, orientation and motion to
discard irrelevant visual information. Computational models of visual attention,
first introduced by Itti and Koch [9], use the fusion of feature channels to derive
so-called saliency maps indicating important areas inside of images. In [10], [11]
and [12] frequency based models for visual attention are presented which are
closely related to our approach.
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3 The Phase-Only Transform

3.1 Definition and Applications

We focus on the case when the data pattern can change significantly and un-
foreseen anomalies have to be detected robustly when there is no prior training
data available. This case is addressed by Aiger and Talbot in [I]. They propose
a simple method to detect “patterns that do not appear much” in grayscale im-
ages without any training using a spectral whitening process which is basically
a normalization of the magnitude in the discrete Fourier domain. The remain-
ing phase contains important parts of the signal [I3]. Since all operations can
be applied to n-dimensional arrays (or tensor data), we present the generaliza-
tion of the originally proposed PHOT. Furthermore, we added two modifications
denoted with an asterisk *). Given an n-dimensional input array

Al 1) =A(w) 5 R, 0<l<N,....,0<l,<No, lheZ (1)

where an index item of the N1 x ... x N,, array is denoted as vector v € V € Z".
V is the index set and contains |[V| = Ny - Na - ... N, items.

1. Transform A(v) into the DFT domain: A®@) + DFT, (A(v)) where v € v
denote the spatial frequencies.

2. For Vo € V normalize each number by its magnitude:

Anorm (v) = A(v)/[A(V)],  |A@)[ = \/3“3(14(5))2 + S(A(©))? > 0

3. Perform inverse DFT to obtain: O(v) < IDFT,,(Anorm (7))

4. *) Apply the absolute value function to O(v) < |O(v)|. This step prevents
the cancellation of positive and negative values during the following filter
operations.

5. Apply an n-dimensional Gaussian filter G, with ¢ = 3.0 to obtain:

O(v) + O(v) * G,.

6. Compute the scalar mean p and standard deviation o of all values in O(v)
and apply the Mahalanobis distance: Opgor (v) < (O(v)—pu)/o forV(v) € V
and o > 0.

7. *) Cut values below zero: Opgor (v) « max(Opgor(v),0) Yv € V because
after the modification in step 4, only positive values of the Mahalanobis
distance indicate significant anomalies.

The functions DFT,,(-) and IDFT,,(-) denote the n-dimensional DFT which can
be computed of sequences of one-dimensional DFTs [14]. The Gaussian filter
is needed to dampen the high noise level in the Opgor(v) array due to the
emphasis of high frequencies. The resulting evidence array contains the anomaly
energy or significance for each item v. This array can be thresholded to obtain a
binary segmentation in which values Opgor(v) > Tp denote an abnormal item.
The authors in [I] suggest a global threshold Ty = 4.0 to detect defective areas
in case of 2D image processing.
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3.2 Properties and Limitations

The PHOT removes any regular pattern at any scale while high filter responses
appear near or at boundaries of irregular patterns. This behavior can be ex-
plained as follows. Under the assumption of an additive signal model

A(U) = Aperiodic(v) + Aanomaly(v) (2)

in which the periodic part consists of the superposition of harmonic functions
while the abnormal pattern differs significantly from the periodic one. In [I] the
authors explain the effect with a non-negative phase integral excursion of the
abnormal signal. The way how the DFT realizes local information leads to an
alternative explanation. The phase shifts the periodic functions so that their
superposition is non-zero at least at pattern boundaries. The magnitude of all
periodic waves is normalized which causes the values at these borders to gain
significantly more weight. In proximity to these boundaries Gibbs overshoot
and ringring phenomena occur, but their intensity is always smaller than the
main peak causing them [15]. In fact, in the one-dimensional case the overshoot
can be quantified to around 8.9%. The absolute value operation in step 4 (our
modification) of the generalized PHOT causes the mean p of O(v) to raise so that
the influence of the artifacts on the positive Mahalanobis distance is reduced.

An example of this transform can be found in figure [l in which the origi-
nal PHOT and our modified PHOT have been applied on an image showing a
Brodatz texture collage [16]. Our results provide precise localizations of small
defects and much clearer contours of larger defective areas. The proposed mod-
ifications dampen the effect of the Gibbs artifacts, though the detected areas
appear slightly too large. Furthermore, only the boundaries of large abnormal
areas are detected because a regular pattern in the inside is removed by the
PHOT as well as the regular pattern outside.

(a) input image (b) PHOT by [1] (c) modified PHOT

Fig. 1. Example application of the PHOT on a collage of Brodatz textures showing 3
abnormal, circular areas
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4 Multiscale Extension of the PHOT

4.1 Motivation for the Multiscale Extension

Many visual attention models, like [9], use multiscale analysis to detect size-
invariant salient areas. We transfer this idea to the PHOT in order to achieve
a complete or “filled” segmentation rather than a boundary estimation of the
anomalies. Using a multiscale approach avoids the need for a shape model (e.g.
convex shapes) which is desirable since there is no prior knowledge about the
morphology of abnormal areas.

4.2 Multiscale Fusion

The idea is to compute a data resolution pyramid, perform the modified PHOT
on each scale and merge the results to achieve a scale-invariant anomaly segmen-
tation. Given an n-dimensional array A(v), the Multiscale Phase-Only Trans-
form (MPHOT) is defined as follows. First, a set of m scales is determined
while we use dyadic Gaussian resolution pyramids S,, = {s1, S2,...,S$m} with
s; = 2711 1 <4 < m. Experiments in section [} show that the best results can
be obtained using S5 = {1.0,0.5,0.25,0.125,0.0625}.

1. For Vs; € S use linear interpolation to scale down A(v) to A;(v). Note that
the size of the array is scaled to [s; - N1] X ... x [s; - Np].

2. Perform the n-dimensional modified PHOT defined in section Bdlto all A4;(v)
and obtain the scaled PHOT arrays Opror,:(v).

3. In order to overcome the Gibbs artifacts at boundaries we suggest the use of a
generalized morphological erosion [I7] which causes a thinning of areas with
high values in the evidence array. We choose a centered structuring element
K in shape of an n-cube with k™ one-entries while we use an element size of
k =5: Opror,i(v) < Opror,i(v) © K.

Note that a “gray value” erosion is meant here which selects the minimum
value in the neighborhood defined by K. R

4. For Vs; € S use linear interpolation to scale up Opnor,i(v) to Opror,i(v)
with the size of the input array A(v).

5. To realize the fusion of the results we suggest a nonlinear element-wise
weighted summation:

Ompror(v) =Y T(s:)

=1

(OPHOT,Z’(”)) VoeV, T(s;)=To-s;7 (3)

where T'(s;) is a scale-adaptive evidence threshold function containing the
base threshold Ty parameter and the factor s;7. This factor compensates
the decay of the evidence values at smaller scales due to alias effects. Ex-
periments show that v = g,) equalizes well the maximum evidence values at
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all scales. The division by the scale-adaptive threshold T'(s;) introduces a
percentaged metric in which the value 1 means “100% significance” using
threshold Ty. The fusion exponent o > 1 emphasizes values greater than 1
and dampens values below. Experiments show that a = 2 works well in the
sense of anomaly shape preserving and reduction of false positives.

6. Apply a threshold to the significance values Oppror(v) > 1 (greater or
equal 100% of Tp) to obtain the final segmentation.

The main parameter of the MPHOT is the significance threshold Ty for the
Mahalanobis distance which is similar to the one in [I], but takes the accumu-
lated significance at all scales into account. Example applications on one- and
two-dimensional data can be found in figure Pl and Bl The main effect of the
multiscale fusion can be seen in both dimensions: The high resolution scale fil-
ters detect boundaries which are subsequently “filled” with the responses of the
smaller scales. A threshold of Ty = 3.0 is used here which is a good “global”
parameter, as our results in section Bl show. The MPHOT extension basically
uses PHOT (which relies mainly on DFT and convolution), linear interpolation
and mathematical erosion which are available in many programming libraries.
The multiscale extension only considers down-scaled PHOT calculations which
can independently be processed in parallel on CPU or GPU devices.

100% significance threshold -+ scale 0.125
scale 1 scale 0.0625
scale 0.5 = fusion
— — — scale 0.25
! ! i La A\ ]
400 500 600 700 800

Fig. 2. Application of the MPHOT on synthetic time series with an anomaly in the
interval 200 < ¢ < 300 (7o = 3.0 and scales Ss)

scale 1 scale 0.5 scale 0.25 scale 0.125 scale 0.0625 fusion

Fig. 3. Application of the MPHOT on the texture collage of figure [l (7o = 3.0 and
scales S5)
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5 Results

The focus of our experiments is the diversity of applications of the MPHOT
rather than extensive investigations on single problems. To show the flexibility
of our approach we choose a set of eight diverse applications in which both back-
ground patterns and anomalies are different, but can easily be separated by hu-
mans. In case of time series we use a synthetic, periodic signal with noise (figure
), a human electrocardiogram (ECG) as well as a human electroencephalogram
(EEG) of an epileptic seizure (both figured]). In the two-dimensional case we use
a texture collage (figure[ll), a steel surface with defects and a natural photograph
with animals that should be segmented (both figure[f]). In the three-dimensional
domain we use periodic and random patterns containing anomalies (figure []).
We present combined evaluations for all dimensions to show that the MPHOT
does not need prior knowledge about the data or its dimension.

In order to measure the performance of the MPHOT with respect to the
threshold parameter Ty and the scale set S,, we evaluate the results element-
wise with ground truth data. We derive the true positive rate, false positive
rate as well as sensitivity, specificity and accuracy [18]. Our results in table [II
show that the specificity and accuracy values of the segmentation are almost
dimension-invariant. The sensitivity measure shows a higher standard devia-
tion which can be explained with the different definitions of the “degree” of
anomalies depending on the application context and also due to partly subjective
ground truth data. Figure[7] (a) shows the overall average ROC curves (Receiver
Operating Characteristic) comparing the proposed MPHOT in combination with
different sets of scales with the original PHOT [I]. We also compare two alter-
native methods, namely the Mahalanobis distance thresholding directly (MD)
and in combination with a prior Fourier magnitude thresholding (FMT+MD),
in which frequencies with high magnitudes (two times higher than the mean)
are removed. The proposed MPHOT using scales S5 performs best in our exper-
iments. Finally in figure [l (b) the effect of the threshold parameter Ty on the
Fg-score is depicted for our scenarios. The Fj-score is a weighted combination
of precision and sensitivity in which F; means an equal weight, F5 a double em-
phasis on sensitivity and Fy 5 double weight on precision [19]. In our datasets a
range for T of [2.0,3.75] performs well depending on the desired Fjg-score. The
suggested global threshold Ty = 4.0 of the PHOT in [I] also leads to good results
using MPHOT when the Fjy 5-score should be optimized.

Table 1. Sensitivity, specificity and accuracy for 7o = 3.0 and scales S5

sensitivity specificity accuracy
1D scenarios 0.774 £ 0.203 0.985 £ 0.013  0.938 &+ 0.060
2D scenarios 0.814 £ 0.100  0.991 £ 0.002 0.987 + 0.005
3D scenarios 0.744 £ 0.184 0.999 £ 0.000 0.996 + 0.002
overall (1D, 2D, 3D) 0.781 + 0.142  0.991 + 0.009 0.971 + 0.042
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(a) ECG time series with anomaly [6] (b) EEG with an epileptic seizure [20)]

Fig. 4. Application of the MPHOT on measured time series with 7o = 3.0 and scales
S5

(a) Defects in milled steel surfaces (b) Photograph of animals on a meadow

Fig.5. Application of the MPHOT on images as defect detection (a) and ob-
ject/background segmentation in natural images (b) with 7o = 3.0 and scales Ss

0
100

(a) Periodic texture and segmentation (b) Random texture and segmentation

Fig. 6. Application of the MPHOT on volumetric data containing 2 ball-shaped anoma-
lies with the corresponding segmentation using 7p = 3.0 and scales Ss. Note that the
volumetric data is only shown partly by 5 slices.
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Fig. 7. Influence of the threshold Ty and scales on ROC space and Fj-score

6 Conclusions

We presented a multiscale and multi-dimensional extension to the PHOT which
allows an unsupervised detection and segmentation of anomalies in 1D, 2D and
3D data. The proposed MPHOT provides promising results in a huge variety
of tasks while having only one main threshold parameter. Furthermore, we ana-
lyzed the optimal range for this parameter to achieve good segmentation results
without prior knowledge of the pattern inside of the data or its dimension. As
only few approaches for unsupervised, dimension-invariant anomaly segmenta-
tion exist, future work will cover the comparison to state-of-the-art methods at
each dimension. Additionally, new applications of the MPHOT on even higher
dimensional data need to be explored.
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