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Abstract. Gaussian process regression is a machine learning paradigm,
where the regressor functions are modeled as realizations from an a priori
Gaussian process model. We study abstract continuous-space Gaussian
regression problems where the training set covers the whole input space
instead of consisting of a finite number of distinct points. The model
can be used for analyzing theoretical properties of Gaussian process re-
gressors. In this paper, we present the general continuous-space Gaus-
sian process regression equations and discuss their close connection with
Wiener filtering. We apply the results to estimation of learning curves
as functions of training set size and input dimensionality.
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1 Introduction

Gaussian process (GP) regression [1] is a non-parametric Bayesian machine
learning paradigm, where instead of estimating parameters of fixed-form func-
tions x �→ f(x; θ), we model the whole regressor functions f(x) as Gaussian
processes. That is, instead of postulating a prior for the function parameters θ,
we postulate a prior for the functions f . Learning in GPs amounts to conditioning
the random function f on the measurement data. The predictive distributions of
the conditioned process at test points then serve as the predictions of the model.

In this paper, we study an abstract continuous-space GP regression prob-
lem, where we measure the process continuously in the whole measurement
space, not only in a finite of number training points. The model is useful in
studying theoretical properties of Gaussian process regressors, and it is closely
related to so-called equivalent kernels [2] which are tools for analyzing the the-
oretical properties of Gaussian process regressors, such as learning curves (see,
e.g., [3–5]). We will show how learning curves can be analyzed in the presented
framework as well. The model is also closely related to Wiener filtering (see,
e.g., [6–8]). As we demonstrate here, the continuous-space GP regression is ac-
tually equivalent to Wiener filtering provided we generalize the Wiener filter to
non-stationary processes.
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2 Problem Formulation

In this paper, we consider continuous-measurement Gaussian process (GP) re-
gression problems of the form:

f(x) ∼ GP(0, kff(x,x
′))

y(x) = Hxf(x) + e(x),
(1)

where the input is x ∈ X ⊆ R
d and the measurements cover the space X ⊆ R

d.
The function f(x) is a zero mean Gaussian process with a given covariance
function kff(x,x

′). The function is not observed directly, but instead, we measure
a linear transformation of the signal, defined via the linear operator Hx (cf.
[9]), and the measurements y(x) are also corrupted by measurement noise e(x).
Selection Hx = 1 leads to the ordinary Gaussian process regression model

y(x) = f(x) + e(x). (2)

For simplicity, we assume that the measurement functions y belong to the same
space as the Gaussian processes f and thus both of them can be written as func-
tions of x ∈ X . The measurement noise e is assumed to be a spatial Gaussian
process with covariance function kee(x,x

′). For notational convenience, we as-
sume that both the function f(x) and the measured signal y(x) are scalar valued
and zero mean.

The full solution to the finite-measurement version of the generalized Gaus-
sian process regression problem in Equation (1) was presented in article [9] and
the solution corresponding to the case Hx = 1 can be found in [1]. In image
processing applications the including the operator Hx into the model is very
useful, because it can be used, for example, for modeling motion blurs or other
linear degradations of images (cf. [10]).

We assume that the density of measurements in the input space is modeled
by a density w(x) such that the number of measurements dn in a small set of
input space dx is

dn = w(x) dx. (3)

We could also easily replace the density with a more general measure.

3 Wiener Filtering

In this section we derive the solution to the continuous GP regression problem
(1) by extending the methodology presented in [7] to multiple input dimensions.
Classical continuous Wiener filtering (see, e.g., [6–8]) is considered with essen-
tially the same problem that is specified in Equation (1). In the language of
Wiener filtering, the model states that f(x) is a zero-mean Gaussian process
with covariance function

E[f(x) f(x′)] = kff(x,x
′). (4)
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It then follows from the model formulation that the process y(x) is also a zero-
mean Gaussian process and the covariance function of y(x) as well as the cross-
covariance of f(x) and y(x) are given as

kyy(x,x
′) = Hx Hx′ kff(x,x

′) + kee(x,x
′)

kfy(x,x
′) = Hx′ kff(x,x

′).
(5)

The derivation of the Wiener filter is based on variational minimization of the
mean squared error functional

J [m] = E
[
(m(x) − f(x))2 | {y(x) : x ∈ X}] , (6)

where x �→ m(x) is the filtering result, the minimummean squared error (MMSE)
estimate of the signal. Because the functional is quadratic and all the processes
are Gaussian, the solution is known to be a linear functional of the measurement
signal. That is, there exist a kernel g(x,x′) such that

m(x) =

∫

X
g(x,x′) y(x′)w(x) dx′. (7)

The MSE functional can be now expanded and written in terms of covariance
functions as follows:

J [h] = E
[
(m(x) − f(x))2 | {y(x) : x ∈ X}]

= E

[(∫

X
g(x,x′) y(x′)w(x) dx′ − f(x)

)2

| {y(x) : x ∈ X}
]

=

∫∫

X
g(x,x′) kyy(x′,x′′) g(x,x′′)w(x′)w(x′′) dx′ dx′′

− 2

∫

X
kfy(x,x

′) g(x,x′)w(x′) dx′ + kff(x,x),

(8)

where kyy and kfy are given in Equation (5).
The minimizing kernel g(x,x′) can be now solved using the standard ε-method

from calculus of variations. That is, we replace g by g+ ε ψ, where ψ(x,x′) is an
arbitrary test function. Solving for ∂J /∂ε = 0 and setting ε = 0 then results in
the equation

∫∫

X
g(x,x′′) kyy(x′′,x′)ψ(x,x′)w(x′)w(x′′) dx′ dx′′

−
∫

X
kfy(x,x

′)ψ(x,x′)w(x′) dx′ = 0.

(9)

Because this has to be true for arbitrary ψ, we must have

kfy(x,x
′) =

∫

X
g(x,x′′) kyy(x′′,x′)w(x′′) dx′′ (10)

which is the (generalized) Wiener–Hopf integral equation for the function g.
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Thus the solution to the Wiener filtering problem can be obtained by solving
the function g from the Wiener–Hopf equation above and then computing the
estimate m(x) via Equation (7). The classical ways to solve the Wiener–Hopf
equation are by using basis function expansions (namely Karhunen–Loeve series)
or via the Fourier transform. The latter solution method leads to the classical
Wiener filter in the form that it is usually found in image processing literature
(e.g. [10]). We will return to this solution method later in this paper, but let’s
first discuss the connection with Gaussian process regression.

The covariance function of estimation error can then be computed as to be

V (x,x′) = E

[(∫

X
g(x,x′′) y(x′′)w(x′′) dx′′ − f(x)

)

×
(∫

X
g(x′,x′′′) y(x′′′)w(x′′) dx′′′ − f(x′)

)
| {y(x) : x ∈ X}

]

= kff(x,x
′)−

∫

X
g(x,x′′)kfy(x′′,x′)w(x′′) dx′′.

(11)

4 Continuous-Measurement Gaussian Process Regression

In this section we derive the continuous-space Gaussian process regression equa-
tions as continuous limits of the ordinary Gaussian process regression equations.
The derivation is informal and merely demonstrates where the results come from,
but the same idea would indeed work in a more rigorous derivation.

Consider the following discrete approximation to the Gaussian process regres-
sion problem in Equation (1):

f ∼ N(0,Kff)

y = Hf + e,
(12)

where f = (f(x1), . . . , f(xN )), y = (y(x1), . . . , y(xN )), e = (e(x1), . . . , e(xN )),
and H is a suitable discrete approximation to the operator Hx. The posterior
for the mean and covariance of f are now given as

m = Kff H
T
[
HKff H

T +Kee

]−1
y

V = Kff −Kff H
T
[
HKff H

T +Kee

]−1
HKff,

(13)

where the matrices Kff and Kee have been formed by evaluating kff(x,x
′) and

kee(x,x
′) at each pair {(x,x′) : x,x′ ∈ {x1, . . . ,xN}}. We now define matrix

G as follows:
G = Kff H

T
[
HKff H

T +Kee

]−1
, (14)

which implies that it is the solution to the equation

GHKffH
T +GKee = Kff H

T. (15)
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It is now easy to see that when N → ∞ such that the set of points {xi : i =
1, . . . , N} dense, this converges to

Gx Hx Hx′ kff(x,x
′) + Gx kee(x,x

′) = Hx′ kff(x,x
′), (16)

where Gx is a linear operator. The mean equation thus becomes

m(x) = Gx y(x). (17)

We can now rewrite the covariance as V = Kff −GHKff, which thus gives the
following expression for covariance function in the limit:

V (x,x′) = kff(x,x
′)− Gx Hx kff(x,x

′). (18)

There now exists a kernel g(x,x′) such that

Gx f(x) =

∫

X
g(x,x′) f(x′)w(x′) dx′, (19)

for all functions f and thus if we define

kyf(x,x
′) = Hx kff(x,x

′)
kfy(x,x

′) = Hx′ kff(x,x
′)

kyy(x,x
′) = Hx Hx′ kff(x,x

′) + kee(x,x
′),

(20)

then the mean and covariance equations can be expressed as

m(x) =

∫

X
g(x,x′) y(x′)w(x′) dx′

V (x,x′) = kff(x,x
′)−

∫

X
g(x,x′′) kyf(x′′,x′)w(x′′) dx′′

(21)

and Equation (16) reduces to the equation

∫

X
g(x,x′′) kyy(x′′,x′)w(x′′) dx′′ = kfy(x,x

′). (22)

Comparing to the equations in previous section, we can see that the continuous-
space limit of GP regression equations is exactly the Wiener filter. The minimum
mean squared estimate is now the posterior mean, and the error covariance
function is the posterior covariance function.

5 Fourier Transform Solution

The classical method of solving the Wiener filtering problem is by using the
Fourier transform. It can be used if we assume that the Gaussian processes f(x)
and e(x) are stationary, the domain is the whole space X = R

d, and w(x) = 1.



Continuous-Space Gaussian Process Regression 177

In this case the covariance function becomes a function of a single difference
variable x− x′ and thus the model becomes

f(x) ∼ GP(0, kff(x − x′))
y(x) = f(x) + e(x).

(23)

Due to the stationarity the kernel g also becomes stationary and with suitable
change of integration variables Equations (21) can be expressed as convolutions:

m(x) =

∫
g(x− x′) y(x′) dx′

V (x) = kff(x)−
∫
g(x− x′) kyf(x′) dx′.

(24)

Similarly the Wiener–Hopf Equation (22) reduces to

kfy(x) =

∫
g(x− x′) kyy(x′) dx′. (25)

Taking Fourier transforms1 of the Equations (24) and (25) results in

M(ω) = G(ω)Y (ω)

V (ω) = Sff(ω)−G(ω)Syf(ω)

Sfy(ω) = G(ω)Syy(ω),

(26)

where M , G and Y are the Fourier transforms of the functions m, g and y,
respectively, H is the Fourier transform of operator H, and the spectral densities
Syy, Sfy and Syf are given as:

Syy(ω) = H(ω)H∗(ω)Sff(ω) + See(ω)

Sfy(ω) = H∗(ω)Sff(ω)

Syf(ω) = H(ω)Sff(ω),

(27)

and by Wiener–Khinchin theorem, the spectral density Sff(ω) is simply the
Fourier transform of the covariance function kff(x). In the above equations (·)∗
denotes the complex conjugate. The expressions for the Fourier transforms of
mean and covariance can be then written as

M(ω) =

[
H∗(ω)Sff(ω)

|H(ω)|2 Sff(ω) + See(ω)

]
Y (ω)

V (ω) =
See(ω)Sff(ω)

|H(ω)|2 Sff(ω) + See(ω)
.

(28)

The former of these equation is the classical Fourier domain Wiener filter in the
form that it is usually found in image processing literature (see, e.g., [10]). But
it is also the Fourier transform of the mean of the Gaussian process regression
solution. The latter equation is the spectral density of the posterior error which
naturally arises as the spectral density of the posterior covariance in the Gaussian
process regression interpretation.

1 We define Fourier transform and its inverse via F (ω) =
∫
Rd f(x) exp(−iωT x) dx

and f(x) = 1
(2π)d

∫
Rd F (ω) exp(iωT x) dω, respectively.
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6 Application to Estimation of Average Learning Curves

A simple approach to estimation of average learning curves (see, e.g., [3–5]) is
to estimate the learning curve as

ε(n) �
∫

X
V (x,x;n) p(x) dx, (29)

where V (x,x′;n) is the posterior error covariance function with nmeasurements.
If we assume that all the processes are stationary and w(x) = 1, then we can use
the Fourier transform based solution presented in Section 5. The corresponding
spectral density recursion for the spectral domain solution is

V (ω;n+ 1) =
See(ω)V (ω;n)

|H(ω)|2 V (ω;n) + See(ω)
. (30)

with V (ω; 0) = Sff(ω), which has the solution

V (ω;n) =
See(ω)Sff(ω)

n |H(ω)|2 Sff(ω) + See(ω)
(31)

Recalling that V (0;n) = (2π)−d
∫
V (ω;n) dω, the approximation to the learning

curve now reduces to

ε(n) � (2π)−d

∫
See(ω)Sff(ω)

n |H(ω)|2 Sff(ω) + See(ω)
dω, (32)

which can be seen to be a generalization to the equivalent kernel based learning
curve of Sollich and Williams [2].

The above approximation is particularly useful when the covariance functions
and thus spectral densities are isotropic, that is, they have the form Sff(ω) =
Sff(‖ω‖), See(ω) = See(‖ω‖), and if the operator is isotropic as well H(ω) =
H(‖ω‖). If we denote r = ‖ω‖, then by converting the above integral into
spherical coordinates it can be expressed as

ε(n) � (2π)−dAd

∫ ∞

0

See(ω)Sff(r)

n |H(r)|2 Sff(r) + See(ω)
rd−1 dr, (33)

where Ad is the surface area of the unit hypersphere of dimension d.
In the following examples we study this approximation. We consider the mea-

surement model to be the identity operator, and the observations to be corrupted
by white Gaussian noise with spectral density σ2 (i.e., See(ω) = σ2).

Example 1 (Learning curves for squared exponential covariance functions). The
squared exponential covariance function has the form exp(−αr2), where α =
1/(2l2). The corresponding spectral density is

Sff(ω) =
(π
α

)d/2

exp

(
−‖ω‖2

4α

)
. (34)
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Fig. 1. (a) Learning curves for squared exponential covariance functions for different
number of input dimensions. (b) Average errors for the Matérn family of covariance
functions as function of the input dimensionality (solid l = 0.1, dashed l = 1).

Because the spectral densities are only functions of the norm r = ‖ω‖ we can
use Equation (33), which gives

ε(n) � −σ2 1

n

(α
π

)d/2

Lid/2

(
−
(π
α

)d/2 n

σ2

)
, (35)

where d is the dimensionality of the inputs, n the size of the training set, and
Lis(·) the polylogarithm function. Figure 1a shows the behavior of the function
for training samples n = 1, 2, . . . , 100 and d = 1, 2, . . . , 10. The scale parameters
were fixed at σ2, s2, l = 1, and all the trajectories normalized to one when n = 1.
Figure 1a shows how the the error reduces as the number of training inputs
grows, and how adding dimensions reduces the effect of data. The solution of
− 1

nLid/2(−n) for d = 2 is 1
n log(n+1), and as n→ ∞ it coincides with 1

n log(n),
which was suggested in [11] for a Gaussian input density.

Example 2 (Learning curves for Matérn covariance functions). The Matérn co-
variance function is (r = ‖x− x′‖)

kff(r) = s2
21−ν

Γ (ν)

(√
2ν

r

l

)ν

Kν

(√
2ν

r

l

)
, (36)

where ν, s, l > 0 are the smoothness, magnitude and length scale parameters,
and Kν(·) the modified Bessel function [1]. The spectral density is

S(ω) ∝ 1

(λ2 + ‖ωx‖2)ν+d/2
, (37)

where λ =
√
2ν/l.
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Fig. 2. Learning curves for the Matérn covariance function in one and two dimensions

Figure 1b shows the expected errors as function of the input dimensionality
d evaluated numerically from (33) with parameters s2 = 1, σ2 = 0.1, fixed n =
1000, and l = 0.1 (solid) or l = 1 (dashed). The trajectories include the Matérn
model for three different smoothness parameter values ν = 3/2, 5/2, 7/2, and
for comparison the squared exponential covariance function, for which ν → ∞.
The smoothness assumption included in the model influences the learning curve
estimates, and the smoother the model, the less the error. For l < 1/

√
2π we get

limd→∞ ε(d) = 1, and for l > 1/
√
2π, we get limd→∞ ε(d) = 0, when ν = ∞.

We compare our learning curve approximation to several other estimates for
ν = 3/2. In Figure 2 εMC(n) is the ‘true’ generalization error curve computed by
100 independent Monte Carlo samples for each n with unit Gaussian input den-
sity; εC(n) is the Gauss–Hermite learning curve approximation due to [9] using
the 60th and 20th order Gauss–Hermite rule in the 1d and 2d examples, respec-
tively; εOV(n) is the Opper–Vivarelli bound [3]; εD(n), εUC(n), εLC(n) are the
bounds considered by Sollich and Halees [4]; εMCU(n) is the ‘true’ generalization
error the unit variance uniform input density; and, finally, ε(n) is the proposed
learning curve approximation normalized to the same scale with the rest of the
curves. The figures show that the approximation ε(n) underestimates the error
for small n and overestimates it for large n when compared to the ‘true’ values
εMCU(n). For higher d the intersection point will be reached at even larger n.

7 Conclusion and Discussion

In this paper, we have studied an abstract continuous-space Gaussian regression
problem which is a useful theoretical tool for analyzing properties of Gaussian
process regressors. We have also shown the connection of the formulation to
generalized Wiener filtering and applied it to estimation of learning curves for
Gaussian process regressors.
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Even though we have here only considered scalar a priori Gaussian processes
and measurements, the results could be easily extended to multiple dimensions
(cf. [9]). We could also relax the assumption about the measurements belonging
to the same function space as the a priori Gaussian process, which would allow
analysis of more general inverse problems. However, the current formulation
is sufficient for modeling, for example, image deformations, blurs, and other
degradations, because in these models the operator maps images into images
and thus the spaces are the same.

If we are interested in performing Gaussian process regression on a finite grid
(such as in image processing), the Fourier domain solution allows for efficient
computations via the use of the Fast Fourier Transform (FFT) algorithm. It
turns out that an analogous Fourier domain solution is valid in the discrete
case and thus we can use it to reduce the O(N3) complexity in the number of
measurements N into O(N logN) complexity of the FFT based solution. This
method is also commonly used in Wiener filters arising in image processing.

Another useful solution method is to use an eigenbasis of the prior covari-
ance function. If we select a weight function such that w(x) = 1 on a finite
domain X ⊂ R

d and zero elsewhere, this leads to a so-called Karhunen–Loeve
expansion of f(x) (see, e.g., [7, 8]). The posterior mean and covariance can then
be expressed as a linear combination of the basis functions. However, it is also
possible to form the expansion with respect to other weight functions w(x) to
obtain a similar basis function expansion (cf. [1]).
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