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Abstract. As tomographic imaging is being performed at increasingly
smaller scales, the stability of the scanning hardware is of great impor-
tance to the quality of the reconstructed image. Instabilities lead to per-
turbations in the geometrical parameters used in the acquisition of the
projections. In particular for electron tomography and high-resolution
X-ray tomography, small instabilities in the imaging setup can lead to se-
vere artifacts. We present a novel alignment algorithm for recovering the
true geometrical parameters after the object has been scanned, based on
measured data. Our algorithm employs an optimization algorithm that
combines alignment with reconstruction. We demonstrate that problem-
specific design choices made in the implementation are vital to the success
of the method. The algorithm is tested in a set of simulation experiments.
Our experimental results indicate that the method is capable of align-
ing tomography datasets with considerably higher accuracy compared to
standard cross-correlation methods.
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1 Introduction

Tomography deals with the problem of reconstructing an object from projections
[1]. Projections are measured by a scanning device at varying orientations with
respect to the object. Each projection consists of measurements for a set of par-
allel lines, where the line integral of the object density is measured. By rotating
around the object and creating a large number of projections, enough informa-
tion is gathered to reconstruct an object that resembles the ground truth. The
result is an ill conditioned inverse problem that can be solved using numerical
methods.

Tomography has a wide range of applications, ranging from industrial quality
control of large objects using X-rays down to imaging of nanomaterials by elec-
tron microscopy. In particular at the smallest scales, problems with the alignment
of the projection data form a key bottleneck for the quality of the reconstructed
image. The geometry that is presumed in the reconstruction process is different
from the actual geometry of the projection acquisition.

In electron tomography, the specimen has to be recentered for each recorded
image as the sample stage is not eucentric, causing lateral shifts in the projection
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images [2]. In high-resolution X-ray tomography, the rotation axis may not be
perfectly centered at the detector, leading to structured shifts in the projections.
In addition, limited accuracy of the rotation stage leads to uncertainties about
the exact projection angles. Such instabilities result in small deviations in the pa-
rameters describing the geometry. As a result, inconsistencies are present in the
system of equations governing the reconstruction problem. These inconsistencies
must be removed to obtain accurate reconstructions.

We remark that the alignment problem for tomography is fundamentally dif-
ferent from some other problems also named “alignment” in the image processing
literature [3-H5]. Compared to, for example, the alignment of photographs in a
stitching problem [3], the key difference is that for tomographic alignment, the
3D object itself is related to the (unaligned) projections by a complex inverse
problem. Therefore, projections from different angles can often not be directly
compared and can only be related to each other by solving this inverse problem.
This also makes it impossible to use image registration methods [5] for the type
of alignment we consider.

A range of tomographic alignment algorithms have been proposed, which can
generally be divided in two classes: methods using fiducial markers and meth-
ods based on automatic, markerless alignment. Marker based alignment is often
applied in electron tomography [6]. Small, dense particles are distributed among
the sample, which can be tracked accurately in consecutive projections. A system
of equations, relating the marker positions in the projection domain and their
position in the sample, can be solved to compute the alignment parameters with
a high degree of accuracy. The method requires a long preparation time and
the use of markers can result in artifacts in the reconstructed image. Instead of
fiducial markers, features in the projection data can also act as markers, [7].

For algorithms that do not use markers, a well known approach is cross-
correlation [§]. Here it is assumed that consecutive projections are similar and
differ in a smooth way, thereby making strong assumptions about the unknown
object. By finding the maximum cross-correlation between successive projec-
tions, it is possible to make a rough estimation of the alignment parameters
that can be described as an affine transformation of the projections. The main
problem of this method is its low accuracy.

Other markerless methods are based on minimizing the inconsistencies be-
tween the forward projections of the reconstructed image and the measured
projections. These methods, called projection distance minimization methods
henceforth, are a more general approach to the alignment problem. See for exam-
ple |9-11]. Other methods focus on an error measure based on the reconstruction
[12], or use passive auto-focus |13].

In this paper, a new markerless alignment method based on projection dis-
tance minimization is presented. We propose the Levenberg-Marquardt Pro-
jection Distance Minimization algorithm (LMPDM). Similar to the algorithm
proposed in |11], the alignment and reconstruction problem are solved simul-
taneously. The objective of combined alignment and reconstruction is posed as
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an nonlinear least squares optimization problem and a numerical method is em-
ployed for solving it.

Instead of the Quasi-Newton BFGS method used in |11], we choose Levenberg-
Marquardt (LM), which has been shown to yield better convergence for certain
least squares problems, as discussed in chapter 10 of |[14]. When implementing a
numerical scheme for this nonlinear least-squares problem, several design choices
must be made, with respect to computation of numerical derivatives and image
resolution. We demonstrate that these design choices are crucial to the success
of the LM algorithm in recovering the alignment parameters.

Our experimental results, based on simulated projection data, show that if a
multi-resolution scheme is combined with local smoothing of the Jacobian, our
LMPDM algorithm is capable of recovering the alignment parameters with high
accuracy. Also, the underlying tomography software library is implemented on
the GPU, which makes the algorithm scalable.

This paper is structured as follows. Mathematical background and implemen-
tation details are discussed in Section 2. In Section 3 and 4, a series of experi-
ments is described and the results are presented. Section 5 contains a discussion
of the results. Section 6 concludes this paper.

2 Methods and Implementation

This section will formulate the alignment problem in a mathematical context
and introduce the notation. Subsequently, the LMPDM method and its imple-
mentation details will be discussed. Furthermore, design choices are explained
that improve the accuracy of the alignment algorithm.

2.1 Model and Notation

The object from which the projections are acquired can be modeled by a gray
value image f : R? — R. A projection at angle @ is the collection of line integrals
over the lines lp + = {(x,y) : © cos @+ysin O = t} for detector positionst € T C R,
where 7 denotes the discrete set of detector positions, see Figure[Il The relation
between the object and its projections P(6,t) is given by the Radon transform

PO,1) = R(f) (Q,t)//jo F(@,9)8(@cos0+ysind —t)dedy, (1)

with 0 the Dirac delta function. By discretizing the image f, the set of angles,
and the set of detector positions, and numerically approximating the Radon
transform we arrive at the algebraic representation of the tomography problem.
In this form the object and its projections are related by a linear operator

Wz = p, (2)

where & € RY represents the unknown object, W € RM*¥ ig the projection
operator and p € RM is the measured set of projections [1]. From this point



492 F. Bleichrodt and K.J. Batenburg

1721\ \E\\
W \
%@ﬁ ‘\\
SN \
detector /; ei"'q)i
(a) (b)

Fig. 1. Geometry for the two dimensional case: (a) A tomographic scan: the dark gray
region represents the object along with its projection below. The detector-source pair
rotates around the object; (b) Projection acquisition at angle §; with angular offset ¢;.
The object has a shift of J; in the detector plane with respect to its assumed position.

on, we focus on the reconstruction of a single slice of the object, i.e. a 2D image
from a set of 1D projections. The object is represented as a two dimensional pixel
grid with NV pixels. Let K be the number of projections of the object that have
been acquired by a detector having D discrete elements. The total number of
line projections is then given by M = K D. The projection operator is a sparse
matrix with w; ; modeling the contribution of pixel j to the projection value
measured by detector 7. So the inner product of row ¢ of W and the object
gives a discrete approximation of the line integral over a line perpendicular to
detector i.
Projections of the object are recorded at a discrete set of angles

0=20,...,0k,
0<O, < <0k <m.

Up until now, we have assumed that the measurements correspond perfectly with
the Radon transform. In practice, each of the projections have a perturbation in
the angles as well as the object position. These are represented in the alignment
parameters

6:(51,...,(5}(,
¢ =0d1,...,0k.
as illustrated in Figure [1(b)l Accordingly, in the continuous case, a single line

projection at angle 6; and detector offset ¢ is represented by the Radon transform
including the alignment parameters:

3)

R(f) (0;+¢i, t+0;) = //700 Fa,y)0(x cos(0;+¢;)+y sin(0;+¢;)—(t+0;)) dx dy.
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In the discrete model, the coefficients in our projection operator depend on the
geometry,

W(8,¢,8)x = p. (4)

This expression for W is not easily available in closed form, but it can be eval-
uated numerically.

In an experimental setup, the projections contain noise and the perturbations
of the geometrical parameters are not known. Therefore, the system in Eq. ) is
inconsistent. Alignment involves estimating the unknown alignment parameters
in Eq. @). Minimizing the least-squares residual of Eq. () seems to be a good
approach, because in the absence of noise and when the alignment parameters
are known exactly, then Eq. () is consistent.

Now we can define the objective of combined alignment and reconstruction as
a minimization problem of the projection distance, defined by the following cost
function . .

min o [|Ir(8, 6,6, ) := min , [W(6,, &)z - pll3, (5)
with r the residual. The 2-norm is chosen because it allows us to use least
square solvers and it has some nice properties, due to its simplicity. Alternative
distance or similarity measures such as mutual information can be employed here
and might give satisfying results as well.

In Eq. (Bl), the minimization with respect to « is a linear inverse problem that
yields a reconstructed image. The minimization with respect to § and ¢ can
be seen as a non-linear model fitting problem. The combination in the full cost
function is, hence, a non-linear least squares problem.

Projection matching algorithms such as |10], consider the same cost function
as in Eq. (@), however, an alternating approach is employed. In those methods,
the alignment estimation of ¢ and & is separated from the calculation of the gray
values x. Such methods are heuristic in nature and it is not guaranteed that this
approach converges to a local minimum. This is why we chose to minimize over
the full set of variables at the same time.

The cost function seems suitable to solve by using one of the standard algo-
rithms from numerical optimization. A method specifically aimed at these kinds
of problems is the Newton-type algorithm Levenberg-Marquardt. However, due
to numerical problems, a straightforward implementation often does not yield an
accurate alignment. In the following sections, we will demonstrate that problem-
specific design choices in the implementation are essential for accurate parameter
estimation.

2.2 Levenberg-Marquardt

Levenberg-Marquardt, see chapter 10 of [14], is an iterative method that gener-
ates a sequence of input vectors {yx} = {(z®, "), §))} that have monoton-
ically decreasing cost function values. Each iteration has the basic form

Ye+1 = Yk + Nk, (6)
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where the descent direction 7y is found by minimizing a quadratic model of the
objective function using gradient information:

A 3]

with Ji the Jacobian of the residual r; and Ay a regularization parameter. This
parameter limits the norm of the search direction and acts as a trust-region. It
is adjusted based on the accuracy of the quadratic model.

The linear least squares problem in Eq. () can be solved using one of the
many available least squares solvers.

2
mll’l

(7)

2.3 Computing the Jacobian

For computing the Jacobian of the residual we use a combination of an analyti-
cal expression and a numerical approximation. With respect to the image x the
Jacobian is given by J, = W but for the derivative with respect to the param-
eters  and ¢ we do not have such an expression. Therefore we approximate the
gradients in the Jacobian by a central finite differences scheme:

W(@, o, o+ héi):c — W(@, o, o — héi):L’

V{Szr(eﬂ d)?é?x) = 2h

(8)
where é; is the ith basis vector. A similar expression is used for ¢.

As illustrated in Figure[2 our GPU-implementation of the cost function in Eq.
() shows irregularities at small scales. These are introduced by the discretiza-
tion of the problem domain, by floating-point errors involved in computing the
cost function, and by noise in the projection data. This behavior makes the ac-
curacy of the numerical Jacobian in Eq. (§) highly dependent on the step size
h. Therefore, a robust method for choosing a good step size h is needed.

Methods proposed in literature for computing numerical derivatives on dis-
crete, noisy data are not feasible in our implementation, due to their computa-
tional intensity [15, 16].

As an alternative, we propose the following method. We sample the cost func-
tion in the direction of ¢ (and similarly for d):

1
sola) = ,[W (0, +al,8)z —p*, (9)
at the equidistant points
o= —8h,—Th,...,Th,8h.

Here 1 is a vector of which each element is 1. The sample points with odd indices
are used to generate a spline. If the cost function is smooth at the current scale
h, we can assume that the spline is a close approximation to the cost function. As
an error measure for this we compute the difference between the sample points
with even indices and the generated spline and normalize to yield a relative error.
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Fig. 2. Comparison of the cost function at different scales. The plots show the cost
function in the range é W (8, p, +h1)x—pl|?, together with its approximating spline.
The irregular behavior starts to disappear for h = 1073,

By computing this error for several scales h, we can select the scale for which
the error is minimal. The cost function at this scale does not show irregularities
due to the discretization. This h is then used in Eq. (8]) as step size. Figure
illustrates this method.

Sampling these values to compute a step size h is costly, hence the step sizes
are computed once at the beginning of the algorithm. It is recomputed only
after a transition between resolutions, because our algorithms employs a multi-
resolution technique as discussed in the next section.

2.4 Multi-resolution

One of the main difficulties in applying the alignment algorithm in practice is
the computational scale. It is not uncommon to have datasets containing billions
of detector values. A conventional approach to reduce the computation time is
to apply multi-resolution techniques. We utilize this technique by running the
algorithm repeatedly, going from a coarse to a fine representation of the data.
The output of one run serves as the input of the next. Low frequency components
of the error are removed first at coarse grids. This approach refines the solution
by gradually removing higher frequency components of the alignment error.

In our case the domain of the multi-resolution technique is the reconstructed
image and a sinogram (set of projections). We have chosen to match the pixel size
of the image with the size of a detector element. This makes the implementation
easier, since the sinogram and reconstructed image can simply be resized when
going from coarse to fine representation.

Lowering the resolution makes the images smoother, hence multi-resolution
acts as a regularization of the optimization problem in Eq. (Bl). For example, the
detector shift is measured in the number of detector elements. So on a coarse
grid, the detector shift is reduced by the same factor by which the grid has been
resized. Essentially, the initial values become closer to the optimal values. This
makes it more likely to find the global minimum and possibly skip local minima.
The effect of applying multi-resolution is shown in Section 4.
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3 Experiments

A series of simulation experiments was carried out to evaluate the capabilities
of the LMPDM algorithm. In the simulations we used the following hardware:
a workstation with an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz combined
with a Geforce GTX 570 GPU. For the forward and back projection operations,
a GPU implementation was used.

We have applied LMPDM to three datasets based on the phantom images,
shown in the left column of Figure Bl The datasets consist of projections at 100
angles, which were generated from the phantom images. The equidistant angles
are in the range [0, 7) and random, uniformly distributed offsets ¢; € [—0.9,0.9]
were added. The error in the angles is at most +0.9°, such that the ordering of
the angles is preserved. Also, for each angle a uniform random shift §; € [—10, 10]
was applied. The maximum shift of 10 detector pixels is approximately 5 percent
of the image size, which is 256 x 256. The detector has 256 detector elements per
projection. Poisson noise was applied to the projections using a photon count
of 10°, to simulate moderate experimental noise. The projection matrix W is
computed by the method of Joseph |17], using a GPU implementation.

The method we employ for solving the quadratic model in Eq. (@) is LSMR
[18]. As a stop criterion for LMPDM;, the change in parameters relative to their
norm is monitored. If this falls below a certain threshold, the algorithm stops.
The same holds for the norm of the gradient ||JTr|| of the cost function in Eq.
([B). In any case the algorithm transitions to a higher resolution, or is terminated,
when a total of 100 iterations is reached.

For comparison, we have also employed a cross-correlation algorithm. This
method estimates object shifts by correlating consecutive projections. Cross-
correlation on two discrete real signals f and g is defined as:

L

(f*9)(@) =D f(G)g(i+3) (10)

j=1

where L is the length of the reference signal f. Usually zero-padding of g is
needed. The cross-correlation attains its maximum value when the two signals
align, or match as closely as possible. The corresponding 7 gives us the shift
between the signals. To allow sub-pixel precision in the alignment, prior to the
cross-correlation, the projections were upsampled by a factor of ten.

A region of the first projection, that is in view for all projections, acts as
reference. To this, the second projection is correlated, estimating the relative
shift. Then the second projection acts as reference to which the third projection
is aligned and so on. Note that we assume here, that the first projection is
perfectly aligned. If this was not the case, the projections are shifted away from
the center of rotation, which still produces alignment artifacts.
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4 Results

The qualitative results are given in Figure Bl Column 2 shows the unaligned
reconstructions, 300 iterations of the algebraic reconstruction method SIRT were
performed |I]. These show the impact of small perturbations in the geometry.
Details are blurred and the background is filled with stripes.

The third column shows SIRT reconstructions using the alignment parameters
found by the cross-correlation method. Since this method cannot retrieve angular
offsets, the resulting artifacts are still visible. For the mandible bone dataset,
cross-correlation clearly fails. Due to the fact that the sample is flat, projections
from different angles have very different width. Therefore, without stretching
of the projections, their correlation is rather limited. Many streaks inside the
objects remain. This is because the shift parameters are not found accurately. If
we look at the difference between the found alignment parameters and their true
values for the Shepp-Logan phantom in Figure[dl it is clear that cross-correlation
does not yield sub-pixel accuracy. The LMPDM method, however, achieves an
accuracy of approximately one tenth of the pixel size.

The alignment results of our method LMPDM are given in the last column
of Figure Bl Here, the details are much clearer and the streaks are almost gone.
Overall, the reconstructions are lacking some sharpness. Note that in the LM-
PDM aligned Shepp-Logan image, a shift has occurred with respect to the phan-
tom image. This is because the alignment parameters are invariant to a global
shift or rotation of the object. In our error measurements, this global shift and
rotation have been removed first.

In Figuredl the convergence history is shown. The curves show step-wise con-
vergence behavior. This is the result of the multi-resolution approach. At some
point, the algorithm cannot improve the parameters at the current resolution.
Therefore, a transition to a higher resolution occurs. At the higher resolution,
finer details can be resolved and the errors can be reduced further. Note that
jumps occur in the residual at these resolution transitions. The residual is not
invariant with respect to the image size. Therefore, this behavior is expected
and does not indicate a convergence problem. For the Shepp-Logan and particle
dataset, we see that the error in ¢ starts to drop at higher resolutions (64 x 64),
while the shifts are refined at all resolution. The reason for this is that the align-
ment of the projection angles requires details to be present in the reconstruction.
The shifts however can align quite well to a low quality image.

The importance of the multi-resolution approach combined with an auto-
matically selected step size in Eq. ([8) becomes apparent when the Levenberg-
Marquardt routine is used on a single resolution, with fixed step sizes of h = 1076
in Eq. (8). These step sizes have an order of magnitude that is generally con-
sidered to give accurate finite differences. The step sizes produced by our spline
method are in the order of hs = 1 and hg = 0.1. The results in Figure point
out that the alignment parameters are not found, the error increases even. This
shows that the proposed methods for multi-resolution and local smoothing of
the Jacobian are essential to achieve high accuracy.
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Fig. 3. Overview of the results: (a) phantom images of size 256 x 256, the Shepp-Logan
head phantom, a mandible bone and particles phantom respectively; (b) the unaligned
SIRT reconstructions; (c¢) SIRT reconstructions aligned by cross-correlation; (d) SIRT
reconstructions using alignment parameters found by LMPDM
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Fig. 4. Convergence history of the simulations using multi-resolution and automatically
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Fig. 5. These plots show the difference between the found alignment parameters and
their true values for the Shepp-Logan dataset. Since cross-correlation methods cannot
find perturbations in angles, the stars in the scatter plot in (b) are the initial values of
¢. In (c), convergence is shown for LMPDM without using multi-resolution and with
step sizes of 107° for computing the Jacobian with respect to both § and ¢.

5 Discussion

From the results we can see that our proposed method, LMPDM, performs
well on the selected phantom data. However, a straightforward, naive imple-
mentation of Levenberg-Marquardt is bound to fail. The reason for this is the
irregular behavior of the objective function () due to the single precision code.
The methods we have introduced, an automatically selected step size combined
with a multi-resolution technique, are sufficient to solve this problem. On the
one hand, the improved accuracy of the Jacobian yields more accurate descent
directions for LM, which improves convergence. Moreover, multi-resolution helps
to find a minimum of (Bl even if the perturbations in the parameters are large.
Most projection matching alignment algorithms like |[10] require an initial coarse
alignment if this is the case.

The results from the multi-resolution LMPDM in Figure [ show, that at low
resolutions (16 x 16, 32 x 32), the errors in the shifts decrease rapidly and only a
few iterations are needed for convergence. This suggests that there might exist
a more optimal selection of the resolutions and their order. Perhaps a multigrid
method with an efficient intergrid transfer operator could improve performance.

The run times we have measured, in the order of a minute, show that LMPDM
is an efficient method, suitable for experimental datasets for the reconstruction
of 2D slices.

6 Conclusions

A new markerless alignment algorithm based on projection matching has been
proposed. Using a robust technique to compute the Jacobian combined with a
multi-resolution scheme, the accuracy of the LM optimization algorithm can be
improved substantially. The resulting LMPDM algorithm performs well even if
the perturbations in the alignment parameters are large. The timing results show
that the method is efficient enough to be used on 2D experimental datasets.
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For future research, it is interesting to generalize the algorithm to 3D, which
adds a challenge in computational scale, as well as the added complexity of the
geometrical parameters. Also, one can experiment with extra terms in the cost
function in Eq. (@), such as prior knowledge, or use other distance measures.
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