
A Rete Network Construction Algorithm

for Incremental Pattern Matching

Gergely Varró� and Frederik Deckwerth��

Technische Universität Darmstadt,
Real-Time Systems Lab,

D-64283 Merckstraße 25, Darmstadt, Germany
{gergely.varro,frederik.deckwerth}@es.tu-darmstadt.de

Abstract. Incremental graph pattern matching by Rete networks can
be used in many industrial, model-driven development and network anal-
ysis scenarios including rule-based model transformation, on-the-fly con-
sistency validation, or motif recognition. The runtime performance of
such an incremental pattern matcher depends on the topology of the
Rete network, which is built at compile time. In this paper, we propose
a new, dynamic programming based algorithm to produce a high quality
network topology according to a customizable cost function and a user-
defined quantitative optimization target. Additionally, the Rete network
construction algorithm is evaluated by using runtime measurements.

Keywords: incremental graph pattern matching, search plan generation
algorithm, Rete network construction.

1 Introduction

The model-driven development and the network analysis domains both have
industrial scenarios, such as (i) checking the application conditions in rule-based
model transformation tools [1], or (ii) recognition of motifs [2,3] (i.e., subgraph
structures) in social, financial, transportation or communication networks, which
can be described as a general pattern matching problem.

In this context, a pattern consists of constraints, which place restrictions on
variables. The pattern matching process determines a mapping of variables to the
elements of the underlying model in such a way that the assigned model elements
must fulfill all constraints. An assignment, which involves all the variables of a
pattern, is collectively called a match.

When motif recognition, which aims at collecting statistics about the appear-
ance of characteristic patterns (i.e., subgraph structures) to analyze and improve
(e.g., communication) networks, is carried out by a pattern matching engine, two
specialties can be identified which are challenging from an implementation aspect
due to their significant impact on performance. On one hand, motifs frequently

� Co-funded by the DFG as part of the CRC 1053 MAKI.
�� Supported by CASED. (www.cased.de)

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 125–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.cased.de

126 G. Varró and F. Deckwerth

and considerably share subpatterns, whose common handling can spare a sub-
stantial amount of memory. On the other hand, the motif searching process is
invoked and executed several times on network graphs which are only slightly
altered between two invocations. This observation opens up the possibility of
using incremental pattern matchers which store matches in a cache, and up-
date these matches incrementally in a change propagation process triggered by
notifications about changes in the model (i.e., network graph).

Many sophisticated incremental pattern matchers [4,5,6] are implemented as
Rete networks [7] which are directed acyclic graphs consisting of data process-
ing nodes that are connected to each other by edges. Each node represents a
(sub)pattern and stores the corresponding matches, while edges can send events
about match set modifications. At compile time, the incremental pattern matcher
builds a Rete network by using the pattern specifications. At runtime, each node
continuously tracks the actual set of matches. When the network receives noti-
fications about model changes, these modifications are processed by and prop-
agated through the nodes. When the propagation is terminated, the network
stores the matches for the patterns according to the altered model.

In the state-of-the-art Rete-based incremental pattern matching engines, the
recognition of shared subpatterns, which can strongly influence the runtime
memory consumption, is carried out at compile time during the construction
of the Rete network by hard-wired algorithm implementations, whose design is
based on the qualitative judgement of highly-qualified, experienced profession-
als. This approach hinders (i) the reengineering of the network builder module,
(ii) the introduction of quantitative performance metrics, and (iii) the flexible
selection of different optimization targets.

In this paper, we propose a new, dynamic programming based algorithm to
construct a Rete network which has a high quality according to a customizable
cost function and a user-defined quantitative optimization target. The algorithm
automatically recognizes isomorphic subpatterns which can be represented by a
single data processing node, and additionally, it favours those network topologies,
in which a large number of these isomorphic subpatterns are handled as early
as possible. Finally, the effects of the Rete network construction algorithm are
quantitatively evaluated by using runtime measurements.

The remainder of the paper is structured as follows: Section 2 introduces basic
modeling and pattern specification concepts. The incremental pattern match-
ing process is described in Sec. 3, while Sec. 4 presents the new Rete network
construction algorithm. Section 5 gives a quantitative performance assessment.
Related approaches are discussed in Sec. 6, and Sec. 7 concludes our paper.

2 Metamodel, Model and Pattern Specification

2.1 Metamodels and Models

A metamodel represents the core concepts of a domain. In this paper, our ap-
proach is demonstrated on a real-world running example from the network anal-
ysis domain [2] whose metamodel is depicted in Fig. 1(a). Classes are the nodes

A Rete Network Construction Algorithm for Incremental Pattern Matching 127

in the metamodel. Our example domain consists of a single class MotifNode.1

References are the edges between classes which can be uni- or bidirectionally
navigable as indicated by the arrows at the end points. A navigable end is la-
belled with a role name and a multiplicity which restricts the number of targets
that can be reached via the given reference. In our example, a MotifNode can be
connected to an arbitrary number of MotifNodes via bidirectional motifEdges.

Figure 1(b) depicts a model from the domain, whose nodes and edges are
called objects and links, respectively. The model shows an instance consisting of
three objects of type MotifNode connected by two links of type motifEdge.

«EClass»
MotifNode

motifEdge
0..*

0..* src

trg

(a) Metamodel

a cb
(b) Model in concrete syntax

CBA
n(A), n(B), n(C),
e(A,B),e(B,C)

(c) Chain pattern

ED
n(D), n(E)
e(D,E), e(E,D)

(d) Reciprocity pattern

Fig. 1. Metamodel, model and 2 patterns from the motif recognition scenario

2.2 Pattern Specification

A user of the pattern matcher specifies a set of patterns P . As defined in [8,9],
a pattern P = (VP , CP , tP , pP) is a set of constraints CP over a set of variables
VP . A variable v ∈ VP is a placeholder for an object in a model. A constraint
c ∈ CP specifies a condition (of a constraint type tP (c)) on a set of variables
(which are also referred to as parameters in this context) that must be fulfilled
by the objects which are assigned to the parameters. A pattern must be free of
undeclared parameters and unused variables.

No undeclared parameters. The parameters of a constraint c must be vari-
ables from the set VP , formally, ∀c ∈ CP , ∀i ≤ ar(tP (c)) : pP (c, i) ∈ VP ,
where pP (c, i) denotes the ith parameter of constraint c and the inequality
i ≤ ar(tP (c)) expresses that a constraint c of (constraint) type tP (c) has an
arity ar(tP (c)) number of parameters.

No unused variables. Each variable v must occur in at least one constraint
as parameter, formally, ∀v ∈ VP , ∃c ∈ CP , ∃i ≤ ar(tP (c)) : pP (c, i) = v.

Metamodel-Specific Constraint Types: Constraint type n maintains a ref-
erence to class MotifNode in the metamodel. Constraints of type n prescribe that
their single parameter must be mapped to objects of type MotifNode. Constraint

1 The intentionally simple metamodel enables a compact data structure representation
throughout the paper, which was required due to space limitations. However, this
choice yields at the same time to the algorithmically most challenging situation (due
to the high complexity of isomorphism checks in ,,untyped” graphs).

128 G. Varró and F. Deckwerth

type e refers to association motifEdge. Constraints of type e require a link of type
motifEdge that connects the source and the target object assigned to the first
and second parameter, respectively.

Example. Figures 1(c) and 1(d) show two sample patterns in visual and tex-
tual syntax. The Chain pattern (Fig. 1(c)) has 3 variables (A, B, C), 3 unary
constraints of type n, and 2 binary constraints of type e. Constraints of type n
and e are depicted by nodes and edges in graphical syntax, respectively. E.g.,
n(A) prescribes that objects assigned to variable A must be of class MotifNode.

Pattern related concepts. A morphism m = (mV ,mC) is a function on pat-
terns which consists of a pair of functions mV and mC on variables and con-
straints, respectively. A morphism m is constraint type preserving if ∀c ∈ CP :
tm(P)(mC(c)) = tP (c); and parameter preserving if ∀c ∈ CP , ∀i ≤ ar(tP (c)) :
pm(P)(mC(c), i) = mV (pP (c, i)).

Patterns P and P ′ are isomorphic (denoted by �(P) = P ′) if there exists
a constraint type and parameter preserving, bijective morphism � from P to
P ′. The join of patterns Pl and Pr on join variables vx1 , . . . , vxq ∈ VPl

, and
vy1 , . . . , vyq ∈ VPr is a pattern with |VPl

|+ |VPr | − q variables and |CPl
|+ |CPr |

constraints which is produced by a morphism pair ��
l and ��

r as follows. Each
corresponding pair (vxz , vyz) of the q join variables is mapped to a (shared) new
variable v′z (i.e., ��l

V (vxz) = ��
r
V (vyz) = v′z). Each non-join variable vx and vy

of pattern Pl and Pr are mapped to a new variable v′x and v′y by ��
l and ��

r,

respectively. Formally, ��l
V (vx) = v′x and ��

r
V (vy) = v′y. A new constraint c′l (c

′
r)

is assigned to each constraint cl (cr) from pattern Pl (Pr) by ��
l
C (��r

C) in a
constraint type and parameter preserving manner.

A subpattern P ′ of pattern P consists of a subset of constraints of pattern P
together with the variables occurring in the selected constraints as parameters.
Two subpatterns P1 and P2 of a pattern P are unifiable if they have common
variables. These common variables are referred to as unifiable variables. Two
subpatterns of a pattern are independent if they do not share any constraints.
The union of two independent subpatterns P1 and P2 of a pattern (denoted by
P1 ∪ P2) is produced by independently computing the union of the variables
(VP1∪P2

:= VP1 ∪ VP2) and the constraints (CP1∪P2
:= CP1 ∪ CP2) of the two

subpatterns and using identity morphisms idl and idr which map P1 to P1 ∪P2

and P2 to P1 ∪ P2, respectively, in a constraint type and parameter preserving
manner. A set of subpatterns of a pattern constitutes a partition if they are pair-
wise independent, and their union produces the pattern itself. In the following,
the subpatterns of a pattern constituting a partition are called components.

Note that union is performed on components of a given pattern, and results
in another component of the same pattern which will replace the operands in
the partition. In contrast, a join operates on arbitrary patterns, and yields to a
new pattern which is unrelated to the operand patterns. In the context of a join
operation, each of the operands and the result pattern has its own variable set.

Example. Figure 2(b) is used to exemplify the concepts of this section. Nodes
with s labels in the center (on white background) represent patterns. Each pattern

A Rete Network Construction Algorithm for Incremental Pattern Matching 129

B C

A B

C

B

A D E

E D

D

E

12 22 e(12,22)
s2n(11)

11
s1

(a) Initial state stored in T [8][1]

n(13)

13 23 e(13,23)
s3

C

A B

B C

E D

D E

i2 12 22i1 11

r1 13 r2 13 23

12 22 e(12,22)
s2n(11)

11
s1

(b) State inserted into T [4][1]

Fig. 2. Illustration of pattern related concepts and the algorithm execution (k = 1)

has its own, distinguished set of variables which are marked by indexed integers.
The pattern in s3 is the join of the patterns in s1 and s2 on join variables 11 and 12.
In this case, function��

l
V maps variable 11 to 13, while��

r
V assigns variables 13 and

23 to 12 and 22, respectively. Constraints n(11) and e(12, 22) are mapped by ��
l
C

and ��
r
C to n(13) and e(13, 23), respectively. The patterns on the left side (with

grey background) show the components of the Chain (Fig. 1(c)) pattern which
share variables labelled by capital letters with the latter pattern. The union of
these components can be computed along the (unifiable) variables with the same
name resulting in the Chain pattern. The components of the Reciprocity (Fig. 1(d))
pattern are shown on the right side.

3 Incremental Pattern Matching Process

As [9] states, pattern matching is the process of determining mappings for all
variables in a given pattern, such that all constraints in the pattern are fulfilled.
The mappings of variables to objects are collectively called a match which can
be a complete match when all the variables are mapped, or a partial match in all
other cases.2 The overall process of incremental pattern matching is as follows:

Compile time tasks. At compile time, a Rete network [7], whose structure is
presented in Sec. 3.1, is built from the pattern specifications by a network
construction algorithm which will be discussed in details in Sec. 4.

Runtime behaviour. At runtime, the Rete network continuously tracks (i) the
complete matches for all patterns in the underlying model and (ii) those
partial matches that are needed for the calculation of the complete matches.
These matches are stored in the Rete network and incrementally updated
in a change propagation process which is triggered by notifications about
model changes as presented in Sec. 3.2.

3.1 Rete Network

A Rete network is a directed acyclic graph whose nodes are data processing units
which are organized into a parent-child relationship by the edges (considering the

2 A match maps only pattern variables to model objects, while a morphism maps
variables and constraints of a pattern to their counterparts in another pattern.

130 G. Varró and F. Deckwerth

traditional source-to-target direction). The nodes are partitioned into skeletons
S, indexers I, and remappersR. The connections expressed by the edges are also
restricted, because skeletons, remappers, and indexers can only be connected to
remappers, indexers, and skeletons, respectively.

A skeleton calculates matches for a pattern in the Rete network. A basic
skeleton, which corresponds to a pattern with a single constraint, has no outgoing
edges. A joined skeleton is connected in the Rete network by edges to its left rl
and right rr child remappers, and it represents a pattern with several constraints
which is assembled from 2 smaller patterns, whose (great-grandchild) skeletons
can be reached in the Rete network via paths (of length 3) along the left and
right child remappers of the joined skeleton, respectively.

A remapper maintains an array-based mapping from the variables of its grand-
child skeleton to the variables of its parent joined skeleton to support the match
computation performed in the latter node.

An indexer stores the matches produced by its child skeleton in a table. Each
field of this table contains the mapping of a variable (represented by a column) to
an object according to the match (symbolized by a row). The matches are sorted
according to the values that were assigned to a subsequence of variables (the
so-called indexed variables) of the child skeleton. The skeleton and its indexed
variables uniquely identify the corresponding indexer in the Rete network.

Example. Figure 3 depicts two sample Rete networks, which track the matches
of the patterns of Figs. 1(c) and 1(d) on the model of Fig. 1(b). The identifiers of
skeletons s, indexers i and remappers r are marked in the (leftmost) rectangles in
the node headers. The pattern represented by a skeleton is shown in the header as
well. In Fig. 3(b), basic skeleton s1 corresponds to the pattern which has a single
unary constraint of type n on parameter 11. This skeleton produces matches for
the Rete network which map variable 11 to all MotifNodes from the model. These
matches are stored sorted according to the values assigned to indexed variable 11
(shown by the grey column) in indexer i1. MotifEdges are entered into the Rete
network in skeleton s2 and stored in indexer i2. This indexer sorts the motifEdges
according to their source objects, as only variable 12 is indexed. Joined skeleton
s3 carries out a join of patterns in skeletons s1 and s2 on join variables 11 and
12. To perform this operation, (i) join variables 11 and 12 have to be indexed
in the grandchild indexers i1 and i2, respectively, (ii) variable 11 of skeleton s1
has to be remapped by (left child) remapper r1 according to ��

l to variable 13 of
skeleton s3, and similarly (iii) variables 12 and 22 must be remapped by (right
child) remapper r2 according to ��

r to variables 13 and 23, respectively. Joined
skeleton s4 joins patterns in skeletons s1 and s3 on join variables 11 and 23. Note
that this join operation only involves variable 23 from skeleton s3, consequently,
indexer i3 must only index this variable. Skeletons s5 and s6 represent patterns
which are isomorphic to the Chain and the Reciprocity pattern, respectively. As
a consequence, the matches produced by skeleton s5 are the complete matches
for the Chain pattern (in the left grey framed table), while skeleton s6 creates
no complete matches for the Reciprocity pattern. Note that skeleton s6 joins the
pattern in skeleton s3 via two distinct paths by using join variables 13 and 23 in

A Rete Network Construction Algorithm for Incremental Pattern Matching 131

1 2 e(1,2)
s2n(1)

1
s1

ED
ba c
BA C

i7 15 25 35
a b c

r8 16 26 36

i1 11
a
b
c

n(23)

13 23 e(13,23)
s3

r2 13 23r1 23

n(23)

13 23 e(13,23)
s3 n(14)

14 24 e(14,24)
s4

i3 13 23
a b
b c

i4 14 24
a b
b c

i5 14 24
a b
b c

i6 24 14
b a
c b

r5 25 35 r6 15 25

n(15) n(35)

15 25 35 e(15,25) e(25,35)
s5

r7 26 r9 17 27 r10 17 27

n(16) n(26) n(36)

16 26 36 e(16,26) e(26,36)
s6 n(17) n(27)

17 27 e(17,27) e(27,17)
s7

i2 12 22
a b
b c

r4 14 24r3 14

(a) Rete network with 7 indexers

12 22 e(12,22)
s2

n(11)

11
s1

i2 12 22
a b
b c

i1 11
a
b
c

r1 13

r4 14 24

n(15) n(25) n(35)

15 25 35 e(15,25) e(25,35)
s5 n(16) n(26)

16 26 e(16,26) e(26,16)
s6

ba c
BA C ED

n(14) n(24)

14 24 e(14,24)
s4

r3 24

r2 13 23

n(13)

13 23 e(13,23)
s3

i4 13 23
a b
b c

i3 13 23
a b
b c

i5 23 13
b a
c b

i6 14 24
a b
b c

r6 25 35 r7 15 25 r8 16 26 r9 16 26

(b) Rete network with 6 indexers

Fig. 3. Sample Rete networks

the left branch, and 23 and 13 in the right branch. As the left and right paths
both involve 2 join variables, indexers i4 and i5 must use both join variables 13
and 23 for indexing (however, in a different order).

3.2 Incremental Pattern Matching at Runtime with Rete Network

To demonstrate the runtime behaviour of a Rete network in an incremental
setting, let us suppose that the Rete network is already filled with matches
computed from the initial content of the underlying model. More specifically,
(i) indexers store the (partial or complete) matches calculated by their child
skeleton, (ii) basic skeletons provide access for the Rete network to the model,
and (iii) the top-most joined skeletons (i.e., without skeleton ancestors) already
produced the complete matches for the corresponding patterns.

When the underlying model is altered, the Rete network is notified about
this model change. This notification triggers a bottom-up change propagation
process, which passes match deltas (i.e., representing match additions or dele-
tions) from basic skeletons towards the top-most joined skeletons. As a common
behaviour in this process, each node carries out 3 steps, namely, it (i) receives a
match delta from one of its child nodes as input, (ii) performs data processing
which might result in new match deltas as output, and (iii) optionally propagates
all the output match deltas to all of its parent nodes.

Example. If the link between objects a and b is removed from the model of
Fig. 1(b), then the matches marked by (red) crosses in Fig. 3(b) are deleted from

132 G. Varró and F. Deckwerth

the indexers of the Rete network in a bottom-up change propagation process
starting at basic skeleton s2 and terminating at joined skeletons s5 and s6.

4 Dynamic Programming Based Network Construction

As demonstrated in Fig. 3, the number of indexers has an obvious and significant
influence on the runtime memory usage of the Rete network. As a consequence,
our network construction algorithm uses this parameter as an optimization target
to quantitatively characterize Rete network topologies.

A Rete network with few indexers is built by a dynamic programming based
algorithm which iteratively fills states into an initially empty table T with n+1
columns and k rows, where n is a value derived from the initial state and k ≥ 1
is a user-defined parameter that influences the trade-off between efficiency and
optimality of the algorithm. A state represents a partially constructed Rete net-
work, whose quality is defined by an arbitrary cost function. A state is addition-
ally characterized by a unification point (UP) indicator which is the “distance”
of the partial Rete network from a final topology that must symbolize all pat-
terns in the specification. In table T , the column T [col] stores the best k states
(in an increasing cost order), whose UP indicator is col, while T [col][row] is the
rowth best from these states.

The main distinguishing feature of the algorithm is that the table only stores
a constant number of states in each column, immediately discarding costly net-
work topologies, which are not among the best k solutions, and implicitly all
their possible continuations. The algorithm itself shares its core idea (and its
two outermost loops) with the technique presented in [10] which was used for
generating search plans for batch pattern matchers, but the current approach
uses completely different data structures in the optimization process.

Algorithm data structures. A state S contains a Rete network RNS, sets of
components CompS and skeleton patterns SkelS , and an isomorphism function
isoS . Each pattern P in the specification will be represented in the component set
CompS of state S by a partition of its subpatterns which are called components
of pattern P in state S (denoted by CompPS) in the following. The component set
CompS is the collection of all components of all patterns in state S. A skeleton
pattern Ps corresponds to skeleton s in the Rete network RNS , and it represents
a set of isomorphic components which are mapped to skeleton pattern Ps by
the isomorphism function isoS . The skeleton patterns that have a corresponding
skeleton in network RNS are contained in set SkelS . The cost cS of a state S
can be arbitrarily defined. In this paper, the number of indexers |IRNS | in the
Rete network RNS is used as a cost function.

Unification points. A unification point (UP) on variable v is a situation, when
variable v is unifiable by a pair of components of a pattern P in a state S. To
compactly characterize the number of UPs on variable v, a unification point
indicator upivS for variable v is introduced as the number of those components
of pattern P in state S which contain variable v. The unification point indicator

A Rete Network Construction Algorithm for Incremental Pattern Matching 133

upiS of a state S is calculated as
∑

P∈P
∑

v∈VP
(upivS − 1). The subtraction is

only required to be able to evaluate the term
∑

v∈VP
(upivS − 1) to 0, if and only

if each variable of pattern P appears in a single component from the set CompS .

Example. Figure 2 depicts two states from the Rete network construction pro-
cess. The tables on the left and right sides of each state (on the area with grey
background) represent the components, whose union always results in the Chain
and Reciprocity patterns, respectively. These components are mapped by the iso-
morphism function isoS (denoted by the dashed lines) to the (jointly depicted)
skeleton patterns and Rete network in the middle. Note that a skeleton pattern
always unambiguously corresponds to a skeleton. The two states have 0 and 2
indexers, respectively, which are used as costs of the states. In Fig. 2(a), the
UP indicators for variables B, D, E are 3, as each of these variables appears in
3 components, while the UP indicators for variables A and C are 2. The UP
indicator of the state itself is 3 · (3− 1) + 2 · (2− 1) = 8.

Initialization. Each pattern P in the specification is split into components
CP
1 , . . . ,C

P
|CP | with single constraints which trivially constitute a partition of

pattern P . Components CP
1 , . . . ,C

P
|CP | of each pattern P are added to the set

CompS0
. For each constraint type t appearing in any of the patterns, a skeleton

st and a corresponding skeleton pattern Pst are added to the Rete network RNS0

and skeleton pattern set SkelS0 , respectively. The skeleton pattern Pst has ar(t)
new variables and one constraint of type t with the newly created variables as
parameters. In this way, all components C consisting of a single constraint of
type t, which are obviously isomorphic, can be represented by skeleton pattern
Pst which is registered into the isomorphism function as isoS0(C) = Pst .

Algorithm. Algorithm 1 determines the UP indicator upiS0 of the initial state
S0 (line 1), and stores this state S0 in T [n][1] (line 2). Then, the table is traversed
by processing columns in a decreasing order (lines 3–11). In contrast, the inner
loop (lines 4–10) proceeds in an increasing state cost order starting from the best
state T [col][1] in each column T [col]. For each stored state S, the possible exten-
sions ΔSkel of the skeleton pattern set SkelS are determined by calculateDeltas

(line 6) which are used by calculateNextStates (line 7) to produce all contin-
uations of state S. Each next state S′ (lines 7–9) is conditionally inserted into
the column T [upiS′] identified by the corresponding UP indicator upiS′ in the
procedure conditionalInsert (line 8) if the next state S′ is among the k best
states in the column T [upiS′]. When the three loops terminate, the algorithm
returns the Rete network RNT [0][1] (line 12).

The basic idea when producing all continuations of a state S (lines 6–7) is
that unifiable components are aimed to be replaced by their union. As (i) iso-
morphic components are represented by a single skeleton pattern in state S (and
a corresponding skeleton in the Rete network RNS), and (ii) the union of com-
ponents can be expressed by a new skeleton pattern, which is the join of the
skeleton patterns of the unifiable components, a single join operation can also
characterize the unification of numerous component pairs from the set CompS .

134 G. Varró and F. Deckwerth

Algorithm 1. The procedure calculateReteNetwork(S0, k)

1: n := upiS0

2: T [n][1] := S0

3: for (col := n to 1) do
4: for (row := 1 to k) do
5: S := T [col][row] // current state S
6: ΔSkel := calculateDeltas(S)
7: for each (S′ ∈ calculateNextStates(S,ΔSkel)) do
8: conditionalInsert(T [upiS′], S′)
9: end for
10: end for
11: end for
12: return RNT [0][1]

In order to support effective subpattern sharing in the Rete network, a single
join should represent as many unifications as possible. This can only be achieved
if the complete set of applicable joins and their corresponding unifications are
determined in advance, and the actual computation of next states is delayed.

Section 4.1. The procedure calculateDeltas(S) iterates through all unifiable
components of all patterns in state S, and for each unification, a correspond-
ing join is determined in such a manner that the union of the components is
isomorphic to the result of the join. In other words, the set of applicable joins
(i.e., the skeleton deltas in Sec. 4.1) is calculated together with a grouping
of unifications (i.e., the component deltas in Sec. 4.1), in which each group
contains those unifications that can be characterized by a single join.

Section 4.2. The procedure calculateNextStates(S,ΔSkel) iterates through
all applicable joins, and for each corresponding group, all those independent
subsets are calculated which do not share any unifications. The unifications
in these subsets can be used for preparing the next states.

The procedure conditionalInsert(T [upiS′], S′) calculates index c which
marks the position at which state S′ should be inserted based on its cost. In-
dex c is set to k + 1 if state S′ is not among the best k states. Formally, c is
the smallest index for which cS′ < cT [upiS′][c] holds (or T [upiS′][c] = null). If
c < k + 1, then state T [upiS′][k] is removed, elements between T [upiS′][c] and
T [upiS′][k − 1] are shifted downward, and state S′ is inserted at position c.

Example. Due to space limitations, Fig. 2 can only exemplify an incomplete,
single iteration of the algorithm execution. The initial state (Fig. 2(a)) has a
UP indicator 8. Consequently, table T (not shown in Fig. 2) has 8 columns,
and the initial state is inserted into T [8][1]. When this state is processed by the
procedure calculateDeltas(S), all unifiable component pairs are evaluated.
During this evaluation, it is determined that e.g., (J1) if skeletons s1 and s2 are
joined on variables 11 and 12 (see s3 in Fig. 2(b)), then this join alone repre-
sents the unification of the component pairs (i) n(A), e(A,B); (ii) n(B), e(B,C);

A Rete Network Construction Algorithm for Incremental Pattern Matching 135

(iii) n(D), e(D,E); and (iv) n(E), e(E,D). Three additional join possibilities (not
shown in Fig. 2) are identified in the same stage, namely, (J2) skeletons s1 and s2
can be joined on variables 11 and 22 as well (resulting in a node with an incoming
edge). Skeleton s2 can be joined to itself (J3) either on variable sequences 12, 22
and 22, 12 (forming a cycle from the two edges), (J4) or on variables 22 and 12
(providing a chain from the two edges). The procedure calculateDeltas(S)
computes the information exemplified on case (J1) for all the 4 joins, which is
passed as ΔSkel to the procedure calculateNextStates(S,ΔSkel) in line 7 for
further processing. The 4 unifiable component pairs of case (J1) have no con-
straints in common, consequently, these four unifications and the corresponding
join can be directly used to build a next state (Fig. 2(b)), in which skeleton s3
alone represents the 4 (isomorphic) components on the sides. Three additional
next states are constructed for cases (J2)–(J4) as well. The next states prepared
for cases (J1), (J3), and (J4) are inserted into empty slots T [4][1], T [6][1], and
T [7][1], respectively, according to their UP indicators, while the state created
for case (J2) (again with UP indicator 4) is discarded (in line 8), as the state of
Fig. 2(b) stored already in slot T [4][1] has less indexers. When the three loops
terminate, Alg. 1 returns the Rete network of Fig. 3(b) from the field T [0][1].

4.1 Skeleton Pattern Delta Calculation

The procedure calculateDeltas(S) uses skeleton deltas and component deltas
as new data structures to represent applicable, but delayed joins and unions,
respectively. A skeleton delta consists of a set of component deltasΔs′ , a skeleton
pattern Ps′ and a Rete network RNs′ . A component delta in the set Δs′ contains
two components Cl and Cr, and an isomorphism � which maps the union Cl∪Cr

of the components to the skeleton pattern Ps′ .
The procedure calculateDeltas(S) (Algorithm 2) iterates through each pair

CP
l , C

P
r of unifiable components of pattern P in state S (lines 2–3). For each such

pair, the method createSkeletonPattern (line 5) prepares a skeleton pattern
Ps′ and an isomorphism �, such that � maps the union of the components CP

l

and CP
r to the skeleton pattern Ps′ (i.e., �(CP

l ∪ CP
r) = Ps′). If the skeleton

pattern Ps′ is already represented in the set ΔSkel by another skeleton pattern
Ps∗, which is isomorphic to Ps′ according to an other morphism �∗ (line 6), then
the component delta (CP

l ,C
P
r ,� ◦�∗) is simply added to the already stored set

Δs∗ (line 7), as CP
l ∪CP

r is isomorphic to skeleton pattern Ps∗ as well. Otherwise,
a new Rete network RNs′ is created by createReteNetwork (line 9), a new
singleton set Δs′ is prepared with the component delta (CP

l ,C
P
r ,�) (line 10),

and the skeleton delta (Δs′ , Ps′ , RNs′) is added to the set ΔSkel (line 11).
To describe the procedure createSkeletonPattern, let us suppose that com-

ponents CP
l and CP

r are mapped by function isoS to skeleton patterns Psl and
Psr , respectively. Consequently, there exists an isomorphism �l (�r) from com-
ponent CP

l (CP
r) to skeleton pattern Psl (Psr). The new skeleton pattern Ps′

is the join of skeleton patterns Psl and Psr (by using ��
l and ��

r), where the
join variables in skeleton pattern Psl (Psr) are the images of the unifiable vari-
ables of components CP

l and CP
r according to isomorphism �l (�r). The new

136 G. Varró and F. Deckwerth

Algorithm 2. The procedure calculateDeltas(S)

1: ΔSkel := ∅
2: for each (P ∈ P) do
3: for each (CP

l ,C
P
r ∈ CompPS) do

4: if (CP
l �= CP

r ∧ areUnifiable(CP
l ,C

P
r)) then

5: (Ps′ ,�) := createSkeletonPattern(isoS,C
P
l ,C

P
r)

6: if (∃(Δs∗ , Ps∗ , RNs∗) ∈ ΔSkel,∃�∗ : �∗(Ps′) = Ps∗) then

7: Δs∗ := Δs∗ ∪
{
(CP

l ,C
P
r ,� ◦ �∗)

}

8: else
9: RNs′ := createReteNetwork(RNS, isoS,C

P
l ,C

P
r)

10: Δs′ :=
{
(CP

l ,C
P
r ,�)

}

11: ΔSkel := ΔSkel ∪ { (Δs′ , Ps′ , RNs′) }
12: end if
13: end if
14: end for
15: end for
16: return ΔSkel

isomorphism � can be defined as a composition of morphisms ��
l,r and �l,r,

namely, ∀v ∈ VCP
l

: �V (v) := ��
l
V (�l

V (v)), ∀c ∈ CCP
l

: �C(c) := ��
l
C(�l

C(c)),

∀v ∈ VCP
r

: �V (v) := ��
r
V (�r

V (v)), and ∀c ∈ CCP
r

: �C(c) := ��
r
C(�r

C(c)).
The procedure createReteNetwork creates a new Rete network RNs′ by

adding a new skeleton s′ and its left rl and right rr remappers (plus the corre-
sponding edges) to the old network RNS . Indexer il (ir) is either reused from
RNS if RNS already contained it as a parent of skeleton sl (sr), or newly cre-
ated. The edges between these indexers and skeletons are handled analogously.
As the exact internal parameterization of network nodes is easily derivable from
morphisms ��l, ��r, �l, and �r, it is not discussed here due to space limitations.

4.2 Next State Calculation

The procedure calculateNextStates(S,ΔSkel) (Algorithm 3) iterates through
all skeleton deltas (Δs′ , Ps′ , RNs′) in the set ΔSkel (line 2). In order to clarify the
role of the inner loop (lines 3–8), let us examine its body (lines 4–7) first. The
new Rete network RNS′ simply uses the network RNs′ from the skeleton delta
(line 4). The skeleton pattern Ps′ is added to the skeleton pattern set SkelS of
state S to produce the new one (line 5). The procedure calculateComponents

(line 6) creates a new component set CompS′ from the old one CompS by re-
placing the components Cl and Cr of each component delta (Cl,Cr,�) from the
set ΔI

s′ with their union Cl ∪ Cr. The new isomorphism function isoS′ retains
the mappings of those components from the old one isoS that do not appear in
any component deltas from the set ΔI

s′ , while the union Cl ∪ Cr of component
pairs mentioned in a component delta (Cl,Cr,�) is mapped to skeleton pattern
Ps′ (i.e., isoS′(Cl ∪ Cr) = Ps′). A new state S′ = (RNS′ , SkelS′ ,CompS′ , isoS′) is
added to the set ΔS representing the possible continuations of state S (line 7).

A Rete Network Construction Algorithm for Incremental Pattern Matching 137

Algorithm 3. The procedure calculateNextStates(S,ΔSkel)

1: ΔS := ∅
2: for each ((Δs′ , Ps′ , RNs′) ∈ ΔSkel) do
3: for each

(
ΔI

s′ ∈ allMaximalIndependentSets (Δs′)
)
do

4: RNS′ := RNs′

5: SkelS′ := SkelS ∪ {Ps′ }
6: (CompS′ , isoS′) := calculateComponents(S,ΔI

s′)
7: ΔS := ΔS ∪ { (RNS′ ,SkelS′ ,CompS′ , isoS′) }
8: end for
9: end for
10: return ΔS

As the set CompS′ must also contain independent components, the replace-
ment in line 6 is only allowed if all component delta pairs (CPα

l ,CPα
r ,�Pα) and

(C
Pβ

l ,C
Pβ
r ,�Pβ) from the set ΔI

s′ are independent, which means that they either
originate from different patterns (i.e., Pα 	= Pβ), or they do not share any com-

ponents (i.e., CPα

l,r 	= C
Pβ

l,r). As pairwise independence does not necessarily hold
for the component deltas in set Δs′ , the method allMaximalIndependentSets

carries out the Bron-Kerbosch algorithm [11] (line 3), and calculates all such
subsets of Δs′ , whose (component delta) elements are pairwise independent.

5 Measurement Results

In this section, we quantitatively assess the effect of subpattern sharing on the
number of indexers by comparing the case when our algorithm builds a separate
Rete network for each pattern with the situation when isomorphic subpatterns
are represented by shared skeletons (i.e., combined approach). For the evaluation,
we used the patterns from [2], and the algorithm parameter k was set to 1.

The measurement results are presented in Table 1. A column header has to
be interpreted in a cumulative manner including all patterns which appear in
the headers of the current and all the preceding columns. A value in the first
row shows the sum of the number of indexers3 in those Rete networks that have
been separately built for the patterns in the (current and its preceding) column
headers. In contrast, a value in the second row presents the number of indexers3

in the single Rete network that has been constructed by the combined approach
which used the patterns in the (current and its preceding) column headers as
input. The values in the third row express the memory reduction as the ratio
of the values in the first two rows. Rows four and five denote the Rete network
construction runtimes4 for the separate and combined approach, respectively,
while the sixth row depicts the ratio of the values from the previous two rows.

3 The parent indexers of the basic skeletons were not included in either case, as their
functionality (e.g., navigation on edges) is provided by the underlying modeling layer.

4 The runtime values are averages of 10 user time measurements performed on a 1.57
GHz Intel Core2 Duo CPU with Windows XP Professional SP 3 and Java 1.7.

138 G. Varró and F. Deckwerth

Table 1. Measurement results

FeedForward FeedBack Caro DoubleCross InStar OutStar Reciprocity
Separate 4 8 13 17 21 25 27
Combined 4 5 7 11 14 20 21

Ratio Combined / Separate 1.00 0.63 0.54 0.65 0.67 0.80 0.78

Separate 12.500 14.063 23.438 28.126 79.689 134.377 134.377
Combined 10.938 21.875 56.250 106.250 428.125 770.313 843.750

Ratio Combined / Separate 0.88 1.56 2.40 3.78 5.37 5.73 6.28

Pattern

Runtime [ms]

Indexers [#]

The most important conclusion from Table 1 is that the combined approach
uses 20–46% less indexers than the separate approach for the price of an increase
in the algorithm runtime by a factor of 1–6 which is not surprising as the com-
bined approach has to operate on tables that are wider by approximately the
same factor. For a correct interpretation, it should be noted that the number of
indexers influences the memory consumption at runtime, while the algorithm is
executed only once at compile time.

6 Related Work

Motif recognition algorithms. The state-of-the-art motif recognition algo-
rithms are excellently surveyed in [12]. These are batch techniques which match
all non-isomorphic (graph) patterns up to a certain size, in contrast to our in-
cremental approach, which builds a Rete network only for the (more general,
constraint-based) patterns in the specification (and for a small part of their sub-
patterns). In the rest of this section, which is still knowingly incomplete, only
Rete network based incremental approaches are mentioned.

Rete network construction in rule-based systems. As Rete networks were
used first in rule-based systems, different network topologies have been analyzed
in many papers from the artificial intelligence domain including [13], which rec-
ognized that linear structures can be replaced by (balanced) tree-based ones.
However, this report provided neither cost functions to characterize the quality
of a Rete network, nor algorithms to find good topologies.

A graph based Rete network description was proposed in [14] together with
cost functions that could be used as optimization targets in a network construc-
tion process. Furthermore, the author gives conditions for network optimality
according to the different cost metrics, in contrast to our dynamic programming
based approach, which could only produce provenly optimal solution if the num-
ber of rows was not limited by the constant parameter k. On the other hand, no
network construction algorithm is discussed in [14].

Rete network construction in incremental pattern matchers. Incremen-
tal graph pattern matching with Rete networks [7] was examined decades ago in
[4] which already described an advanced network compilation algorithm (beyond
the presentation of the runtime behaviour of the Rete network). This approach
processed pattern specifications one-by-one, and it was able to reuse network
nodes in a restricted manner, namely, if a subpattern was isomorphic to an-
other one from a previous pattern, for which a network node had actually been

A Rete Network Construction Algorithm for Incremental Pattern Matching 139

generated earlier in the construction procedure. In this sense, the recognition of
isomorphic parts in two patterns depends on the order, in which the subpatterns
of the first pattern had been processed. However, [4] gives no hint how such an
order can be found.

Another sophisticated, Rete network based incremental graph pattern match-
ing engine [6] has recently been used for state space exploration purposes in graph
transformation systems. In this setup, the standard Rete approach was extended
by graph transformation related concepts such as quantifiers, nested conditions,
and negative application conditions. Additionally, disconnected graph patterns
could also be handled. Regarding the Rete network construction, [6] uses the
same technique as [4] with all its strengths and flaws.

IncQuery [5,15] is also a high quality pattern matcher that uses Rete networks
for incremental query evaluation. Queries can be defined by graph patterns which
can be reused and composed in a highly flexible manner. If isomorphic subpat-
terns are identified as standalone patterns, then they can be handled by a single
node which can be reused by different compositions leading to the original pat-
terns, but the automated identification of isomorphic subpatterns is not yet sup-
ported in contrast to our approach. As another difference, the constructed Rete
network has always a linear topology in IncQuery, while our algorithm can pro-
duce a balanced net structure as well. Considering the Chain and the Reciprocity
patterns, the Rete network of Fig. 3(b) can only be constructed in IncQuery
if the user manually specifies skeletons s3 and s4 as patterns and the complete
network structure by pattern compositions.

7 Conclusion

In this paper, we proposed a novel algorithm based on dynamic programming
to construct Rete networks for incremental graph pattern matching purposes.
The cost function and the optimization target used by the algorithm can be
easily replaced and customized. As the basic idea of the proposed algorithm is
similar to the technique presented in [10] for batch pattern matching, our fully
implemented network building approach can be easily integrated into the search
plan generation module of the Democles tool which will be able to handle batch
and incremental scenarios in an integrated manner.

As an evaluation from the aspect of applicability, the proposed algorithm can
(i) use model-sensitive costs (originating from model statistics), (ii) handle n-ary
constraints in pattern specifications, and (iii) be further customized by setting
parameter k which influences the trade-off between efficiency and optimality.

The most important future task is to assess the effects of network topologies
on the runtime performance characteristics of the pattern matcher in industrial
application scenarios by using different cost functions and optimization targets
in the proposed network construction algorithm.

140 G. Varró and F. Deckwerth

References

1. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

2. von Landesberger, T., Görner, M., Rehner, R., Schreck, T.: A system for interac-
tive visual analysis of large graphs using motifs in graph editing and aggregation.
In: Magnor, M.A., Rosenhahn, B., Theisel, H. (eds.) Proceedings of the Vision,
Modeling, and Visualization Workshop, DNB, pp. 331–339 (2009)

3. Krumov, L., Schweizer, I., Bradler, D., Strufe, T.: Leveraging network motifs for
the adaptation of structured peer-to-peer-networks. In: IEEE Proceedings of the
Global Communications Conference, pp. 1–5 (2010)

4. Bunke, H., Glauser, T., Tran, T.-H.: An efficient implementation of graph gram-
mar based on the RETE-matching algorithm. In: Ehrig, H., Kreowski, H.-J.,
Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 174–189. Springer,
Heidelberg (1991)

5. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In: Proc. of the 3rd Int.
Workshop on Graph and Model Transformation, pp. 25–32. ACM (2008)

6. Ghamarian, A.H., Jalali, A., Rensink, A.: Incremental pattern matching in graph-
based state space exploration. In: de Lara, J., Varró, D. (eds.) Proc. of the 4th
International Workshop on Graph-Based Tools. ECEASST, vol. 32 (2010)

7. Forgy, C.L.: RETE: A fast algorithm for the many pattern/many object match
problem. Artificial Intelligence 19, 17–37 (1982)

8. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In: Workshop on Graph Transformation and Visual Modeling
Techniques, vol. 6, ECEASST (2007)

9. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012)

10. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generat-
ing model-sensitive search plans for EMF models. In: Hu, Z., de Lara, J. (eds.)
ICMT 2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

11. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

12. Wong, E., Baur, B., Quader, S., Huang, C.-H.: Biological network motif detection:
Principles and practice. Briefings in Bioinformatics 13(2), 202–215 (2012)

13. Perlin, M.W.: Transforming conjunctive match into RETE: A call-graph caching
approach. Technical Report 2054, Carnegie Mellon University (1991)

14. Tan, J.S.E., Srivastava, J., Shekhar, S.: On the construction of efficient match
networks. Technical Report 91, University of Houston (1991)

15. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 76–90. Springer, Heidelberg (2010)

	A Rete Network Construction Algorithm
for Incremental Pattern Matching
	1 Introduction
	2 Metamodel, Model and Pattern Specification
	2.1 Metamodels and Models
	2.2 Pattern Specification

	3 Incremental Pattern Matching Process
	3.1 Rete Network
	3.2 Incremental Pattern Matching at Runtime with Rete Network

	4 Dynamic Programming Based Network Construction
	4.1 Skeleton Pattern Delta Calculation
	4.2 Next State Calculation

	5 Measurement Results
	6 Related Work
	7 Conclusion
	References

