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Abstract. In this paper we present a novel approach for dynamic facial
expression recognition based on 3D geometric facial features. Geodesic
distances between corresponding 3D open curves are computed and used
as features to describe the facial changes across sequences of 3D face
scans. Hidden Markov Models (HMMs) are exploited to learn the curves
shape variation through a 3D frame sequences, and the trained models
are used to classify six prototypic facial expressions. Our approach shows
high performance, and an overall recognition rate of 94.45% is attained
after a validation on the BU-4DFE database.
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1 Introduction

Facial expression recognition has increasingly gained interest of researchers in
computer science field, leading to a continuous need to develop systems that are
capable of understanding human emotions. Indeed, since machines are becoming
more and more involved in everyday human life and take part in both his living
and workspace, there is a tendency to embed these machines with intelligent
modules that are able to analyse and recognize the human expressions. The
facial expression recognition topic can find its applications in various domains
such as psychology, medical care, security, etc.

The recent progress of 3D imaging systems (stereo vision cameras,
laser/structured-light 3D scanners, time of flight and RGB-D cameras)
has made the creation of facial range models simple and abundant. Three-
dimensional data has emerged to provide an additional and valuable information
which is the depth (z-value) information. Besides such data has shown the
potential to alleviate problems encountered in 2D-based approaches: small
pose variation can be handled and illumination differences can be avoided.
3D face databases become more and more available, providing the worldwide
researchers of Face and Facial Expression Recognition community a large-
scale data for training and evaluating their approaches. 3D facial expression
recognition approaches can be categorized into two classes as well: static and
dynamic. Different methods have been proposed in the static direction and
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gave promising results. However, research in the dynamic direction is revealed
to be more valuable as well as challenging. Since that facial expression is, by
nature, a highly dynamical process, hence studying the dynamic cues while
looking at sequences of expressive face frames can help improve the recognition
performance. So far, there exists several approaches that exploit 3D facial
expression dynamics. The first approach was proposed by Sun et al. [1I] where
they developed a rich spatio-temporal descriptor build through combination of
a template and geometrical features. The template is a 3D generic deformable
model constructed to estimate the physical process of facial changes due to
expressions and vertex flow estimation is derived to compute vertex displace-
ment from one frame to another. As for the geometrical feature they proposed
to compute curvatures and developed an automatic surface labelling approach
to classify the 3D primitive surface features into eight label basic categories.
As a result each range model in a given frame sequence can be represented
by a spatio-temporal feature vector that describes both shape and motion,
hence providing a robust facial surface representation. Two-dimensional HMM
models, spatial HMM (S-HMM) and a temporal HMM (T-HMM), were then
used to conduct facial expression classification and a recognition rate of 83.7%
was reached. Sandbach et al. [5] proposed to use HMM models for temporal
modelling of the full expression sequence to be represented by 4 segments which
are neutral-onset-apex-offset expression segments. They applied Free-Form De-
formations for motion capture between frames, and extracted motion features
using a quad-tree decomposition of several motion fields. Features selection is
then derived using GentleBoost technique, and the obtained average recognition
rate of three basic expressions(i.e., happy, angry and surprise) was 81.93%. Le
et al. [2] proposed a level curve based approach to capture the shape of 3D facial
models. The level curves are extracted using the arc-length parametrization
and were partitioned into normalized segments. Then the Chamfer distance is
applied to quantify the shape deformation between the corresponding segments.
These measures are then used as spatio-temporal features to train HMMs. Using
the BU-4DFE database to evaluate their approach, they reached an overall
recognition accuracy of 92.22% for three prototypic expressions (i.e., happy,
sad and surprise). Fang et al. [7] proposed a fully automatic pipeline to classify
expression from 4D data. Their pipeline is set to start with a robust registration
of each pair of consecutive frames of a given sequence. They developed a
two-step technique to derive a mesh matching process; the first step consists
in establishing vertex correspondence between two meshes with providing two
alternative methods, one is based on spin images similarities and the other
based on the Euclidean distance between MeshHOG descriptors. Then RANdom
SAmple Consensus (RANSAC) is applied to alleviate the problem of nosy point
correspondence due to outliers that might be generated by the vertex corre-
spondence step. A deformable face model (AFM) is then applied to generate a
fitted sequence from a 4D data set. Local Binary Patterns (LBP) descriptors
are computed and flow image is estimated to represent the deformation vectors.
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In the final stage of their proposed pipeline, they applied support vector machines
for classification and outperformed previous work by achieving 95.75 % average
classification rate on the BU-4DFE database.

2 Method

In this section we present a fully automatic pipeline for classifying six prototyp-
ical expressions from 4D data. First, a preprocessing step is applied to extract
the face area and discard the non-informative part of the raw image. Second, a
registration step is run using a global registration method applied on each pair
of consecutive frames. Then, we adopt a sparse surface representation based on
both contour and profile curves to approximate the 3D face model. These curves
are employed to conduct shape analysis using a Riemannian framework, and ex-
tract temporal features. Finally, the temporal dynamics of the extracted features
are learned using HMMs and the Bayesian decision rule is used to classify the
query sequences given the trained models for the basic expressions.

2.1 Preprocessing

The raw data obtained from even most accurate 3D sensors is far from being
perfect and clean for straightforward processing, as it may contain spikes, holes
and noise. A preprocessing stage must be applied to remove these anomalies be-
fore any further operations can be performed. Thus preprocessing is important
for any recognition system, especially when knowing that all the features will be
extracted from the output of this stage. We developed an automatic preprocess-
ing pipeline that is set to apply different tools and follow multiple steps. The
first step is the nose detection step, the nose tip is a key point that is needed
for preprocessing and also for facial surface representation. Exploiting the fact
that in most 3D facial scans brought by publicly available databases, the nose
is the closest facial region to the 3D acquisition systems, we simply detect the
nose tip using horizontal and vertical slicing of the facial surface and a search
for the maximum value of the z-coordinate of these curved profiles. This is done
for the first frame in a sequence of frames, for the remaining ones, this detection
technique is refined since and the search area in a current frame is reduced to
a small sphere centered on the nose tip detected in the previous frame. The
second step of data preprocessing is the cropping step, which consists of keeping
the required facial area from the raw image and removing the irrelevant parts
(i.e, neck, hair, face boundaries).

2.2 Facial Surface Representation

The primary concern for a surface representation in a facial expression recogni-
tion system, focus on extracting detailed information. This information needs to
be accurate, concise and useful for statistical modeling. We chose to represent
3D facial shapes by the union of curves, profile and contour curves. This com-
bination of curves are obtained from a curve extraction stage. For the contour
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curves, that are iso-radius curves, are extracted from the intersection of the facial
surface and a sphere defined by the the nose tip, as a center point, and a radius
r= \/ x2 4+ y2 + z2. These contour curves are closed curves and of various length,
that is the number of points per curve. The bigger is the value of r, the larger is
the number of points of the curve. As for the profile curves, they are open curves
that are extracted using the intersection of the face model with a plane. The
plane is also defined by a the noise tip and a normal vector parallel to the zy
plane. Contrary to the contour curves, where the starting point is also an ending
point of a curve, the starting point of all profile curves is set to be the nose tip
and the ending point is the edge of face determined by the cropping step of the
preprocessing stage. A collection of contour curves is obtained using a sphere
defined by different radius values, and the set of profile curves are obtained by a
plane with different rotation angles applied on its normal vector. Furthermore,
we are interested in building features to quantify the shape deformation related
to local regions of the facial surfaces. This led us to the idea of partitioning
the contour curves into segments . Both profile curves and segments of contour
curves are open curves, that represent the 3D facial surface in a concise manner
Fig. [l These curve are also reliable for computations, memory storage, can be
efficiently displayed and suitable for deriving shape analysis.

2.3 Shape Analysis

In order to conduct shape analysis, we apply an efficient framework for analyzing
the shape of these curves. Anuj et al. [3] introduced a square-root velocity func-
tion (SRVF) representation for analyzing shapes of closed curves in R™. We start
by defining an open curve and the space of all parametrized open curves using
differential geometry. Let 3 be an open curve with 8 : I — R3, where I = [0, 1]
stands for the domain of parametrization and is set to allow focusing on curves
of unit length that can be obtained through a scaling process. 8 is supposed to
be continuous and whose derivative is §(t), exists almost everywhere and never
vanishes: 8(t) # 0, Vt.
B can be represented by the SRVF ¢(t), given by:

A1)
VI8@)

Note that ¢ is already invariant to the translation of 8 in R3. However it is still
dependent on rotation and the choice of parametrization.

Let C be the space of square-root velocity functions, or the space of all open
curves, defined by: C = {q: I — R3,|¢|| = 1} < L*(I,R?), where |.|| implies the
L2 norm. Here the elements of C have a unit L2 norm, C is a Hypersphere in the
Hilbert space L2(I,R?). Given any two open curves 3; and 32 we can represent
them respectively by g1 and ¢o of the space C, we would like to quantify the
similarities and dissimilarities between their corresponding shapes. It is impor-
tant to remind that these quantifications should not depend on the rotation,

q(t) = (1)
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Fig. 1. Curve-based facial surface representation: (a) contour curves (80 curves), profile
curves (10 curves) and their combination, (b) extraction of a sector area from the facial
surface and generation of segments of curves

and re-parametrization that can change the curve but do not change its shape.
As the elements of C have a unit L2 norm, C is a Hypersphere in the Hilbert
space L2(I,IR3). Using the Riemannian structure we can write explicit forms for
geodesics between any two open curves q1, g2 € C and it is simply given by the
minor arc of great circle connecting them on this Hypersphere. Let o denote the
geodesic path between g1, g2 and that is defined by « : [0,1] — C:

a(r) = in(0) (sin((1  7)0)q1 + sin(67)gz) (2)

where 7 € [0,1] and 6 = cos '{q1,q2). And the length of the geodesic path
(geodesic distance), that we denote it by dc, is given by:

de(q1,q2) = cos ! {q1,q2) (3)

3 HMM-Based Classification

The characterization of the shape-based signature of facial open curves, through
an acquired expression video sequence, is the core of the proposed approach.
The goal is to characterize the real world facial expressions in terms of signal
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models. The principle reason for applying signal models is to provide a basis for
the theoretical description of the expression processing system. Besides, devel-
oping a signal model for a particular process, has been proven to be efficient,
work extremely well in practice and enables us to build practical systems, such
as prediction, recognition and identification systems. Thus, modeling a given ex-
pression by a signal can help considerably in building an expression recognition
system in a valuable manner.

In this work we adopt a stochastic signal model, which is the HMM [4]. The
underlying assumption of the use of HMM is that the facial expression can be
well characterized as a parametric random process and that the parameters of
the stochastic process can be estimated in a well defined manner.

Given a 3D dynamic sequence composed of T frames, from each frame of
the 3D face model, we extract a combination of contour and profile curves.
These curves are then partitioned to obtain a set of open curves {fi}, <h<N
where each curve f3), characterizes a local shape of the facial surface. The SRVF
representation ¢ is applied to encode the shape information of 8. The length
of the geodesic distance separating the curve ¢, computed for a current frame,
and ¢, computed for the next frame, is calculated according to Eq.[Bl We denote
by s(qx) the set of all geodesic distances calculated through the frame sequence
for the k' curve, s(qx) = {dc(q,i,q,tjl)}lgtST 1+ 8(qx) encodes the temporal
dynamics of facial expressions, and will be considered as the observed sequence
for HMM application .

3.1 HMM-Based Signature of Facial Curves

An HMM is a is a temporal probabilistic model and a finite set of states that are
not directly observable (hidden states), each state is characterized by a probabil-
ity distribution function. To completely define an HMM, we need the following
elements:

-5 =51,8,,...,5,, a set of m states, where each state can be associated
with a particular shape information captured from an open curve.

— A ={a;;}, 1 <1i,j < m,is the transition matrix representing the probability
of moving from state S; to state S;. So that, a;; = P[Q¢r1 = 5;]Q¢ = Si],
1<t <T with a;; = 0, Z;”:l ai; = 1 and where @, represents the model
state at time ¢. This matrix encodes how the curve shape deformation evolves
through 3D image sequence.

— B = {b(0/S;)} is the emission matrix representing the emission probability
of the observation o when system state is .S;. Where o stands for the geodesic
distance information that can take values in R*. And b(0/S;) is a Gaussian
probability density function.

— 7w = m;, corresponds to the initial state probability distribution, representing
probabilities of initial states m; = P[Q1 = S;], 1 < ¢ < m with 7; > 0 and
Yy mi=1
In our work, given an observed sequence s(g), the HMM parameters are
learned, using the well-known Baum-Welch (BW) algorithm, which is able
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to determine the parameters of the model \; by maximizing the likelihood
P (s(g;)|\i). In this way, the HMM gives a statistical encoding of the fa-
cial curves deformation from a frame to another, taking into account the
uncertainty in the data.

3.2 Training Stage

Let OfXP = [s(q1),s(q2), ..., s(gn)] be the set of the extracted open curves
for subject j having the expression EXP € {HA,AN,FE, DI,SA,SU}. For
expression recognition we collect this data from subjects with the same expres-
sion. Then, the face expression model AFXF = [)\JFXP, ceey )\]%XP] is generated
by learning an HMM J\; by taking into account all the subjects j = 1,..., M
with that specific expression. Indeed, the process is repeated for all different ex-
pressions, by obtaining A74, A4N and so on. In our case, four states per HMM
(N=4) are used to represent the temporal behaviour of each expression. This
corresponds to the idea that each sequence starts and ends with a neutral ex-
pression (state Sp); The frames that belong to the temporal intervals where the
face changes from neutral to expressive and back from expressive to neutral
are modeled by the onset (S2) and offset (Sy) states, respectively. Finally, the
frames that correspond to the highest intensity level of the expression are cap-
tured by the apex state (S3). Fig. 2] exemplifies the structure of the HMMs in
our framework.

Onset Apex Offset
Low-level High-level Low-level
expression expression expression

Fig. 2. llustration of the 4 states structure of the left-right HMM model, respectively,
the neutral, onset, apex and offset, applied to learn the sequential variations of the
open curves shape

3.3 Testing Stage

Given a test sample of a subject with an arbitrary expression, the N open
curves are extracted and the respective sequences are collected by defining
OUNK = [ s4e5t(q1), - - -, Stest(qn)] (i-e., the sequence of the N open curves of
the test subject having an unknown expression). The face expression recognition
is computed first by adopting a maximum likelihood approach on each open
curve sequence. In particular, for each open curve sequence s(g;), the following

score is computed:

o ) EXP
ml; gl;?ﬁ logp(stest(qz)/)‘z ) (4)
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Therefore, each curve sequence votes for a particular expression, and a majority
criterion is used for classifying the expression of the test face.

4 Experimental Results

The proposed framework for facial expression recognition from dynamic se-
quences of 3D face scans has been experimented using the BU-4DFE database
[6]. The database contains videos of the six basic expressions that were captured
for a total number of 101 subjects (58 female and 43 male). Each subject was
asked to perform the six basic expressions, each expression was captured using a
stereo acquisition technique, and 3D frames were produced according to a pas-
sive stereo-photogrammetry approach. Each acquired video lasts for almost 4
seconds, at a rate of 25 frames per second, resulting in an average number of
100 frames per video sequence. For each video sequence, we conduct the prepro-
cessing pipeline as described previously, then we proceed with the curve-based
representation Fig. [3l For each frame, we construct 80 contour curves and 10
profile curves, the profile curves define the boundaries of sector areas of the face
model, and are used to generate segments of contour curves for more local rep-
resentation. We end up with a total number of 80 x 20 (segments)+20 (radial
curves starting from the nose tip) = 1620 (open curves).

Frame

-g0e00000¢0Qe
5’«1 %5‘«:9’4 g@’ﬂ i 5’49’4”45

Fig. 3. Example of selected frames taken from the BU-4DFE database (female FO17
surprise expression): (a) raw data showing the shape model (b) the corresponding pre-
processed data showing the curve based representation considered for our study

Data of 100 subjects of the BU-4DFE database are considered to conduct
facial expression recognition experiments. The subjects were partitioned into 10
sets, each containing 10 subjects, and 10-fold cross has been used for validation,
where at each round 9 of the 10 folds (90 subjects) are used for training while
the rest (10 subjects) are used for test. The recognition averaged on 10 rounds.
The recognition results of 10 rounds are then averaged to give a statistically
significant performance measure of the proposed solution.

Following the experimental protocol proposed in [I], this is obtained by the
definition of a large set of very short subsequences extracted using a sliding win-
dow on the original expression sequences. The subsequences have been defined



Dynamic 3D Facial Expression Recognition Using Robust Shape Features 317

with a length of 6 frames with a sliding step of one frame from one subse-
quence to the following one. For example, with this approach, a sequence of 100
frames originates a set of 6 x 95 = 570 subsequences, each subsequences differ-
ing from one frame from the previous one. This accounts for the fact that, in
general, the subjects can come into the system not necessarily starting with a
neutral expression, but with a generic expression. Classification of these very
short sequences is regarded as an indication of the capability of the expression
recognition framework to identify individual expressions. According to this, for
this experiment we retrained the HMMs on 6 frame subsequences constructed as
discussed above. The 4-state structure of the HMMs still resulted adequate to
model subsequences. Also in this experiment, we performed 10-folds cross valida-
tion, on the overall number of subsequences derived from the 100 x 6 sequences.

The results obtained by classifying individual 6-frames subsequences of the
expression sequences are reported in the confusion matrix of Tab. Il Values in
the table have been obtained by using 6-frames subsequences as input to the 6
HMMs and using the maximum emission probability criterion as decision rule.
It is evident that the proposed approach is capable to accurately classify very
short sequences containing very different 3D frames, with an average accuracy
of 94.45%. It can be noted that the higher recognition rate is obtained for the
surprise expression 96.57%, and the lower recognition is obtained for the angry
expression 92.34% which is mainly confused with the disgust and fear expres-
sions. Interestingly, these three expressions capture negative emotive states of
the subjects, so that similar facial muscles can be activated.

Table 1. Average confusion matrix (percentage values)

Angry Disgust Fear Happy Sad Surprise

Angry 92.34 245 233 057 1.89 0.42
Disgust 1.82 94.74 1.75 0.44 0.93 0.32
Fear 1.65 129 93.85 0.79 1.97 0.5
Happy 0.56 0.84 0.68 95.98 0.36 1.58
Sad 198 1.24 233 088 93.24 0.33
Surprise 0.57 0.48 1.15 0.38 0.85 96.57

5 Conclusion

In this paper we propose to employ a curve-based representation of 3D facial sur-
faces for 4D facial expression recognition. A combination of contour and profile
curves are extracted and partitioned to obtain local open curves. These curves are
used to derive shape analysis and quantify their shape variation over time. The
computed shape features are treated as a signal model and HMM is applied to
learn the dynamics of facial expressions. The proposed approach is experimented
on the BU-4DFE database and the obtained results are reported. Our method
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shows an overall recognition accuracy as high as 94.45%. With these promising
results, our future work will focus on testing the performance of our approach
on real world data, such as RGB-D data, captured from low-end consumer de-
vices. This will lead us to deal with multiple constraints, like optimizing the
curve extraction process which is time consuming, and ameliorate our approach
to handle challenges such as low resolution data and head pose variations.
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