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Abstract. We propose a domain adaptation method for sequential decision-mak-
ing process. While most of the state-of-the-art approaches focus on SVM detec-
tors, we propose the domain adaptation method for the sequential detector similar
to WaldBoost, which is suitable for real-time processing. The work is motivated
by applications in surveillance, where detectors must be adapted to new obser-
vation conditions. We address the situation, where the new observation is related
to the previous observation by a parametric transformation. We propose a learn-
ing procedure, which reveals the hidden transformation between the old and new
data. The transformation essentially allows to transfer the knowledge from the
old data to the new one. We show that our method can achieve a 60% speedup
in the training w.r.t. the baseline WaldBoost algorithm while outperforming it in
precision.

1 Introduction

Object detectors need to run under different observation conditions (e.g. view angle or
illumination) in autonomous surveillance applications. Possible variations of the obser-
vation conditions and corresponding objects appearance are usually not known in ad-
vance. When observation conditions change, the performance of the detector decreases.
Retraining the detector on the new training data is inconvenient, since manual anno-
tations are extremely time consuming and supervised learning of the accurate object
detector often requires a huge amount of training data [1].

To avoid the necessity of capturing and annotating a huge training dataset every
time under new observation conditions, we propose to learn a new detector from (i) a
small number of new data and (ii) from a collection of previous datasets captured under
similar observation conditions, or a previously learned detector. By utilizing this prior
knowledge, the number of training samples can be significantly reduced.

We aim at reducing the number of training samples required for a training of a mul-
tiview classifier by introducing a transformation between the views. The effect of using
the transformation during the training is threefold. First, it constrains the feature se-
lection process. In the case of Haar-like features, the space of all possible features is
overcomplete, thus the reduction is significant. Second, it helps to prevent overfitting,
as the transformed samples work as regularizers in fact. Third, the number of samples is
effectively summed, as the training process takes information from all the views through
the transformation.
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Contribution The vast majority of the State-of-the-Art approaches consider the previ-
ous dataset unknown and adapt only the previous classifier to the new dataset. In con-
trast to this, we propose to preserve the original knowledge and train completely new
classifier from the previous and new data simultaneously. Furthermore, whereas most
of the works on domain adaptation are restricted in the SVM classifier domain, we pro-
pose the domain adaptation for the sequential detection (e.g. WaldBoost [2]), which is
suitable for real-time processing thanks to the sequential decision-making process. We
also make our dataset publicly available for comparison purposes.1 We propose to ex-
ploit the visual similarity of objects from different views by constraining the features
used for the classification.

The comparison to the other state of the art methods is given in the Section 2.

2 Related Work

There are several approaches trying to tackle the problem of reducing the number of
training samples. This section aims to give their brief overview.

2.1 SVM Based Classifiers

Tommasi et al. [3,4] use the prior least-squares SVM classifiers as regularizers, so that
the derived classifiers’ hyperplanes are close to the original hyperplanes. This strategy
is unfortunately not applicable on cascaded classifiers due to the fact, that the cascade
is built incrementally, with later stages focusing on harder samples.

Another approach is used by Jie et al. [5], who add the outputs of previously trained
classifiers as another features. This inevitably leads to higher processing time.

Aytar and Zissermann [6] present several modifications to standard SVM allowing
adaptation to the target domain. The similarity to our work lies in the introduction of a
deformable template of Histograms of Oriented Gradients (HOG).

2.2 Cascaded Classifiers

In the work of Cao et al. [7], a cascaded classifier is presented, in which each stage can
either accept, reject, or pass a sample to the next stage. Once the classifier is trained
on some dataset, it can be retrained using a small number of samples from a target
dataset using Cross Entropy method by sampling new thresholds around the original
thresholds.

The following two approaches are concerned with online adaptation of classifiers.
First, the work of Grabner et al. [8] enables the on-line adaptation of WaldBoost classi-
fier cascade based on Wald’s sequential decision [9]. They introduce a pool of selectors
and each selector holds a pool of weak classifiers. The on-line boosting is then per-
formed on the selectors rather than on the weak classifiers in order to adapt the strong
classifier complexity. Each training sample is first used as a testing sample to update
Wald statistics and then used to adapt the strong classifier.

1 cmp.felk.cvut.cz/˜fojtusim/kt

cmp.felk.cvut.cz/~fojtusim/kt
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Second, Visentini et al. [10] propose an algorithm for cascaded online boosting. They
construct a classifier for each image separately from an ensemble of weak classifiers
in real–time. They employ weak classifiers with various features (Haar, Local Binary
Patterns, Colour histograms). The shape of the cascade (the number of stages and the
number of classifiers in each stage) is automatically adjusted to preserve the real–time
constraint.

2.3 Others

Another approach to adaptation of a classifier to a new domain is presented by Jain
and Learned-Miller [11]. They propose to smooth the classification boundary, which is
based on the assumption that similar samples should have similar classification scores.
A Gaussian Process Regression is used for the decision boundary smoothing, i.e. up-
dating classification scores of samples near the boundary.

To the best of our knowledge, there is no other approach trying to adapt a sequential
decision process classifier, i.e. WaldBoost–type cascaded classifier. The most similar
approach is the On-line WaldBoost [8] by Grabner et al. But in their case, the adaptation
is based only on selection of the best weak classifiers from a fixed pool, whereas we try
to actively optimize each weak classifier.

3 Method

Given two images of an object, each capturing it from a different but similar viewpoint,
there exists a transformation between non-occluded pixels in the images. We assume
that there also exists a transformation mapping features from one image to the other.
We aim to exploit this fact by learning this transformation during the training of the
classifier. The transformation can be modeled arbitrarily in general, but we constrain
the transformation to be a similarity transform in this paper. This means that the trans-
formation can change the position and scale of the Haar features, but the type and region
weights remain unchanged. The proposed approach is not limited to two views, we can
consider one view as a source and look for transformations to N different views, as is
shown in Figure 1. Moreover, we treat the features in each stage of the cascaded classi-
fier as independent, which significantly simplifies the problem at the cost of suboptimal
performance. Real-time detection of objects is enabled thanks to the employed cas-
caded classifier structure and the use of Haar-like features in combination with integral
images [12].

D0 D1 D2
. . . DN

T1

T2

TN

Fig. 1. Transformation of features between the datasets
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Let us now introduce the required notation. Let F denote a Haar-like feature. This
feature is determined by its position p, size s, and type t (rectangles and weights).
Feature F maps an image x to a real numberFp,s,t : x → R. Let T be a transformation
of a feature T : F → F .

The transformation applied to a feature must be feasible, which means that the trans-
formed feature F ′ = T (F) must lie within the image borders. We may also imply other
restrictions on the transformation, such that the difference in position is smaller than θt
and the change in scale smaller than θs. If the constraints θt and θs are set to 0, the
transformation is identity. In the other extreme, the constraints values can be so high,
that the only limit is the image size. In the first case, in which T becomes identity, the
feature is the same in all views. This is equivalent to training a classifier from a joint of
all the views. On the other hand, if we do not restrict the transformation (i.e. the only
constraint is its feasibility), then there is no connection between the data in the views.
The results are equal to the training of separate classifiers, each using data only from
one view. The value of the θs, θt parameters directly influences the training time and to
some extent the precision of the final classifier. The higher the value, the more features
are explored during the training, which increases the precision but on the other hand
increases the time requirements. The introduction of constraints θs and θt reduces the
search space significantly. With discretized position values (pixels) and scales we are
able to perform an exhaustive search over all feasible transformations of the original
feature.

The remaining question is how to determine the transformation?
We propose two methods (Sections 3.1 and 3.2) to deal with this question. The first,

called multiview method, attempts to train both the weak classifiers and the transfor-
mation from scratch simultaneously. The second one named incremental uses a prior
classifier and builds on it. The details of both are covered in the following sections.

Let us now describe the baseline algorithm, to which the performance of our methods
is compared. This training algorithm is also used to train prior classifiers.

The classifier structure is a cascade of weak classifiers, trained using the Wald-
Boost [2] algorithm. Each stage of the cascade, i.e. weak classifier, consists of a single
regression stump function associated with a Haar-like feature F . The error of a weak
classifier is given by the sum of weights of misclassified samples

e(w, y, x,F) =

m∑

i=1

wi · 1 (yi · sign (h(F(xi))) < 0) , (1)

where m is the number of samples, w is the weight of a sample, y its correct label, h(x)
the response of the weak classifier, and 1 is the indicator function.

The regression stump function h(x) splits the feature descriptor range into several
bins. The value of the function h(x) in bin i is computed as a weighted mean of training
samples falling into the bin i

hi(x,F) =
1

|Xi|
∑

j:F(xj)∈Xi

wj · yj
wj

, (2)
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where Xi are samples falling into bin i, wj and yj are the weight and true label of the
j th sample. The regression stump function is often effectively implemented as a look-up
table to speed up the classification.

Moreover, we utilize the bootstrap method to extract negative training samples from
background images by applying the classifier on those images and adding the false pos-
itives to the training set. In this way, the memory requirements of the training algorithm
can be controlled.

The more stages of the cascade are evaluated, the more time it takes to decide,
whether the sample belongs to the class. An early rejection mechanism is employed [13],
in order to speed up the process of classification. Negative training samples that are
early rejected are also dropped from the training set and are replaced by newly boot-
strapped samples. In this way, each stage is trained on harder samples than the previous
one, since the simple samples are already discarded. We do not consider the early accep-
tance of samples, since in the situation of the rare event detection, the speedup brought
about by accepting the positive samples earlier than at the last stage is negligible.

3.1 Multiview Training

The first proposed method requires no prior knowledge. The weak classifiers and the
transformations to the views are determined together without any further information.
A new pool of n Haar-like features is generated for the training of each stage. A trans-
formation from the feature pool to each view is determined by boosting. The optimal
feature and transformations are found together.

The optimal feature is given by

F∗ = argmin
F

[
N

max
k=1

∑

i:xi∈Xk

e(wi, yi, xi, T (F))

]
, (3)

where Xk denotes data from the kth view. This equation takes into account the cor-
rect classification of samples in each view since the optimal transformation to view k,
denoted by T ∗

k is given by

T ∗
k = argmin

T

∑

i:xi∈Xk

e(wi, yi, xi, T (F)). (4)

For each feature from the pool, all feasible transformations are tested and the one with
the lowest error is remembered. The feature that minimizes the maximum weak classi-
fier error over all views is selected. The optimal transformation T ∗

k is determined during
training for every stage separately.

3.2 Incremental Training

Unlike the multiview method, the incremental method takes as the input also a pre-
viously trained classifier, referred to as the prior. In this case, the training is done as
follows. We do not generate a pool of Haar-like features, but instead during training
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(a) View I (b) View II (c) View III (d) View IV

Fig. 2. Examples from the dataset. The dataset contains images of vehicles from four different
viewpoints.

of each stage, we take the corresponding feature from the prior classifier and exhaus-
tively search the feature space as in the first method. The effect of the prior classifier is
twofold. It again significantly reduces the search space and also guides the direction by
restricting the features to a specific type and approximate position.

On a side note, this approach can be also used for retraining classifiers in the same
domain, as we can use the classical random feature sampling as a first step and fine-
tune the features in a second training run. The final classifier is better than the prior as
expected and the time required for the training is much less than if we tried to search
the whole feature space exhaustively in the first place.

The parameters of the regression stump functions and the early rejection thresholds
are determined from the training and validation data, respectively. No restriction is im-
posed on them.

4 Experiments

The experimental dataset consists of four sets, each one capturing the vehicles from a
slightly different angle. Figure 2 shows samples from each of the views. There are 214,
172, 155, and 106 annotated cars in the respective views. The images were captured
on a busy street in the heart of Prague. Although the camera was fixed in each view,
the annotated vehicles in one view are not all captured from the same angle, so even in
one view, there is some variability in the data. For the negative samples, there are 243
negative backgrounds—photos from an urban environment that either do not contain
vehicles or only vehicles that are severely occluded (e.g. only less than 20% of the
vehicle is visible). In the experiments only data from view I and II are used. This choice
has no significant influence on the performance, but other combinations are not shown
in this paper due to size limitation.

We have performed three different experiments to support the validity of our assump-
tions and ideas and to show the increase in performance compared to classically trained
classifiers. The first experiment is concerned with the effects of multiview training on
two views. The second experiment shows the improvement brought about by apply-
ing the incremental training on a classifier and evaluating both of them on the same
data. The last experiment evaluates the improvement of the classifier performance with
respect to a varying number of training samples from the target dataset.
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4.1 Multiview Training

The first experiment shows the simultaneous training of two classifiers on two views
I and II from the dataset. We train 5 different classifiers denoted Multiview I and II,
Single view I and II and Merged. Classifiers Single view I and II are trained on view
I and II, respectively, using the baseline algorithm. Classifier Merged is trained on the
joint of views I and II, using the baseline algorithm as well. Classifiers Multiview I and
II are trained using the multiview training method (feature transformation) on view I
and II, respectively.

The transformation T (·) is constrained to be close to identity, in particular, we set
θt = 5 and θs = 0.1. This forces the selected features to be similar to each other and
also speeds up the training process, as already discussed.

In order to fairly compare the performance of the classifiers, they are shortened to
the same length (12 stages, which is the length of the Multiview classifiers). We have
plotted three receiver operating characteristic (ROC) curves, each for one dataset (view
I, view II, and view I ∪ II). These are shown in Figures 3a, 3b, and 3c. The performance
of the multiview classifiers outperforms both the baseline classifiers trained on a single
view and on the merged views. Note, that the merged classifier is trained on twice as
much positive samples as the single view classifiers.

4.2 Incremental Training

In this experiment we explore the incremental training. We have two datasets, prior
(View I) and target (View II). We want to show the effect of the transformation on the
performance and also show the reduction of the time required for the training. We train
three classifiers. Classifier Prior and Target are trained on the prior and target datasets,
respectively, using the baseline algorithm. Classifier Incremental is trained using the
incremental method given the Prior classifier and data from target dataset.

This experiment introduces two improvements. First, the performance of the Incre-
mental classifier on the target dataset outperforms the Target classifier. Second, the time
required to train the Incremental classifier is reduced.

Figure 4a shows the performance of all three classifiers on the target dataset. The
ROC curve of the prior classifier is shown to emphasize the boost in performance of the
incremental classifier (This is more thoroughly explored in Section 4.3). Note its poor
performance, which is expected and shows that the two datasets are different. More
important is the increase in performance of the Incremental classifier w.r.t. the Target
classifier. The decrease in time, required to train the incremental classifier is shown in
Table 1. The time requirements drop to less than 60% of the baseline algorithm.

4.3 Incremental Training with Variable Number of Training Samples

We train several classifiers based on a single prior, in order to quantitatively evaluate
the benefits of incremental training.

First, a Prior classifier is trained on the prior dataset (View I) using the baseline
WaldBoost algorithm. Similarly a Target classifier is trained on the target dataset (View
II), using the same method.
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(a) ROC on View I
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(b) ROC on View II
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Fig. 3. Comparison of baseline classifiers (Single View I, II and Merged) on datasets (view I, view
II, and view I ∪ II) versus the proposed approach (Multiview I, II)
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Table 1. Comparison of time required to train classifiers using the baseline, incremental and
multiview methods (times averaged over 5 independent trainings) on a Intel i5-2520M CPU,
2.50GHz computer

classifier mean training time

baseline 877 ± 231 s
incremental 523± 203 s
multiview 12504 ± 4022 s
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(a) ROC curve comparing performance of clas-
sifier Target trained on target dataset and clas-
sifier Incremental trained on target dataset
given a Prior classifier.
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get) and performance of incrementally trained
classifiers on subset of the target dataset (In-
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Fig. 4.

Second, four subsets of the target dataset are randomly selected (25, 50, 75, and
100%) and four Incremental classifiers are trained given the prior classifier and one of
the subsets using the incremental method.

The Target and Incremental classifiers are compared against each other on the whole
target dataset. The obtained results are shown in Figure 4b. The precision of the Target
classifier is comparable to the precision of the Incremental classifiers trained on 50%
and 75% of the target dataset. This shows that it is sufficient to use only half of the target
dataset to achieve comparable precision. The performance of the classifier trained only
on 25% of the data is lower, but the difference is not very significant. On the other
hand, the performance of the Incremental classifier trained on the full target dataset
outperforms the Target classifier by an order of magnitude.

5 Conclusion

We present our approach to adaptation of a sequential decision process–cascaded clas-
sifier based on the WaldBoost algorithm–to a target dataset. The proposed idea is to
introduce a transformation between Haar-like features. In this paper, the transformation
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is restricted to be a similarity, but nevertheless the results show, that the idea is sound
and valid. Through the experiments we have shown that by constraining the features
using the transformation, we can achieve a speedup of about 160% in the training while
outperforming the baseline WaldBoost algorithm in precision. The multiview training
method is shown to outperform both classifiers trained on separate views (I and II) and
also on the joint of the data. Moreover, our method can be used to retrain a classifier on
the same data to increase its performance.

5.1 Future Work

First, the transformation can be relaxed from a similarity. For example, an elastic de-
formation could better capture the relation between two views. Moreover, the transfor-
mation should be constant throughout the cascade in principle, since the views are also
constant. Second, more experiments will be performed in order to test the performance
of the incremental method with very low number of training samples to explore the field
of one-shot learning.
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