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Abstract. We present an extremely fast method named FAST-PVE for
tissue classification and partial volume estimation of 3-D brain magnetic
resonance images (MRI) using a Markov Random Field (MRF) based
spatial prior. The tissue classification problem is central to most brain
MRI analysis pipelines and therefore solving it accurately and fast is
important. The FAST-PVE method is experimentally confirmed to tissue
classify a standard MR image in under 10 seconds with the quantitative
accuracy similar to other state of art methods. A key component of
the FAST-PVE method is the fast ICM algorithm, which is generally
applicable to any MRF-based segmentation method, and formally proven
to produce the same segmentation result as the standard ICM algorithm.
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1 Introduction

In its simplest form, brain magnetic resonance (MR) image segmentation refers
to classification of each voxel in the image to one of three principal tissue classes
- white matter (WM), gray matter (GM), and cerebro-spinal fluid (CSF). This
basic segmentation problem, termed tissue classification, is an essential pre-
processing step for cortical surface extraction [1] and voxel-based morphome-
try [2], which are perhaps the most important techniques to analyze anatomical
MR images in neuroscience. Complications in tissue classification include the
intensity non-uniformities, partial volume effect and scanner specificity of MR
imaging (MRI) as well as image noise [3]. These complications have been ad-
dressed in multiple works and it is not a purpose of the current paper to review
these in detail.

Markov Random Fields (MRFs) are an elegant technique to incorporate spa-
tial priors in medical image segmentation and, in particular, they are very often
an essential component of the methods aiming to brain MR image segmentation.
Examples of widely used segmentation methods for MRI based on MRFs include
[4–7]. Based on MRFs, one can derive a spatial prior penalizing the segmenta-
tions that are noisy or otherwise unlikely. However, a drawback of MRFs is that
their use leads to a complex optimization problem, often being the main compu-
tational bottleneck of the segmentation methods. On the other hand, speed of the
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image segmentation is critical since, for example, human brain studies presently
utilize a large number of brain images that all have to be segmented. This paper
centers around the method of [7], which is used for tissue classification in several
neuroimaging software packages and pipelines [8–10], and describes an extremely
fast version, termed FAST-PVE, of it running in under 10 seconds for a high
resolution 3-D MRI. The speed of FAST-PVE is maybe easiest to appreciate
when compared to a recent Field Programmable Gate Array (FPGA) based im-
plementation of the same method [11] for which computation times in the order
of 1 minute for a 3-D image were reported. FAST-PVE combines several inno-
vative techniques and approximations to achieve the speed up. The most central
of these is the fast iterated conditional modes (ICM) algorithm used to solve the
MRFs. Although this and other techniques are presented in the context of [7],
many of them, including fast ICM, are general and could be used in conjunction
with other methods as well.

Section 2 describes the FAST-PVE method and the most of speed-up tech-
niques. Section 3 introduces the fast ICM algorithm. Section 4 presents experi-
mental results with real and simulated 3-D MRI data confirming the high speed
and the quantitative accuracy of FAST-PVE. Section 5 concludes the paper.

2 FAST-PVE Method

Given a 3-D MR image X = {xi ∈ R : i = 1, . . . ,m}, where i = (ix, iy, iz) is the
voxel index andm is the number of voxels, FAST-PVE computes an estimate of the
fractional tissue content of each of the threemain tissue types (WM,GMandCSF)
in each voxel [7]. More specifically, it computes W ∗ = {w∗

ij : i = 1, . . . ,m, j ∈
{CSF,GM,WM}}, wherew∗

ij
is fraction of tissue type j in the voxel i. The partial

volume coefficients (PVCs) satisfy w∗
ij ∈ [0, 1] and

∑
j w

∗
ij = 1. The process is

termed partial volume (PV) estimation. The method assumes that the image X
has been corrected for intensity non-uniformities and skull-stripped.

To solve the under-constrained estimation problem, FAST-PVE assumes that
no voxel contains more than two-types of tissue and resorts to a two-stage opti-
mization problem. In the first stage, PV classification, voxels are tissue classified
into K = 6 tissue types representing the main tissue types (pure tissue classes
P = {CSF,GM,WM}) and partial volume mixtures of two tissue types (mixed
classesM = {{Background, CSF}, {CSF,GM}, {GM,WM}}). Certain mixed
tissues are omitted because there are very few such voxels in the brain. In the
second step, PVC estimation, FAST-PVE estimates the proportions of each tis-
sue type within each voxel using the information from the PV classification step
to make the estimation problem well-posed.

Partial Volume Classification. The PV classification is casted as an opti-
mization problem:

C∗ = argmax
C

log(p(xi|ci)) + U(C), (1)

where log p(xi|ci) is the log-likelihood of xi given that the tissue type of the
voxel i is ci and U(C) is a spatial prior penalizing label configurations that are
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unlikely. This optimization problem is derivable from the maximum a posterori
(MAP) principle [5]. The spatial prior U(·) is modeled by an MRF, or more
accurately, U(C) is the energy function of the Gibbs distribution defining the
MRF [12]. Define

aik =

⎧
⎨

⎩

2 : ci = ck
1 : ci ∈ P and ck ∈ M and ci ∈ ck or vice versa
−1 : otherwise

(2)

Then,

U(C) = (β/2)
m∑

i=1

∑

k∈Ni

aik
d(i, k)

, (3)

where β is a parameter controlling the strength of the spatial prior, Ni is the 26
-neighborhood around voxel i, d(i, k) is the distance between centres of voxels i
and k. In this work, β = 0.1 unless otherwise mentioned. The fast ICM algorithm
to solve the optimization problem is presented in Section 3.

The likelihood p(xi|ci) is assumed to follow Gaussian density g(xi|μci , Σci)
with the mean μci and the variance Σci for pure tissue classes. For mixed classes,
the likelihood is obtained by marginalizing the densities over all the possible

values of the PVC w [13]: p(xi|ci = {j, k}) =
∫ 1

0 g(xi;μ(w), Σ(w))dw, where
μ(w) = wμj +(1−w)μk;Σ(w) = w2Σj +(1−w)2Σk. The integral has no closed
form solution and hence numerical integration must be used to evaluate it. For
the computational efficiency, it is important to select a numerical integration
scheme as fast as possible without sacrificing too much accuracy. The numerical
integration in FAST-PVE is based on the extended Simpson’s rule with 8 equally
sized intervals [14]. This selection was done by comparing different integration
schemes numerically and selecting the fastest scheme yielding consistently under
0.1% error when compared to very accurate approximation obtained by the
extended trapezoidal rule with 1000 equally sized intervals1.

PVC Estimation. In the PVC estimation step, FAST-PVE estimates the pro-
portions of each tissue type within each voxel. If c∗i = j, that is labeling of voxel
i indicates that it is a pure voxel, w∗

ij
= 1 and for all k �= j w∗

ik
= 0. If i is a

mixed voxel, c∗i = {j, k}, then we employ the maximum-likelihood principle:

w∗
ij = arg max

w∈[0,1]
log g(xi|μ(w), Σ(w)), (4)

where μ(w), Σ(w) are as above. Furthermore, w∗
ik

= 1 − w∗
ij and all the other

PVCs are zero. The maximum-likelihood PVC-estimate (4) is solved by a simple
grid search.

Parameter Estimation. The model parameters μj , Σj , j = 1, . . . , 3 must be
estimated before the PV estimation. An efficient way to do this is to first label

1 In our experiments, the Simpson’s rules consistently outperformed the trapezoidal
rules, the Simpson’s rule completely broke down with lesser number than 8 intervals,
and also more advanced Simpson’s 3/8 and Boole’s rules failed to attain the a priori
set error bound when the number of intervals was less than 8.
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each voxel in the image X by a pure label belonging to P , and then to estimate
the parameters based on the intensity distribution of the labeled voxels for each
tissue class j denoted here as Ij . However, one does not want to assume that
the initial labeling is particularly accurate (as it has to be computed rapidly)
and, secondly, also PVE causes intensities in Ij to contain outliers. From this it
follows that the set of samples Ij contains samples that are not drawn from the
distribution describing the tissue type j which leads to problems when applying
conventional techniques, such as the maximum-likelihood principle, for parame-
ter estimation. The problem is solved by first detecting the possible outliers by a
simple analysis of the spatial configuration of the initial labeling, i.e., excluding
the intensities of the voxels for which one or more their 26-neighbours do not
have label j from the set Ij

2. After initial trimming robust point estimators
are applied to estimate μj , Σj based on trimmed Ij . In particular, we use the
maximum covariance determinant (MCD) method (also termed least trimmed
squares (LTS) in one dimension) for the task [15]. The accuracy of this kind of
parameter estimation has been confirmed in our earlier studies [7, 16] and the
reasons for selecting MCD as the parameter estimation method (instead of, e.g.,
more conventional M-estimators) has been explained in detail in [7], where the
method just described is abbreviated as trimmed MCD (TMCD).

The initial labeling is generated by the incremental k-means technique pro-
posed in [16] which is very fast and accurate enough. The algorithm itself is
a specific multistart adaptation of the standard k-means algorithm. A specific
point in the algorithm is that only those image voxels whose gradient’s magni-
tude after low-pass filtering is smaller than a certain threshold are retained in
the update of the means step of k-means. More specifically, if D = {di} = ||∇X ||
denotes the gradient magnitude image, the objective function to be optimized is

∑

j∈P

∑

k∈V

min
j
||xk − μinit

j ||2;V = {i : di < 2std(D)}, (5)

where std(D) is the standard deviation of gradient magnitude values and μinit
j

are the mean values respect to which the optimization is done. By excluding the
voxels with a high gradient magnitude, we hope to eliminate some bias which is
due to PVE as after low-pass filtering, these voxels are likely to be situated near
tissue type boundaries. To speed up the initial labeling, we utilize a technique
proposed for the expectation maximization (EM) algorithm in [17]. The k-means
objective function is approximated by

∑

j∈P

255∑

l=0

min
j

hl||cl − μinit
j ||2, (6)

where cl and hl are the bin-centre and the number of elements of the bin l in the
256-bin histogram of {xi : i ∈ V }. The idea behind this technique is to re-cast

2 Here 26-connectivity is used instead of original 6-connectivity of [7] because this
typically leads to slightly better performance.
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the clustering problem of hundreds of thousands data-points into a smaller 256
data-point clustering problem. If there are 256 intensity values (or less) in the
image (6) equals (5), otherwise (6) approximates (5).

3 Fast ICM

Algorithm 1. Fast ICM

1: for i = 1 to m do
2: for k = 1 to K do
3: Compute lik ← log p(xi|ci)
4: end for
5: Initialize c0i ← argmaxk lik
6: Set bi ← 1
7: end for
8: Set t← 0
9: repeat

10: Set t← t+ 1
11: for i = 1 to m do
12: if bi = 1 then
13: Set cti ← argmaxk lik + U(ci = k|Ct

Ni)
14: if cti �= ct−1

i then
15: for all j ∈ Ni do
16: Set bj ← 1
17: end for
18: end if
19: Set bi ← 0 // Remove this line to get the standard ICM
20: end if
21: end for
22: until Ct = Ct−1

23: return Ct

The most central component to the speed of FAST-PVE is the fast ICM
algorithm for solving the optimization problem (1). The pseudocode of fast ICM
is given in Algorithm 1, where cti denotes the label of voxel i at the iteration
t and the ordered set (|Ni|-tuple) of the labels of the neighbours of the voxel
i at the iteration t is Ct

Ni = {ctj : j ∈ Ni, j < i} ∪ {ct−1
j : j ∈ Ni, j > i} 3.

Although the algorithm is here presented in the context of MRI segmentation, it
is general and applicable to any MRF based segmentation problem. As we will
formally show, the fast ICM algorithm converges to the same local maximum
as the original ICM algorithm by Besag [18] but requiring considerably less

3 We use a set notation for this tuple because this way the meaning of it becomes
more easily apparent. Ct

Ni needs to be defined as a tuple rather than a set for the
proof of the correctness of the fast ICM algorithm.
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computation time. We want to note that the ICM algorithm is not as effective
as more modern algorithms [19]. However, it is computationally efficient and,
as we have argued before [3], local solutions obtainable by it can in certain
situations compare favourably to (more) global solutions available, e.g., based
on graph cuts. Also, the majority of MRI segmentation methods based on MRFs
use this local algorithm.

The ICM algorithm is based on the observations that (1) can be minimized
locally by considering each voxel in turn and the label of the voxel i depends only
on the labels of its neighbouring voxels CNi = {cj : j ∈ Ni} and the intensity xi

[18]. The difference between the Fast and standard ICM algorithms is the book
keeping variables bi, i = 1, . . . ,m, which track whether a label ci can change
during the iteration t. Especially, if we omit line 19 of the below algorithm, we
obtain the standard ICM algorithm (bi always equals one in this case).

In the Algorithm 1, the line 13 is the most expensive one requiring |Ni| +
1 = 27 additions and multiplications for each label and each voxel using a
look-up table based implementation. The key point is that in practice in later
stages of the algorithm very few voxels change their label during an iteration.
Thus, keeping track of those voxels which cannot change their label can lead
to massive savings in computation time by avoiding the computations of line
13. The trick is simple: voxels whose neighbours have not changed their label
since the previous evaluation round must have the same label as in the previous
round. More formally, if Ct

Ni = Ct−1
Ni , then U(ci = k|Ct

Ni) = U(ci = k|Ct−1
Ni ),

and consequently cti = argmaxk lik + U(ci = k|Ct
Ni) = argmaxk lik + U(ci =

k|Ct−1
Ni ) = ct−1

i .
To see that the modification is correct, i.e., it leads to the same result as the

standard ICM algorithm, we introduce the notation bti to refer to the value of
bi at line 12 during the iteration t. Note that 1) j ∈ Ni if and only if i ∈ Nj

and 2) j /∈ Nj. These are basic properties of the neighborhood systems in MRFs
[12], which we use repeatedly below. Now we are ready to prove the following
proposition from which the correctness of the algorithm follows since cti = ct−1

i

if Ct
Ni = Ct−1

Ni as pointed out above:

Proposition 1. For all voxels v = 1, . . . ,m, it holds that a) if Ct
Nv �= Ct−1

Nv then
btv = 1 and b) if Ct

Nv = Ct−1
Nv then btv = 0.

Proof. We prove the part a) first. Since Ct
Nv �= Ct−1

Nv , there is such j ∈ Nv for
which ct∗j �= ct∗−1

j , where t∗ = t if j < v and t∗ = t − 1 if j > v. Since j ∈ Nv,
also v ∈ Nj. Thus, bv is set to 1 at line 16 when the voxel counter i is at j and
the iteration counter is at t∗. Now, bv’s value can be changed to 0 only at line
19 and only when the voxel counter i is at v. The voxel counter will be at v next
time during the iteration t (since t∗+1 = t if j > v and t∗ = t if j < v) and thus
btv = 1 at the line 12 during the iteration t as required and the proof is complete.
The part b) of the proposition is equivalent to the statement: if btv = 1 then
Ct

Nv �= Ct−1
Nv and we prove this statement instead of the original one. At line 19

during the iteration t− 1, bv is set to 0. Now, since btv = 1 at line 12 during the
iteration t, this means that line 16 must be visited at least once between the two
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consecutive visits at the voxel v (during the iterations t−1 and t). Thus, v must
be a neighbour of a voxel j > v for which ct−1

j �= ct−2
j or a voxel u < v for which

ctu �= ct−1
u . In the former case, since v ∈ Nj , also j ∈ Nv. Further, c

t−1
j is the

yth element of Ct
Nv and ct−2

j is the yth element of Ct−1
Nv , where y is an arbitrary

integer from 1 to |Nv|. Thus, Ct
Nv �= Ct−1

Nv . In the latter case, the reasoning is
equivalent. �
Only the part a) is needed for the correctness of the algorithm. The part b)
shows that the algorithm is ’optimal’, i.e., the book keeping burden cannot be
(in practice) reduced while maintaining the correctness of the algorithm 4. An
algorithm based on a similar idea has been previously presented in [20] for inho-
mogeneity modelling. However, our presentation of the algorithm and the proof
of its correctness are much more concise. Moreover, the correctness proof in [20]
required to track the voxel behaviour two iterations back while a single iteration
is sufficient for our proof.

4 Implementation, Experiments and Results

The implementation of the FAST-PVE is Matlab based with the most signif-
icant bottlenecks, partial volume classification and PVC estimation, coded in
C and compiled into mex-files. The computation times were measured with a
standard laptop (Intel Core Duo CPU running at 2.26 GHz with 64 bit Win-
dows 7 operating system, Matlab version 2010b). The source-code is available
at http://www.cs.tut.fi/~jupeto/matlab_code/pvemri2.zip

We demonstrate the speed and accuracy of the method with two datasets,
which have become standards in evaluating tissue classification/partial volume
estimation algorithms: BrainWeb and IBSR2. With simulated data from the
BrainWeb database [21, 22], we demonstrate that the PVC estimates by the
new faster method are of similar quantitative accuracy than those by previ-
ous, much slower, implementations, reported in [7, 23]. A skull stripped (only
CSF, GM and WM labelled voxels) T1-weighted BrainWeb phantom of 1 mm3

voxel size with no inhomogeneity was used with different levels of Rician dis-
tributed random noise (1%, 3%, 5%, 7% and 9% of the maximum image inten-
sity). The image dimensions were 181 × 217 × 181. The accuracy of the PVC
estimates was measured for each tissue type j separately by root mean square

error RMSEj =
√
(1/m)

∑m
i=1(tij − w∗

ij
)2, where tij is the ground truth PVC

and w∗
ij
the estimated one. RMSE values and computation times are reported in

Table 1. The RMSE values of FAST-PVE were almost identical to the ones by
the earlier C-based implementation of the method (see [23], the average RMSE
difference was 0.007), but the computation time was reduced from over 3 minutes
to under 10 seconds. As already mentioned a recent FPGA-based implementa-
tion of the method [11] tissue classified comparable images in approximately 1

4 We could try, in addition, to utilize symmetries of the prior, but this would result
in a significantly more complicated book-keeping strategy and the cost of the book-
keeping would erase potential savings by the book-keeping.

http://www.cs.tut.fi/~jupeto/matlab_code/pvemri2.zip
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Table 1. RMSE values and computation times of FAST-PVE with the Brainweb data

noise level 1% 3% 5 % 7% 9%

RMSEWM 0.09 0.10 0.11 0.13 0.16

RMSEGM 0.08 0.11 0.16 0.20 0.26

RMSECSF 0.06 0.09 0.13 0.17 0.22

time (seconds) 8.90 7.60 7.64 7.76 7.86

Fig. 1. Counter-clockwise: An example of a coronal slice of an IBSR image, the PVC
estimates of CSF, GM, and WM, and the hardened segmentation

minute per image, thus the FAST-PVE offers over six-fold speed-up compared
to it. The break-down computation time spend on each step of the method was
on average: 1.89 s (24 % of the total computation time) for initial segmentation
by k-means, 1.33 s (17 %) for TMCD parameter estimation, 2.21 s (28 % for
computations of log-likelihoods, 1.81 s (23 %) for fast ICM and 0.65 s (8 %) for
PVC estimation. This demonstrates that no significant speed ups were possible
by implementing the initial segmentation and parameter estimation in C instead
of Matlab.

The IBSR2 dataset consists of 18 T1-weighted MR brain images
and their manual segmentations. These are provided by the Cen-
ter for Morphometric Analysis at Massachusetts General Hospital
http://www.cma.mgh.harvard.edu/ibsr/. The image size was 256× 256× 128
with the voxel sizes varying between 0.84× 0.84× 1.5 mm3 and 1× 1× 1.5mm3.
The images have been non-uniformity corrected by the CMA ’autoseg’ biasfield
correction routines. We skull-stripped them using Brain Surface Extractor
(BSE) [5].

With IBSR2 data, we demonstrate that the method works equally well and
fast with real data and provide also timing comparisons to BrainSuite09 [5].
The BrainSuite, implemented in C++, was selected as a reference method due
to its methodological similarity to FAST-PVE and since the computational effi-
ciency has been an important factor in its design. With real data, quantitative
evaluation of the PV estimation is restricted to evaluation of the quality of the
subsequent hard segmentations. Therefore, we hardered the PVCs by selecting
the tissue type (CSF,GM, or WM) with the maximal PVC w∗

ij to represent voxel

http://www.cma.mgh.harvard.edu/ibsr/
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Table 2. Average Dice coefficients, standard deviations of Dice coefficients, average
computation time per image and maximum computation time per image with the
IBSR2 dataset. FAST-PVE (S-ICM) corresponds to FAST-ICM coupled with the stan-
dard ICM algorithm instead of the fast ICM algorithm. FAST-PVE with fast ICM
computed the segmentations over 2 times faster than the other methods.

Method Dice GM Dice WM ave time max time

FAST-PVE 0.78 ± 0.08 0.86 ± 0.04 3.96 s 5.62 s

FAST-PVE (S-ICM) 0.78 ± 0.08 0.86 ± 0.04 9.26 s 13.7 s

BrainSuite09 0.72 ± 0.09 0.83 ± 0.08 19.2 s 51.0 s
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Fig. 2. Computation times of FAST-PVE with (standard) ICM and Fast ICM with
four different values of β (0.1, 0.3, 0.5 and 1.0) leading to different numbers of ICM
iterations. The lines labeled ’ICM’ and ’Fast ICM’ give the computation times of the
ICM part of FAST-PVE . The computation time increased linearly with the number of
ICM iterations with standard ICM, but was almost constant with Fast ICM. Savings
in computation time due to Fast ICM become more apparent with higher β.

i (see [3]). An example of PVC estimates and the hardened 3-class segmenta-
tion is shown in Fig. 1. The Dice coefficient between the manual and automatic
segmentation was used as the performance measure. It was computed separately
for each tissue class (CSF,GM,WM). The Dice coefficient between the sets U
and V is defined as 2|U ∩ V |/(|U |+ |V |). The value 1.0 corresponds to the per-
fect match and the value 0.0 corresponds to no match. The average Dice values
over 18 images of FAST-PVE and Brainsuite09 are presented in Table 2 which
shows also the average and maximal computation times (over 18 images) of the
methods. FAST-PVE was, on average, more accurate than Brainsuite09 and also
approximately 5 times faster. The Dice coefficients of FAST-PVE are similar to
other state of the art methods - although it should be noted that the purpose
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of the method is to obtain PVC estimates, not the hard segmentations, which
might call for a different kind of MRF model (see [3] for details).

The table 2 shows also the computation times of FAST-PVE but with the
standard ICM instead of the fast ICM algorithm. The segmentations by these
two methods are the same by Proposition 1, and hence the Dice coefficients
are equal. However, FAST-PVE with fast ICM was over 2 times faster than
FAST-PVE with standard ICM which demonstrates the importance of the fast
ICM algorithm. The savings in computation times due to fast ICM become
more apparent when the number of ICM iterations increase which in practice
occurs with the increase in β parameter. This is demonstrated in Fig. 2, where
the computation times are plotted against the number of ICM iterations. The
computation time of standard ICM increased linearly with the number of ICM
iterations while the computation time of fast ICM was almost constant.

5 Conclusions

We have presented an extremely fast method named FAST-PVE for tis-
sue classification and partial volume estimation of 3-D brain MRI. The
method was confirmed to segment a standard MR image in under 10
seconds with the quantitative accuracy similar to other state of art
methods. A key component of the FAST-PVE method is the fast ICM
algorithm, which is generally applicable to any MRF-based segmentation
method, and formally proven to produce the same segmentation result as the
standard ICM algorithm. The source-code of FAST-PVE is available from
http://www.cs.tut.fi/~jupeto/matlab_code/pvemri2.zip under a free
software licence.

Acknowledgments. Financially supported by Academy of Finland grants
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look into the numerical integration scheme used in FAST-PVE.
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