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Abstract. The intracranial volume (ICV) in children with premature
fusion of one or more sutures in the calvaria is of interest due to the risk
of increased intracranial pressure. Challenges for automatic estimation of
ICV include holes in the skull e.g. the foramen magnum and fontanelles.
In this paper, we present a fully automatic 3D graph-based method for
segmentation of the ICV in non-contrast CT scans. We reformulate the
ICV segmentation problem as an optimal genus 0 segmentation problem
in a volumetric graph. The graph is the result of a volumetric spherical
subsample from the data connected using Delaunay tetrahedralisation.
A Markov Random Field is constructed on the graph with probabili-
ties learned from an Expectation Maximisation algorithm matching a
Mixture of Gaussians to the data. Results are compared to manual seg-
mentations performed by an expert. We have achieved very high Dice
scores ranging from 98.14% to 99.00%, while volume deviation from the
manual segmentation ranges from 0.7%-3.7%. The Hausdorff distance,
which shows the maximum error from automatic to manual segmenta-
tion ranges, from 4.73-9.81mm. Since this is sensitive to single error, we
have also found the 95% Hausdorff distance, which ranges from 1.10-
3.65mm. The proposed method is expected to perform well for other
volumetric segmentations.

Keywords: Intracranial volume, CT, craniosynostosis, graph cut,
segmentation.

1 Introduction

Unicoronal synostosis (UCS) is a congenital craniofacial malformation charac-
terized by the premature fusion of one of the coronal sutures, potentially leading
to asymmetric head shape, craniofacial growth disturbances, increased intracra-
nial pressure and developmental delays. Computed Tomography (CT) scanning
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is usually performed to confirm the diagnosis and to facilitate surgical treatment
planning. The intracranial volume (ICV) in children with premature fusion of
one or more sutures in the calvaria may become reduced, leading to risk of in-
creased intracranial pressure [1]. Challenges for automatic estimation of ICV
include holes in the skull in newborns (the fontanelles), but also holes in the
cranial base (e.g. the foramen magnum and other foramina, fissures and syn-
chondroses). The main contribution of our work is a fast and fully automatic
method for segmentation and estimation of the ICV in CT scans of children
with craniosynostosis. The method is based on the construction of a volumet-
ric graph description of the skull volume using tetrahedralization followed by a
graph cut forced to robustly perform a genus 0 segmentation. Validation is car-
ried out by comparing the automatic segmentation model to a semi-automated
model.

2 Brief Review of the Previous Research

Current work on automatic ICV1 estimation has focused on Magnetic Resonance
Imaging (MRI) volumes [2–4]. However, these methods are not well suited for
ICV estimation in craniosynostotic cases due to the limited bone-tissue contrast
in MRI. In the case of craniosynostosis, the best contrast of the cranial bones,
e.g. for diagnosis and surgery planning, is obtained from CT scans. Furthermore,
standard methods often use atlases based on a normal population, which may
lead to a bias in the estimation of the ICV in craniosynostotic cases. The current
standard for ICV estimation from CT is a manual method based on thresholding
followed by a seed-growing algorithm. The challenge of this method is the need
for manual editing in the various foramina in the skull base as well as in regions
where craniosynostosis or lacking suture fusion have caused gaps between the
cranial bones [5–7].

Anatomical segmentation such as the segmentation of the ICV in medical im-
ages is addressed in the literature by a series of approaches. In [8], deformable
template matching is applied in a Bayesian setting; in [9], deformable surface
models are proposed using a graph cut approach; and in [10], a multiclass
Markov Random Field (MRF) is used for voxel classification. In the latter case
it is interesting that, for two-class models, global optimal segmentation can
be obtained using a graph-cut-based approach [11]. In this work we propose
a two class segmentation of the ICV, where the classes (inside and outside) are
modeled as mixtures of Gaussians. In addition to a label prior, we use a gradient-
dependent interaction term. Moreover, we employ a tetrahedralization of a spher-
ical equidistant sample distribution leading to a graph. The graph has dedicated
outside and inside nodes, which robustly forces the graph segmentation to be of
genus 0.

1 In MRI they often estimate the total intracranial volume (TIV).
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Fig. 1. A mixture of Gaussians shown on the intensity histogram of a CT scan

3 Approach

The data consist of pre-surgical CT head scans of 15 children diagnosed with
UCS (either left- or right-sided). Age ranged from 6 to 18 months. All scans
were acquired at Copenhagen University Hospital, Rigshospitalet, except for one
which was acquired at Helsinki University Central Hospital. Because of the UCS
and the different age the data set is not homogeneous. All scans were obtained
at 512 x 512 pixels in-plane size and a complete volume consists of between 167
and 350 slices.

The aim of the method is to create a volumetric segmentation that follows
the transition between brain matter and bone, while also closing holes in the
bone structure. As the intensities of the CT scans vary, we fit a mixture of
Gaussians to each individual scan. The mixture of Gaussians is carried out using
expectation maximization and results in three normal distributions describing:
skin, brain matter and bone (see Fig. 1). Skin and bone have higher variance
compared to brain tissue, which is used to classify the distributions unsupervised.
Brain matter is by far the dominant, but also that with the least variance.
Using the probability density function, where v is a sample value, we define
the following two probabilities: p(v|x = ICV) = pdfbrain and p(v|x �= ICV) =
pdfskin + pdfbone. Generally, the brain matter distribution fits well to the data,
while the other two tissues just stay below and above both with a wider standard
deviation. Using only the mixture of Gaussians to classify brain-tissue and non-
brain tissue would lead to misclassification as the distributions are crude, while
the proposed method is insensitive to this.

Before the segmentation, the volumes were interpolated in the slice-wise direc-
tion to create isotropic voxels and ensure a regular sampling. A graph is created
on sampling points in the volumes. The sampling points are found using a spher-
ical volume of quasi-equidistantly distributed nodes. The nodes are distributed
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Fig. 2. Examples of distribution of sample points in the transverse and sagittal planes.
The sample density is much higher in the actual application with a voxel distance of
two between sample points. The green nodes show the inner sphere which is forced to
be part of the ICV, while the red nodes shows the outer sphere which is forced to be
outside the ICV. The slices are contrast enhanced based on the mixtures of Gaussians.

on the surfaces of concentric spheres, where the differences between their radii
are equal to the spacing between their longitudes. Similarly, points on the longi-
tudes are distributed with this spacing. This suggested sampling approach has
two benefits: the sampling density can easily be changed for different resolutions,
and it also removes the over/under-sampling problem of a spoke-like graph di-
rected from the center and out. The sample volume is centered in the middle of
the calvaria and created such that it covers the entire skull. In the center of the
graph, we leave a small empty sphere, which will be used to clamp the inside of
the graph to the ICV (see Fig. 2). The spherical graph is centered automatically
by summing the voxel-wise probability of brain matter given the distribution
prior. We find the coordinates of voxels with higher probability than 2

3 of the
maximum summation of the sagittal, coronal and transverse planes, respectively.
The center is found as the median of these coordinates, while the radius of the
sphere is found as 2.5 times the maximum interquartile range in the sagittal
and coronal planes only. Fig. 2 illustrates the sample point distribution in the
transverse and sagittal planes. For the actual ICV estimation we have used a
much higher sample density, using an even voxel distance of two between sample
points. A robust way of connecting each of the sample points to the immediate
spatial neighborhood in a highly connected graph can be achieved by Delaunay
tetrahedralization [12]. As this approach produces doublets of edges represented
by several adjacent tetrahedra the connectivity has to be cleaned up such that
edges are represented only once. On the graph with index set I, we define the
following MRF, which is solved using graph cuts [11]:

E(x) =
∑

i∈I

⎛

⎝Φ(vi|xi) +
∑

j∈Ni

(λ(xi, xj) + ψ(xi, xj))

⎞

⎠ (1)
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Fig. 3. The result of the segmentation between ICV and outside ICV shown in the
sagittal plane. The slices are contrast enhanced based on the mixtures of Gaussians.

Φ(vi|xi) = − log p(vi|xi) defines a log-likelihood function. The function returns
high values for low probabilities and vice versa. The outer and inner sphere
log-likelihood values are clamped as follows:

Φ(i ∈ outer|xi) =
{∞ xi �= ICV

0 xi = ICV

Φ(i ∈ inner|xi) =
{

0 xi �= ICV
∞ xi = ICV

(2)

Ni denotes the neighborhood of the i’th voxel and has terms defined as:

λ(xi, xj) + ψ(xi, xj) =

{
K∇e−|∇f(xi,xj)| +Kij xi �= xj

0 xi = xj
(3)

Where |∇f(xi, xj)| is the absolute gradient;K∇ controls the power of the gradient
term, while Kij is a general smoothness prior. With the outside sphere clamped
as outside ICV and the inside sphere clamped as ICV, a setting of K∇ and Kij

exists for which the resulting graph cut will only be on the inner edge of the
skull, close the holes (e.g. fontanelles, optic canals, foramen magnum, and other
foramina), and it will produce a segmentation of genus 0. We achieved our results
with K∇ being of the same magnitude as maxΦ(vi|xi = ICV), i ∈ I and Kij

1
100

of that. We found the results to be rather insensitive to fine tuning of K∇ and
Kij . The result of a segmentation is shown in Fig. 3. With a segmentation of the
graph, the volume can be estimated using the tetrahedralization of the sample
points contained in the cut.

4 Results and Discussion

Ground truth was made by expert manual segmentations using a semi-automatic,
slice-wise method based on a seed-growing algorithm incorporated in AnalyzeTM
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Fig. 4. Examples of the manual (magenta) and automatic segmentation (green) shown
on a transversal (Patient #8) and sagittal slice (Patient #11), respectively. The slices
are contrast enhanced based on the mixtures of Gaussians.

(BIR Research Lab, Mayo Clinic, Rochester, MN, USA). This method requires
a user-specified intensity threshold and manual editing.

As gaps and small fractures are present in the data, the semi-automatic seg-
mentation algorithm often breaks down and manual editing is necessary. Easy
cases for manual editing are when the natural curvature of the skull is present
and the gaps are small. Unfortunately, severe cases with large gaps and no a pri-
ori information potentially lead to large errors. Average processing time for the
manual method is two hours, including threshold estimation. Average runtime
including all steps of the process is 12 minutes on a fast consumer desktop com-
puter (Intel i7 3.6@4.2 GHz processor with 16 GB ram) running Matlab. Figure
4 illustrates the two methods on example slices. Looking at the transversal slice,
the methods are consistent, while on the sagittal slice the automatic method in-
cludes part of the optic canal. Fig. 5 shows the automatically estimated volumes
as a function of the manual volumes. The linear regression of the two lines has
been forced through origo. For the volume measured entirely inside the cut, we
get R2-value of 99.54%, with a slope of α = 0.9768 being a 2.32% underestimate.
Including the tetrahedra partially inside the cut, we get and R2-value of 99.50%,
with a slope of α = 1.0246 being a 2.46% overestimate. We have used the worst
of the volume estimates (i.e. including the partially cut tetrahedra) to calculate
volume deviation, Dice score [13] and Hausdorff distance [14].

Table 1 shows the comparison between the two segmentation models. For
each patient the deviation from the manual volume, Dice coefficient and Haus-
dorff distance were calculated to evaluate the proposed method. While the Dice
coefficient measures the volume overlap, the Hausdorff distance measures the
maximum error between the two segmentations. Since the Hausdorff distance
measure is sensitive to single error the 95 % Hausdorff distance is also included.

Deviations in volume are very small and lie between 0% and 3.7%. The
Dice coefficients also show a high consistency in overlap between the methods.
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Fig. 5. Automatic volumes as a function of the corresponding manual volume includ-
ing linear regression lines. Red denotes the volume with tetrahedra fully inside the
segmentation, while blue also includes tetrahedra partially inside. As a reference the
manual volume is shown as a black line.

Table 1. Result overview comparing the manual segmentation to the proposed au-
tomatic method. Volume deviation denotes the relative percentage-wise difference be-
tween the numeric volume estimates. Dice score measures the overlap between the
volumes. Hausdorff distance assesses the maximum error. 95 % Hausdorff distance is
included as this measure is much less sensitive to single error.

Patient Manual Automatic Volume Dice Hausdorff 95% Haus.
volume volume deviation score distance distance

# [cm3] [cm3] [%] [%] [mm] [mm]

1 846.6 859.5 1.5 98.87 7.62 2.22
2 824.8 831.0 0.7 98.88 5.09 2.16
3 888.6 913.5 2.8 98.55 4.94 1.16
4 1076.9 1102.9 2.4 98.67 5.30 1.10
5 1039.8 1061.7 2.1 98.71 6.88 1.72
6 1241.1 1273.2 2.6 98.66 4.74 1.10
7 982.2 996.5 1.5 99.00 9.81 3.65
8 902.6 935.8 3.7 98.14 4.88 1.38
9 1081.4 1108.8 2.5 98.67 4.73 1.12
10 1066.1 1100.0 3.2 98.36 7.97 1.75
11 1101.2 1138.8 3.4 98.28 6.05 1.34
12 921.1 930.2 1.0 98.87 8.11 2.98
13 695.2 716.2 3.0 98.39 6.09 1.89
14 1047.5 1082.1 3.3 98.28 6.48 1.27
15 938.6 970.8 3.4 98.29 5.16 1.22
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The lowest Dice score is 98.14, while the highest is 99.00. An explanation for
the differences might relate to the graph cut lying slightly outside the manual
border (see Fig. 4). This behavior might relate to the chosen threshold, and it
would be interesting to assess the consequence of using various thresholds as well
as the manual error in future work.

The Hausdorff distance, which is a conservative measure, showing the max-
imum error in overlaps, shows differences of up to 9.81 mm. Examining the
images, large differences between the two methods occur where the foramen
magnum and optic canals are closed. Both regions are hard to segment consis-
tently, since the spinal cord and the optic nerves are similar in intensity to that
of brain matter.

5 Concluding Remarks

In conclusion, we have implemented an automatic, fast method for accurate
estimation of the ICV in children with UCS. The method is fairly insensitive to
fine tunning of parameters. There is good reason to believe that the proposed
method can be used for other applications in volumetric image segmentation.
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