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Abstract. The paper presents a framework for the detection of curvi-
linear objects in images. Such objects are challenging to be described by
a geometrical model, and although they appear in a number of appli-
cations, the problem of detecting curvilinear objects has drawn limited
attention. The proposed approach starts with an edge detection algo-
rithm after which the task of object detection becomes a problem of
edge linking. A state-of-the-art local linking approach called tensor vot-
ing is used to estimate the edge point saliency describing the likelihood of
a point belonging to a curve, and to extract the end points and junction
points of these curves. After the tensor voting, the curves are grown from
high-saliency seed points utilizing a linking method proposed in this pa-
per. In the experimental part of the work, the method was systematically
tested on pulp suspension images to characterize fibers based on their
length and curl index. The fiber length was estimated with the accuracy
of 71.5% and the fiber curvature with the accuracy of 70.7%.

Keywords: curvilinear structure segmentation, edge linking, machine
vision, image processing and analysis, pulping, papermaking.

1 Introduction

Detection of curvilinear structures appears in a number of applications. For
example, the detection has been applied to the segmentation of biomedical [I4]
and geophysical images [I5], and to the road detection in aerial images [§]. In
real life images, there are also objects such as cables and wires that are difficult
to be described by a geometrical model or that do not belong to a well-defined
classes such as car or person. With such objects, curvilinear structures can be
used for the detection.

The application field driving this specific research is pulping and papermak-
ing, in particular, fiber characterization in pulp suspensions (see Fig. [). The
automated analysis of suspension images enables in-line real-time monitoring
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Fig. 1. Examples of the pulp suspension images. The image contrast has been increased
for illustrative purposes.

and control for pulping and papermaking, and replaces the current off-line lab-
oratory level analyses. Fiber properties, such as the length and the curl index,
affect the formation of the paper web, and thus, it is important to monitor these
properties during the papermaking process.

According to the review of Hirn and Bauer [5], there exist several commer-
cial pulp/fiber analyzers such as FiberLab [3], MorFi [I], FS200 [3], and Fiber
Quality Analyzer (FQA) [19]. These analyzers typically take a pulp sample and
analyze it in laboratory conditions. This is time-consuming and does not allow
real-time monitoring and control during the production. Some analyzers (e.g.,
FQA) incorporate a cytometric flow cell that orients and positions fibers for
more precise measurements [19]. In the in-line measurements, however, it is im-
possible to orient the fibers which often create fiber bundles. On the contrary, it
is important to estimate the percentage of fibers that are part of bundles.

A typical approach to implement the curvilinear structure detection is to
detect salient points belonging to the structures followed by a grouping pro-
cedure [I6]. In [7], curvilinear structures were recovered from the skeletons of
grayscale images that were extracted by a distance transform utilizing edge maps
of the images. In [0], the matched filter technique was applied to detect vessels
segments in retinal images and an iterative threshold probing scheme was utilized
to determine which pixels in the segments belong to vessels. The matched filter
technique convolves an image with multiple filters that are designed to detect de-
sirable features. In [4], spatial context in solar images was modelled with Markov
Random Fields (MRF) extracting salient contours. The MRF based approaches
applied to contour completion, such as [I2], assign initial labels to salient points,
formulate a cost function based on the label, and optimize it by relabeling the
pixels which provides the final solution.

The proposed framework is based on tensor voting presented by Medioni et
al. in [IT]. In tensor voting, each pixel is associated with a tensor encoding the
pixel orientation or the most probable orientation of a curve in that pixel. After
an initialization, pixels cast votes in their neighborhood, described by a voting
field, iteratively increasing the saliency of their neighbors belonging to the same
curve. As a result of this voting, a saliency map is obtained, and it indicates the
probability of pixels to belong to the curvilinear structures. Additionally, the
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tensor voting provides pixel junction and polarity maps, showing which pixels
belong to the junctions and which to the end points. The main advantage of the
approach is that there is no need to optimize an explicitly defined complicated
objective function.

The main contribution of this work is a formal description of a general frame-
work for curvilinear structure detection, including a novel linking method. The
second contribution is the application of the framework to the fiber detection
and characterization.

The paper is organized as follows: Section Pl introduces the framework for
the curvilinear structure detection utilizing the tensor voting approach. The
experimental evaluation of the approach in terms of the fiber detection accuracy
and the fiber length estimation is described in Section Bl The conclusions are
given in Section [l

2 Framework for Curvilinear Structure Detection

The curvilinear objects are recovered using the framework introduced in Fig. 2
A grayscale image is reduced to an edge map by an edge detection method based
on direction sensitive filtering. Next, the tensor voting is applied to the edge map
to retrieve the point saliency, end points, and junction points. Finally, the curves
are grown from the most salient points utilizing the linking algorithm proposed
in this paper.

Feature extraction

Direction sensitive Dominant orientation Non-max suppression
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filtering selection and thresholding
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Fig. 2. Framework for curve extraction and parameterization

2.1 Oriented Edge Map Computation

To compute the edge map, an image is filtered by a second derivative zero-
mean Gaussian filter in eight directions with the filter masks shown in Fig. 2
The dominant orientation of the edge normal in each pixel is computed as the
maximum of the eight filter responses [9]. Non-maximum suppression in the
dominant orientation of the edge normals is performed together with hysteresis
thresholding as described in [2]. This procedure produces an oriented edge map
where for each pixel p an orientation d is assigned.
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2.2 Pixel Saliency Estimation

Saliency, in the context of curvilinear structure detection, indicates how likely it
is that a pixel belongs to a curvilinear structure. To determine the saliency for
each pixel, the tensor voting approach is applied. First, each pixel is associated
with a tensor T that encodes the curve orientation of this pixel. The tensors

cos(d)?  cos(d)sin(d)
cos(d)sin(d)  sin(d)?
orientation. After being initialized, each pixel votes for its neighbors in its voting
field, supporting the assumption that they belong to the same curve. The voting
field (see Fig. is oriented along the tangent to the curve in the pixel. It
weights the pixels in the neighborhood, giving a higher weight to the pixels that
are located along the curve. The size of the voting field w x w [10] is computed
using a parameter o, scale of voting, as

—16l0g(0.1) - (0 — 1)
w = 2 :

are intialized as a matrix T = where d is a pixel

(1)
The coefficient of the voting field in the pixel p is computed as

—sin(26)

_ (=)
F(,0,0)=e¢ { cos(20)

} [—sin(20) cos(20)] (2)

where s = sz‘zée)’ k= 25i7(9), [ is the distance to the voter, 6 is the angle (see

Fig. , and c is a constant which controls the decay with high curvature. In
the voting process, a voter’s tensor is added to the tensors of the pixels in the
voting field multiplied by the field coefficient. After the voting procedure, the
saliency of a pixel is the difference between the bigger and the smaller eigenvalues
of its tensor. The smaller eigenvalue indicates how likely it is that a pixel is a

junction point. The whole process to obtain the saliency map is summarized in
Algorithm [

2.3 Pixel Polarity Estimation

The previous step produces the saliency and junction point maps. To find the
end points, information on the pixel polarity can be exploited [18]. A polarity
vector indicates the direction where from the majority of the votes come. If most
of the votes come from one direction, the point is likely to be an end point. Pixel
polarity is computed as presented in Algorithm Bl using the first-order voting.
Unlike in the second-order voting used in pixel saliency estimation, where the
voting is done by matrices, in the first-order voting the votes are cast by vectors.
A voter casts a vote to each pixel in its voting field as a vector oriented towards
the voter (see Fig, . As a result of voting, a polarity vector in each pixel
is the sum of the vectors pointing to all the voters. Therefore, as illustrated
in Fig. polarity vectors of the end pixels are oriented towards the inner
part of the curve. The polarity value is computed as the length of the polarity
vector’s projection on the vector tangent to the curve (perpendicular to the
normal vector).
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Fig. 3. Voting field: (a) Example of a voting field oriented horizontally (the color
corresponds to the field coefficient, with red representing a high and blue representing
a low value); (b) Votes cast by a stick tensor located at the origin O; see the text for
explanations of other symbols

Algorithm 1. Second-order tensor voting for edge saliency estimation.
Input: a set of edge pixels P = {p; = [xs,¥s, d;]} where the position of a pixel is de-
scribed by its coordinates x;,y; and its orientation by angle d;.
Output: a saliency map S, a junction map J.
Parameters: a scale of voting o.
1: for each edge point p; do )
2 Initialize the second order tensor as T; = Cos%(;f)(i’?)l (dy) cos‘gl;;)(zzir)zgdi) .
3: end for
4: for each edge point p; do
5: Compute the tensor field coefficients F; as in Eq.
6 Perform eigenvector decomposition of the tensor T; to obtain eigenvalues (A5,
A2;) and eigenvectors (el;, €2;).

7 if A7, — A2; >0 then

8: for each edge point p;j in the voting field F; do

9: Compute a new tensor matrix T; = Tj + TiFi(p;).

10: end for

11: end if

12: end for

13: for each edge point p; do

14: Perform eigenvector decomposition of the tensor T; to obtain eigenvalues (A1,

A2;) and eigenvectors (el;, e2;).
15: Assign S(p;) = A1; — A2; and J(p;) = A2;.
16: end for

2.4 Curve Growing

The pixel saliency estimation and pixel polarity estimation steps produce the
curve saliency, junction saliency, and end points maps. The final step is to ex-
tract the curvilinear structures from the image based on this information. For
this, a curve gorwing method is used. According to [10], the curve growing starts
by choosing an unprocessed seed point of high saliency and iteratively growing
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Algorithm 2. First order tensor voting for polarity estimation.

Input: a set of edge pixels P = {pi = [x4, y:, d;]} where z;,y; are the pixel coordinates
and d; its orientation.

Output: a polarity matrix R.

Parameters: a scale of voting o.

: Initialize a polarity matrix R and a matrix of polarity vectors P by zero elements.
: for each edge point p; do
for each edge point pj in a voting field of size w (Eq.[) do
Compute a vector t oriented toward the edge point pj.
P(p;) = P(p;) +t.
end for
end for
: for each edge point p; do
Compute R(p;) as a length of the projection of vector P(p;) on the tangent

vector in the point p;.
end for

© XD IR W
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Fig. 4. An example of the polarity map computation: (a) The polarity vectors gener-
ated by one voting pixel; (b) The map

the curve following the estimated tangent direction. A next point is added to the
curve if it is a point with maximum saliency in the tangent direction. In [13], the
importance of junction point and end point detection is emphasized and an ap-
proach for contour completion based on tensor voting is presented. However, the
approach does not provide instructions for the separation of two or more inter-
secting curvilinear structures. In Algorithm 3] a method for curvilinear structure
extraction is presented, where the curves are recovered as a set of pixels from
the saliency map utilizing the information about the junction points and the
polarity of the points. When the curve growing algorithm reaches a region of a
junction selected by using a threshold 7, the direction of growing stays as it
was before the junction because in the junction region there is no certainty of
the pixel orientation.
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Algorithm 3. Curve extraction algorithm.

Input: aset of edge pixels P = {p; = [xs,yi,ds]} , where x;, y; are the pixel coordinates,
d; its orientation. a matrix of tensors T, a polarity matrix R, a saliency matrix S, a
junction matrix J.

Output: a list of curves Q = qm.

Parameters: a threshold for seed points selection 715, a saliency threshold T2,
minimal polarity of an end point T, a threshold for junction points 7}.

1: Select a subset of seed points P1 = {p;} with the saliency value S; > T'1,.

2: for all salient points p; from the set P1 do

3: Perform eigenvector decomposition of the tensor T; to obtain eigenvalues
(A1:,M2;) and eigenvectors (el;, €2;).

4: ql = CURVE GROWING(S, J, R, p;, el).

5: g2 = CURVE GROWING(S, J, R, p;, —el).

6: end for

7: Join two parts of the curve q = [ql,q2] .

8: Add the curve to the list of the curves Q = [Q,q] .
1: function CURVE GROWING(S, J, R, p, e)

2: Current seed point peurr = P-

3: while (R(peurr) < Te ) and (S(peurr) < T25) do
4: deurr = €.

5: if J(Pcurr) > T then

6: dcurr = dpred‘

T end if

8: Pcurr = the most salient point in the deurr direction.
9: Add pcurr to the curve L.

10: dpred = dcurr-

11: end while

12: return 1

13: end function

3 Experiments and Discussion

3.1 Data

The proposed approach to fiber detection and characterization was tested on
a set of pulp suspension images, provided by the CEMIS-OULU Laboratory
of the University of Oulu. The images were captured with a setup consisting
of a CCD camera and optics with 2.5x magnification. The set consists of 50
grayscale acacia pulp suspension images with the resolution of 800x600 pixels.
40 randomly selected images (on the average 50 fibers per image) were used
for testing and 10 images for learning the method parameters. Examples of the
images are presented in Fig.[Il The results of fiber detection and characterization
were evaluated based on the spatial ground truth (GT) data verified by an expert.
As illustrated in Fig. the end points and points of high curvature were
marked for each fiber. Examples of the GT markings are presented in Fig.
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(a) (b)

Fig. 5. Examples of the ground truth markings. The colors are used only to illustrate
separate fibers: (a) Illustration of the ground truth markings; (b) Ground truth fibers.

3.2 Experiments

The method parameters, presented in Table[I], were selected based on the method
performance on 10 randomly selected suspension images. The scale of voting
determines the size of the voting field and affects the size of gaps that are allowed
in the curvilinear structures. The average length of fibers was 99 pixels. With
the voting scale equal to 10, the biggest allowed gap is about 30 pixels. The
thresholds for saliency, polarity, and junction maps affect the process of curve
growing. The lower the saliency threshold, the longer the curve. The lower the
polarity threshold, the sooner the growing is stopped. The junction threshold
determines when the region of intersection starts.

Table 1. Method parameters

Parameter Notation Value
Scale of voting o 10
Saliency threshold for seed points selection T1, 50
Saliency threshold for curve growing termination 72 10
Minimal polarity of end points Te 50
Threshold for junction points T; 40

Examples of the computed saliency map, junction map, and polarity map are
presented in Fig. [fl The more prominent the pixel is, the brighter it is on the
map. For example, the brighter pixels on the polarity map correspond to the
pixels that are more likely to be end points.

Examples of detection results are presented in Fig. [l While Figures and
7(b)| illustrate successful performance, Fig. and reveal difficulties. In
Fig. the fiber separation was performed incorrectly because of the small
angle between the intersecting fibers. In Fig. the algorithm failed because
of the high number of intersecting fibers.
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(b) (c)

Fig. 6. Examples of saliency maps and polarity: (a) Saliency map; (b) Junction map;
(c) Polarity map of a line segment

(© (d)

Fig. 7. Examples of fiber detection. The colors are used only for illustrative purposes
to visually separate the fibers.

To validate the detection results, for each GT fiber presented by a set of points
Py, = {p1,...on}, where N is the number points, we find a corresponding set
Q={(q1,l1),...,(gn,IN)}, where ¢; is the closest detected point for p; and I; is
the label of a fiber the point g; belongs to (see Fig. . The detection error
in pixels is computed as the average euclidean distance between the GT points
and the corresponding (closest) detected points E = 4 Zf\il(ﬂpz —qil|)- A fiber
is detected correctly if £ < 6. We distinguish the following detections:
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— Percentage of correctly detected fibers (TP).

— Percentage of fibers that where fully detected but in several pieces (TP),
where M is the number of pieces.

— Percentage of the detected fibers that are not even a part of a GT fiber (FP).

The results are shown in Fig. Bl 62% of the fibers were detected correctly in one
piece. Moreover, 90% percent of fibers were fully detected in one or two pieces
and almost all the fibers were fully detected in maximum of 4 pieces per fiber.
The FP detection rate was 19.2% providing the precision of 80.8%. The average
detection error E equalled to 3.8 pixels.

I Detection results

1 Cumulative sum
100 T T T —

Detection rate %

TP TPy TP3 TPy

Fig. 8. Detection results

The length of a fiber presented by a sequence of pixels {(z1,y1), ..., (TN, yn)}
is computed as the sum of distances between the curve points [17] as

N
L= Z\/(l"z —xi-1)? + (i — yi-1)? 3)

The projected length of a fiber is estimated as the distance between the curve
end points [I7] as

l= \/(xn - xl)z + (yn - yl)z' (4)

The curl index [I7] is calculated as the ratio between the full length and the

projected length as
L
CIl = | 1. (5)
The fiber parameters were computed as average values per image and the accu-
racy of the fiber parameter estimates was computed as the mean absolute error
(1- P%TG;P) -100%, where Pgr is a GT parameter value and P is a estimated
parameter value. As the result, the fiber length was estimated with the accuracy

of 71.5% and the fiber curl index with the accuracy of 70.7%.
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4 Conclusion

A general framework for curvilinear structure detection including a novel linking
method was presented. The framework was applied to fiber characterization
in pulp suspension images. The method was shown to detect all the fibers in
the set of used images but 38% of them in multiple pieces leading to a true-
positive rate of 62%. The demonstrated precision of fiber detection was 80.8%.
The average fiber length was estimated with the accuracy of 71.5% and the
average fiber curvature with the accuracy of 70.7%. Problems occur when a
single fiber is detected as several pieces causing false positive detections and the
fiber parameter to be computed incorrectly. The future work will include further
development of the curve growing algorithm and applying the framework to
other similar problems.
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