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Abstract. In this paper we address the problem of building a local
image descriptor that is insensitive to the complex appearance changes
induced by illumination variations on non-flat objects. The presented
descriptor is based on multi-scale and multi-oriented even Gabor fil-
ters and constructed in such a way that typical effects of illumination
variations like changes of edge polarity or spatially varying brightness
changes are taken into account for illumination insensitivity. For evalu-
ation, a dataset of textured as well as textureless objects is used which
introduces a greater challenge towards evaluating the robustness against
illumination changes than conventional datasets used in the past. The
experiments finally show the superiority of our descriptor compared to
existing ones under illumination changes.

1 Introduction

Representing images by sets of local image descriptors has shown to be an effec-
tive approach for computer vision tasks like image correspondence search [ or
object recognition [2]. The purpose of local image descriptors is to represent dis-
criminative information of a local image patch. Preferably, the descriptor should
be insensitive to certain image transformations like rotation, blurring or bright-
ness change. In this paper, we focus on designing an image descriptor that is
insensitive to the illumination conditions in the scene and consequently to the
possibly complex appearance variations evoked by changes of the illumination
direction.

The computation of image descriptors typically follows a common workflow,
where the main components are the extraction of pixel-wise low-level features
and their spatial pooling [3]. Image gradient directions are a popular low-level
feature, e.g. used by SIFT [], DAISY [5], WLD [6], GLOH [7] or MROGH [§].
Another type of low-level features are filter bank responses, e.g. Haar wavelets
(SURF [9]), higher-order derivatives [10] or steerable filters (the best descriptor
reported in [3]). Encoding the local image structures by means of a set of patterns
has also been proposed, e.g. local binary patterns (CSLBP [II], MRRID [g]),
local ternary patterns [12], local intensity order patterns (LIOP [13]). The OSID
descriptor [14] applies an ordinal labeling of pixel intensities.

The role of the spatial pooling stage is to encode the spatial distribution of the
per-pixel features. The standard SIFT implementation uses a squared 4 x 4 grid
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Fig. 1. Image patches showing the same object regions under different lighting condi-
tions; (a) a flat, textured object; (b) a non-flat, textureless object

for the spatial pooling and other descriptors like SURF, OSID or CSLBP adopt
this pooling scheme. GLOH uses a log-polar grid for spatial pooling. Similarly,
the DAISY descriptor uses circular cells of varying size arranged on concentric
rings for spatial pooling and Brown et al. [3] proposed a learning scheme to
obtain optimal configurations of such cell arrangements. MROGH, MRRID and
LIOP do not use fixed spatial cells but define cell locations by tiling the image
patch based on pixel-intensity orders. This has the advantage that the resulting
descriptor is inherently invariant to image rotations.

There is also a line of research which rather focuses on the spatial correla-
tion of the features than on their spatial distribution. The GLAC descriptor [15]
computes the correlation of gradient directions between pixel pairs. Binary de-
scriptors like FREAK [I6] are constructed by comparing image intensities over
the local patch.

Common to all descriptors is that the final outcome is a feature vector (e.g. by
concatenating all sub-histograms of the spatial cells), to which various optional
postprocessing steps can be applied. Normalization of the vector to unit length
is done to make the descriptor invariant to global linear brightness changes and
to reduce the influence of large descriptor elements [SJA9ITTIT5]. Dimensional-
ity reduction techniques and quantization can be applied to improve both the
descriptors’ performance and storage space [3I7J16].

When it comes to changes of the illumination conditions in a scene, current
image descriptors are in general only invariant to linear or monotonic brightness
changes which occur on flat, textured objects (i.e. object with varying albedo), as
shown in Figure[Ia). However, on non-flat, textureless objects (i.e. objects with
constant albedo) more challenging appearance changes occur that include locally
varying brightness changes and edge polarity changes, as shown in Figure [(b).

In this paper, we propose a new local descriptor for application areas where
strong illumination changes can be expected and texturedness as well as flatness
of objects are not necessarily given. This is achieved in the first place by using
pixel-wise low-level features that exhibit a higher recognition power under chang-
ing lighting conditions than the low-level features commonly used in existing de-
scriptors. Osadchy et al. [17] propose to use oriented second derivative filters of
Gaussians as an effective feature for capturing smooth/isotropic as well as non-
smooth/anisotropic surface characteristics. However, they use single scale filters
for recognizing objects in aligned images. We extend their approach towards local
descriptor construction by applying multi-scale filters and incorporating spatial
statistics in order to describe local image patches in an illumination-insensitive
way. In our work, we use the real part of Gabor filters [I§] instead of second
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derivatives of Gaussians due to the similarity but higher flexibility of Gabor fil-
ters. This makes us able to explore the influence of the Gabor filter parameters
on recognition performance.

As a further contribution of the paper, we evaluate the robustness of exist-
ing local image descriptors against changes in illumination conditions by using
a new image patch database extracted from images of the ALOI dataset [19].
Existing evaluations [7I20/21] have the problem of only marginally considering
illumination invariance: Mikolajczyk and Schmid [7] and van de Sande et al. [21]
only test image brightness changes and ignore changes of the light source direc-
tion. Moreels and Perona [20] use only three different lighting configurations and
couple the descriptor performance evaluation with the interest point detection
step. Our experiments aim at a broader evaluation: testing the robustness of
the small image patch descriptions against changes of the light source direction
for textured as well as textureless objects, the latter being the more challenging
type of objects.

2 Methodology

2.1 2D Gabor Filters

A 2D Gabor filter [I8] is a complex filter that consists of a real/even part G,
and an imaginary/odd part G,
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with 2/ = xcosf + ysinf and 3y = —xsinf + ycos . The filters have the form
of a sinusoidal plane wave with wavelength w and orientation # multiplied by a
Gaussian envelope with standard deviation ¢. In order to ensure equal shape of
Gabor filters of different sizes, o is defined as a linear function of w by ¢ = ¢ - w.
The parameter + is the spatial aspect ratio of the filter.

2.2 Local Image Descriptor from Even Gabor Filter Responses

According to Osadchy et al. [I7], for illumination insensitivity smooth image
regions are best described by a whitening filter, which reduces the autocorrelation
within the image signal, whereas non-smooth image regions are best described
by a directional filter. Therefore, oriented second derivative filters of Gaussians
are a good choice for general cases, as they combine the Laplacian-of-Gaussian
whitening effects with a directional filter. The authors also mention the similarity
between second derivative filters and even Gabor filters and report similar results
for both filters. This similarity is given when the cosine bandwidth is selected
such that the Gaussian envelope roughly covers the cosine range of [—1.57, 1.57],
i.e., ¢ ~ 0.4 (see Figure[Bc) in SectionBT]). In our work, we use the even part of
Gabor filters in order to have more flexibility for testing the influence of various
filter shapes on the descriptor performance (see Section B.]).
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While the directionality of the filter is given by the rotation parameter 6,
the optimal size of the filter depends on the surface properties, as for smoother
surface parts a wider filter is needed than for less smooth surface parts. As in
a general scenario the surface characteristics are usually unknown and varying,
we additionally use a set of different filter scales for creating our descriptor. For
given values of the filter shape parameters ¢ and v, we use N equally spaced
orientations 0y ... 60y, where 6; € [0,7[ and 61 = 0. The M scales w; ...wys are
exponentially sampled to achieve homogeneous intervals, i.e. wj = k7~ 1w.

In order to build our descriptor, we first compute absolute filter responses
I%%i by convolving the image patch I with the N - M filters Ga“wj

19095 = |I % GOl (2)

These output images are arranged to a feature map F' that contains for ev-
ery image point p and discrete filter parameters 6; and w; the absolute filter
responses,

F(p,0i,w;) = I"“ (p). 3)

Obviously, the filter outputs I depend on the image contrast, e.g., stronger
ridges produce higher values in F/(p). This gives a natural weighting of the local
low-level features, in the same manner as, for instance, the gradient magnitude
is used to weight the histogram inputs in the SIFT descriptor [4]. Global linear
brightness changes on the image patch can then be compensated by normalizing
the final histogram to unit length. However, different light source directions can
lead to brightness changes that vary locally, as demonstrated in Figure QIb).
Therefore, it is beneficial to normalize F' on a per-pixel level,

(p’917w1) (4)
\/Zz 123 1F(P,9uwa)

(p, 0;,w;)
An option would also be to normalize only over the responses of different ori-
entations, but normalizing over all responses is more robust when parts of the
image region are over- or undersaturated. On discrete images, linear brightness
changes lead to a clipping of values which are outside the dynamic range of the
sensor. The normalized feature map F' is not invariant to brightness changes
when such effects occur, but normalizing over all orientation and scale responses
is more robust in presence of partial over- and undersaturation as wider filters
and thus more data samples are included.
__ The last step of the descriptor construction is to perform a spatial pooling on
F' to increase the descriptor’s discriminative power by adding spatial informa-
tion. Formally, L cells Cj(p),l = 1...L are defined that represent the weighting
of the spatial location p for the cell’s local sub-histogram. The final descriptor
is a 3D joint histogram H(6;,w;,!) of the values in F,

927“}]7 Z C’l pvelaw]) (5)
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The cells C; can be, for instance, of Gaussian shape to achieve a DAISY-like
pooling [BI5] or perform the bilinear weighting between squared cells as in the
SIFT descriptor [4]. However, please note that the optimal pooling scheme de-
pends on the application scenario. The goal of spatial pooling is to achieve a
optimal trade-off between an maximal descriptor discriminability and a max-
imal descriptor insensitivity to variations of the features’ spatial distribution
caused by inaccurate keypoint detection, varying viewpoints and different ob-
ject instances. Thus, for object matching between viewpoints one can use smaller
cells the less viewpoint differences are expected. In our experiments, we use the
standard SIFT 4 x 4 squared cells with bilinear weighting [4] for spatial pooling
as it achieved reasonably good results on all datasets.

Although Gabor filters are well known and often used [22], to the best of
our knowledge they have never been used before in this manner for local image
descriptors. Multi-scale and/or multi-oriented filter banks are used by others for
image recognition tasks, e.g. by [23I24] with Gabor filters and by [3] with their
single-scale Gaussian derivative counterparts, but the filters are usually used in
quadrature, whereas we only use their real part. As shown in our experiments
(see Section B2)), using only the real part achieves similar results under strong
illumination variations while saving computation time. Larsen et al. [10] also
use filter bank responses to build a local descriptor, but they rely on higher-
order derivative filters which are applied to single positions on the patch. In
contrast, we establish statistics on the filter responses at all pixel positions of the
patch that are well-founded for an illumination-insensitive descriptor by means
of measuring the spatially varying frequency of occurrence of locally normalized
responses.

3 Experiments

The goal of our experiments is to test a descriptor’s ability to describe small
image patches in a discriminative way while ignoring the effects arising from
different lighting conditions. In contrast to evaluation strategies that combine
the descriptor performance evaluation with an evaluation of interest point de-
tection [7J20], we adopt the performance evaluation scheme of Brown et al. [3]
which is based on sets of true and false image patch pairs. True patch pairs show
the same object patch but from different viewpoints and with different illumi-
nation conditions, whereas false patch pairs show different object patches. An
optimal descriptor will minimize the distance between the true image patches
and maximize the distance between false image patches. Hence, we measure
these two groups of distances for a given descriptor and integrate the two his-
tograms to build a ROC curve of which the area under curve (AUC) is computed
as performance measure. A highly illumination-insensitive descriptor will have
less overlap between the two histograms and thus a higher AUC than a less
illumination-insensitive descriptor.

We use three configurations of our descriptor for evaluation: one that uses
only single-scale even Gabor filters (SSEG) with dimensionality N, one that uses
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multi-scale even Gabor filters (MSEG) with dimensionality N - M and the full
descriptor which uses a 4 x4 grid for spatial pooling (MSEG4x4) with dimension-
ality N - M - L. We compare these descriptors to several descriptors proposed in
literature where implementations are available for download: SIFT [4], SURF [9],
DAISY [5], MROGH, MRRID [§], LIOP [13], FREAK [16] and GLAC [15]. Ad-
ditionally, we implemented the best DAISY descriptor reported in [3] (BEST-
DAISY) which uses second order steerable quadrature pair filters, a DAISY-like
spatial pooling and a final vector normalization with range clipping. We also
tested a modified version of the SIFT descriptor which uses unsigned gradients
in the range [0, [ to handle the polarity changes of edges on textureless surfaces
under opposite lighting directions (UGSIFT).

Experiments are conducted on four datasets of true and false image patch pairs.
The datasets ALOI Textureless Patches and ALOI Textured Patches have been
newly generated for our purpose of testing insensitivity against lighting variations.
To test the descriptors on scenarios with less lighting variations we also used the
existing image patch pair databases Liberty and Virtual World for evaluation. Ex-
amples of true patch pairs contained in the datasets are shown in Figure[2

ALOI Textureless: patches of this dataset were extracted from the Amsterdam
Library of Object Image (ALOI) [19], an image database of 1000 objects that
were photographed from three viewpoints and with eight illumination configu-
rations each. We manually identified 80 textureless objects with a wide range
of surface smoothness and material BRDF (e.g., a basket, a nut, a sponge, a
lemon, a plastic pig...) in the dataset and randomly picked true and false patch
pairs of size 64 x 64. Correspondences for the true patch pairs were identified by
manually estimating the homography between images from the three viewpoints.
The viewpoint changes are small enough to describe the image correspondences
by a homography and thus errors are also considered as being small enough to
just simulate the uncertainty of interest point detection. In total, 60000 true and
60000 false patch pairs were extracted.

ALOI Textured: likewise, we selected 80 textured objects (e.g., labeled boxes,
an alarm clock, a calendar, ...) and selected a total set of 120000 true and false
patch pairs.

Liberty: the Liberty datasetd consists of true and false patches sampled from 3D
reconstructions of the Statue of Liberty. This dataset has been used for descriptor
learning [3] and represents an appropriate descriptor evaluation dataset for the
scenario of multi-view reconstruction of large-scale outdoor objects. Hence, it
also includes realistic outdoor lighting variations, although their amount and
frequency is unknown. We use 50000 patch pairs for evaluation.

Virtual World: this dataset contains 3000 photorealistic images of a virtual
city model and has been used by Kaneva et al. [25] for image descriptor eval-
uation in the same manner as the real image patches in [3]. Likewise to [25],

! nttp://staff.science.uva.nl/"aloi/
2 http://www.cs.ubc.ca/ mbrown/patchdata/patchdata.html
3 http://people.csail.mit.edu/biliana/projects/iccv2011/
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(d)

Fig. 2. Examples of true patch pairs in the datasets: (a) ALOI Textureless, (b) ALOI
Textured, (c) Liberty and (d) Virtual World

we extracted 120000 true patch pairs by identifying corresponding Difference-
of-Gaussians keypoints between viewpoints and different times of the day to
introduce changing lighting conditions. Finally, we resized the detected patches
to a standard size of 64 x 64 based on the detected scale. The advantage of this
dataset over the Liberty dataset is that it exhibits a more controlled and evenly
distributed variation of the lighting conditions, as each scene was rendered under
five different lighting conditions (different times of the day).

Note that the correct patch pairs of all datasets show no rotation differences.
Hence, to allow for a fair comparison, we do not use the rotation-invariant ver-
sions of the descriptors, except for MROGH, MRRID and LIOP which are inher-
ently rotation invariant. The other descriptors can be made rotation invariant
by determining a canonical orientation per patch and describing the per-pixel
features and cells relative to this orientation. The same principle can be used to
make our descriptor rotation-invariant, although it is not treated in this paper.

3.1 Gabor Filter Parameter Selection

In order to investigate the relation of our descriptor parameters to the recog-
nition performance, we defined parameter selections in discrete intervals and
determined the AUC of all parameter combinations on a selected training set.
As our main goal is to achieve an optimal performance under strong lighting
variations, we built a mixed dataset by randomly extracting 25000 patches from
the representative datasets ALOI Textureless and ALOI Textured. MSEG4x4
was then modified according to the filter shape parameters ¢ and v as well as
the number of orientations IV and tested on the mixed dataset.

Figure[Bl(a) shows the influence of the number of orientations by plotting the
best AUC for a given value of N and all values of ¢ and «. It can be seen that
for N > 6 no substantial improvement can be achieved. We therefore chose a
value of N = 6 for all further experiments. In Figure Bl(b) the AUC values for
the filter parameters ¢ and v are shown. It is evident that the best performance
is not achieved for filter parameters that make the Gabor filter similar to the
second derivative of Gaussian used in [I7] (¢ & 0.4), but for values of ¢ close
to 0.6 where the Gaussian envelope is wider and thus a higher frequency and
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Fig. 3. (a)-(b) Performance of descriptor MSEG4x4 for different values of N, ¢ and ~;
(c) from left to right: second derivative of Gaussian with reversed sign, the correspond-
ing even Gabor filter and the filter used for constructing our descriptor

orientation resolution is provided [22]. This comes at the price of an increased
spatial uncertainty of the filter, which, however, seems not to be critical due
to the subsequent pooling step. For values of ¢ in this range the aspect ratio ~y
has only a minor influence on the performance. Based on these results, we used
parameter values of ¢ = 0.6 and 7 = 1 for our experiments. Figure[Bl(c) shows the
shape of the filter used and demonstrates the difference to the shape of a second
derivative of Gaussian filter and its Gabor counterpart. Optimal parameters for
the multi-scale spacing have also been determined on this dataset as wi = 2,
k=+2and M = 8.

3.2 Results and Discussion

Results on the four datasets were achieved by applying the descriptors to all
patch pairs but excluding the patches used for parameter selection from the
ALOI Textureless and ALOI Textured datasets. The obtained ROC plots are
shown in Figure[dl The corresponding legends list the descriptors sorted by their
achieved AUC given in brackets.

For the datasets representing strong illumination variations between patches
(ALOI Textureless and ALOI Textured), all versions of our descriptor outperform
the other descriptors, with a larger advance in performance for the more challeng-
ing textureless objects. On the ALOI datasets even the descriptor SSEG with a
dimensionality of 6 achieves a better recognition performance than the remain-
ing high-dimensional descriptors with dimensionalities of > 64. MSEG4x4 clearly
shows the best performance on these datasets as well as on the Virtual World
dataset which is assumed to represent more lighting variations than the Liberty
dataset. On this dataset MSEG4x4 is outperformed by BESTDAISY but shows
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Fig. 4. ROC curves of the descriptors on the datasets (a) ALOI Textureless, (b) ALOI
Textured, (c) Liberty and (d) Virtual World

nearly the same performance as SIFT and DAISY. However, BESTDAISY has
been especially optimized for this dataset. It is worth noting that the best param-
eters for our descriptor were selected according to the datasets ALOI Textureless
and ALOI Textured, but parameter tuning can also be used to improve the re-
sults of our descriptor on the Liberty dataset. By using Gabor filters with a shape
more similar to a second Gaussian derivative (¢ = 0.4) and N = 8, MSEG4x4
is competitive to BESTDAISY on the Liberty dataset (AUC=0.9582), while still
achieving the best performance on ALOI Textureless and ALOI Textured (AUC
of 0.9563 and 0.9807, respectively). In general, we can conclude that MSEG4x4
shows the best performance under strong illumination changes for a wide range of
filter shapes. Even the worst parameter combination with ¢ = 0.3 and v = 0.5 (see
Figure Bl(b)) achieves a better performance than the other descriptors on ALOI
Teztureless (AUC=0.9054, not shown in FigureM]).

Among the remaining descriptors, the gradient-based descriptors SIFT and
DAISY show the best performance under illumination changes. It is also shown
that using unsigned gradients (UGSIFT) is beneficial for the SIFT descrip-
tor by making it invulnerable to edge polarity changes. However, this lowers
also the discriminability of the SIFT descriptor and thus its recognition perfor-
mance is decreased when less illumination changes are present in the data (AUC
of 0.9301 compared to 0.9498 on the Liberty dataset). Image gradients have
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Table 1. Comparison of AUC values achieved when using even or complex Gabor filter
responses for our descriptor

ALOI Tex- ALOI Tex- Liberty Virtual

tureless tured World
Even Gabor Filters 0.9674 0.9854 0.9392 0.9663
Complex Gabor Filters 0.9666 0.9855 0.9397 0.9656

previously been mentioned to exhibit illumination-insensitivity properties [I7/26]
and thus descriptors, which rely on per-pixel features that are not well adapted to
the problem of changing lighting conditions (GLAC, MROGH, MRRID, LIOP,
SURF, FREAK), have a worse performance compared to SIFT and DAISY.

We have noted before that we do not use Gabor filters in quadrature but only
the even part due to the similarity to second derivatives of Gaussians [17]. In
Table [ the results achieved by either using the even Gabor filters or the entire
complex filters are compared. It is shown that using the magnitude of both the
even and odd filter as feature map does not contribute to considerably better
results, while consuming twice the computational power. The advantage of the
complex filters is in general that the response is invariant to the phase of the
signal, but this does not help to improve illumination insensitivity, as has also
been noted by Osadchy et al. [17].

4 Conclusions

Our experiments reveal that current image descriptors, while performing rea-
sonably well in scenarios with textured objects and only low changes of illumi-
nation conditions, show a tremendous decrease of performance in scenarios with
strong changes of illumination conditions, especially when textureless objects
are involved. The absence of texture on objects as well as strong illumination
variations makes the recognition more challenging and this scenario has been
neglected in descriptor design and evaluation in the past. We proposed a de-
scriptor based on even Gabor filter responses that is more robust against the
effects caused by changing lighting conditions on non-flat surfaces, and thus
gain a recognition performance boost in such scenarios. Future work will focus
on improving the descriptor with respect to computational time, dimensionality
and rotation invariance.
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