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Abstract. Model transformations can be specified using an operational
or a relational approach. For a relational approach, an operationalization
must be derived from the transformation specification using approved
formal concepts, so that the operationalization conforms to the specifi-
cation. A conforming operationalization transforms a source model S to a
target model T , which is moreover related to S according to the relational
transformation specification. The conformance of an operationalization
with its relational specification must be tested since it is not certain that
the formal concepts have been correctly realized by the implementation.
Moreover, transformation implementations often perform optimizations,
which may violate conformance.

The Triple Graph Grammar (TGG) approach is an important repre-
sentative of relational model transformations. This paper presents an ex-
tension of an existing automatic conformance testing framework for TGG
implementations. This testing framework exploits the grammar charac-
ter of TGGs to automatically generate test input models together with
their expected result so that a complete oracle is obtained. The exten-
sion uses dependencies implicitly present in a TGG to generate minimal
test cases covering all rules and dependencies in the TGG specification
if the TGG is well-formed. In comparison to the previous random ap-
proach, this guided approach allows more efficient generation of higher
quality test cases and, therefore, more thorough conformance testing of
TGG implementations. The approach is evaluated using several TGGs,
including one stemming from an industrial case study.

1 Introduction

Model transformations are an important part of every MDE approach. Therefore,
their correctness has to be guaranteed. In a relational model transformation ap-
proach, errors may arise from faulty operationalizations, i.e. operationalizations
that do not conform to the transformation specification.Conformance means that
a source model S, which is transformed to a target model T by a transformation
implementation, is also related to T according to the relational specification (and
vice versa if the specification is bidirectional).

The Triple Graph Grammar [14] (TGG) approach is an important represen-
tative of relational model transformation approaches. To a certain extent, the
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conformance of a TGG and a corresponding operationalization can be proven
by formal reasoning [14,9,5]. In general, though, it is not certain whether im-
plementations have realized each formal concept describing a conforming op-
erationalization correctly. Moreover, usually, TGG formalizations neither cover
every technicality that TGG implementations rely on, nor cover each additional
optimization that augments the efficiency of the model transformation execution.
Therefore, conformance testing of the implementation is required.

A framework for automatic conformance testing of TGG implementations was
already presented [10], which automatically generates and executes test cases.
A test case consists of a source (test input) and an expected target model (test
oracle). The testing framework generates random test cases, executes the TGG
implementation under test to transform the source model, and compares the
created target model with the expected target model. If a difference is detected,
a conformance error has been found. The framework’s test case generation ap-
proach makes use of the grammar character of TGGs. TGG rules are randomly
applied to create a source and expected target model simultaneously.

To assess the quality of a test case, the framework measures specification
coverage, which consists of rule coverage and rule dependency coverage. Rule
coverage is the percentage of TGG rules that were applied when building a
particular test case. Likewise, rule dependency coverage is the percentage of
covered produce-use dependencies between TGG rules. The aim of generating
test cases is to achieve complete specification coverage. However, when evaluating
the random generation approach [10] with several TGGs, complete specification
coverage could not be achieved for complex TGGs. If a TGG contains very
complex rules, the random generation approach is unlikely to generate test cases
covering such rules.

Therefore, this paper presents a different test case generation approach, which
generates test cases guided by dependencies between TGG rules. In practice,
these test cases also achieve complete specification coverage for complex TGGs.
Moreover, the test cases are as small as possible, which helps in finding the cause
of conformance errors.

This paper is structured as follows: First, Sec. 2 presents the basic principles of
TGGs and a running example. Sec. 3 briefly describes the existing conformance
testing framework. The new dependency-guided generation approach and its
completeness and minimality properties are explained in Sec. 4. An evaluation
of the approach follows in Sec. 5, related work is discussed in Sec. 6 and Sec. 7
concludes the paper.

2 Triple Graph Grammars in a Nutshell

Triple Graph Grammars are a relational approach to bidirectional model trans-
formation and model synchronization [14]. TGGs combine three conventional
graph grammars for the source, target and correspondence models. The corre-
spondence model explicitly stores correspondence relationships between source
and target model elements. Fig. 1 shows the metamodels of Block Diagrams,
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Fig. 1. Example Metamodels

name : string = nameVar

bd1 : BlockDiagram ca1 : CorrAxiom

name : string = nameVar

cd1 : UMLClassDiagram
forward = bd1.name
reverse = cd1.name

nameVar : String
++ ++ ++

++
++

Axiom: BlockDiagram2ClassDiagram

bd2 : BlockDiagram ca2 : CorrAxiom cd2 : UMLClassDiagram

name : string = nameVar

sys : SystemBlock cs : CorrSystem

name : string = nameVar

cl2 : UMLClass

name : string = nameVar + '_stereotype'
text : string = 'system'

st2 : UMLStereotype

forward = sys.name
reverse = cl2.name

nameVar : String
++ ++ ++
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ca3 : CorrAxiom cd3 : UMLClassDiagram

cb3 : CorrBlock

name : string = nameVar + '_assoc'

as : UMLAssoc

cl3 : UMLClass

name : string = nameVar

cl4 : UMLClass

name : string = nameVar + '_stereotype'
text : string = 'block'
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Rule 1: SystemBlock2Class

Rule 2: Block2Class

A: bd1.name = cd1.name

R1: sys.name = cl2.name 
sys.name + ’_stereotype’ = st2.name

R2: bl4.name = cl4.name 
bl4.name + ’_stereotype’ = st4.name 
bl4.name + ’_assoc’ = as.name

CorrPca3(r2)

CorrPcb3(r2)

CorrPcb4(r2)

CorrPcs(r1)

CorrPca1(ax)

CorrPca2(r1)

Fig. 2. Example TGG relating Block Diagrams to Class Diagrams
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Fig. 3. A Block Diagram and Class Diagram connected by a correspondence model

Class Diagrams and a correspondence metamodel. Fig. 2 shows a TGG specify-
ing a transformation between these languages.

A TGG consists of an axiom and several rules. Fig. 2 uses a shortened nota-
tion, which combines the Left-Hand-Side (LHS) and the Right-Hand-Side (RHS)
of a rule. Elements occurring on both sides are black, elements occurring only
on the RHS, i.e. which are created by the rule, are green and marked with ++1.
TGG rules never delete elements, therefore, the LHS is always a subset of the
RHS. In addition, attribute formulae (φi) are specified to ensure consistency of
attribute values.

The axiom in Fig. 2 transforms a BlockDiagram element to a UMLClassDia-
gram and a CorrAxiom node. Rule 1 transforms a SystemBlock to a UMLClass
and a UMLStereotype with the text “system”. Rule 2 transforms a Block to a
UMLAssoc, UMLClass and a UMLStereotype with the text “block”. Attribute
formulae ensure equality of element names. Fig. 3 depicts instances of the meta-
models resulting from the following rule sequence: Axiom, rule 1, rule 2.

A TGG rule can be applied on a host graph if there is an injective morphism
from the rule’s LHS to the host graph. In practice, type inheritance of the node
types must also be respected, i.e. the matched nodes in the host graph must have
the same type or a subtype of the node types in the rule. A graph morphism
respecting type inheritance is formally defined in [7]. In addition, the rule’s
attribute formulae must hold. A TGG rule sequence is a sequence of the axiom
and an arbitrary number of TGG rules. Each rule may appear multiple times in
a sequence. A rule sequence is applicable on a host graph if one rule after the
other is applicable starting with the host graph. This implies that all rules in the
sequence must only use elements in their LHSs that are available in the initial
host graph or are produced by previous rules. If the host graph is empty (as is
the case when using the TGG to generate models, cf. Sec. 3), an applicable rule
sequence must start with the axiom.

TGGs are relational model transformation specifications that cannot be exe-
cuted directly to transform a given source model to a target model. Instead, op-
erational rules have to be derived for each transformation direction: A forward/

1 For better readability, only nodes in Fig. 2 are marked with ++.
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backward transformation takes a source/targetmodel (left/right domain in Fig. 2)
and creates the correspondence and target/source models. A model integration
creates the correspondence model for given source and target models.

MoTE2 is a TGG implementation supporting bidirectional model transfor-
mation and synchronization. Since the automatic operationalization of attribute
formulae is difficult[13] in general, the developer has to explicitly specify at-
tribute computations for each direction in MoTE. These computations must be
compatible with the attribute formulae. When TGG rules are applied directly, as
the conformance testing framework does (cf. Sec. 3), attribute values of created
elements have to be provided via rule parameters, nameVar in Fig. 2. For or-
dinary model transformations, forward and backward expressions are specified,
which compute a parameter’s value based on the respective input model.

MoTE’s algorithm has been formalized [6] and suitable criteria have been
defined3, which a TGG must satisfy so that MoTE can efficiently execute the
transformation and so that conformance is not lost. In addition, these criteria
play a crucial role in the random and dependency-guided test case generation
approaches (cf. Sec. 3 and Sec. 4). Among these criteria, the following subset is
especially important for the remainder of this paper:

1. Every TGG rule and the axiom create exactly one correspondence node.
2. Every TGG rule contains at least one correspondence node in its LHS.
3. Every model element in a TGG rule (a node or a link in the rule’s source or

target model domain) is connected to exactly one correspondence node via
one correspondence link.

4. Every TGG rule and the axiom always create correspondence links along
with their incident nodes.

These criteria have several implications: A single correspondence node in a TGG
rule, its outgoing correspondence links and the correspondence links’ model ele-
ments always form a pattern (criteria 3 and 4). The correspondence node can be
used as a representative of that pattern. This is referred to as a correspondence
pattern. It is denoted as CorrPc (r) when referring to the correspondence pattern
of correspondence node c in rule r. Moreover, every rule and the axiom create
exactly one correspondence pattern (criterion 1) and every rule contains at least
one correspondence pattern in its LHS (criterion 2). Rule 2 (cf. Fig. 2) consists
of three correspondence patterns: CorrPca3(r2), CorrPcb3(r2) and CorrPcb4(r2).

Furthermore, in an applicable TGG rule sequence, all correspondence patterns
used in the LHS of a rule must be produced by previous rules. In addition to
the aforementioned criteria and for the remainder of this paper, all TGGs are
assumed to be well-formed according to the following well-formedness criterion:

Definition 1 (Well-Formed TGG). A TGG is well-formed if each of its rules
satisfies criteria 1 to 4 and an applicable rule sequence exists, which contains that
rule.
2 http://www.mdelab.de/mote/
3 Note, that MoTE has been developed further since [6] was published. In particular,
link bookkeeping has been implemented. Therefore, all criteria demanding to always
treat a transformed link along with a transformed node can be relaxed.

http://www.mdelab.de/mote/
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Fig. 4. Components of the automatic conformance testing framework for TGG
implementations

A TGG is not well-formed if, for example, one of its rules uses elements
that are not produced by any other rule. Such a TGG rule would obviously be
unnecessary, comparable to unreachable code in a program. Test cases for such
a TGG could never achieve complete specification coverage.

3 Automatic Conformance Testing with Random Model
Generation

As explained in Sec. 1, a framework for automatic conformance testing of TGG
implementations was already presented [10]. It is briefly explained in this section.

The testing framework is depicted in Fig. 4. The Test Case Generator gener-
ates pairs of a source and an expected target model, based on the TGG. This pair
forms a test case. It can either use the existing random generation approach or
the new dependency-guided generation presented in Sec. 4. The TGG Implemen-
tation under test transforms the source model to a second target model, which
EMFCompare compares to the expected target model. This kind of comparison
limits the framework to deterministic TGGs, i.e. there is only one target model
per source model.

The existing random approachgenerates randomapplicableTGG rule sequences
and applies them on the empty graph as follows: First, the TGG’s axiom is applied
to create the root nodes of the three models. The first correspondence node is put
into a set. After that, a TGG rule is selected randomly. A match must be provided
for each of the rule’s LHS correspondence nodes (cf. criterion 2), and, therefore,
for all required correspondence patterns. The nodes are selected randomly from
the set of previously created correspondence nodes. Then, an attempt is made to
apply the rule to extend all three models simultaneously. If this is successful, its
created correspondence node is added to the set of previously created correspon-
dence nodes (cf. criterion 1). If the attempt is not successful, another TGG rule is
selected randomly and attempted to be applied.
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This process is repeated until a user-defined number of rules are applied,
which roughly corresponds to the sizes of the generated models. In addition to
the desired model sizes, the user has to specify how values of rule parameters
should be computed. For each rule parameter, the user can specify whether it
should get a fixed value, the value of a counter, or a concatenation of both. In
Fig. 3 the values of the nameVar rule parameters consist of a fixed string, which
corresponds to the name of the rules, and a counter value. The use of rule names
for parameter values allows easy retracing of which model element was created
by which rule in which order.

Furthermore, the Test Case Generator computes specification coverage, which
consists of rule coverage and rule dependency coverage. Rule coverage is the per-
centage of TGG rules that were applied when building a particular test case and
rule dependency coverage is the percentage of covered produce-use dependencies
between TGG rules. In general, a dependency exists between two rules if one
rule uses elements in its LHS that are produced by the other rule. Of course,
the coverage of a set of test cases should be as high as possible to ensure confi-
dence in the quality of the tested subject. Theoretically, the random approach
can achieve complete specification coverage for well-formed TGGs because all
existing rule sequences (up to the predefined size) can be generated. However,
complex TGG rules may appear only in a small fraction of all possible rule se-
quences. Therefore, generating such sequences and achieving complete coverage
for complex TGGs in practice is unlikely.

Another drawback of the random generation approach is that the test models
may become much larger than is actually necessary in order to achieve high
coverage. This complicates debugging if a conformance error is found.

4 Dependency-Guided Test Case Generation

To achieve complete specification coverage, in particular rule dependency cover-
age, test cases have to be generated to specifically target dependencies present
in a TGG. The presented approach analyzes the TGG and makes all depen-
dencies explicit as rule dependency graphs (Sec. 4.1). Based on these graphs,
test case descriptions, which are basically TGG rule sequences, are generated
and executed to yield a test case (Sec. 4.2). These test cases achieve complete
specification coverage and are minimal (Sec. 4.3).

4.1 Deriving Rule Dependencies from TGG Rules

The relevant dependencies are produce-use dependencies4 [12]. Therefore, “de-
pendency” will be used synonymously with this term in the remainder of this
paper. According to the common definition of produce-use dependencies [12],
a produce-use dependency exists if a rule produces an element that is used by
another rule. Due to the criteria imposed on TGG rules (Sec. 2), a produce-use
dependency between TGG rules can be defined as follows:

4 Other kinds of dependencies, e.g. delete-forbid dependencies, do not occur because
TGGs as presented in Sec. 2 do not delete any elements.
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Fig. 5. Dependencies between TGG rules. Node types are omitted. The annotations
in italics match the variables used in Definition 2 and Definition 3. Correspondence
patterns with same backgrounds can be matched to each other.

Definition 2 (Produce-Use Dependencies between TGG Rules). A
produce-use dependency exists from a required TGG rule r1 to a dependent
rule r2, and in particular to a correspondence node c2 in the LHS of r2, if there
is an injective morphism respecting type inheritance between the correspondence
pattern of c2 and the correspondence pattern created by r1. It is denoted r1 → rc22 .

Definition 2 is more specific than the general definition of produce-use dependen-
cies, because a dependency only exists if the complete correspondence pattern
on the LHS of one TGG rule is created by another rule. The classical defini-
tion of produce-use dependencies also considers the case in which only particular
elements of the patterns are used, which would result in a large number of
rule dependencies. However, due to criteria 2 and 3 a correspondence pattern
is always created by a single rule so that Definition 2 filters out many, but not
all (see Sec. 5), dependencies resulting in non-applicable rule sequences. Note,
that a TGG rule may have a dependency to itself, e.g. in rule 2, the pattern
CorrPcb3(r2) matches CorrPcb4(r2) (Fig. 2).

Every TGG rule is applicable in a certain context. The context of a rule r2 is
a set of TGG rules (or the axiom), which contains one required TGG rule (or
axiom) ri for each correspondence node cj in the LHS of r2 so that ri → r

cj
2 .

A TGG rule may be applicable in multiple contexts. The context of rule 1 (cf.
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Fig. 5, ignore dashed elements) is the axiom, the contexts of rule 2 are the axiom
and rule 1, as well as the axiom and rule 2.

If a rule has multiple correspondence nodes on its LHS, the rule’s context can
overlap with the context of one of its required rules, i.e. both rules depend on
some common rule. The pattern CorrPca3(r2) in rule 2 is also present in rule 1 as
CorrPca2(r1) (dashed backgrounds). Moreover, the combination of the patterns
CorrPca3(r2) and CorrPcb3(r2) (grey background) in rule 2 can be found in rule
1. Therefore, rule 2 can only be applied in the context of the axiom and rule
1 if CorrPca2(r1) and CorrPca3(r2) are matched to the same instance elements
when rule 1 and rule 2 are applied. If rule 2 matches CorrPca3(r2) to different
elements than CorrPca2(r1), it is not applicable. The class diagram matched to
cd3 would then not be the class diagram, to which rule 1 added the class cl2.
The link between cd3 and cl3 would not be found. This leads to the definition
of a shared context of a produce-use dependency.

Definition 3 (Shared Context of a Produce-Use Dependency). Given a
dependency r1 → rc22 according to Definition 2, a third rule r0 is a shared con-
text of this dependency if the following conditions are satisfied: (1) r2 contains

another correspondence node c′2 in its LHS, c2 �= c′2; (2) a dependency r0 → r
c′2
2

exists; (3) a dependency r0 → rc11 exists, where c1 belongs to the LHS of r1;
and (4) there is an injective morphism respecting type inheritance5 from the
restricted correspondence pattern CorrPResc′2↔c2(r2) to CorrPc1 (r1). The re-
stricted correspondence pattern CorrPResc′2↔c2(r2) is CorrPc′2 (r2) except those
nodes that are neither source nor target of a link in CorrPc2 (r2) and those links
whose source and target are not in CorrPc2 (r2).

The restricted pattern is necessary to handle cases like the following: Assume the
axiom creates an additional element x (drawn with a dashed line in Fig. 5) in
the class diagram, which also appears in CorrPca3(r2) but not in CorrPca2(r1).
Then, an injective morphism from CorrPca3(r2) to CorrPca2(r1) would not
exist, although the dependencies would still be the same. Therefore, all elements
in CorrPca3(r2) not directly connected to an element in CorrPcb3(r2) have to
be ignored in order to detect a shared context.

The dependencies and shared contexts of a TGG rule are made explicit in
Rule Dependency Graphs (RDG). For each TGG rule, one RDG is generated. It
contains all correspondence nodes on the LHS of that rule, denoted as rounded
rectangles in Fig. 6. All dependencies to these correspondence nodes are depicted
using solid arrows from circles representing rules that produce matches for these
correspondence nodes. Shared contexts are depicted using a dashed arrow from
the correspondence node in the required rule (c1 in Definition 3, denoted by a

5 As a consequence of the fact that both r1 and r2 have a dependency to r0, elements
created by r0 must match CorrPc1(r1) and CorrPc2(r2) at the same time. Therefore,
the morphism between CorrPc1(r1) and CorrPResc′

2
↔c2(r2) matches nodes if they

have the same type, one type is a subtype of the other, or both types have a common
subtype.
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Fig. 6. Rule dependency graphs generated from the example TGG (Fig. 2)

rectangle) to the correspondence node in the current rule (c′2). The RDGs of the
example TGG are shown in the left half of Fig. 6.

Before generating test case descriptions from RDGs in the next step, the
RDGs are simplified, so that only one dependency, i.e. one outgoing edge, is
stored for each correspondence node. For example, RDG - Rule 2 contains two
dependencies for cb3. These are split to create RDG - Rule 2 (a) and (b). If there
are multiple correspondence nodes with more than one dependency, all combi-
nations have to be built and the number of simple RDGs increases accordingly.

4.2 Deriving Test Cases from Rule Dependencies

A Test Case Description (TCD) is a sequence of TGG rules that also specifies
the values of rule parameters and the bindings of LHS correspondence nodes to

TCD – Axiom
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TCD – Rule 1
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nameVar nameVar
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ca2 Rule 
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Fig. 7. Test case descriptions generated from the rule dependency graphs (Fig. 6)
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previously created correspondence nodes. TCDs can be generated from simple
RDGs in order to yield test cases with complete rule dependency coverage (cf.
Sec. 4.3). Fig. 7 shows the TCDs generated from the simple RDGs in Fig. 6. The
arrows denote the data flow of rule parameter values and created correspondence
nodes. This generation algorithm works as follows:

1 Set RDGs = {Set o f s imp l i f i e d r u l e dependency graphs}
2 Map TCDs = {} //maps TGG ru l e s to t h e i r TCDs
3
4 whi l e (RDGs i s not empty) {
5 rdg := remove an RDG from RDGs, where
6 a TCD ex i s t s a l ready f o r a l l r e qu i r ed r u l e s
7
8 tcd := c r e a t e new TCD, add ru l e o f rdg
9

10 f o r each (TGG ru l e r r e qu i r ed by rdg ) {
11 c lone sho r t e s t TCD of r and i n s e r t i n to tcd
12 }
13 merge oc cu r r en c e s o f r u l e s accord ing to RDG
14
15 s o r t r u l e s by dependenc i es
16
17 add to TCDs
18 }
19
20 add value s o f p r im i t i v e parameters to a l l TCDs

First, all simple RDGs are put into a set (line 1). Also, a map is created, which
maps all TGG rules to their TCDs (line 2). Then, the TCDs are created in a
loop. An RDG is selected, so that a TCD exists for all its required TGG rules
(line 5).6 A new TCD is created, which contains only the rule of the RDG. Then,
rules have to be added to the TCD, which create the correspondence patterns
required by the rule of the current RDG (lines 10-12). This is done by picking the
shortest TCD from the map of already created TCDs and copying and inserting
it into the current TCD. If no TCD has been created yet for a required rule,
the TGG violates criterion 5 (cf. Sec. 2). After this step, the rules in the current
TCD may not adhere to the shared contexts specified in the RDGs. For example,
TCD - Rule 2 (a) (intermediate version) is the TCD generated from RDG - Rule
2 (a) after line 12. The axiom appears twice, once for rule 1 and once for rule
2, although both should use the result of a single axiom. Therefore, multiple
occurrences of rules (or the axiom) have to be merged (line 13). After that, the
rules have to be sorted by their dependencies, so that rules producing elements
required by other rules come first (line 15). Finally, the new TCD is added to
the map of TCDs. This process is repeated until all RDGs have been processed.
After all TCDs have been generated, they have to be extended with values for
rule parameters. Fig. 7 shows these final TCDs.

As a last step, the TCDs have to be executed. The rules in each TCD are
applied successively. Rule parameters and LHS correspondence nodes are bound
to the values specified in the TCDs. This produces sets of test cases to test a
model transformation implementation. For example, executing TCD - Rule 2(a)
produces the models shown in Fig. 3.

6 In the first loop iteration, this is only the case for the axiom’s RDG because it does
not require any rules.
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4.3 Completeness and Minimality of Test Cases

The test suite consisting of test cases specified by the TCDs generated from a
TGG as described in Sec. 4.1 and Sec. 4.2 is complete w.r.t. rule dependency cov-
erage. A test case covers a particular dependency r1 → rc22 if the rule sequence
that built the test case contains at least r1 and r2, and the created elements of r1
were bound to CorrPc2 (r2) when r2 was applied. Complete dependency cover-
age of generated test cases is ensured because the dependency analysis first finds
all produce-use dependencies without considering shared contexts. If TCDs were
then generated, all rule sequences with all possible rule dependencies would be
generated. TCD - Rule 2 (a) (intermediate version) (cf. Fig. 7) would already
be a final TCD. Then, all rules that occur multiple times would have to be
combined in all possible ways to generate additional TCDs, TCD - Rule 2 (a)
in the example. For more complex TGGs, a combinatorial explosion of the set
of generated TCDs could be observed, e.g. if TCD - Rule 2 (a) (intermediate
version) contains the axiom three times, this would result in four additional
combinations. However, many combinations would not be applicable. By consid-
ering shared contexts, most non-applicable rule combinations are filtered out. If
it is already known that a rule is only applicable in a certain context, all other
contexts can be discarded.

A direct consequence of complete rule dependency coverage is complete rule
coverage. If a test suite applies TGG rules so that all dependencies between rules
are covered, then all rules of the TGG have to be applied, too, because every
TGG rule depends on at least one other rule or the axiom (criterion 2).

Furthermore, each test case yielded from a generated TCD is minimal w.r.t.
the rules required to test a particular dependency. Minimal means that if any
rule except the last rule is removed from the TCD, the TCD would not be
applicable anymore. This is ensured by the way in which TCDs are generated.
Each TCD is generated for a rule and a particular context. Only those previously
generated TCDs are added to this TCD, which contribute to the rule’s context.

5 Evaluation

The presented algorithms for dependency analysis and test case generation have
been implemented in QVT Operational and Java. They are available from the
MDELab Update Site7.

The new dependency-guided test case generation approach was verified by
generating test cases for the same TGGs as in [10] and analyzing their spec-
ification coverage. The TGGs are: SDL2UML, which is slightly more complex
than the example TGG (cf. Fig. 2); Automata2PLC, which is a transformation
from automata models to a language for programmable logic controllers; and
SystemDesk2AUTOSAR, which is a transformation from a tool-specific meta-
model to AUTOSAR, a modeling standard from the automotive domain. Using
the random test case generation approach (cf. Sec. 3), complete rule and rule

7 http://www.mdelab.de/update-site

http://www.mdelab.de/update-site
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dependency coverage were achieved only for the SDL2UML and Automata2PLC
TGGs. For SystemDesk2AUTOSAR, only 71% rule coverage and 19% rule de-
pendency coverage were achieved using test models with more than 1000 model
elements. With the new dependency-guided approach, complete rule and rule
dependency coverage was achieved for all TGGs. Some of these test cases also
uncovered previously unknown errors in the TGG.

Moreover, a weakness of the dependency analysis became visible. In the Sys-
temDesk2AUTOSAR TGG, elements in the LHS of a rule have types that were
too general. Several other rules produce elements that fit the correspondence pat-
tern, which contains this general type. The dependency analysis detected these
dependencies. However, due to the overall structure of the LHS of that rule, and
in particular the connections between correspondence patterns, the rule was only
applicable for particular subtypes. Not all dependencies detected by the depen-
dency analysis yield applicable rule sequences. Still, one can argue that this is
also an indication of a modeling error. Therefore, the rules were changed so that
more concrete types are used and the problem disappeared. Another cause for
non-executable test cases are OCL conditions, which are used to express struc-
tural application conditions or attribute constraints in a TGG rule. They may
restrict applicability of a TGG rule but are not considered by the dependency
analysis, yet. For these reasons, all non-applicable TCDs are also output by the
testing framework. This assists the user in finding the reason why they are not
executable.

Another advantage of the dependency-guided approach is that the gener-
ated test cases are minimal (cf Sec. 4.3). The largest test case for the Sys-
temDesk2AUTOSAR TGG consists of only nine rule applications. Moreover,
the rules are tested separately, i.e. there is a separate test case for each rule
and each context. This helps in debugging the TGG implementation if errors
are found. However, although the test cases themselves are usually small, the
total number of test cases can be very large for complex TGGs. For example, 99
test cases were generated for the SystemDesk2AUTOSAR TGG. Yet, many test
cases are already contained in others. In the example (cf. Fig. 7), TCD - Rule
2(b) contains all other TCDs. Therefore, it is possible to minimize the number
of test cases by eliminating those test cases that are subsumed by others. This is
done by a pairwise comparison of the generated test cases. The number of test
cases for the SystemDesk2AUTOSAR TGG could be reduced from 99 to 68.

6 Related Work

A number of conformance testing approaches exists, which rely on graph
transformation as a specification technique [2,8]. Instead of focusing on model
transformation specifications and implementations, they are rather concerned
with conformance testing of behavioral specifications w.r.t. (actual) behavior
in refined models or (generated) code. There are some testing approaches pro-
posed for model transformation implementations. Most black-box methods are
concerned with generating qualified test input models (e.g. [15,4]) taking the in-
put metamodel (and corresponding constraints) into consideration. For example,
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metamodel coverage is considered using data-partitioning techniques in [4]. It is
required, for example, that models must contain representatives of association
ends, which differ in their cardinalities. PaMoMo [1] is a high-level language for
the specification of inter-model relationships, which can be used to check va-
lidity of models, derive model transformations, e.g. TGG rules, or derive trans-
formation contracts for automated testing of transformation implementations.
In contrast, white-box criteria are proposed in [11] to qualify test input mod-
els. The TGG conformance testing framework[10] generates conformance test
cases using the model transformation specification as an “executable contract”
generating not only test input models, but also expected results obtaining a
complete oracle. In [3] the specification is used as partial oracle and no expected
results are generated. Moreover, it proposes a new uniform framework, whereas
the conformance testing framework [10] relies on TGGs as an existing model
transformation specification technique for which several tools are already
available.

Applicability criteria of graph transformation rule sequences are presented in
[12]. If certain criteria are satisfied by the rules of a rule sequence, it can be
decided statically whether the sequence is applicable or not. In general, though,
the TGG rule sequences in the test case descriptions do not satisfy these criteria
and, thus, their applicability cannot be checked statically using these results
alone. Maybe specialized definitions can be formulated, which take the specific
criteria of TGG rules (cf. Sec. 2) into account, but this is part of future work.

7 Conclusion

Model transformations play an important role in MDE. Triple graph gram-
mars are an important representative of relational model transformations. The
previously presented automatic conformance testing framework [10] can test
conformance of a TGG implementation with its specification by automatically
generating and executing test cases. Since this framework relies on a random
generation approach, it cannot, in practice, achieve complete specification cover-
age for complex TGGs. The dependency-guided generation approach presented
in this paper analyzes dependencies implicitly present in a TGG and generates
test cases targeting these dependencies so that complete specification coverage
is achievable in practice for well-formed TGGs. In addition, the generated test
cases are minimal, which helps in debugging. The improved framework can now
automatically generate high-quality test cases for conformance testing of TGG
implementations.

In future work, the dependency analysis may be extended to analyze depen-
dencies more thoroughly to cope with structural application conditions in TGG
rules or even OCL constraints on the source and target metamodels.
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