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Abstract. As an early indication of diseases including diabetes, hy-
pertension, and retinopathy of prematurity, structural study of retinal
vessels becomes increasingly important. These studies have driven the
need toward accurate and consistent tracing of retinal blood vessel tree
structures from fundus images in an automated manner. In this paper we
propose a two-step pipeline: First, the retinal vessels are segmented with
the preference of preserving the skeleton network, i.e., retinal segmenta-
tion with a high recall. Second, a novel tracing algorithm is developed
where the tracing problem is uniquely mapped to an inference problem
in probabilistic graphical models. This enables the exploitation of well-
developed inference toolkit in graphical models. The competitive perfor-
mance of our method is verified on publicly available datasets comparing
to the state-of-the-arts.

1 Introduction

Structural study of retinal vessels provides valuable information for clinicians
for the prognosis of diseases such as diabetes, hypertension, retinopathy of pre-
maturity (ROP) [1,2]. For example, the change of length to diameter ratio of an
artery tree is related to diseases like hypertension and diabetes [3, 4]. However,
commercial softwares still largely rely on manual efforts for tracing the artery
trees. This is a tedious work due to the highly variable structure of these retinal
vessels in images. Moreover, it is not sustainable for high-throughput analysis of
fundus images from patients.

There are two types of studies conducted in retinal vessel analysis. The first
is based on segmentation [5–12], while the second is vessel tracking based meth-
ods [13–17]. The first type classifies the pixels into vessel or non-vessel pixels and
produces a binary image where foreground pixels correspond to vessel pixels and
background pixels correspond to non-vessel pixels. The second type starts with
a seed provided by the user and tracks the vessel edges based on local intensity
values. Vessel tracking based methods are advantageous as they tend to produce
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Fig. 1. Overview of the proposed tracing pipeline (Best view in color)

connected structures of vessel segments, whereas pixel classification methods of-
ten produce many disconnected or isolated segments. However, vessel tracking
methods perform poorly in the crossover scenarios where they often get confused
at the junction points and produce the wrong trees [17]. In this paper, a two-
step automated pipeline is proposed to particularly address this problem, and
promising results are obtained during evaluation on a standard benchmark. Our
approach bridges segmentation algorithms and vessel tracking methods: Given
an output from a segmentation algorithm our method can trace each tree from
the others, to be used by the follow-up tree quantifications and analyses. The
pipeline of our approach is illustrated in Fig. 1.

2 Segmentation

The goal of the segmentation step in our context is to extract the vessel skele-
ton while maintaining the structural connectivity, as well as the corresponding
pointwise thickness along the skeleton, based on which the retinal vessels can be
faithfully reconstructed. This differs notably from the usual aim of most existing
segmentation work, where the emphasis is to achieve a high classification accu-
racy. As the number of vessel pixels are much fewer comparing to the number
of background pixels, often a high accuracy is achieved by missing many vessel
pixels – a situation we try to avoid. In fact, our goal can be better described as
segmentation with a high recall. It is critical for us to retain the vessel pixels that
keep the local vein and artery branches from being broken or entirely missing.
To achieve this, based on two existing methods [9, 11], our segmenter is formed
by merging the results, while emphasizing on maintaining the network connec-
tivity. Due to space concern, we discuss here only the quantitative analysis of
the segmentation results.

To evaluate the segmentation performance, Table 1 compares to the state-
of-the-art methods at the popular Drive dataset, while our segmenter excels in
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picking up most vessel pixels (the recall column) – crucial for maintaining the
connectivity of segmented parts, it also performs reasonably well in keeping only
a small fraction of false alarms (the precision column) and thus a reasonable
accuracy score – comparable with the leading methods.

Postprocess. The binary segmentation result is converted into a skeleton map
(of one pixel thickness) by standard medial-axis transform. Meanwhile the op-
tical disk region is identified and removed by applying a simple smoothing and
thresholding step.

3 Tracing

As illustrated in Fig. 2, skeleton pixels are partitioned into three categories:

Body: Points (Pixels having two neighbors)
Terminal: Points (Pixels having one neighbors)
Branching: Points (Pixels having three or more neighbors)

In particular, the terminal points that are closer to the removed optical disk are
called the root points, and the rest are end points.
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Fig. 2. Pixel labeling: (1)Body points, (2) & (3) Terminal points, and (4) & (5) Branch-
ing points

It is commonly assumed that for tracing, we always start from the optical
disk where the root points of the retinal vessel skeleton are present. As a result,
the retinal vessels can always be partitioned into a disjoint set of rooted trees,
with each tree possessing a unique label stemming from its root point (and thus
the segment it resides in). This is illustrated as the red-colored segments of the
vessel skeleton in Fig. 3 top. Clearly the number of trees is always known at
this stage. A segment is a continuous subset of skeleton pixels starts with a
root or a branching point, and ends with a branching or an end point. We have
counted the number of vessel segments in an image and label them with separate
numbers(Fig. 3).The vessel segments which are connected to the root pixels are
called Root Segments.
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Fig. 3. Vessel skeleton to graph: (A) The vessel skeleton(Red one the root segment).
(B) The Undirected Graph(Red ones are root/observed nodes, others are unobserved
nodes).

3.1 From Image Skeleton to Graph Structure

The skeleton of the segmented image is converted into an undirected graph,
G = (V,E), where the nodes V are the vessel segments of the image and there is
an edge between two nodes if the corresponding vessel segments are connected
in the image. Fig. 3A-B provides an illustrative example on a small fraction
of a retinal skeleton. Following the common assumption, the branch segments
connected with the optical disk are regarded as the root nodes. If we consider
each node in the graph as a random variable then the number of possible states
for those random variable is equal to the number of root nodes in an image. As
the root nodes are known, they are regarded as observed nodes (red nodes). So
the problem is to label the remaining nodes (blue nodes) of the graph. Clearly
it is an easy problem when the substructures are isolated from each other. It
becomes increasingly difficult as there are more and more crossovers of these
substructures in the original image skeleton.

3.2 Tracing as an Inference Problem

Once we have the graph structure, the tracing problem becomes that of an
MAP inference problem in undirected graphical models, where we want to find
the maximum probable label assignment for each of the node variables.

Formally, assume there are n number of nodes in the graph. X =
{x1, x2, . . . , xk} denotes the k root nodes which are observed, while Y =
{y1, y2, . . . , yn−k} denotes the unobserved nodes. The inference problem is
formulated as

Y ∗ = argmax
Y

p(Y |X), (1)
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where Y ∗ is the optimal assignment for the unobserved nodes. For undirected
graphical models, following the celebrated Hammersley-Clifford theorem [18]
and assuming binary interactions, the probability function possesses a factor-
ized form, as

p(Y |X) =
1

Z

∏

(i,j)∈E

ψij(yi, yj), (2)

where ψij(yi, yj) is the local potential function defined over a pair of nodes
connected by an edge, Z is the normalization constant. Consider ψij(yi, yj) =
exp

(−Eij(yi, yj)
)
, where Eij(yi, yj) refers to the local pairwise energy function.

By combining (1) (2), and by the fact that log is a monotone function, the
problem can be reformulated as

Y ∗ = argmin
Y

∑

(i,j)∈E

Eij(yi, yj). (3)

To solve it, the loopy belief propagation algorithm [18] is employed to infer the
approximately optimal solution of (3).

3.3 Pairwise Energy Eij

The pairwise energy Eij(yi, yj) can be equivalently described as a k × k lookup
table, with an entry for the scenario where the random variables yi and yj take
corresponding values. As an example and without loss of generality, in what
follows we consider a Potts model [18] for k = 3, which gives a 3×3 lookup table
as:

Eij(yi, yj) ∈ e×
⎡
⎣
+1 −1 −1
−1 +1 −1
−1 −1 +1

⎤
⎦

In other words, we only look at whether the two nodes taking the same label
or not, and encourage with E = +e the case where they do take the same label
and penalize with E = −e when they take different labels.

The scalar e is defined as a function over θ ∈ [0, π), the angle or absolute dif-
ference between the local orientation for the two segments, i and j. To calculate
the local orientation we take the skeleton of a particular segment and smooth it
with a Gaussian filter, then we find the hessian matrix (2 × 2) of all the points
on those skeleton pixels. The eigenvector corresponding to the largest eigenvalue
gives me the orientation for each pixel. Then we have changed the orientation in
such a way that it always points to the inward direction. After that we find the
average orientation around the junction for few pixels. The functions are defined
as follows

e =

{
f1(θ) if (i,j) is a part of a clique of 3 nodes.
f2(θ) if (i,j) is a part of a clique of 4 or more nodes.

(4)
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Fig. 4. Energy configuration for different scenarios

with
f1(θ) =

{
cos(θ) if π > θ > π/2
− sin(θ)

5 if 0 < θ < π/2
(5)

f2(θ) =

⎧
⎪⎨

⎪⎩

cos(θ) if π > θ > 3π/4

0 if π/2 < θ < 3π/4

sin(θ) if 0 < θ < π/2

(6)

3 node occurs in branching(Fig. 4C) or when the end point of one branch connects
on another branch(Fig. 4D). In both the scenarios if π > θ > π/2 lower energy
should be assigned to e. If 0 < θ < π/2 then there is a less chance that they
belong to the same root so they should be assigned high energy compared to
the previous case so we have taken the function −sin(θ)/5. 4 node occurs in
branching situation(Fig. 4E), where lower energy is assigned to higher angles
and higher energy is assigned to lower angles(Fig. 4B).

3.4 Modified Loopy Belief Propagation

Our energy function is defined in such a manner that the diagonal elements are
assigned one value and off diagonal elements are assigned another value. That
means for a two state system (1,1) and (2,2) configuration will always get same
energy and similarly (1,2) and (2,1) will also get same energy. This tie is broken
by the observed nodes and their influence assigns higher probability to one of
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the state. But in practical scenario very few nodes are known and some nodes
are far away from the root nodes. So the influence of the root node gets decayed
when they reach those far away nodes and they fail to break the tie and we get
marginals for those nodes which are equiprobable for all the states. In literature
this phenomena is called Correlation Decay problem [19, 20]. We have taken a
practical approach for solving this problem.

At first we run the loopy belief propagation over the entire graph and calculate
the marginals for all the nodes. Then we find those far away nodes which have
equiprobable marginals and also find out those are non-equiprobable. Then we
find out those non-equiprobable nodes which are directly connected with the
equiprobable nodes. We re-initiate the belief propagation algorithm with non-
equiprobable nodes as observed nodes and equiprobable nodes as unobserved
nodes. We repeat this until we get non-equiprobable marginal over all nodes.

4 Experiments

Experiments are conducted on the publicly available DRIVE [21] dataset. It
contains 40 color retinal fundus images divided into training and testing set.
All images come with manual annotations from domain experts. The perfor-
mance evaluation is undertaken by two scores, namely segmentation accuracy
and tracing accuracy, as described below.

4.1 Evaluation of the Segmentation Step

Quantitatively our algorithm is clearly the best performer in terms of recall and
F1 score and is the second best in terms of precision. Our accuracy is also on
par with the state-of-the-art. Visually our algorithm performs significantly better
than the existing ones in term of preserving the connectivity among segments,
which is crucial for tracing, as displayed in e.g. Fig. 5.

Table 1. Comparison of Vessel Segmentation performance in DRIVE (Red – Best
Performer, Blue – Second Best Performer )

Method Precision Recall F-1 Accuracy
Ricci [22] - - - .9563

Mendonca [5] .7315 - - .9463
Peter Bankhead [11] .7027 .7177 .7101 .9371

Garg [6] - - - .9361
Espona [7] .7436 - - .9352

Martinez-Perez [8] .7246 - - .9344
Diego Marin [10] .8433 .7067 .7690 .9452
Soares et. al. [9] .6943 .7425 .7176 .9466

Our method .7602 .8336 .7952 .9429
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4.2 Evaluation of the Tracing Step

To evaluate the performance of our tracing step, we manually label each segments
and assigned them to one of the trees. Then we compare the labels assigned by
our tracing algorithm to the manual labeling: If they are same then we take
that segments as correctly traced otherwise wrongly traced. Table 2 presents the
performance of our tracing algorithm. Note that the accuracy of 66.86% is not
trivial, as for a typical network with 10 trees (i.e. 10 classes), a trivial classifier
that randomly assigns labels will achieve merely 10%.

A CB

D E F

G H I

Fig. 5. Visual comparison of segmentation result (A) Original image (DRIVE-Test-
Image-19), and its ground-truth segmentation in (B). (C) Segmentation result of [22].
(D) Segmentation result of [9] (E) Segmentation result of [10]. (F) Segmentation result
of our method. (G) Original image (DRIVE-Test-Image-01). (H) Segmentation result
of [8]. (I) Segmentation result of our method. If we pay close attention to the boxed
regions, we can see that our segmentation step does a much better job at retaining the
connectivity of the skeleton.
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Table 2. Performance of the Tracing Step on DRIVE

No. of Segments Correctly traced segments Accuracy (%)
3529 2369 67.12

The visual tracing results are presented in Fig. 7 for an example with detailed
discussion, as well as in Fig. 8 for two additional examples. As shown by the
green boxes, the crossover cases are quite nicely resolved by the proposed algo-
rithm. The tracing errors (red circles) can be roughly categorized to four main
types: (1) Those due to issues in skeleton extraction, where e.g. 4-cliques are
wrongly encoded into two 3-cliques (Type-A error) as illustrated in Fig 6; (2)
Errors carried over from segmentation, which results in wrong local topology in
the graph representation (Type-B error); (3) Errors due to undirected message-
propagation (Type-C error); And (4) errors due to the limitation of the energy
functions adopted here (Type-D error). Fig 7 provides more details of the suc-

� � �

Fig. 6. (X) Crossover situation (Y) Correct skeleton (Z) Wrong skeleton

cess and failure scenarios of our approach: The left image presents the original
image overlapped with predicted skeleton, while the right image delineates our
tracing result. Therefore, a correct prediction (only one is shown) consists of a
pair of green boxes – one from input and one from tracing result; A tracing mis-
take (E1-E5), on the other hand, will be denoted as a triplet of two red circles
and a blue circle – the first two are from the input and the wrong tracing result,
respectively, and the third brings its corresponding tracing ground-truth. The
five errors (E1-E5) is discussed in details below:

E1. This is a type-D error. The angle between segments a and d is less than the
angle between b and d. Our energy function thus assigns less value to pair
(b,d) than (a,d). As a consequence, d is wrongly assigned the same label as
of b.

E2. This is due to segmentation error (Type-B), which affects its skeleton map
and follow-up graph structure by a local connection (topology) error. and
leads to wrong tracing result.

E3. The tracing error is due to a combination of two reasons: type-C and type-
D. The angles between pair (f,d),(g,i),(k,i) and (g,h) are all more than π

2 . so
they are all assigned to low energy values, which in turn encourages them
to have the same class label. The incorrect predictions of nodes (d,h,e,k,j)
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Fig. 7. An example of an input image (left) and its tracing result (right). A green box
denotes correct tracing result, a red circle points out an error (denoted as E1-E5 for
five separate errors. Meanwhile, A-D in bracket stand for four major error types), and
a blue circle is for the corresponding ground truth. For each box or circle, a zoom-in
view is provided. In particular, for each red circle error, its corresponding ground-truth
is also provided in blue circle. See text for details.

influence other nodes like c and b. So they are also assigned to wrong labels.
In contrast, as shown in blue circle for the corresponding ground-truth, the
segments actually belong to two different classes.

E4. This is a type-A error where one 4-clique is wrongly treated as two 3-cliques.
E5. This is also a type-A error where one 4-clique is treated as two 3-cliques.

One observation from analyzing the examples is that our algorithm works best
when the errors from segmentation step stay low, thus the topological connec-
tions remain mostly correct. We would like to address this over-sensitivity issue
for future work.
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Fig. 8. Two more exemplar tracing results: Left column: Original retinal images; Right
column: Our tracing results. Green boxes denote the correct tracing results, while red
circles point out the errors.

5 Conclusion and Outlook

In this paper we have taken a new approach for tracing vessel like structures.
Instead of tracing by looking at the image intensity level, we transform the
tracing problem into an equivalent global inference problem in Graphical models.
Our algorithm is shown to achieve good performance in crossover scenarios. As
future directions we are working on learning the energy functions which would
help to resolve more complex crossover situations, as well as exploiting ways to
make the tracing step more robust to small perturbation from the preceding
segmentation step.
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