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Abstract. Segmentation is one of the main tasks in medical image anal-
ysis. Measuring the quality of 3D segmentation algorithms is an essential
requirement during development and for evaluation. Various methods
exist to measure the quality of a segmentation with respect to a ref-
erence segmentation. Validating interactive 3D segmentation approaches
or methods for 3D segmentation editing is more complex, however. Using
interactive tools, the user plays a central role during the segmentation
process as he or she needs to react on intermediate results, making estab-
lished static validation approaches insufficient. In this paper we present
a method to automatically generate plausible user inputs for 3D sketch-
based segmentation editing algorithms, to allow an objective and repro-
ducible validation and comparison of such tools. The user inputs are
generated iteratively based on the intermediate and the reference seg-
mentation, while static quality measurements are tracked over time. We
present first results where we have compared two segmentation editing
algorithms using our framework.
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1 Introduction

The delineation of objects in images is one of the main tasks in image analysis.
This process is called segmentation. Medical images are often acquired by c1l
or MR]E, resulting in 3D images given by a stack of parallel 2D slices. For
the segmentation of objects in 3D medical images, many algorithms have been
developed to solve this problem during the past decades [I1IT3]. In interactive
3D segmentation methods, a 3D segmentation is typically generated by a set of
2D user inputs on the slices of the image. Consequently, each input modifies the
segmentation result in 3D. Some methods even allow the user to modify the result
in any slice of any multi-planar reformatting (MPR), which we refer to as view.
Segmentation editing can be seen as a special case of interactive segmentation.
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Fig. 1. Sketch-based editing example for a liver metastasis in CT where the segmenta-
tion leaked into an adjacent metastasis, which should be cut away: (a) initial segmen-
tation (yellow) and sketch-based user input (blue) in a 2D slice s, (b) segmentation
before correction in 3D, (c) editing result in s and (d) 3D result after applying our
image-independent manual correction algorithm [3], where Sstart and sena indicate the
3D influence of the editing step.

In contrast to general interactive segmentation, segmentation editing typically
starts with an initial segmentation that the user locally corrects until it matches
his or her needs. The initial segmentation is given by a dedicated automatic or
semi-automatic algorithm that can be independent of the editing tool.

We have previously shown that sketching provides an intuitive 2D interface
for segmentation editing in the contour-domain. Based on this 2D editing, we
have developed an image-based [B] as well as an image-independent method [3]
for intuitive an efficient segmentation editing in 3D in the context of tumor
segmentation in CT. The image-based method iteratively simulates the sketch-
based user input on the neighboring slices using a block matching followed by a
shortest path approach on gradients within the image. The image-independent
method reconstructs a new surface based on the user input and the initial seg-
mentation using an object reconstruction approach that we have discussed earlier
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Fig. 2. Segmentation editing and simulation process: An initial segmentation is iter-
atively edited by the user or the simulation using a dedicated editing tool until its
quality is sufficient. During this process the quality of the intermediate results with
respect to the given reference segmentation is tracked.

[4]. Figure [l shows an example of a sketch-based editing step using our image-
independent algorithm.

Validation refers to the process of evaluating whether a software satisfies spe-
cific requirements [1], for instance the quality of the segmentation result with
respect to the given segmentation problem. Validation is not only an important
tool to decide which algorithm solves a given problem best. It is also essential
during development for regression testing or parameter optimization. Various
methods exist that measure the similarity of a segmentation result to a refer-
ence segmentation, i.e., its quality. We refer to this as static validation in this
paper. Common static quality measures include volume-based metrics, like the
volume overlap (Jaccard coefficient), as well as surface-based metrics, like the
mean and maximum surface distance (Hausdorff distance) [6]. Reference segmen-
tations are often given by manual delineations, which are used as a surrogate for
the unknown ground truth.

Using interactive tools, the final segmentation result is given by a process,
however, in which the user plays a central role. On the one hand, the segmenta-
tion result strongly depends on the user’s input. On the other hand, the input
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itself depends on all previous intermediate results. As a consequence, changes in
the underlying segmentation algorithm not only change the intermediate results
but also the user inputs to the algorithm that are necessary to converge to the
user’s intended result. This makes a user mandatory for testing and comparing
interactive algorithms or differing versions of the same algorithm. When evaluat-
ing interactive tools, it is insufficient to validate the final result only, because the
segmentation task is a user-driven, dynamic process. The quality of such tools
is influenced by additional factors, like the number of interactions, and their ac-
ceptance suffers from bad intermediate results. Comparing results from various
user studies has a limited reliability, though, because of the bad reproducibil-
ity of manually or interactively generated segmentation results. Even if the same
object is segmented twice by the same user using the same interactive tool, these
results differ from each other due to the intrinsic intra-observer variability. All
these facts make established (static) validation approaches unsuitable for mea-
suring the quality of interactive segmentation as well as segmentation editing
methods. However, almost no research has been done in this field so far.

In order to allow an objective, reproducible validation and comparison of
3D segmentation editing tools, without the necessity of the user, we propose a
dynamic validation approach that simulates the user in the context of sketch-
based editing (see Fig. ). Inspired by the work of Moschidis and Graham as
well as McGuinness and O’Connor [I0/8], plausible user inputs are generated
iteratively based on the intermediate and the reference segmentation as shown
in Fig. Bl while various quality measures are tracked over time.

2 Related Work

Udupa et al. have summarized challenges in the evaluation of segmentation algo-
rithms in the context of medical imaging [12]. The authors also propose a general
methodology for the evaluation of such algorithms, including requirements, its
implementation and performance metrics, i.e., quality measures. However, spe-
cific challenges for interactive approaches are not discussed by Udupa et al.

Existing work on evaluation of interactive segmentation methods focuses on
“scribble-based” approaches like graph-cuts or random walker, where the user
draws foreground and background markers to influence the result. McGuinness
and O’Connor have investigated the evaluation of such algorithms for 2D natural
images [7]. Later the authors proposed a simulation-based automated evaluation
for scribble-based methods in 2D [§]. For scribble-based interactive segmenta-
tion of 3D medical images, Moschidis and Graham proposed a simulation-based
framework for performance evaluation [9] as well as a systematic comparison of
various interactive segmentation methods [10].

We are not aware of any research on automatic validation of dedicated 3D
segmentation editing tools, neither in simulating plausible sketch-based user in-
puts nor in measuring the quality of such tools with respect to their dynamic
nature.
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3 Sketch-Based Editing Simulation

Our automated validation is designed for sketch-based user interactions. Sketch-
ing provides an intuitive 2D interface to perform manual corrections, where the
user modifies a binary segmentation result in the contour domain as shown in
Fig. [[al For details we refer to the description of our manual correction algo-
rithms [53].

We call parts that are missing or which are unintentionally included in the
segmentation errors. The editing simulation consists of two steps: finding the 3D
error that the user would most probably correct and finding the view as well as
the slice in which he or she might correct it in 2D. For simplicity, we assume that
the user is allowed to correct exactly one error per correction step by adding or
removing a part, although our sketching interface is not restricted to this. We
further assume that correction can be done in axial, coronal or sagittal view.

3.1 Finding the Most Probably Corrected Error

In the first step, we compute all errors of the intermediate segmentation S;
with respect to the reference segmentation R by subtracting S; from R. Next,
we compute all connected components in 3D using a 6-neighborhood to get all
unique errors (see Fig. Bh)). For each error a rating is computed that represents
the probability of being corrected by the user. Based on our experience, users
that are familiar with our correction tools tend to correct the most prominent
errors in the current segmentation first. In order to model this we propose a
volume-based and a surface-distance-based rating strategy.

The volume-based strategy selects the error £ based on its volume V' and its
compactness C| i.e., by maximizing

V(€)
Vmax

with Vinax being the volume of the largest error. The compactness is defined as
the volume-to-surface-area ratio, scaled to [0,1]. a and 8 allow adjusting the
influence of the volume and the compactness. The surface area is approximated
by the volume of all voxels on the surface of the segmentation result.

The surface-based strategy selects the error with the largest Hausdorff dis-
tance dy with respect to R:

rv(€) = a +BC(E), (1)

rp(€) = du(E,R). (2)

If exactly the same error is chosen in successive steps, it will be ignored, because
in this case we have to assume that it could not be corrected by the editing
algorithm.

3.2 User-Input Generation

The most probably corrected error £; can be corrected by the user in any slice s in
any view v. £; might consist of several components in a slice. Therefore, we only
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Fig. 3. Simulation example showing a liver metastasis in CT: (a) initial segmentation
So (yellow) and reference segmentation R (blue), (b) errors in Sy (gray), (c) gener-
ated correction contour (white voxels) and (d) result after applying the image-based
segmentation editing algorithm [5]

consider the largest connected component of £; with respect to a 4-neighborhood
in the following. Again, experienced users tend to correct the error were it is best
seen, so we propose both an area- and a distance-based strategy for finding the
most probable slice and view. In addition, our correction algorithms work best if
the error is corrected roughly at its center in z-direction, which is the direction
orthogonal to the view. We therefore prefer slices that are close to the center
slice s, of the error for our simulation.
The area-based strategy selects s and v by maximizing

A(s,v) B ls — sc(v)]
) et +o 1 ) e

ra(s,v) =« e.(v)
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where A(s,v) and C(s,v) are the area and the compactness of the error in the
current slice of the current view, Apax(v) is the maximum area in the current
view and e, (v) is the z-extent of the error in the current view. The weights «, 8
and v allow adjusting the influence of each feature.

The distance-based strategy maximizes

rp(s,v) = ajjrfi’(?) + v (1 _ |s ez‘?;()””) ’ )

with dg(s,v) being the Hausdorff distance in the current slice of the current
view and dg, . (v) being the maximum Hausdorff distance of all slices of v.

Because users tend to correct in the same view as long as it is appropriate,
we also apply a reward of 10% to r if the view is kept between successive steps.

Finally, a contour is generated that adds/removes the error to/from the in-
termediate segmentation. This contour is defined by all voxels gj \g}, with gj
and S; being all voxels on the surface of £; and S;, respectively (see Fig. [3d)
To generate a contour from those voxels, we assume the voxels to form graphs,
where the voxels are the nodes, which are connected to all voxels in their 8-
neighborhood. We then compute all longest paths in all graphs. To allow for
small holes in the voxel representation of the contour, we additionally connect
two adjacent paths, if the distance between their start and end points is smaller
than 2 voxels. Note that this definition also covers the case where a segmentation
is completely missing in a certain slice.

4 Results and Discussion

As a proof of concept, we applied our automated simulation to two segmenta-
tion editing tools on an exemplary liver metastasis shown in Fig. Bl Our goal
was to show how the validation of sketch-based editing algorithms can benefit
from the proposed framework. The editing approaches used during this evalua-
tion were improved versions of the previously published image-based and image-
independent algorithms [5I3]. The image-based algorithm has been extended by
an optimized reference point placement based on image information, more ad-
vanced stopping criteria and a feature that allows it to consider previous user
inputs. The image-independent approach has been extended by a step that re-
solves contradictory user inputs. We tracked the volume overlap, the Hausdorff
distance as well as the size of the largest error for all intermediate results. For
the results shown in Fig. @, we set the weight of the compactness to 8 = 1.5,
while all the other features were weighted by 1.

As expected, the results for a specific quality measure depend on the chosen
simulation strategy. If the volume-based strategy is used, the size of the largest
error decreases faster, while the Hausdorff distance benefits from the distance-
based strategy. The overlap to the reference segmentation grows faster for the
distance-based simulation, which indicates that the editing algorithms might
benefit from this correction strategy. The plots show that the image-independent
algorithm performs better in this example for all quality measures, so it seems
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Fig. 4. Validation results for the liver metastasis example shown in Fig. Bt (a) volume-
based and (b) distance-based simulation. Note the issues at step 15 and 19 of the
image-independent editing algorithm before improvement.

to be the better choice for this specific segmentation problem. The plot of the
Hausdorff distance revealed an issue of the image-independent algorithm in steps
15 and 19 that could be resolved as shown in the plots as well (see Fig.[dal). Note
that this is hardly visible both in the overlap plot and the plot of the largest error.
Assuming that the inputs to the image-independent correction algorithm have
been stored during a user study, all inputs after step 15 would become invalid
after modifying the algorithm so they cannot be used for evaluation anymore.
Using the proposed simulation-based evaluation framework, new valid inputs can
be generated after the algorithm has been modified.

In various interviews with radiologists from different clinics, we got the feed-
back that, due to time constraints, a maximum of 5 correction steps would be per-
formed in clinical practice, at least in the context on oncological chemotherapy
response monitoring, where the change of a tumor’s size is measured.
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The plots of our simulation support this, as the first 3 to 6 correction steps
show the best improvement of the segmentation, depending on the quality mea-
sure. Following correction steps improve the segmentation results only slightly.
Also note that for liver tumor segmentations a volume overlap of about 87% is
considered to be within the variability of different users [2], which the image-
independent algorithm reaches in the 8th step for this specific case.

5 Conclusion

We have discussed the validation of sketch-based segmentation editing algo-
rithms for 3D medical images and we have presented an automated, dynamic
validation approach for such tools that simulates the user. For generation of
plausible user inputs based on the intermediate and a reference segmentation, we
have proposed two strategies that utilize the volume and the Hausdorff distance.
Our framework allows an objective and reproducible validation and comparison
of sketch-based segmentation editing algorithms, without the necessity of the
user, which we have shown in a first example for two different manual correction
tools. It supports the development of 3D manual correction algorithms by allow-
ing dynamic regression tests with multiple correction steps. Moreover, it yields
the potential to better assess the quality of manual correction algorithms with
respect to their dynamic nature.

6 Future Work

Future work could focus on solving current limitations and making the simulated
inputs more realistic. For example, our simulation is not able to handle holes
correctly and completely removing the segmentation in a slice is not supported.
Users typically draw contours with a certain amount of inaccuracy. Modeling this
property would allow drawing conclusions on the robustness of the segmentation
editing algorithms to varying user inputs. Our simulation currently does not
support that an error is corrected until it is solved before the next one is chosen,
which some users do. Users that are not familiar with our editing algorithms
sometimes tend to correct an error in the first slice where it appears. Simulating
these user groups as well would further improve the value of our framework.

In addition, it needs to be investigated how the overall quality of segmentation
editing algorithms can be measured best so it correlates with the user’s subjective
impression. Finally, we plan to apply our automated simulation to a larger,
representative database in order to improve not only our simulation but also our
editing algorithms.

References

1. Boehm, B.W.: Verifying and validating software requirements and design specifi-
cations. IEEE Software 1(1), 75-88 (1984)



10.

11.

12.

13.

Automated Validation of Sketch-Based 3D Segmentation Editing Tools 265

Deng, X., Du, G.: Editorial: 3D segmentation in the clinic: A grand challenge II -
liver tumor segmentation (2008),
http://www.grand-challenge2008.bigr.nl/proceedings/liver/articles.html
Heckel, F., Braunewell, S., Soza, G., Tietjen, C., Hahn, H.K.: Sketch-based image-
independent editing of 3D tumor segmentations using variational interpolation. In:
Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 73-80.
Eurographics Association (2012)

Heckel, F., Konrad, O., Hahn, H.K., Peitgen, H.O.: Interactive 3D medical image
segmentation with energy-minimizing implicit functions. Computers & Graphics:
Special Issue on Visual Computing for Biology and Medicine 35(2), 275-287 (2011)
Heckel, F., Moltz, J.H., Bornemann, L., Dicken, V., Bauknecht, H.C., Fabel, M.,
Hittinger, M., Kieflling, A., Meier, S., Piisken, M., Peitgen, H.O.: 3D contour based
local manual correction of tumor segmentations in CT scans. In: SPIE Medical
Imaging: Image Processing, vol. 7259, p. 72593L. SPIE (2009)

Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer,
C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H.,
Bornik, A., Cashman, P.M.M., Chi, Y., Cérdova, A., Dawant, B.M., Fidrich, M.,
Furst, J.D., Furukawa, D., Grenacher, L., Hornegger, J., Kainmuller, D., Kitney,
R.I., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S.,
Meinzer, H.P., Németh, G., Raicu, D.S., Rau, A.M., van Rikxoort, E.M., Rousson,
M., Ruské, L., Saddi, K.A., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen,
P., Sorantin, E., Soza, G., Susomboon, R., Waite, J.M., Wimmer, A., Wolf, I.:
Comparison and evaluation of methods for liver segmentation from CT datasets.
IEEE Transactions on Medical Imaging 28(8), 1251-1265 (2009)

McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmen-
tation algorithms. Pattern Recognition 43(2), 434-444 (2010)

McGuinness, K., O’Connor, N.E.: Toward automated evaluation of interactive seg-
mentation. Computer Vision and Image Understanding 115(6), 868-884 (2011)
Moschidis, E., Graham, J.: Simulation of user interaction for performance evalua-
tion of interactive image segmentation methods. In: Medical Image Understanding
and Analysis, pp. 209-213 (2009)

Moschidis, E., Graham, J.: A systematic performance evaluation of interactive
image segmentation methods based on simulated user interaction. In: IEEE Inter-
national Symposium on Biomedical Imaging, pp. 928-931 (2010)

Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation.
Annual Review of Biomedical Engineering 2(1), 315-337 (2000)

Udupa, J.K., LeBlanc, V.R., Zhuge, Y., Imielinska, C., Schmidt, H., Currie, L.M.,
Hirsch, B.E., Woodburn, J.: A framework for evaluating image segmentation algo-
rithms. Computerized Medical Imaging and Graphics 30(2), 75-87 (2006)
Withey, D.J., Koles, Z.J.: Medical image segmentation: Methods and software. In:
International Symposium on Noninvasive Functional Source Imaging of the Brain
and Heart and the International Conference on Functional Biomedical Imaging,
pp. 140-143 (2007)


http://www.grand-challenge2008.bigr.nl/proceedings/liver/articles.html

	Toward Automated Validation
of Sketch-Based 3D Segmentation Editing Tools

	1 Introduction
	2 Related Work
	3 Sketch-Based Editing Simulation
	3.1 Finding the Most Probably Corrected Error
	3.2 User-Input Generation

	4 Results and Discussion
	5 Conclusion
	6 Future Work
	References




