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Abstract. In this paper, we experimentally evaluate the validity of
dimension-reduction methods which preserve topology for image pattern
recognition. Image pattern recognition uses pattern recognition tech-
niques for the classification of image data. For the numerical achieve-
ment of image pattern recognition techniques, images are sampled using
an array of pixels. This sampling procedure derives vectors in a higher-
dimensional metric space from image patterns. For the accurate achieve-
ment of pattern recognition techniques, the dimension reduction of data
vectors is an essential methodology, since the time and space complex-
ities of data processing depend on the dimension of data. However, the
dimension reduction causes information loss of geometrical and topolog-
ical features of image patterns. The desired dimension-reduction method
selects an appropriate low-dimensional subspace that preserves the topo-
logical information of the classification space.

1 Introduction

Pattern recognition techniques are applied to image patterns. In image pattern
recognition, images are sampled so that they can be embedded in a vector space,
and dimension-reduction is operated to reduce the dimensions of image patterns
[1–3].

In practice, as shown in Fig. 1, there are two paths for the dimension reduc-
tion. One method reduces the dimension of data in a sampled image space using
image compression methods such as the pyramid transform, wavelet transform
and low-pass filtering. The other method is data compression in a vector space
after vectorisation of sampled image patterns using operations such as random
projection. The reduction and vectorisation operations are generally noncommu-
tative as shown in Fig. 1.

In this paper, we evaluate the differences in the effects and performance among
these three data compression techniques. We adopted the following dimension
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Fig. 1. Differences in the dimension-reduction path among the two-dimensional dis-
crete transformation, two-dimensional random projection and random projection. After
sampling of an original image, dimension-reduction methods mainly separated follow
two paths. In the first path on the left of the dashed line, after the reduction of the im-
age, the reduced image is converted to a vector. In the second path on the right of the
dashed line, after vectorisation, the feature vector is reduced. Here, m,m′, n, n′, d, k ∈ Z

and n′ < n,m′ < m, k < d.

reduction techniques: random projection, two-dimensional random projection
and the two-dimensional discrete cosine transform. For classification, we adopted
the subspace method and two-dimensional tensorial subspace method. We tested
each pair of these dimension-reduction techniques and classifiers for face
recognition, spacial object recognition, and character recognition.

2 Mathematical Preliminary

Setting H to be the space of patterns, we assume that in H the inner product
(f, g) is defined. Furthermore, we define the Schatten product 〈f, g〉, which is an
operator from H to H . Let f ∈ H and Pi, i = 1, . . . , N be a pattern and an
operator for the ith class, where the ith class is defined as

Ci = {f |Pif = f, P ∗
i Pi = I}. (1)

Since patterns have perturbations, we define the ith class as

Ci(δ) = {f | ‖Pif − f‖2 � δ, P ∗
i Pi = I} (2)

where δ is a small perturbation of the pattern. For input g ∈ H and class Ci, we
define the similarity and classification criteria as

θi = ∠(Ci(δ), g), 0 < θi <
∃θ0 → g ∈ Ci(δ), (3)

since we define the angle between an input pattern g and the space of the pattern
as

θi = cos−1 ‖Pig‖2
‖g‖2 . (4)
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(a) (b)

Fig. 2. (a) Geometric property of the subspace method. Let ϕ1 and ϕ2 be the bases
of a class pattern. For input g, similarity is defined as the orthogonal projection to the
pattern space. (b) Multiclass recognition using the subspace method. Let P1 and P2

be operators for subspaces C1 and C2, respectively. Input g is labeled as beign in the
1st class, since the subspace C1 has the longest projection length of g.

The angle between the input pattern and the pattern space represents their
similarity [4–6].

Figure 2(a) shows the basic idea of the subspace method. To identify whether
the input data are in the subspace of the class or not, we calculate the angle
between the input data and the subspace of the classes. If g belongs to the space,
the length of the orthogonal projection is close to 1. Figure 2(b) shows multiclass
recognition using the subspace method. For multiclass recognition, we construct
a operator Pi for fi ∈ Ci such that

E (‖f − Pif‖2) → min, P ∗
i Pi = I, (5)

where f ∈ Ci, I is the identity operator and E is the expectation on H .

3 Construction of Projections

3.1 Karhunen-Loeve Expansion

For practical calculation of P and Pi in Eqs. (3) and (5), we adopt the Karhunen-
Loeve expansion. The Karhunen-Loeve expansion approximates the subspace of
data in a Hilbert space. We set {ϕj}nj=1 to be the eigenfunction of M = E〈f, f〉.
We define the eigenfunction of M as ‖ϕj‖2 = 1 for eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λj ≥ · · · ≥ λn. Therefore, operator P is defined as Pk =

∑k
j=1〈ϕj , ϕj〉 for k ≤ n.

3.2 Two-Dimensional Discrete Cosine Transform

For a real image X ∈ R
m×n, the discrete Fourier transformation can be replaced

with the discrete cosine transform (DCT), since the image X is a real matrix.
Selecting low-frequency bases, we can compress an image as

Y = SLΦ
−1PΩΦXΦPΩΦ

−1S�
R . (6)
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(a) (b) (c) (d)

Fig. 3. Image representations in three coordinates. (a) uij , ui′j′ , ui′′j′′ are the bases
which represent each pixel of an image. (b) dij , di′j′ , di′′j′′ are the bases of the DCT.
(c) ϕi, ϕi′ , ϕi′′ are the bases of the PCA. (d) There is a projection PΠ which projects
the image f to the linear subspace Π = {ϕi, ϕi′} from the space spanned by the DCT.

Here, Y ∈ R
k1×k2 , k1 ≤ m, k2 ≤ n Φ ∈ Rm×n is a DCT matrix, PΩ is a

band limitation matrix, and SL ∈ R
k1×m and SR ∈ R

k2×n are the sampling
matrices. The eigenfunction and eigendistribution of the DCT approximately
coincide with those of the Karhunen-Loeve expansion for images. For a discrete
image, the Karhunen-Loeve expansion is computed by the principal component
analysis (PCA). Figure 3 illustrates the representation of an image by the DCT
and PCA and a special case. Since the DCT and PCA are unitary transforms,
these bases are related to a rotation transformation.

3.3 Two-Dimensional Tensorial Subspace Method

As an extension of the subspace method for vector data, we introduce a linear
subspace method for a bilinear array. For a bilinear array X ∈ R

m×n, setting
PL ∈ R

k1×m (k1 ≤ m) and PR ∈ R
k2×n (k2 ≤ n) to be orthogonal projections,

we call the operation
Y = PLXPR (7)

the orthogonal projection of X to Y ∈ R
k1×k2 . Therefore, using this expression

for a collection of bilinear forms {X}ni=1, such that Ei(Xi) = 0, the solutions of

J(PL,PR) = Ei

(‖PLXiPR‖2
‖Xi‖2

)

→ max, w.r.t. P ∗
LPL = I, P ∗

RPR = I (8)

define a bilinear subspace which approximates {X}ni=1. Using the solutions of
Eq. (8), if an input data array G satisfies the condition

arg

(

max
i

‖PLiGPRi‖2
‖G‖2

)

= {PLk,PRk}, (9)

we conclude that G ∈ Ck(δ) when Ck = {X | ‖PLkXPRk −X‖2 � δ}.
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3.4 Marginal Eigenvalue

In practical computation to find the projection PL and PR in Eq. (8), we adopt
the marginal eigenvalue (MEV)[7]. This is a projection considering the distribu-
tion of column and row vectors of sampled images. For two matrices

Mr =
1

n

n∑

i=1

(PLXiPR) (PLXiPR)
�
= PL

(
1

n

n∑

i=1

XiX
�
i

)

P�
L , (10)

Mc =
1

n

n∑

i=1

(PLXiPR)
� (PLXiPR) = P�

R

(
1

n

n∑

i=1

X�
i Xi

)

PR, (11)

using the Lagrange multipliers Λr and Λc, we find the projections satisfying

J(PL) = tr (Mr)− tr
((
PLP

�
L − I

)
Λr

)
, (12)

J(PR) = tr (Mc)− tr
((
P�

R PR − I
)
Λc

)
(13)

where I is the identity matrix. The solutions of Eqs. (12) and (13) are given as
the solutions of the eigenproblems of Mr and Mc, respectively. We set {ϕr

j}k1

j=1

and {ϕc
j}k2

j=1 be the eigenfunctions of Mr and M c, respectively.. We define
the eigenfunctions of Mr and Mc as ‖ϕr

j‖ = 1 and ‖ϕc
j‖ = 1 for eigenvalues

λr
1 ≥ λr

2 ≥ · · · ≥ λr
j ≥ · · · ≥ λr

n and λc
1 ≥ λc

2 ≥ · · · ≥ λc
j ≥ · · · ≥ λc

n, respec-

tively. Therefore, operators P�
L and PR are defined as PL,k1 =

∑k1

j=1 ϕ
r
jϕ

r
j
� and

PR,k2 =
∑k2

j=1 ϕ
c
jϕ

c
j
�, respectively..

3.5 Random Projection

LetR be a k×dmatrix whose k row vectors span a k-dimensional linear subspace
of Rk (k < d). We obtain a low-dimensional representation x̂ for each xi ∈ X as

x̂i =

√
d

k
Rxi. (14)

Figure 4(a) shows the basic idea of the random projection[8]. For the ran-
dom projection, we have the following embedding property from the Johnson-
Lindenstrauss lemma[9, 10].

Theorem 1 (Johnson-Lindenstrauss embeddings). For any 0 < ε � 1, set X of

N points {x1, . . . ,xN} and k < d, one can map X to X̂ = {x̂1, . . . , x̂N ∈ R
d̂}

by the random projection in Eq. (14) with probability (1− e−O(kε2)) when

(1− ε)‖xj − xi‖2 ≤ ‖x̂j − x̂i‖2 ≤ (1 + ε)‖xj − xi‖2, (15)

that is,

P

(∣
∣
∣
∣1−

‖x̂i − x̂j‖2
‖xj − xi‖2

∣
∣
∣
∣ < ε

)

= 1− e−O(kε2). (16)
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Fig. 4. (a) Random projection. Let xi ∈ X be a point and x̂i = Rxi. The distance
between xi and xj is preserved in the projected space Rk. (b) Differences in two random
projection paths.

The random projection preserves the local topological structure of the vectors
of an image pattern.

An efficient random projection is proposed as an improved version of the
random projection[10]. Using spectrum spreading and circular convolution, we
can speed up the random projection with O(d log d) computational time and
O(d) memory storage requirement.

3.6 Two-Dimensional Tensorial Random Projection

For a set of two-dimensional arrays {Xi|Xi ∈ R
m×n}Ni=1 such that Ei(Xi) = 0,

setting RL ∈ R
k1×m and RR ∈ R

k2×n to be random projection matrices, we
define the transform

X̂i = RLXiR
�
R. (17)

For the set X̂ = {X̂i}Ni=1, we have the following theorem.

Theorem 2 X̂i ∈ X̂ and Xi ∈ X satisfy the Johnson-Lindenstrauss property.

(Proof) Since X̂i = RLXiRR, we have the relation

vecX̂i = (RL ⊗RR)vecXi, (18)

whereRL⊗RR = R ∈ R
k×d is a random projection matrix. Here, k = k1×k2 and

d = m× n. Therefore, for any 0 < ε � 1 and set X of N images {X1, . . . ,XN},
X̂i and X̂j satisfy the property

(1− ε)‖Xj −Xi‖2 ≤ ‖X̂j − X̂i‖2 ≤ (1 + ε)‖Xj −Xi‖2. (19)

Here, setting ‖A‖2 to be the Frobenius norm of a matrix A, the relation

‖xi‖2 = ‖vecXi‖2 = ‖Xi‖22 (20)

is satisfied for xi = vecXi. Therefore, by replacing the Euclidean norm of vecXi

with the Frobenius norm of Xi, we have the statement of the theorem. Q.E.D.
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Table 1. Details of each database

# class # data/class image size [pixel] vectorised size

Yale B 38 64 192×168 32,256
ETH80 30 41 128×128 16,384
MNIST 10 7,000 28×28 784

・・・

(a)

・・・

(b)

・・・
(c)

Fig. 5. Examples of data. (a) Yale B. (b) ETH80. (c) MNIST.

Considering the two-dimensional array as a second-order tensor, we can reduce
the dimension of the tensorial data to an arbitrary dimension. The random
projection preserves the topology of the tensor in the function space, since the
Frobenius norm of a tensor is approximately preserved.

4 Experiments

For the performance evaluation of the two-dimensional discrete cosine transform
(2DDCT), the random projection (RP) and the two-dimensional random pro-
jection (2DRP), we calculate the relative errors between original images and
compressed images projected to low-dimensional space. For the computation of
the relative errors by the three dimension-reduction methods, we adopt cropped
versions of the extended Yale B database[11], the ETH80 database[12] and the
MNIST dataset[13]. Table 1 lists the details of the three databases. Figure 5
shows examples of images in each database. We calculate the mean relative er-
ror of 1000 distances between images for each dimension-reduction method. In
each process, two different images are randomly chosen. Figure 6 lists the mean
relative errors of the RP and 2DRP. Figure 7 gives a comparison of the mean
relative errors of 2DDCT for the three databases. In Figs. 6(a) and 6(b), the
dimensions represent the sizes of the reduced vectors, and the width and height,
respectively.

Next, using the same databases, we calculate the recognition rates of the three
dimension-reduction methods. We adopt the subspace method (SM) and two-
dimensional tensorial subspace method (TDTSM) as the classification methods.

Table 2. Dimensions of the class subspace in the subspace method

# query # basis dimension of reduced vector

Yale B 1 1-32 1024
ETH80 1 1-20 1024
MNIST 1 1-225 225
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(a) RP. (b) 2DRP.

Fig. 6. Relateve error of distances among images in three databases

(a) Yale B. (b) ETH80. (c) MNIST.

Fig. 7. Comparison of relative errors of distances among images

For the Yale B and ETH80 database, the images labeled with even numbers and
odd numbers are used for training data and test data, respectively. The MNIST
database is divided into training and test data in advance. The recognition rates
are the successful label-estimation ratios of 1000 iterations of the estimation
processes, and queries are randomly chosen from the test data. Tables 2 and 3
summarise the dimensions of the class subspace in the recognition processes using
the SM and TDTSM, respectively. Figures 8 and 9 illustrate the recognition rates
of the SM and TDTSM, respectively. In Figs. 8 and 9, the dimensions represent
the sizes of the reduced vectors, and the width and height, respectively.

Figure 6(a) illustrates that the relative errors of distances of the RP are almost
the same for the three datasets. These results imply that the results of the RP
do not depend on the properties of the database. Figure 6(b) illustrates that the

Table 3. Dimensions of the class subspace in the two-dimensional tensorial subspace
method

# query # basis dimension of reduced image

Yale B 1 1×1 - 32×32 32 × 32
ETH80 1 1×1 - 32×32 32 × 32
MNIST 1 1×1 - 15×15 15 × 15
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(a) Yale B. (b) ETH80. (c) MNIST.

Fig. 8. Recognition rates of the subspace method

(a) Yale B. (b) ETH80. (c) MNIST.

Fig. 9. The recognition rate of the two-dimensional tensorial subspace method

relative errors of the 2DRP are higher than those of the RP, since the RP can
efficiently compress the data when the dimension of the data is extremely high.

The results in Fig. 7 show that for every dataset, the relative errors of distances
between feature vectors of the RP are smaller than those of the 2DDCT at low
dimensions. For the PR and 2DRP, the same property for the relative errors
between vectors can be observed.

The results in Fig. 8 show that the recognition rates of the 2DDCT and RP
are almost the same in every database. Furthermore, the recognition rates of
the 2DRP are the lowest in every dataset. Figure 9 shows that the recognition
rates of the 2DDCT and 2DRP are almost the same. However, if the target
dimension is small, the 2DDCT has a higher recognition rate than the 2DRP.
This property originates from the fact that the energy of images is concentrated
in the low-frequency cosine bases.

Figures 8 and 9 show that the recognition rates of the vector-based classifica-
tion are higher than those of the image-based classification. These results lead
to the conclusion that the relative errors and recognition rates of the RP are the
lowest and highest, respectively, among the three dimension-reduction methods.

5 Conclusions

We experimentally evaluated the validity of three dimension-reduction methods
for image pattern recognition. The desired dimension-reduction method selects
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an appropriate low-dimensional subspace that preserves the topology among
images.

By experimental evaluation of the reduction operation, we clarified the fol-
lowing properties. First, the relative errors of distances between vectors for the
random projection are the lowest in all three databases. Second, the recognition
rates of the random projection are the highest in every database. Third, the
recognition rates of the vector-based classification method are higher than those
of the image-based classification method. Therefore, the random projection is
the best dimension-reduction method to preserve the topology of images in the
classification space.
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