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Abstract. This paper proposes an automatic segmentation method of
vessel walls that combines an implicit 3D model of the vessels and a total
curvature penalizer in a level set evolution scheme. First, the lumen
is segmented by alternating a model-guided level set evolution and a
recalculation of the model itself. Second, the level set of the lumen is
evolved with a term that aims at penalizing the total curvature and with
a prior that forces the outer layer of the vessel towards the outside of the
lumen. The model term is deactivated during this step. Finally, in a third
step, the model term is reactivated in order to impose a smooth change
of the radius along the vessel. Once the two segmentations have been
computed, stenoses are detected and quantified at the thickest locations
of the segmented vessel wall. Preliminary results show that the proposed
method compares favorably with respect to the state-of-the-art both for
synthetic and real CTA datasets.

1 Introduction

Computed Tomography Angiography (CTA) and Magnetic Resonance Angiog-
raphy (MRA) have become common imaging modalities for diagnosing different
cardiovascular diseases, especially those related to the presence of atherosclerotic
plaques in blood vessels. Medical doctors usually evaluate the severity of a steno-
sis caused by an atherosclerotic plaque in a vessel by comparing the diameter of
its lumen measured at narrowings and at close regions where the vessel appears
healthy. Automatic and/or semi-automatic tools are required for performing this
task, since manual quantification of stenoses can be extremely time consuming.
This fact has fostered the research in the field in the last years.

A general approach to automatically detect and quantify stenoses is to analyze
the shape of the segmented vessel wall, which is the region comprised between
the lumen and the outer layer of the vessel. This analysis is usually performed
through statistics on the thickness of the vessel wall at its broadest locations [1].
Thus, it is evident that accuracy on the estimation of stenoses largely depends
on the quality of the vessel wall segmentation.
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By and large, the vessel wall can be obtained as the difference between the
segmentation of the lumen and the outer layer of the vessel. On the one hand,
state-of-the-art methods for lumen segmentation have been able to yield very
accurate results, sometimes performing better than human annotators
(e.g. [2, 3]). Unfortunately, the segmentation of the outer layer of the vessel
is more challenging, since calcifications and soft plaques can share similar char-
acteristics with surrounding tissue. Thus, at a large extent, the poor performance
of most algorithms of the state-of-the-art in stenoses detection and quantifica-
tion [1] can be attributed to poor segmentations of the outer layer of the vessels.
An additional issue to be tackled for images acquired from the coronary arteries
is the low resolution. For example, the diameter of the vessels can range between
ten and less than one voxel at the beginning and end of the vessel respectively.
This makes sub-voxel accuracy methods, such as level sets, necessary for solving
this problem.

In this line, this paper aims at proposing a level set-based segmentation
method for extracting the outer layer of the vessel, which, in conjunction with
a previously proposed lumen segmentation method [2], is used to extract and
analyze the vessel wall. The segmented lumen is evolved into the outer layer
through a level set that combines a curvature regularization term, an implicit
vessel model and a threshold-based image term. In addition, the lumen is used as
a prior in order to maintain the outer layer outside the lumen. The paper is or-
ganized as follows. Section 2 introduces the proposed method. Section 3 presents
some results of the proposed method both with synthetic and CTA data. Finally,
Section 4 discusses the results and makes some final remarks.

2 Method

As already mentioned, the proposed method uses level sets. In level set segmen-
tation methods, contours are represented by the zero level of a level set function
φ. This function can be, for example, a signed distance function from the con-
tour of interest. The method aims at iteratively modifying this function in order
to make the zero level converge to the boundary of the object of interest. The
following subsections describe the segmentation of the lumen and the outer layer
of the vessel.

2.1 Model-Guided Lumen Segmentation

This subsection briefly summarizes the method proposed in [2] which is used
here for segmenting the lumen only. The algorithm starts with an input image
and initial centerlines for every coronary artery branch. From the initial center-
lines, an implicit vessel model is generated, which is used to guide the level set
propagation. After a number of iterations of the level set evolution, the center-
lines and the radius of the vessels are recalculated in order to generate an im-
proved vessel model. These two steps are alternated repeatedly until convergence.



Vessel Wall Segmentation Using Implicit Models and Total Curvature 301

As shown during the “3D Cardiovascular Imaging: a MICCAI segmentation chal-
lenge workshop”1, this approach yields state-of-the-art results and in some cases
it is even able to outperform human annotators.

The method uses the following level set evolution equation:

∂φ

∂t
= (αvimage + β vsmoothness + γ vprior) |∇φ(x)|, (1)

where φ is the level set function, α, β and γ are weighting parameters and the
terms vimage, vsmoothness and vprior are defined as follows.

First, vimage is a threshold-based image term which tries to keep the gray-scale
values inside the lumen in a certain range. Such a range is automatically esti-
mated through some statistics on the gray-scale values at the centerline. Second,
vsmoothness is a curvature-based smoothness term. Since the difference between
the principal curvatures in healthy vessels is large, minimum curvature was used
instead of the commonly used mean curvature in order to avoid potential shrink-
ages along the vessels related to the natural large curvatures present across the
vessels. This approach is in the same line as the one proposed in [4]. Finally,
vprior is a term to penalize deviations of the segmentation from a model of the
vessel. The model is a generalized cylinder implemented as an implicit function
(i.e. a level set) generated from a centerline and a radius function. As aforemen-
tioned, both centerline and radius are also evolving with the segmentation. The
model acts not only as a prior for the level set evolution but it also guarantees
the preservation of the topology of the vessel by preventing cuts at the zero level
set. Notice that the input centerlines are not required to be perfectly centered.
Actually, most of the methods proposed in the bibliography (cf. [5] for a review of
the most representative approaches for this task) yield results of enough quality
to be used in the method.

2.2 Smoothness Term for Outer Layer Segmentation

The most important difference between the method proposed in [2] for segment-
ing the outer layer and the one proposed in this paper is the applied smoothness
term. Thus, the aim of this subsection is to motivate the necessity of using
different smoothness terms for lumen and outer layer segmentation.

Indeed, the desired smoothing effect for the outer layer segmentation is essen-
tially different from the one applied for the lumen segmentation. By applying
the Euler-Lagrange equation, it can be proven that the solution of the mean
curvature motion (MCM) PDE equation:

∂φ

∂t
= H |∇φ(x)| (2)

is a minimizer of the energy functional EA =
∫
S dS, where H is the mean

curvature and S is the surface [6]. That is, the MCM PDE equation can be used
to minimize the area of the surface S. Using the minimum curvature instead of

1 The website of the challenge is: http://coronary.bigr.nl/stenoses/index.php

http://coronary.bigr.nl/stenoses/index.php
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H , as performed in [2] can be regarded as an anisotropic variant of (2) which
also aims at minimizing the surface area of S, but in this case anisotropically.

(a) (b) (c) (d)

Fig. 1. (a): A cross section of a simulated stenosis. The black area corresponds to
the lumen of the vessel. (b): Result after applying 50 iterations of a level set with a
threshold-based image term and MCM. (c): Result after applying 50 iterations of a level
set with the same terms plus the model term. (d) Result after applying 50 iterations
with the total curvature smoothness term and disabling the model term. The lumen is
shown in gray on Figures (b-d).

Although this smoothness term has interesting properties and is appropriate
for lumen segmentation, it does not have some desirable properties required for
segmenting the outer layer of the vessel. Let us illustrate this with a 2D example.
Figure 1(a) shows a cross section of a synthetic example where the plaque covers
the top part of the vessel. Assume in this case that the gray-scale values of the
plaque are similar to those from the surrounding, so the image term is unable
to move the level set towards the outer layer of the vessel. The result is that,
despite of the big size of the plaque, the lumen and outer layer segmentation yield
similar results when the same smoothness term is used as shown in Figure 1(b).
Unfortunately, in this case, the model term used in (1) for segmenting the lumen
cannot help either to get better segmentations of the outer layer. Even if accurate
estimations of the radius of the vessel are available, the centerline will remain
stuck at the center of the segmented lumen instead of moving towards the center
of the vessel. This can lead to the wrong segmentation shown in Figure 1(c). Our
approach to solve this problem is to use a more appropriate smoothness term.
The main objective of the new smoothness term is to make centerlines leave the
local minima before the evolution of the level set can continue. This effect can be
obtained through the intrinsic Laplacian of mean curvature motion (ILMCM),
as shown in Figure 1(d).

Consider the total curvature energy functional [7]:

Etc =
1

2

∫

S

(κ2
1 + κ2

2) dS, (3)

where κ1 and κ2 correspond to the maximum and minimum principal curva-
tures at S respectively. The first variation of this functional corresponds to the
ILMCM, which is given by the following fourth-order PDE [8] [9]:
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∂φ

∂t
= ΔH |∇φ(x)| (4)

where ΔH is the Laplacian of the mean curvature.
An interesting property of the ILMCM is that, while it is well-known that level

sets vanish under standard MCM after a large enough number of iterations, they
converge to spheres under ILMCMwhich size depend on the initial level set [7]. In
the proposed method, ILMCM is combined with appropriate prior terms which
make the level set converge to a generalized cylinder where the total curvature
is minimized.

Although there are alternatives to the ILMCM, it is the most suitable ap-
proach for vessel segmentation. For example, one alternative, is to use the energy
functional:

Ep =

∫

S

(κ1 − κ̂1)
2dS, (5)

with κ̂1 = 1/r̂, and r̂ being the expected (or estimated) radius of the vessel.
Unfortunately, efficient numerical schemes used in level sets for estimating cur-
vature are not accurate, especially in objects with very high κ1, something that
is common in vessels. This makes difficult to use this approach for vessel segmen-
tation. Another alternative is the Willmore flow, which penalizes the squared of
the mean curvature instead of the total curvature [10–12] or its generalization
using higher powers of H [13]. Specifically, the Willmore energy is given by:

Ew =
1

2

∫

S

H2 dS =
1

8
Etc +

1

4

∫

S

K dS. (6)

where K is the Gaussian curvature and Etc is given by (3). From this equation,
it can be seen that ILMCM is more appropriate for vessel segmentation, since
the extra penalizer on the right of (6), which considers the interaction between
the two principal curvatures, is not relevant in this application and it imposes an
unnecessary computational burden. A final alternative comes from the Euler’s
elastica theory, which integrates ILMCM and MCM in the same framework
[14, 15]. Its energy functional in 2D is given by:

Ee =

∫

S

(a+ bκ2) dS (7)

with a and b being parameters. The proposed method can be seen as a particular
case in which a = 0 for segmenting the lumen and b = 0 for segmenting the outer
layer of the vessel.

2.3 Segmentation of the Outer Layer

For segmenting the outer layer, the level set is initialized with the final level
set obtained during the lumen segmentation. Although, the general equation (1)
is also applied for the outer layer segmentation, each term is adapted for this
specific task as described below.
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Design of the Image Term. Instead of using a range of values, only a lower
threshold is considered in the image term. This allows us to include calcified
plaques in the segmentation. That is, vimage = I(x) − Tinf , where Tinf is a
constant that been set to 150HU for CTA datasets used in Section 3.

Design of the Smoothness Term. As already mentioned, the ILMCM
smoothness term is used instead of the anisotropic MCM used for lumen seg-
mentation in order to make the centerlines leave local minima.

Despite its advantages, one important problem of ILMCM is that basic nu-
merical schemes tend to be unstable. Also, since the PDE requires fourth-order
derivatives, the estimation of curvature yields inaccurate values in small objects,
which is the case at end of coronary arteries. In recent years, more stable and
accurate schemes have been proposed for solving (4). For example, [16] proposed
to split ILMCM into two alternated second order PDEs that tend to converge
to the same solution of ILMCM. This numerical scheme was used in the exper-
iments of Section 3. In any case, a small time step must be used for the sake
of stability. It also is important to remark that, for vessel segmentation, only
the curvature of the cross sections (which corresponds to the maximum princi-
pal curvature) requires regularization. That means that the energy functional
Emc =

∫
S κ2

1 dS can be used instead of the total curvature energy functional.
However, since κ1 � κ2 in vessels (especially at their endings), both functionals
are approximately equivalent. An important additional advantage of including a
penalizer for the minimum curvature κ2 is that the numerical schemes become
more stable.

Design of the Prior Term. The ILMCM described in the previous subsection
must be guided with an appropriate prior term. One of the drawbacks of our
method in [2] is that the outer layer and the lumen are computed independently
and in some cases this results in larger diameters in the segmented lumen than
in the outer layer. Considering that this paradox is mainly caused by numerical
errors, the outer layer was corrected by a statistical analysis on the differences
of diameters. The proposed method includes an extra prior term that makes
unnecessary this correction. The prior term is defined as:

vprior = p1 vmodel + p2 vlumen (8)

where p1 and p2 are parameters, vmodel is the same term used in the lumen
segmentation and vlumen penalizes the intrusions of the outer layer inside the
segmented lumen:

vlumen(x) =

{
1 if φ(x) ≤ 0 and φ0(x) ≤ 0
0 otherwise

, (9)

where φ0 is the level set of the lumen segmentation. That is, the level set is
pushed outwards if both level sets intersect and no force is exerted to attract the
level set of the outer layer towards the boundary of the lumen. In that sense, this
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term can be seen as an asymmetric threshold-based level set evolution function.
As well as for the lumen segmentation, this prior term prevents changes in the
topology of the level set.

Parameter Setting. The segmentation of the outer layer of the vessel is per-
formed in two steps. In the first one, parameters are set in such a way that the
ILMCM smoothness term and the prior vlumen are dominant, the prior vmodel

is deactivated and the influence of the image term is reduced but not deacti-
vated. This means that α is low, β and γ × p2 are high, while p1 is set to zero.
The objective of this step is to help the centerlines to escape from possible local
minima. In a second step, the model and image terms are reactivated for a few
iterations in order to get a better estimation of the outer layer. In this case α, β
and γ × p1 are set with medium values and γ × p2 with high values in order to
push the level set outwards the lumen. Notice that the importance of a specific
parameter is measured with respect to the sum of all parameters.

3 Experimental Results

Figure 2 shows a simulated severe stenosis and the output of the proposed
method after 300 iterations without the model term. Since the centerline is now
close to the center of the vessel, the model term can be switched on for a few
iterations (three in this experiment) in order to impose a smooth change in the
radius function along the vessel. The estimated narrowing was (86%), which lies
close to the ground truth (80%).

Fig. 2. Left: simulated severe stenosis (80% of narrowing). Right: result of the proposed
method after 300 iterations.

In addition, the method was applied to the 18 coronary artery CTA train-
ing datasets provided by the organizers of the 3D Cardiovascular Imaging: A
MICCAI Segmentation Challenge workshop, at the MICCAI 2012. The initial
centerlines were provided by the team Rcadia [17]. Figure 3 shows the lumen
and outer layer segmentation of the dataset number 10.
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Fig. 3. Left: rendering of a CTA dataset with the segmented lumen. Center: segmented
lumen. Right: segmented outer layer of the vessels. A different pose has been used in
the last two renderings for a better visualization of the stenoses (marked in blue).

Table 1. Summary of stenoses detection results. The maximum value of each column
is marked in bold.

Method QCA Sensitivity QCA PPV. CTA Sensitivity CTA PPV

Observer1 0.56 0.42 0.72 0.50
Observer2 0.58 0.49 0.64 0.64
Observer3 0.43 0.46 0.46 0.51
Cetin et al. 2012 0.54 0.43 0.70 0.54
Mohr et al. 2012 0.58 0.24 0.47 0.19
Duval et al. 2012 0.52 0.17 0.63 0.15
Wang et al. 2012 0.36 0.31 0.28 0.23
Proposed method 0.80 0.20 0.50 0.08

The method has been compared with the results from the challenge using the
methodology described in [1], that is through sensitivity and positive predic-
tive values (PPV) of quantitative coronary angiography (QCA) and computed
tomography coronary angiography (CTA) analyses with respect to human an-
notated ground-truths. Stenoses have been reported at the thickest points of the
segmented vessel wall. Table 1 shows the results of the proposed method com-
pared to the four methods with better ranking reported on the website of the
challenge2. As shown in the table, the sensitivity is largely improved compared
to our previous method. It is interesting to see that the new method outperforms
human observers sensitivity in some cases. On the other hand, the decay in the
PPV values indicates an increase in the amount of false positives. Our current
research aims at reducing this amount while keeping higher values of sensitivity.

4 Discussion

A new segmentation method for the outer layer vessel level set has been pro-
posed. It is used in conjunction with a previously proposed method for lumen

2 These results were taken from this website the 1st of February 2013.
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segmentation to automatically detect and quantify stenoses in coronary CTA
datasets. By introducing a higher-order smoothness term, the centerlines are
forced to move towards the center of the vessel instead of at the center of the
lumen. Preliminary results are promising, especially regarding sensitivity.

It is important to remark that, since only a single point per lesion is consid-
ered, which is marked at the local maximum of the segmented vessel wall, this
point might not coincide with those marked by the observers, especially when the
plaque is relatively long. Actually this can have a large impact in the statistics
reported in Table 1.

Several aspects need to be improved for using the proposed method in clinical
practice. One drawback of the method is that its performance directly relies on
the quality of the input centerlines. Unfortunately, the centerlines provided by
the team Rcadia have problems in case of severe stenoses and occlusions. Another
issue of the current implementation is that the centerlines are not allowed to
extend or shrink. Although points in the middle of the centerline are updated
iteratively, starting and ending points of centerlines are kept fixed as the original
input. Allowing centerlines to grow in the most likely directions can be useful to
discover additional vessel structures at every iteration.

Furthermore, a current drawback of the method is that estimating the most
suitable thresholds is a difficult task. For human observers, dynamic window
setting can be helpful to improve the accuracy of grading. A similar technique
can be implemented in the proposed method by running the segmentation at
multiple threshold levels, which might provide a profile of the composition of
the vessel wall. Moreover, in many segments, the threshold of the level set can
be lowered to as low as 0HU without causing leaking problems. This approach
could potentially be useful for finding the outer border of the vessel wall where
adipose tissue (-70 to -30HU) is present. Finally, the current implementation can
be further speeded up by using smaller regions of interest, better estimation of
the model, parallel computing and by using local convergence detection through
coherent propagation [18].
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