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Abstract. We present a system for structure from motion estimation
using additional positioning data such as GPS data. The system incor-
porates the additional data in the outlier detection, the initial estimates
and the final bundle adjustment. The initial solution is based on a novel
objective function which is solved using convex optimization. This ob-
jective function is also used for outlier detection and removal. The initial
solution is then refined based on a novel near L2 minimization of the
reprojection error using convex optimization methods. We present re-
sults on synthetic and real data, that shows the robustness, accuracy
and speed of the proposed method.

1 Introduction

A classic problem in computer vision is how to estimate both the camera motion
and the structure of a scene given only image data of said scene. This is known
as the ”Structure from motion” or SfM problem. Today, there exist systems that
take thousands of images as input and solve the SfM problem in an automatic
way, see e.g. |1, 2].

A big problem for many of these systems is the occurrence of outliers in the
data, i.e. points that fit the initial models but do not fit the final models. These
outliers cause major problems for the non-linear optimization methods, and can
often result in local minima. Another problem is the speed of convergence of the
different parts of the reconstruction pipeline when the amount of input data and
estimated model parameters grows very large.

To remedy this, new approaches using convex optimization have been intro-
duced in the computer vision community over the last years, see e.g. [340].

Today cameras are ubiquitous and image data is readily available. In addition
to the pure image data there is today in many cases more information available
both about the camera position and the structure of the scene. This could be
e.g. GPS data, user geo-tagged images or depth information of the scene. The
additional information is often complementary in nature to the pure image infor-
mation. We believe that this information should be used in conjunction with the
image data in order to simplify the estimation problem, make it more robust and
make it faster. In order to fuse data from different modalities in a consistent way,
it is important to work with meaningful objective functions in the optimization.
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Much of the work that has been done incorporating both visual and positional
data are set in a real-time framework, in a SLAM setting see e.g. [7]. Incorpo-
rating positional information in systems such as these is usually done in the
final bundle adjustment. A number of contributions exist that incorporate e.g.
GPS information into the final optimization, see e.g. [8412] or odometric data
[13-15]. If the initial estimates are not good enough this could lead to problems
with local minima, which we show in the experimental section. We have found
that incorporating additional known positional cues during the whole estimation
process can make a large difference on the final reconstruction.

In this paper we will focus on a batch setting, where we try to solve the whole
SfM problem with all the data available. We will show how additional positional
data can be incorporated in the complete structure from motion estimation
framework, and in this way both make the solutions more robust and more
accurate as well as in some cases even speed up convergence. In order to do
this we formulate a number of error measures that incorporate both image and
positional data. We show, using methods from convex optimization, how these
minimization problems can be solved in an efficient way. We have focused on
estimating the translation of the cameras and 3D points and assume that the
orientation of the cameras is known. There are a number of efficient methods for
estimating consistent rotations between cameras, see [16-18], and any of these
can be used in conjunction with our system.

Our key contributions in this paper are:

— A system for structure and motion estimation based on image data and
additional positional data. The positional cues can be used in all steps of
the estimation.

— An approximate Lo-norm formulation of the reprojection error. The goal
function can be solved globally optimal using a novel method based on convex
optimization.

2 Preliminaries

This section presents some theory and concepts which will be needed in the
following sections. Additional information and proofs on convex optimization
and SOCP problems can be found in [19].

Given a quasiconver objective function f and convex constraints f;, we can
decide whether the optimal function value f* is larger or smaller than some
~v € R, by solving the convex feasibility problem

find (1)
subject to  f(x) <« (2)
fl‘(.’b)gbi,i:l,...,m. (3)

These kinds of problems can be solved with great efficiency using interior point
methods. As a consequence, quasiconvex problems can be minimized using bi-
section. For a particular class of convex optimization problems, the constraints
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are of the form ||A;z + b;|| < ¢!« + d;. These constraints describe second order
cones, and the corresponding problems are called second order cone programs
(SOCP).

Given a set of image points, seen in a set of images, we would like to recover
the scene structure and the relative motion between the cameras. If the mea-
surement errors are assumed to follow the normal distribution, the statistically
optimal solution is given by minimizing the Lo norm of the reprojection errors.
Unfortunately, this is in general a very difficult function to minimize. Only local
methods exist, which cannot guarantee global optimality. One way of handling
this is to instead minimize the Lo norm of the error, see |3]. Using the Lo, norm
instead of the Ly norm, makes it possible to find the global minimum.

Let v be an image point, U the corresponding estimated 3D point, and R and
C orientation and center of the camera, respectively, so that with no noise we

1] =) Y] 0
If
R=|n].
T3

then we can write the reprojection error as

o= I (U—C)’Tz)EU—C)) _)"U’HQ’ (5)

where A = r3 (U — C) is the (unknown) depth of the point U. We consider the
sublevel sets by setting e < € and multiplying both sides by A,

[(r1 (U =€), 72 (U = €)) = dully < €A (6)

When u, R and € are known, this is a second-order cone. That means that the
reprojection error is a quasiconvex function in U, C' and A. If there are many
points and cameras, then the maximum reprojection error is still a quasiconvex
function and can be minimized using bisection.

From now on, we assume that the rotational part of each camera is determined
in advance. This is a reasonable assumption, and has become common practice
in recent approaches. Methods for robust estimation of camera rotations are
presented in |[16-18, [20].

3 Framework

In this section the different steps of our system will be explained, including
outlier removal, approximate Lo optimization and incorporation of positional
cues.
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3.1 Outlier Removal

As we saw in the previous section, the structure and motion problem can be
solved optimally in L., norm by solving a sequence of convex feasibility problems.
However, this is under the assumption that we have correct matchings between
corresponding feature points in different images. This is rarely the case in real
world scenarios. Thus, gross incorrect point matches, i.e. outliers in the data,
need to be handled. We will here present a minimization scheme that can be
used to remove outliers in a way similar to [21]. As suggested in [22], the cone
constraints can be made more flexible using auxiliary variables. Equation (@)
becomes

14 (U = C), 12U — €)= Null, < A+, (7)

where there is one s > 0 for every image point. This allows the reprojection
error to become larger than the prescribed threshold e. Ideally, we would like
to minimize the number of active (i.e. non-zero) s(i). This is however a very
difficult problem, so following |22] we settle for the Ly relaxation and minimize
>, s(i) subject to s(i) > 0 for all . When this minimization is complete, all
outliers can be purged from our problem by removing all image points (i) for
which s(i) > 0. Thus, solving one convex optimization problem, a solution can
be found guaranteeing that the maximum reprojection error is smaller than e.

3.2 Approximate Lo

As we have seen, using a bisection algorithm, we can find the optimal solution to
the Lo, problem. As discussed in section 2] what we really would like to minimize
is the Lo norm of the reprojection errors. This is asking to much. However we
can formulate an approximation to the Lo norm, as a SOCP. To see how, we
consider again equation (&]). We would like to solve:

minimize; e2 (7). (8)
Thus, we start by looking at e:

o _ ((r1=uir3)(U = €))% + ((r2 — uars)(U = €))?
e = ) (9)
)2
where u; is the ith component of u. Imagine for a moment the square in the
denominator removed. Let us call this function g. To see that g is a convex
function, recall that a function is convex if its epigraph is a convex set. The

epigraph of g is given by {(z,¢)|t > g(x))}. This can be written as

b

which is a second order convex cone. We can write the minimization of g as

{(x, t)] ; (t+cTz) > H <aTx, b, ;(t — ch)))

minimize ¢ (11)
subject to ¢ > g(x). (12)
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By using (I0), we see that we can rewrite the constraint as a second order cone.
Hence, we can formulate the minimization problem of g as the second order cone
program

minimize ¢ (13)

1
subject to  |[(h1, ha, h3))|| < 2(t + ), (14)

where, to keep notation compact, hy = (11 —u1rs)(U —C), ha = (ro —uars)(U —
C), hs = 3(t —A). We can extract depth estimates A from the outlier removal
step. Given these, we can use the above reasoning to approximate (@) by

o hi+h3
er="1" "2 (15)

AA
To conclude our work so far, we summarize the preceeding sections in an al-
gorithm for computing structure and motion using an approximate Ly norm.

Algorithm 1. (Approzimate Lo SfM)
1. Perform outlier removal as suggested in section [31)), by solving
minimize; s(i),

subject to the constraints given by equation (7).
2. Use the solution obtained during the outlier removal step to get depth esti-
mates \(i). Solve () using the approzimation in ({I3).

In the above parametrization, there is an ambiguity in the choice of coor-
dinate system. Structure and motion is determined up to unknown scaling and
translation. The approximate Lo norm presented has a slight bias toward scaling
down the solution. This is a result of using the approximate depth. To overcome
this, and to be able to handle positional cues, we fix the scale by enforcing all
depths to be larger than, or equal to, 1.

3.3 Incorporating other Sensors

In this section we show how to incorporate additional positional cues. Probably
the most readily available measurements, besides the image itself, is GPS-data.
We would like to be able to incorporate such information in our framework.
Let C (j) be a position measurement for camera j. If the measurement error
is assumed to follow the normal distribution, the statistically optimal solution
is to minimize the Lo norm of measurement errors. Since the scale of the recon-
struction is already fixed, as described above, we need to decouple scale from
position measurements. We introduce a variable ¢ and write the Ly norm of the

measurement error as Hgé(]) - C’(])H
2
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Following the idea we used in section B.2] we see that it is possible to formulate
minimization of the scale invariant Lo norm as the convex problem

minimize Z s(7) (16)
i
subject to  ||P||y < ;(s(z) +1), (17)

where P = (c¢1(i) — c1(4), sé2(i) — c2(i),s¢3(i) — c3(i), 5(s(i) — 1)), and ¢;(j) is
the ith coordinate of camera j.

Under the assumption that the different types of errors are independent, it
is statistically optimal to weigh the errors by their variance, see the classic
paper [23]. The modified objective function for the second optimization step
becomes

minimize o2 Zt(z) + Uzos Z (), (18)

J

subject to constraints (I4) and (I7).

By taking camera measurements into consideration in the initial outlier re-
moval step, the set of feasible solutions is pruned. Hence, the risk that an outlier
fits into the solution is decreased. In the initial step, we optimize the L relax-
ation of the number of outliers. A point should preferably be either an inlier
or an outlier. This motivates us to use hard constraints. Thus, we decide on a
threshold and require all cameras with measurements to be placed within the
threshold distance from the measurements. Using the same notation as above
the constraints are of the form

Hgé’(i) - C’(i)H2 <w, (19)

where w is the distance threshold.

We will not go through the details here, but it is more or less straight-forward
to incorporate any additional positional cues on scene structure points that are
available.

Algorithm 2. (SfM with Positional Cues)

1. Outlier removal and depth estimation. Solve

minimize Y (i) (20)

i

subject to (4), (I3), and A(i) > 1

2. Use the solution obtained during the outlier removal step to get depth esti-
mates \(i). Solve
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minimize o2 Z pos Z s(J (21)
j

subject to ||<h1,h2,h3>>u ;<<>+A>>, (22)
1Pl < () + 1), (23)
)\(1)21. (24)

3. Do bundle adjustment on Lo norm.

4 Experiments

In this section we test our system in a number of experiments using both syn-
thetic and real data. The software SeDuMi is used to solve all convex problems.

4.1 Experiments on Simulated Data

We use synthetic data in order to be able to compare with ground truth camera
positions. Here we present two such scenarios. In the first one, an imaginary
street was placed along a circular arc. Along the sides of the street 3D points
were put on facades. Equidistant cameras were placed along the street, seeing
some of the points. Each point was registered on the cameras image plane with
Gaussian distributed error (standard deviation 0.04). Further, each camera was
annotated with position measurements, also with Gaussian errors to simulate
GPS-data. In ﬂE], the typical standard deviation of a consumer GPS-device is
given as 2.34 m. This is what we use in our synthetic experiments. Finally,
10 percent of all point correspondences between cameras were mismatched, to
simulate gross outliers. The second scenario was constructed in the same way,
but with a different geometry with uniformly distributed GPS error (0 to 4 m)
with all cameras in a spiral pattern. For each scenario, results with and without
GPS data can be seen in figure [l and table [l Looking at the table, we see that

Fig. 1. Comparison between SfM estimation for synthetic city streets. Without using
GPS cues (left circle and spiral) and using GPS cues (right circle and spiral). Red dots
are camera positions, blue dots are the estimated structure.
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Table 1. Results from the synthetic experiments. The standard deviation of the errors
in the estimated 3D points and camera positions are given by oy and o¢ respectively.
All measures are given in meters.

Circle Spiral

nO gps gps Mo gps gps
RMS 6.06 2.35 4.33 1.54
ou 3.32 1.13 1.57 0.92
oc 578 1.01 34.6 0.71

10 10! 10° 1t

Fig. 2. Here the Ls reprojection error is shown as a function of the number of iterations.
The top blue curve shows the convergence without GPS information and the bottom
green curve shows the convergence using the GPS information.

using GPS information, the standard deviation of the camera position error (i.e.
distance between estimated camera position and ground truth) had a standard
deviation o¢ of merely 1.01 and 0.71 for the two scenarios. We also get smaller
errors in the estimated 3D points (standard deviation o). This despite the
simulated GPS-errors being much larger.

4.2 Experiments on Real Data

We have conducted experiments on a number of street-view images with addi-
tional positional data available for each frame. The positional data is assumed to
have been acquired using GPS and inertial sensors, but we do not have apriori
information about the errors in these measurements. The images are 360 degree
panoramas that were rotationally registered in a common frame during acqui-
sition. This means that the orientations of all cameras are known. In figure Bl
reconstructions from two different datasets are shown. For each dataset we have
reconstructions with and without the positional cues. The reconstructions on
the left hand side are without positional cues. As can be readily seen there are
a number of problems with the reconstructions without the positional cues that
are remedied using them. Run times and number of points and cameras for the
two setups are shown in table In figure [2 the convergence of the optimiza-
tion is compared with and without using the positional cues. Here the top curve
shows the behavior without the positional cues. As can be seen the bottom green
curve converges both faster and to a lower minimum. This is rather surprising
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Table 2. Runtimes (in seconds) and number of points and cameras for the different
experiments, and the different steps in Algorithm

Experiment Nr of Nr of step 1 step 2 Bundle step 1 step 2 BA
Cameras points Adjustment with GPS with GPS with GPS
Circle 146 1082 885 291 7.74 7.71 3.42 5.42
Spiral 405 3422 24.64 8.77 32.86 13.75 9.19 33.59
City 2 332 21422 678.23 391.61  600.76 647.12 374.10 513.21
City 1 1330 79496 250.13 163.42  237.99 249.70 130.6 269.54

Fig. 3. Comparison between SfM estimations for a city section. Without using GPS
cues (top left) and using GPS cues (top right). Both reconstructions are registered to
a GIS model of the city section. Without using GPS information during step 1 and
2, the solution gets stuck in a local minimum. The second city section without using
GPS cues (bottom left) and using GPS cues (bottom right). The solution without GPS
looks decent, but suffers from drift.
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since it is the La-norm of the reprojection errors that is shown. Incorporating
the positional cues in the optimization will add terms to goal function. That we
still reach a lower minimum means that we have found a better optimum and
the blue curve has found a local optimum.

5 Conclusion

We have presented a complete system for doing structure from motion esti-
mation. In this framework we have also shown how to incorporate additional
positional cues such as e.g. GPS data into the optimization. The positional data
is used throughout the optmization process, which includes an initial global op-
timization based on the L,,-norm which is also used to root out outliers. This is
then followed by an approximate formulation of the Ls-norm of the reprojection
errors which is also solved globally. This is finally used in a bundle adjust-
ment. The process has been shown to be robust and accurate in a number of
experiments.
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