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Abstract. This paper accelerates boosted nonlinear weak classifiers in boosting 
framework for object detection. Although conventional nonlinear classifiers are 
usually more powerful than linear ones, few existing methods integrate them in-
to boosting framework as weak classifiers owing to the highly computational 
cost. To address this problem, this paper proposes a novel nonlinear weak clas-
sifier named Partition Vector weak Classifier (PVC), which is based on the his-
togram intersection kernel functions of the feature vector with respect to a set of 
pre-defined Partition Vectors (PVs). A three-step algorithm is derived from the 
kernel trick for efficient weak learning. The obtained PVCs are further accele-
rated via building a look-up table. Experimental results in the detection tasks for 
multiple classes of objects show that boosted PVCs significantly improves both 
learning and evaluation efficiency of nonlinear SVMs to the level of boosted  
linear classifiers, without losing any of the high discriminative power. 

1 Introduction 

Object detection of a particular class, such as pedestrian and car, is an important and 
challenging task for many computer vision applications [1-6]. While object detection 
has advanced significantly in the past decades, most of its applications now demand 
not only high accuracy but also computation efficiency. One common solution is us-
ing the sliding window searching scheme, where an object classifier is applied at all 
possible positions and scales to make decisions on whether the hypothesis patches 
contain a desirable object or not. However, computational burden of searching all 
possible candidates is usually non-trivial. 

To address this problem, boosting family algorithms in cascade structures which 
are able to eliminate most of the negative samples very fast, are designed to learnt the 
object classifier and evaluate each hypothesized object locations [7-14]. Most of the 
boosting algorithms combine a collection of weak classifiers with different weights to 
a final strong classifier, though their methods of weighting the training samples as 
well as the weak classifiers can be different. Generally speaking, there are usually 
hundreds of weak classifiers for one object classifier to achieve acceptable accuracy. 
Each of the weak classifiers is effectively built via an aggressive weak learning me-
chanism which first learns and evaluates hundreds of hypothesized weak classifiers 
(e.g., 250 and 200 in [8, 11] respectively), and then select the one which best separate 
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the positive and the negative samples. Therefore, the efficiency of weak classifiers 
largely determines the efficiency of the object classifier, including both the evaluation 
and the learning (also a.k.a. ‘training’ in object detection task) procedures. 

To ensure high efficiency, there are two common ways: the first one is to restrict 
the weak classifiers each of which is only connected to a single descriptor extracted 
from an image block [5, 8-15, 19] (such as the Histogram of Oriented Gradient 
(HOG) [5, 8, 9]); the second one is to adopt efficient linear algorithms, such as the 
linear Support Vector Machine (SVM) [8], least square [11] and Fisher linear discri-
minative analysis [9, 13], to learn linear weak classifiers from the training samples. 

The assumption under linear classifiers is that samples are separable by a hyper-
plane in the feature space. This assumption cannot be valid for some complicated 
tasks such as human and car detection. Hence it is not surprisingly nonlinear classifi-
ers such as the non-linear kernel SVM has proven to outperform the linear ones in 
object detection [5, 16, 17]. However, to our best knowledge, there are few existing 
methods utilizing them as the weak classifier in the boosting framework. That is 
mainly because of the highly computational complexities in both learning and evalua-
tion of traditional nonlinear classifiers. 

This paper focuses on how to improve the efficiency of non-linear weak classifiers 
and make them feasible in the boosting framework. Recent, Maji, et al. propose the 
sparse encoding based SVM, which significantly improves the efficiency of the non-
linear additive kernel SVMs [17]. Nevertheless, the sparse encoding taking account of 
the huge dimensionality problem brings additive computational burdens. Hence, it is 
shown in [17] that the most efficient implementation is still 5 times lower compared 
to the linear classifiers.  

Partly motivated by the sparse encoding based SVM [17], this paper utilizes the 
dense encoding scheme [20] rather than the sparse encoding in [17] to further improve 
the efficiency, and proposes an efficient nonlinear weak classifier named the Partition 
Vector weak Classifier (PVC). PVC as one variants of additive kernel SVMs is a 
weighted combination of a series of kernel functions of the (input) feature vector  
with respect to a set of pre-defined vectors, namely the Partition Vectors (PVs).  
 

 

Fig. 1. PVC learning. (a) Encoding maps samples in the original space to the implicit space. (b) 
Learning the hyper-plane using the encoded samples in the implicit space. (c) Decoding trans-
forms the learnt hyper-plane to the original space. This figure is better seen in color. 
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Experiments in object detection of multiple classes show that boosted PVCs makes 
the weak learning and evaluation of the nonlinear weak classifiers efficient enough to 
be used in the boosting framework, without losing the high discriminative power. 

The rest of the paper is structured as follows. Section 2 details the proposed PVC. 
Section 3 shows the experimental results on INRIA and PASCAL VOC 2007  
datasets. And conclusions are provided in the last section. 

2 Partition Vector Based Weak Classifier 

The learning of the proposed PVCs includes three key steps: encoding, hyper-plane 
learning, and decoding. Firstly, as shown in Fig. 1 (a), encoding maps the vectors in 
the feature space to the implicit high dimensional space. Secondly, a linear SVM is 
then learnt to get the classification hyper-plane in the implicit space (as the red line in 
Fig. 1(b)). Finally, decoding transforms the obtained classification hyper-plane to a 
series of kernel functions referring to a set of partition vectors (as the green dots in 
Fig. 1 (c)) in the feature space, where a nonlinear classification function (as the red 
broken lines in Fig. 1 (c)) is formed. The classifiers can be further accelerated using 
piecewise constant functions, such that it ensures the computational cost proportional 
to the dimension of the features during evaluation, as the conventional linear classifi-
ers do. The following subsection provides more details. 

2.1 Background 

For any classifiers based on kernel functions satisfying the Mercer’s Condition [20], 
given two feature vectors ܠ, ܢ א ܴௗ, there exists a mapping ߮: ܴௗ ՜ ܴ஽  whose range 
is in an inner product space of a possibly high dimensionality D: 

 Kሺܠ, ሻܢ ൌ ,ሻܠሺ߮ۃ ߮ሺܢሻ(1) ,ۄ 

where ۄ·ۃ denotes the inner product of vectors; the mapping φ usually implies a high 
dimensional implicit space ܴ஽ (i.e., ܦ ب ݀), where the data are much more sparse 
and thus more likely to be linearly separable [20]. The kernel trick is a way of map-
ping observations from the original space S into an implicit inner product space I 
(equipped with its natural norm), without having to compute the mapping explicitly. 
For clarity, the points in the feature space and the implicit space are denoted by bold 
lowercase letters (e.g., ܠ) and bold lowercase letters with a hat (e.g., ܠො) respectively. 

The histogram intersection kernel is one of the most commonly used additive ker-
nels [17]. Specifically, HIK between ܠ and ܢ is defined as follows: 

,ܠுூሺܭ  ሻܢ ൌ ∑ minሺݔ௜, ௜ሻௗ௜ୀଵݖ ,  (2) 

where ݔ௜ and ݖ௜ are the ݅-th entry of ܠ and ܢ respectively for ݅ ൌ 1, ڮ , ݀. Recent 
study reveals that the nonlinear mapping ߮ of HIK could be explicitly defined if each 
entry of input vectors is non-negative, discrete and bounded [17, 20]. In consideration 
that firstly, this condition can be easily satisfied by using histogram based descriptor 
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(e.g., the Histogram of Oriented Gradient (HOG) [5, 8, 9]) or performing feature scal-
ing and quantization1; secondly, differences between different additive kernels tend to 
be trivial on large training sets [17]; thirdly, the calculation of some other additive 
kernels could also be implemented through HIK, this paper only focuses on HIK in 
the following context, without losing any generalization. 

2.2 Encoding 

Encoding maps the feature vectors to the corresponding implicit space. The goal is to 
find a mapping ߮ for HIK such that ܭுூሺܠ, ሻܢ ൌ ,ሻܠሺ߮ۃ ߮ሺܢሻۄ, given the feature vec-
tor x and z whose entry ݔ௜and ݖ௜ , ݅ ൌ 1, ڮ , ݀ are integrals belong to ሾ0, ڮ , ݊ሿ, ݊ א Z. 

Considering that HIK is additive, ߮ can be divided into separated parts, each of 
which corresponds to an entry of the feature vector. In specific, ߮௜: Zଵ ՜ ሼ1,0ሽ௡ for ݔ௜, ݅ ൌ 1, ڮ , ݀, is defined as follows [20]: 

 ߮௜ሺݔ௜ሻ ൌ ൣ૚ଵൈ௫೔, ૙ଵൈሺ୬ି௫೔ሻ൧, (3) 

where ૚ଵൈ௫೔  and ૙ଵൈሺ୬ି௫೔ሻ are a 1 ൈ ௜ row vector of 1 and a 1ݔ ൈ ሺn െ  ௜ሻ vectorݔ
of 0 respectively. ߮௜ is thus a binary representation of the ݔ௜, 0 ൑ ௜ݔ ൑ n. For ex-
ample, given two integers 3 and 5, supposed n is 6, we have ߮௜ሺ3ሻ ൌ ሾ1,1,1,0,0,0ሿ 
and ߮௜ሺ5ሻ ൌ ሾ1,1,1,1,1,0ሿ, minሺ3,5ሻ ൌ ,௜ሺ3ሻ߮ۃ ߮௜ሺ5ሻۄ ൌ 3 hence Eq. (1) is satis-
fied. When covering all dimensions, we have ܠො ൌ ߮ሺܠሻ ൌ ሾ߮ଵሺݔଵሻ, ڮ , ߮௡ሺݔ௡ሻሿ்.  

Having ߮, all ݀ dimensional vectors for learning the classifier (also as known as 
the training samples) are mapped to the ܦ ൌ ݊݀ dimensional space, where a hyper-
plane (i.e., a linear classification function ) is then learnt. In specific, for N labeled 
training samples ܠො௞ א ሼ1,0ሽ௡ௗ with the labels y௞ א ሼെ1, ൅1ሽ, the learning proce-
dure involves finding the best hyper-plane fመ (i.e., the maximum-margin hyper plane 
learnt by efficient linear SVM in this paper), which can be express as follows: 

 fመሺܠොሻ ൌ ,ෝܟۃ  (4) ,ۄොܠ

where ܟෝ ൌ ሾܟෝଵ ڮ ෝௗሿ்ܟ א ܴ௡ௗ is the obtained hyper-plane in the form of a column 
vector; and ܟෝ௜ is the corresponding part (in the form of a row vector) related to ߮௜ 
as well as the ݅-th entry of the feature vectors2 for ݅ ൌ 1, ڮ , ݀. 

2.3 Decoding 

As the inverse of encoding, decoding derives f in the feature space, the counterpart 
of the function fመ to satisfy fሺܠሻ ൌ fመሺܠොሻ. 

Considering Eq. (1) and (4), the mapping ϕ may not be invertible, hence it is diffi-
cult, and perhaps impossible at all to find such a vector ܟ in the feature space that 

                                                           
1 Though quantizing feature vectors to integral value may lead to approximation errors, we 

observe that they could be minimized by averaging over weak learners during learning the 
boosted classifiers. Consistent observation can also be found in [11]. 

2 The bias usually used in describing a linear function is omitted in this paper for clarity. 
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߮ሺܟሻ ൌ ෝܟ . To address this problem, this paper loses this constraint so that there can 
be a set of vectors rather than only one vector in the feature space. As a result, fመ in 
Eq. (4) can be expressed as a weighted combination of kernel functions with respect 
to those vectors. Actually, this paper realized that this set of vectors can be pre-
defined and the combination weights can be efficiently solved as follows. 

In specific, we define the set of Partition Vectors (PVs) ܲ as a set of ݊ vectors 
(recall that ݊ is the upper bound of all entries of the input vectors). Each PV has all 
its entries equivalent to a unified value, i.e., ܲ ൌ ൛ܘ௝|ܘ௝ ൌ ,ௗൈଵܒ ݆ ൌ 1, ڮ , ݊ ൟ. The 
goal of decoding is to find a ݊ ൈ ݀ matrix of coefficients ۯ satisfying  

 fሺܠሻ ൌ fመሺܠොሻ ൌ traceሺۻۯሻ, (5) 

where the j-th row of ۯ is a vector of weights ܉௝ ൌ ൣ ௝ܽଵ, ڮ , ௝ܽௗ൧ and the j-th col-
umn of the ݀ ൈ ݊ matrix ۻ is the output of the per-entry kernel operation given ܠ 
and the j-th PV ܘ௝ as the input, i.e., ܕ௝ ൌ ሾminሺݔଵ, ݆ሻ , ڮ , minሺݔௗ, ݆ሻሿ்  for ݅ ൌ 1, ڮ , ݊.  

For the nd dimensional hyper-plane ܟෝ ൌ ሾܟෝଵ ڮ ෝௗሿ்ܟ  in Eq. (4), its i-th part ܟෝ௜ ൌ ሾݓ௜ଵ ڮ ,௜௡ሿݓ ݅ ൌ 1, ڮ , ݀, is a vector in ܴ௡. Hence ܟෝ௜ can be represented by a 
set of n bases in ܴ௡ which are defined as ൛઻௝|઻௝ ൌ ൣ૚ଵൈ௝, ૙ଵൈሺ௡ି௝ሻ൧, ݆ ൌ 1, ڮ , ݊ ൟ : 
ෝ௜ܟ  ൌ ∑  ௝ܽ௜઻௝௡௝ୀଵ , ݅ ൌ 1, ڮ , ݀. (6) 

The coefficient ௝ܽ௜  which forms the matrix of ۯ can be solved through Gaussian 
elimination. The proofs of Eq. (5) are given as follows: 

According to ߮ in Eq. (3), it can be easily found that ߮௜ሺ݆ሻ ൌ ઻௝  and ܠො ൌ߮ሺܠሻ ൌ ሾ߮ଵሺݔଵሻ, ڮ , ߮௡ሺݔ௡ሻሿ். Substitute Eq. (6) into (4), we have 

 fመሺܠොሻ ൌ ,ෝܟۃ ۄොܠ ൌ ∑ ∑ ۃ  ௝ܽ௜઻௝, ߮௜ሺݔ௜ሻۄ௡௝ୀଵௗ௜ୀଵ ൌ ∑ ∑ ௝ܽ௜ ۃ઻௝, ߮௜ሺݔ௜ሻۄௗ௜ୀଵ௡௝ୀଵ . (7) 

Considering the kernel trick in Eq. (1), Eq. (7) becomes: 

 fመሺܠොሻ ൌ ∑ ∑  ௝ܽ௜ minሺݔ௜, ݆ሻ ൌ traceሺۻۯሻௗ௜ୀଵ௡௝ୀଵ , (8) 

Here we verify Eq. (5).  
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm of PVC learning 

Input: training samples ሼܠ௞, y௞ሽ௞ୀଵ,ڮ,ே with the labels y௞ א ሼെ1, ൅1ሽ 

1. Encoding  
1.1 Map all vectors x to ܴ௡ௗ using Eq. (3) 

2. Train a linear SVM ܟෝ   in ܴ௡ௗ 
3. Decoding 

3.1  Calculate the weights matrix ۯ of the PVs according to Eq. (6) 
3.2  Get the classification function fሺܠሻ using Eq. (5) 
3.3  Build a look-up table for fሺܠሻ  

Output: PVC in the form of fሺܠሻ ൌ ∑ ܷܮ ௜ܶሺݔ௜ሻௗ௜ୀଵ  
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Eq. (5) transforms the inner product in the implicit space in Eq. (4) to a nonlinear 
function referring to pre-defined PVs ઻௝ in the feature space. More important, since ݔ௜ א ሾ0, ڮ , ݊ሿ, f in Eq. (5) can be further accelerated by building d piecewise con-
stant functions for each entry, i.e, fሺܠሻ ൌ ∑ ܷܮ ௜ܶሺݔ௜ሻௗ௜ୀଵ , such that the computational 
complexity in evaluation is reduced to O(d), exactly the same to that of linear  
classifiers. 

2.4 Summary 

Fig. 2 summarizes the learning of PVC. Benefit from encoding, nonlinear classifica-
tion in the feature space can be achieved by the efficient linear classification in the 
implicit space. The hyper-plane learnt in the implicit space ensures the discriminative 
power of PVCs. Finally, decoding contributes to the efficiency, accelerating the de-
tection speed of PVCs to the level of linear classifiers. 

In specific, the computational complexity of encoding is O(Nd), linear in the num-
ber of training samples N and the dimensionality of vectors d. Besides, the learning of 
hyper-plane in implicit space can be done using the extremely fast SVM toolkit 
LIBLINEAR [22]. Likewise, the computational complexity of evaluation of an input 
vector is O(d), exactly the same as linear classifiers. Therefore, both the learning and 
detection of PVCs are efficient. 

PVCs are a kind of weak classifiers independent of any boosting algorithm [7-13]. 
As a result, this paper simply uses the RealBoost as an example in the following  
experiments to evaluation the proposed PVCs.  

3 Experiments 

This section describes experiments in detecting multiple objects, including  
pedestrians, cars, motorbikes, dogs, and cows to evaluate the proposed PVCs. All 
experiments are evaluated on desktops with Intel 3.0GHz CPU and 4GB memory. 

This paper utilizes the multi-size HOG features [5, 8, 9] as an examples to train a 
cascade classifier considering its great success in the literature. Totally 4496 36d 
HOGs of block sizes from 16×16 to 48×96 are generated as the candidates feature 
pool. 60 out of the 4,496 features are randomly selected and evaluated in each round. 
More details of RealBoost can be found in the papers [12, 13]. 

3.1 Pedestrian Detection on the INRIA Dataset 

We evaluate PVCs in pedestrian detection using the commonly used INRIA dataset 
[5] and follow the same experimental settings in [8]. 

Firstly, we carry out experiments to evaluate our method with respect to two crite-
ria, i.e., the miss rate tradeoff False Positive rate Per Window (FPPW) and the detec-
tion rate versus False Positive rate Per Image (FPPI) respectively. 
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(a)      (b) 

Fig. 3. Evaluation on INRIA dataset with respect to (a) FPPW and (b) FPPI criteria 

Fig. 3 (a) illustrates the results with respect to FPPW. Using the same HOG fea-
tures, our method reaches a similar accuracy as the RBF kernel SVM [5], and reduces 
the miss rates by 4 percentages at 10e-4 FPPW compared to the linear SVM [5] and 
the boosted linear ones [8]. Our result is inferior to [15] and [16] since 1) [15] utilizes 
composite and thus more powerful descriptor combining HOG and other features; 2) 
boundary effects were reported on the implementation of [16] and its exact perfor-
mance is actually similar to the one achieved by RBF kernel SVM [1]. Fig. 3 (b) 
shows the results under the FPPI testing. Our method achieves competitive results 
compared with most of the algorithms. Using the HOG features, our result achieves 
by at least 4 percentages improvement on the detection rate compared to the linear 
SVM [5] and IKSVM [16].  

Fig. 3 shows that using the proposed PVC as weak classifiers in boosting frame-
work is effective. Several detection examples in difficult images including clutter 
backgrounds and the pedestrians with variant appearances are shown in Fig. 4. 

Secondly, we compare the learning and evaluation speeds3 of PVCs with other  
linear weak classifiers including linear SVM, linear least square, and the nonlinear 
fast IKSVM [17]. Both PVCs and linear SVMs are trained using the LIBLINEAR 
toolkit [22]. Table 1 shows that both the training and detection speeds of PVCs are 
fasted among all weak classifiers compared. The efficiency improvement brought by 
PVCs is analyzed as follows. 

Regardless the time consumption of the bootstrapping, the computational costs of a 
boosted classifier mainly depend on two factors: the training time of a single weak 
classifier and the weak classifier number. We observe that using the efficient 
LIBLINEAR package, the difference between the training time of a single PVC and a 
single conventional linear weak classifier is trivial. We also realized that the boosted 
PVCs as well as the boosted fast IKSVMs uses only one quarter number of weak 
classifiers (about 450) of that used by the boosted linear ones (about 1700) to achieve 
a false positive rate of 10-4 on the training data. Therefore, training PVCs is more 
efficient than other linear weak classifiers. 
                                                           
3 Generally, boosted classifiers are more efficient than SVM classifiers in detection due to the 

cascade framework. Hence we only compare our method with the boosted classifiers in the 
speed evaluation here. 
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Table 1. Speed comparison between PVC and other commonly used weak classifiers 

Weak classifier Training time until 10e-4 FP Patches processed per second 
Linear SVM >24 hours ~90,000 
Linear Least Square ~24 hours ~90,000 
fast IKSVM [17] ~10 hours ~20,000 
PVC ~6 hours ~100,000 

Table 2. Comparisons on PASCAL VOC 2007 dataset with respect to Average Precision (AP) 

 Car Motorbike Bicycle Dog Cow 
Oxford [23] 0.432 0.375 0.409 --- --- 

UoCTTI [[23] 0.346 0.276 0.369 0.023 0.140 
Our method 0.418 0.415 0.488 0.191 0.189 

 
The evaluation time of a boosted classifier depends on two factors as well: the av-

erage number of passed weak classifiers for one candidate sample and the computa-
tional cost of a single weak classifier. We calculate the average number of weak  
classifiers used to make a decision on two millions samples for FPPW evaluation on 
INRIA dataset. The boosted classifiers based on PVCs and fast IKSVMs use about 21 
weak classifiers in average, while the linear versions use about 27. Because of this, 
although the computational cost of single PVC is the same as that of linear weak clas-
sifier, the evaluation speed of the boosted PVCs is still faster than the linear ones. 

It is also worth to mention that our method still achieves better training and detec-
tion speed than the boosted fast IKSVMs [17], since PVC uses dense encoding and 
avoid additional costs in sparse encoding as in [17]. 

3.2 Car, Dog, and Cow Detection on PASCAL VOC 2007 Dataset 

In this section, we evaluate the PVC on five categories of PASCAL VOC 2007 data-
set, car, bicycle, motorbike, dog and cow. We follow the training and detection proto-
cols [23]. The positive training samples with ‘hard’ label, strong occlusion (more than 
50% of the car is occluded) or weak illumination are dropped. Table 2 compares the 
average precision with two baseline algorithms [23], including the object detector 
proposed by Chum, et al., and Felzenszwalb, et al., as abbreviated as ‘Oxford’ and 
‘UoCTTI’ in Table 2. Both of them use HOG-like features and SVM-like nonlinear 
classifiers. We can observe that our method achieves the best results in the competi-
tion on motorbike, bicycle, dog and cow; and the second best result in car detection. 
So we can also safely conclude that the boosted PVCs is effective for object detection. 
Several detection examples are illustrated in Fig. 4. 
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