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Abstract. Multispectral imaging system maps the contents of a scene
to different intensity levels with in spectral images. This imaging process
induces spectral variations among the different wavelength band images
of the same scene and results in uncorrelated interest region descrip-
tors for cross spectral image matching. This paper presents Local Binary
Pattern of Gradients (LBPQG) to improve the strength of interest region
description under such spectral variations. In LBPG the image gradients
are first transformed into binary patterns and then the gradient pat-
terns are used instead of raw gradients for interest region description.
We validate the LBPG approach on the spectral images of six different
indoor and outdoor scenes. The experimental results confirm better cross
spectral image matching performance as compared to SIFT and Center
Symmetric Local Binary Patterns.

Keywords: Image matching, multispectral imaging, interest regions,
SIFT and local binary patterns.

1 Introduction

Multispectral imaging system captures the scene at multiple discrete wavelength
channels [2]. Each channel images the spectral responses of the scene. These
responses are useful in understanding the reflectance phenomena of the scene
across the spectrum to solve the visual computing problems efficiently [1/4].
In the remote sensing domain, they have been widely studied [4], however, their
usage in other applications such as scene recognition [I] and visual surveillance [6]
are now growing rapidly. In these applications, several spectral channel images
are fused together to integrate the spectral responses. The fusion process usually
uses Scale Invariant Feature Transform (SIFT) [7] to geometrically align the
images before integration [4I13]. SIFT extracts scale invariant interest points
from the spectral images and describes their surrounding information contents
through spatial histograms of image gradients [7]. It has been shown in the
recent studies [I1JI3] that the SIFT performance decreases with the increase in
the spectral variations among the images in the multispectral domain.

Several modifications have been proposed to address this problem. For in-
stance in [13] similar scale interest points have been suggested for SIFT descrip-
tor matching. It is because the scale parameter specifies the interest region size
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Fig. 1. Interest regions showing same scene contents at 510nm and 720nm spectral
channels. SIFT, CS-LBP2 s and LBPGa ¢ descriptors are constructed for them and
then they are matched based on Euclidean distance and Inner product metrics. In the
case of perfect match these metrics produce 0 and 1 matching scores respectively.

for description and any variation in scale may lead to a different description. In
the orientation restricted SIFT [3[12], the problem of intensity reversal among
the spectral images has been addressed by gradient orientation mapping to (0,)
radian range prior to description. These modifications improve the performance
of SIFT for cross spectral image tasks but still the performance remains low for
the images where the spectral variations are high [I1].

To elaborate the problem at hand, consider two interest regions in Figure [l
They underlie the same scene contents in 510nm and 720nm spectral channels
but the intensity values make the contents visually different. Few pixels have
undergone intensity reversal while the other are under illumination variations.
We find similar intensity behavior in almost every interest region in this work.
This intensity behavior makes the Center Symmetric Local Binary Patterns (CS-
LBP) an appropriate description approach for such interest regions due to its
gray level invariant texture description nature [5]. It transforms the intensity into
binary patterns through illumination invariant process and use them instead of
image gradients for interest region description. This description approach has
been found robust under illumination variations [5] and our experimental results
also confirm its robustness towards spectral variations as compared to SIFT.

Due to such characteristics of CS-LBP, we are using it but in the gradient
domain to compute the Local Binary Pattern of Gradients (LBPG). The idea is
to transform the gradient magnitude and orientation maps into binary patterns
and use such patterns (LBPG) for region description instead of CS-LBP and
raw gradients to achieve better image matching under spectral variations. The
matching scores of LBPG in Figure [l show improvement over SIFT and CS-
LBP in the cross spectral domain. These scores are computed from descriptor
vector matching based on Euclidean distance and Inner product. In the case of
perfect match these metrics produce 0 and 1 scores respectively. We use Harris
Laplace [9] interest regions in the experiments to evaluate the LBPG approach
on the spectral images of indoor and outdoor scenes. The results confirms its
better spectral invariant characteristics as compared to SIFT and CS-LBP.

The rest of the paper is organized as follows. In Section 2] the SIFT, CS-LBP
and LBPG approaches for region description are briefly discussed. Section [3] de-
scribes the experimental setup in detail for the experiments of Sectiondl Finally,
we conclude the paper in Section
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2 Region Descriptors

In this section we describe the SIFT, CS-LBP and LBPG approaches for in-
terest region description. Each approach uses the difference between the pixel
intensities to describe the contents of interest regions.

2.1 SIFT Descriptor

The SIFT descriptor is a function of image gradients and their spatial locations.
Its feature histogram consists of 8 gradient orientation bins [7]. Every orientation
bin holds a value computed from the sum of the product of respective gradient
magnitudes with a Gaussian window overlaid over the description region. The
window assigns high weights to the gradient samples near the center as compared
to the region boundary. A soft binning approach is used to distribute the gradient
samples into adjacent bins to compensate the effect of region shift.

2.2 CS-LBP Descriptor

The CS-LBP is a gray level invariant region descriptor [5]. It transforms the
pixel intensities into binary patterns [10] and use them for description instead
of image gradients. The CS-LBP process [5] is described in ([Il) where N equally
spaced n; samples at a radial distance of R from the central pixel n. are used
to transform the gray level of n. into a binary pattern [5]. The s(z) operator is
used to binarize the intensity deference between pixel n; and its center-symmetric
neighbour n;; (n/2). The CS-LBP approach is based on a fact that under variable
illumination conditions the magnitude of the pixel difference varies but the sign
of this difference is normally preserved [5]. The parameter N produces 2V/2
distinct binary patterns for description whereas the radial distance is often kept
small i.e, R = {1,2} to maintain gray level uniformity among the samples.

(N/2)—1

CS-LBPpN = Z s = iy vy2)2's s(z) = {0 otherwise (1)
i=0

2.3 LBPG Descriptor

The LBPG is an extension of CS-LBP but in the gradient domain. In LBPG
the image gradients are first processed through CS-LBP approach and then the
modified gradients i.e, LBPG are used for interest region description in order to
achieve better image matching results under spectral variations.

The LBPG description process is illustrated in Figure Pl It begins with the
estimation of gradient magnitudes (p) and orientations (¢) for an interest region
according to p = (G2 + G2)/? and ¢ = tan~'(G,/G,) where G, and G,
represents image gradients along x and y directions respectively. In the next step
p and ¢ maps are converted into binary patterns via CS-LBP scheme as described
in @) and @) where m; is a gradient magnitude sample at a distance of 2R from
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Fig. 2. Illustration of Local Binary Pattern of Gradients (LBPG) description process

Interest
Region

its center symmetric neighbour m; (n/2). These two samples are subtracted and
their difference is binarized through s(z) operator. This process is repeated for
each m; sample to transform the gradient magnitude sample under study into a
binary pattern. Similar description also applies to gradient orientation samples
pi. The parameter N represents the number of samples which produces 2V/2
binary patterns for description. In the next step the binary patterns of p and
¢ are transformed into LBPGp and LBPG¢ descriptors respectively using the
SIFT spatial feature histogram scheme [7]. At the end they are concatenated to
build an LBPG descriptor for the interest region.

(N/2)-1
LBPGpr N = Z s(mq; —miqp(ny2))2 (2)
i=0
(N/2)-1

; 1 2z>0
LBPGérN = z% s(pi = piv(ny2))2", s(2) = {0 otherwise (3)
1=

3 Experimental Setup

In this section we describe the experimental setup. We discuss the test images,
interest regions and evaluation measures for cross spectral image matching.

3.1 Test Images

We use the 510nm and 720nm wavelength channel images from the Real World
Hyperspectral Image (RWHI) database. These images are shown in Figure [3]
and are used for cross spectral image matching in this paper. The test images are
under different level of spectral variations to make image matching a challenging
task to accomplish for SIFT, CS-LBP and LBPG.

3.2 Interest Region Detection and Normalization

We use scale and rotation invariant Harris Laplace (HarLap) interest points [9]
in the experiments. The scale value of each interest point specifies the region
size for description. In the experiments we resize every region to 41 x 41 pixels
and normalize its pixel intensity to (0, 1) range prior to description [g].

!http://vision.seas.harvard.edu/hyperspec/
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Fig. 3. Selected images from RWHI database of indoor and outdoor scenes

3.3 Region Description

In the region description step, each normalized interest region is split into non
overlapping 4 x 4 cells and for each cell a feature histogram is constructed [7].
The feature histograms are then concatenated over the cells to build a descriptor
vector for the interest region. The descriptor is normalized to unit norm and the
elements are truncated to 0.2 in order to reduce the impact of large element
values in the descriptor matching process. This description scheme is used in the
construction of SIFT, CS-LBP and LBPG descriptors in this paper.

In SIFT a feature histogram is consist of 8 gradient orientation bins that
results in a 4 x 4 x 8 = 128 dimensional descriptor vector [7]. In the case of CS-
LBP s [5] the feature histogram is consist of 28/2 = 16 binary pattern bins which
leads to 4 x 4 x 16 = 256 dimensional descriptor. For LBPG we are using R = 2
and N = 6 parameter values which produce feature histogram of 23/2 = 8 binary
pattern bins and result in 4 x 4 x 8 = 128 dimensional vectors for LBPGps ¢ and
LBPG¢s 6 descriptors. At the end LBPGps ¢ and LBPGe¢g ¢ are concatenated
to produce a 256 dimensional LBPGs ¢ descriptor vector.

3.4 Evaluation Criteria

In the experiments the performance of SIFT, CS-LBP3 g and LBPG3 ¢ descrip-
tors are evaluated on the basis of cross spectral image matching. The HarLap
regions used in this paper are scale invariant, however, if required they can be
rotated in the direction of dominant gradient orientations for rotation invari-
ance. The evaluation criteria for each experiment is based on the number of
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Fig. 4. A performance comparison of SIFT, CS-LBP2 s and LBPG2 ¢ descriptors for
image matching between 510nm—720nm channel images of Figure[3l Each approach uses
SIFT spatial feature histogram structure for descriptor construction. SIFT descriptor
is 128 dimensional whereas CS-LBP3 s and LBPGg ¢ are 256 dimensional.

correct and false matches. A match is declared correct if the Euclidean distance
between the descriptor vectors of two interest regions is below a threshold [§].
The ground truth for a match is established through overlap error [9]. This error
tells how well regions A and B correspond under a known homography H [9].
This error is estimated from the ratio of the intersection to the union of the
regions i.e., s = 1 — (AN HTBH)/(AU H'BH). A match is assumed to be
correct if €5 < 0.5 [9]. This matching strategy allows several matches for a de-
scriptor and several of them may be correct. Therefore, recall versus I-precision
criterion [§] is used for evaluation ({]) where #correspondences stands for the
ground truth. The perfect descriptor would give a recall value equal to 1 for any
precision score.

F#correct matches . # false matches
1 — precision =
#all matches

(4)

recall = ,
#correspondences

4 Experimental Results

This section presents the experimental results for cross spectral image matching
based on the test images of Figure[3l In each experiment, the 510nm and 720nm
channel images of a scene is used. The experiment begins with the detection of
HarLap interest regions followed by their description using SIFT, CS-LBP; g and
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Fig. 5. Comparison of Average Precision measures at three different recall levels

LBPG3 6 approaches. The image matching is then carried out by matching every
descriptor of 510nm channel image with each descriptor of 720nm channel. At
the end Recall versus 1-Precision curves are computed for each descriptor type
as shown in Figure [l

The spectral images of Imgb9 scene are under spectral and illumination dif-
ferences (see Figure Bl). The pixel intensity in some part of 510nm image has
undergone reversal in 720nm image. This intensity change adversely affects the
descriptor matching score of the regions under such variations. Nevertheless,
these regions are less in number as compared to the regions which are under
illumination variations. Therefore the evaluation scores are high as shown in
Figure for each descriptor type. The performance of LBPGgyg is slightly
better than SIFT and CS-LBPj g which suggest its better performance under
such spectral and illumination variations.

In Imgc4 case, the spectral images are now under spectral variations. Most of
the low intensity pixels in 510nm image are changed into high intensity pixels in
720nm image. This intensity change induces spectral variations among the corre-
sponding interest regions. The low evaluation scores for SIFT and CS-LBP3 g in
Figure show the affect of such variations on their evaluation scores. However
the evaluation measures of LBPGy ¢ are relatively better which suggest that us-
ing processed gradients i.e., LBPG for description instead of raw gradients makes
the region description robust towards spectral variations.

In the Imgd4 and Imge4 spectral images the illumination differences are domi-
nant. Under such variations the gradient magnitudes are normally more affected
as compared to gradient orientations [5]. The transformation of gradient maps
into illumination invariant binary patterns will robustly overcome these illumi-
nation variations. The evaluation scores in Figure and confirm this fact
where LBPGg ¢ performance is found superior to SIFT and CS-LBP3 5. These
results suggest that LBPGg ¢ has better illumination invariant characteristics as
compared to SIFT and CS-LBP g.

The next cross spectral image matchings are relatively challenging due to
high levels of spectral variations in the Imgfl and Imgf3 spectral images. The
intensity change in these images has altered the appearance and the textural
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Table 1. Effect of Gaussian blur on the Average Precision measures of LBPG3 s

Os Descriptor Imgb9 Imgcd Imgd4 Imged Imgfl TImgf3 MAP
SIFT 0.387 0303 0357 0303 0.240 0.208  0.300
3 CS-LBP2 s 0.369 0319 0342 0296 0.255 0.194  0.296
LBPGa6 0425 0383 0384 0334 0.307 0.243  0.346
SIFT 0.366  0.272  0.340 0.292 0.228  0.191 0.282
5 CS-LBP2 s 0.341 0.291 0325 0.287  0.241  0.172  0.276
LBPGz;6 0.383 0331 0337 0325 0.265 0.192  0.306

characteristics of the images under matching. The effect of such variations is
evident from the evaluation curves in Figures and The evaluation scores
of LBPGg ¢ is also dropped in contrast to the previous experiments, nevertheless,
still remain significantly better than SIFT and CS-LBPj .

The Average Precision (AP) measures of these experiments are shown in Fig-
ure Bl They are computed at three different recall levels. For each level Mean
Average Precision (MAP) is computed to average the AP over all the test images.
The low recall level shows the AP measures for image matching using low Eu-
clidian distance thresholds between the descriptor vectors. AP is a single valued
evaluation measure and it is computed from the average value of the precision
p as a function of recall r over the interval 0 to 1 as AP = for p(r)dr. The AP
measures also confirms the better performance of LBPGg ¢ description under
spectral variations as compared to SIFT and CS-LBP» 5.

4.1 Effect of Blur

The narrow wavelets range light sources used for the acquisition of a scene at mul-
tiple wavelengths channels often produces blurred and low contrast images [2].
In this section we evaluate the LBPGg ¢ performance under different level of
Gaussian blur in the presence of spectral variations. The AP measures for this
evaluation are summarized in Table [l These measures suggest decreases in AP
scores with the increase in the standard deviation o of the blur. It is because
the image contrast becomes low due to increase in blur level and consequently
increases the correlation among the region descriptors. However, the AP mea-
sures of LBPGy ¢ is relatively better than SIFT and CS-LBP3 g in almost every
cross spectral image matching under blur.

4.2 Effect of Noise

In CS-LBP gray level uniformity among the samples is considered important for
binary patterns [I0]. The presence of noise normally affects this intensity unifor-
mity. In this section we evaluate the performance of LBPGs ¢ against Additive
White Gaussian Noise of variance o2 with spectral variations. The AP mea-
sures in Table [2] suggest that noise adversely effects the LBPGy ¢ performance
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Table 2. Effect of Additive White Gaussian Noise on the Average Precision. The pixel
intensity range is normalized to (0,1) prior to noise addition of variance ol.

ol Descriptor Imgb9 Imgcd Imgd4 Imged Imgfl TImgf3 MAP
SIFT 0.379 0310 0355 0291  0.236  0.209  0.297
0.006  CS-LBP32g 0.352 0322 0335 0280 0.246 0.186  0.287
LBPGa6 0.339 0342 0.293 0.281  0.257 0.217  0.288
SIFT 0.373 0307 0350 0.283 0.235 0.204  0.292
0.010  CS-LBP3gs 0.342 0.321 0.321 0.274  0.241 0.182  0.280
LBPGz;6 0.300 0325 0.262 0270 0.233 0.195  0.264

Table 3. Effect of radius and number of samples on Average Precision of LBPGgr, ~

Descriptor Imgb9 Imgc4 Imgd4 Imged Imgfl Imgf3 MAP

LBPGi6 0.425 0.381 0.381 0.325 0.300 0.239 0.342
LBPG26 0.432 0.393 0.388 0.339 0.318 0.250 0.353
LBPGs6 0.402 0.369 0.379 0.327 0.301 0.232 0.335
LBPG2,4 0.375 0.322 0.352 0.305 0.248 0.193 0.299
LBPG2s 0.416 0.381 0.390 0.326 0.307 0.235 0.343

as compared to CS-LBPgg. It is because the CS-LBP is used twice in LBPG
description. The SIFT performance is found best under noise due to the distri-
bution of gradient samples in the adjacent bins through soft binning approach.

4.3 Effect of Radius and Number of Samples

The LBPGRg, y description depends upon two parameters i.e, radius R and sam-
ples N. These values can be varied according to the application requirement. R
is normally kept small to maintain intensity uniformity among the samples for
CS-LBP scheme [5]. The number of samples N generates 2% /2 binary patterns
for region description. In LBPGg, y the number of feature histogram bins are
equal to the number of binary patterns. Therefore increasing N will increase
the descriptor length that will in turn increase the computational complexity
of descriptor matching process. AP measures of several LBPGg n descriptors
are given in Table Bl These measures suggest that LBPGg g is best for the test
images of Figure Bl

5 Conclusion

In this paper we present a novel interest region descriptor for image matching
under spectral variations. The descriptor is constructed from the Local Binary
Pattern of Gradients (LBPG) rather than raw image gradients because they vary
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across the spectrum due to variation in pixel intensity. We compute the LBPG by
transforming the gradient magnitude and orientation maps into binary patterns
via illumination invariant CS-LBP codding scheme. The LBPG are then used
in the SIFT spatial histogram structure to construct the region descriptors.
We use the Harris Laplace interest regions to evaluate LBPG approach on the
spectral images of six different indoor and outdoor scenes with different levels
of illumination, spectral, blur and noise variations. The experimental results
suggest that LBPG performance is superior to SIFT and CS-LBP under blur,
illumination and spectral variations. However, in the case of noise the SIFT
performance is found better than LBPG.
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