
Keith Duddy
Gerti Kappel (Eds.)

 123

LN
CS

 7
90

9

6th International Conference, ICMT 2013
Budapest, Hungary, June 2013
Proceedings

Theory and Practice
of Model Transformations

Lecture Notes in Computer Science 7909
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Keith Duddy Gerti Kappel (Eds.)

Theory and Practice
of Model Transformations

6th International Conference, ICMT 2013
Budapest, Hungary, June 18-19, 2013
Proceedings

13

Volume Editors

Keith Duddy
Queensland University of Technology
4000 Brisbane, QLD, Australia
E-mail: keith.duddy@qut.edu.au

Gerti Kappel
Vienna University of Technology
1040 Vienna, Austria
E-mail: gerti@big.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38882-8 e-ISBN 978-3-642-38883-5
DOI 10.1007/978-3-642-38883-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939603

CR Subject Classification (1998): D.2, F.3, D.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the International Conference on
Model Transformation (ICMT 2013), the sixth conference in the series, and the
first to be held at the new parent event “Software Technologies: Applications and
Foundations” (STAF Conferences, www.stafconferences.info). STAF was formed
after the end of the successful precursor event, TOOLS federated conferences.
This year’s STAF event covered the conferences TAP (International Conference
on Tests and Proof) and SC (International Conference on Software Composition)
next to ICMT and the three workshops BIGMDE (International Workshop on
Big MDE), VOLT (International Workshop on the Verification of Model Trans-
formations), and TTC (Transformation Tool Contest). ICMT 2013 and all other
STAF 2013 events were graciously hosted at Budapest University of Technol-
ogy and Economics during June 17–20, 2013, and we thank the General Chair,
Dániel Varró, and his team for their organizational skills and great hospitality
in Hungary.

ICMT is the premier forum for contributions advancing the state of the art
in the field of model transformation and aims to bring together researchers and
practitioners alike from all areas of model transformation. Model transforma-
tion encompasses a variety of technical spaces, including modelware, grammar-
ware, dataware, and ontoware, a variety of model representations, e.g., based
on different types of graphs, and a variety of transformation paradigms includ-
ing rule-based transformations, term rewriting, and manipulations of objects in
general-purpose programming languages, to mention just a few.

The study of model transformation includes foundations, structuring mecha-
nisms, and properties, such as modularity, composability, and parameterization
of transformations, transformation languages, techniques, and tools. An impor-
tant goal of the field is the development of high-level model transformation
languages, providing transformations that are amenable to higher-order model
transformations or tailored to specific transformation problems. To have an im-
pact on software engineering in general, methodologies and tools are required
to integrate model transformation into existing development environments and
processes.

This year’s program consisted of 13 full papers and five tool and applica-
tion demonstrations, the latter being supported by an extended abstract in the
proceedings. Since ICMT 2013 could attract 58 full submissions this implies an
acceptance rate of 22%. The papers covered the spectrum of approaches and
technologies mentioned above, and were presented in five sessions that repre-
sent the broad scope of ICMT: (a) New Programming Models, (b) Tools and
Applications, (c) Transformation Engineering, (d) Testing, and (e) Evolution
and Synchronization. We were also fortunate to have a keynote talk by Andreas
Zeller (Saarland University) on “Mining Models from Generated System Tests.”

VI Preface

And after the traditional conference format, we were pleased to see at our sister
event, the Transformation Tool Contest, the diverse tools and approaches in our
field in action.

ICMT 2013 was made possible by the collaboration of many people. We
were supported by a great team, most notably Publication Chair and EasyChair
manager par excellence Manuel Wimmer, Publicity Chair Philip Langer, who
got the message out to the transformation community, and Ludovico Iovino,
who kept our website up to date. The Steering Committee was very helpful and
provided advice when we needed it. We would like to thank all the members of
the ICMT 2013 ProgramCommittee for the tremendous effort they put into their
reviews and deliberations, and all the additional reviewers for their invaluable
contributions. Finally, special thanks go to all the researchers and students who
contributed with their work and participated in the conference – without them,
ICMT 2013 would not have taken place. We hope that you find the papers in
these proceedings as stimulating as we did.

April 2013 Keith Duddy
Gerti Kappel

Organization

General Chair

Dániel Varró Budapest University of Technology and
Economics (Hungary)

Program Chairs

Keith Duddy Queensland University of Technology
(Australia)

Gerti Kappel Vienna University of Technology (Austria)

Publication Chair

Manuel Wimmer Vienna University of Technology (Austria)

Publicity Chair

Philip Langer Vienna University of Technology (Austria)

Web Chair

Ludovico Iovino Università degli Studi dell’Aquila (Italy)

Steering Committee

Jean Bézivin University of Nantes (France)

Jordi Cabot INRIA-École des Mines de Nantes (France)
Martin Gogolla University of Bremen (Germany)
Jeff Gray University of Alabama (USA)
Zhenjiang Hu National Institute of Informatics Tokyo (Japan)
Juan de Lara Universidad Autónoma de Madrid (Spain)
Richard Paige University of York (UK)
Alfonso Pierantonio (Chair) Università degli Studi dell’Aquila (Italy)
Laurence Tratt King’s College London (UK)
Antonio Vallecillo University of Málaga (Spain)
Eelco Visser Delft University of Technology

(The Netherlands)

VIII Organization

Program Committee

Jordi Cabot INRIA-École des Mines de Nantes (France)
Antonio Cicchetti Mälardalen University (Sweden)
Tony Clark Middlesex University (UK)
Benôıt Combemale IRISA, Université de Rennes 1 (France)
Krzysztof Czarnecki University of Waterloo (Canada)
Juan de Lara Universidad Autónoma de Madrid (Spain)
Davide Di Ruscio Università degli Studi dell’Aquila (Italy)
Jürgen Ebert University of Koblenz-Landau (Germany)
Alexander Egyed Johannes Kepler University Linz (Austria)
Gregor Engels University of Paderborn (Germany)
Claudia Ermel Technische Universität Berlin (Germany)
Robert France Colorado State University (USA)
Jesús Garćıa-Molina Universidad de Murcia (Spain)
Dragan Gašević Athabasca University (Canada)
Martin Gogolla University of Bremen (Germany)
Jeff Gray University of Alabama (USA)
Esther Guerra Universidad Autónoma de Madrid (Spain)
Reiko Heckel University of Leicester (UK)
Zhenjiang Hu National Institute of Informatics Tokyo (Japan)
Marouane Kessentini Missouri University of Science and

Technology (USA)
Dimitris Kolovos University of York (UK)
Jochen Kuester IBM Research Zurich (Switzerland)
Ivan Kurtev University of Twente (The Netherlands)
Thomas Kühne Victoria University of Wellington

(New Zealand)
Leen Lambers Hasso-Plattner-Institut, Universität Potsdam

(Germany)
Tihamer Levendovszky Vanderbilt University (USA)
Ralf Lämmel University of Koblenz-Landau

(Germany)
Richard Paige University of York (UK)
Alfonso Pierantonio Università degli Studi dell’Aquila (Italy)
Ivan Porres Åbo Akademi University (Finland)
Werner Retschitzegger Johannes Kepler University Linz (Austria)
Bernhard Rumpe RWTH Aachen University (Germany)
Andy Schürr Darmstadt University of Technology

(Germany)

Organization IX

Steffen Staab University of Koblenz-Landau (Germany)
Jim Steel University of Queensland (Australia)
Perdita Stevens University of Edinburgh (UK)
Markus Stumptner University of South Australia (Australia)
Eugene Syriani University of Alabama (USA)
Jesús Sánchez Cuadrado Universidad Autónoma de Madrid (Spain)
Gabriele Taentzer Philipps-Universität Marburg (Germany)
James Terwilliger Microsoft Corporation (USA)

Massimo Tisi INRIA-École des Mines de Nantes (France)
Laurence Tratt King’s College London (UK)
Mark Van Den Brand Eindhoven University of Technology

(The Netherlands)
Pieter Van Gorp Eindhoven University of Technology

(The Netherlands)
Hans Vangheluwe University of Antwerp (Belgium) and

McGill University (Canada)
Eelco Visser Delft University of Technology

(The Netherlands)
Janis Voigtländer University of Bonn (Germany)
Hironori Washizaki Waseda University Tokyo (Japan)
Haiyan Zhao Peking University (China)
Albert Zündorf Kassel University (Germany)

Additional Reviewers

Al-Refai, Mohammed
Anjorin, Anthony
Arendt, Thorsten
Asadi, Mohsen
Bak, Kacper
Blouin, Arnaud
Bosnacki, Dragan
Branco, Moises
Brosch, Petra
Brüseke, Frank
Burgueño, Loli
Corley, Jonathan
Cosentino, Valerio
Dajsuren, Yanja
Dang, Duc-Hanh
Demuth, Andreas
Diskin, Zinovy
Dyck, Johannes
Ehrig, Hartmut

Engelen, Luc
Feuser, Johannes
George, Tobias
Golas, Ulrike
Gröner, Gerd
Hermann, Frank
Hildebrandt, Stephan
Hölldobler, Katrin
Horn, Tassilo
Iovino, Ludovico
Koch, Andreas
Lauder, Marius
Lindel, Stefan
Martens, Wim
Navarro Perez, Antonio
Rajan, Ajitha
Reder, Alexander
Scharf, Andreas
Schölzel, Hanna

X Organization

Schulze, Christoph
Seidl, Martina
Soltenborn, Christian
Sun, Wuliang
Truscan, Dragos

Varanovich, Andrei
Varró, Gergely
Wachsmuth, Guido
Wieber, Martin

Mining Models from Generated System Tests

Andreas Zeller

Saarland University
Saarbrücken, Germany

zeller@cs.uni-saarland.de

http://www.st.cs.uni-saarland.de

Abstract. Modern Analysis and Verification techniques can easily check
advanced properties in complex software systems. Specifying these mod-
els and properties is as hard as ever, though. I present techniques to
extract models from legacy systems based on dynamic analysis of auto-
matically generated system tests – models that are real by construction,
and sufficiently complete and precise to serve as specifications for testing,
maintenance, and proofs.

Table of Contents

New Programming Models

Streaming Model Transformations: Scenarios, Challenges and Initial
Solutions . 1

Jesús Sánchez Cuadrado and Juan de Lara

Genetic-Programming Approach to Learn Model Transformation Rules
from Examples . 17

Martin Faunes, Houari Sahraoui, and Mounir Boukadoum

Walk Your Tree Any Way You Want . 33
Anya Helene Bagge and Ralf Lämmel

Tools and Applications (Extended Abstracts)

On an Automated Translation of Satellite Procedures Using Triple
Graph Grammars . 50

Frank Hermann, Susann Gottmann, Nico Nachtigall,
Benjamin Braatz, Gianluigi Morelli, Alain Pierre, and
Thomas Engel

The Graph Grammar Library - A Generic Framework for Chemical
Graph Rewrite Systems . 52

Martin Mann, Heinz Ekker, and Christoph Flamm

Fragmented Validation: A Simple and Efficient Contribution to XSLT
Checking (Extended Abstract) . 54

Markus Lepper and Baltasar Trancón y Widemann

Model Querying with FunnyQT (Extended Abstract) 56
Tassilo Horn

Yet Another Three QVT Languages . 58
Edward Willink, Horacio Hoyos, and Dimitris Kolovos

Evolution and Synchronisation

A Methodological Approach for the Coupled Evolution of Metamodels
and ATL Transformations . 60

Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio

Metamodel-Specific Coupled Evolution Based on Dynamically Typed
Graph Transformations . 76

Christian Krause, Johannes Dyck, and Holger Giese

XIV Table of Contents

Robust Real-Time Synchronization between Textual and Graphical
Editors . 92

Oskar van Rest, Guido Wachsmuth, Jim R.H. Steel, Jörn Guy Süß,
and Eelco Visser

Transformation Engineering

Achieving Practical Genericity in Model Weaving through
Extensibility . 108

Max E. Kramer, Jacques Klein, Jim R.H. Steel, Brice Morin,
Jörg Kienzle, Olivier Barais, and Jean-Marc Jézéquel

A Rete Network Construction Algorithm for Incremental Pattern
Matching . 125

Gergely Varró and Frederik Deckwerth

Interactive Visual Analytics for Efficient Maintenance of Model
Transformations . 141

Andreas Rentschler, Qais Noorshams, Lucia Happe, and
Ralf Reussner

Checking Model Transformation Refinement . 158
Fabian Büttner, Marina Egea, Esther Guerra, and Juan de Lara

Testing

Complete Specification Coverage in Automatically Generated
Conformance Test Cases for TGG Implementations 174

Stephan Hildebrandt, Leen Lambers, and Holger Giese

Partial Test Oracle in Model Transformation Testing 189
Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and
Christian Attiogbé

Systematic Testing of Graph Transformations: A Practical Approach
Based on Graph Patterns . 205

Martin Wieber and Andy Schürr

Author Index . 221

Streaming Model Transformations:

Scenarios, Challenges and Initial Solutions

Jesús Sánchez Cuadrado and Juan de Lara

Universidad Autónoma de Madrid, Spain
{Jesus.Sanchez.Cuadrado,Juan.deLara}@uam.es

Abstract. Several styles of model transformations are well-known and
widely used, such as batch, live, incremental and lazy transformations.
While they permit tackling advanced scenarios, some applications deal
with models that are only available as a possibly infinite stream of ele-
ments. Hence, in streaming transformations, source model elements are
continuously produced by some process, or very large models are frag-
mented and fed into the transformation engine. This poses a series of
issues that cannot be tackled using current transformation engines. In
this paper we motivate the applicability of this kind of transformations,
explore the elements involved, and review several strategies to deal with
them. We also propose a concrete approach, built on top of the Eclectic
transformation tool.

Keywords: Model transformations, Streaming transformations,
Transformation engines, Scalability.

1 Introduction

Model-Driven Engineering (MDE) is increasingly being used to tackle problems
of raising complexity, in scenarios for which current model transformation tech-
nology was not originally conceived [6,27]. One such scenario is transforming
models that are only available as a stream of model elements. While data stream
processing has been investigated in the databases [1,20] and XML [15] technical
spaces, its application to MDE has been little investigated so far [10].

A streaming model transformation is special kind of transformation in which
the whole input model is not completely available at the beginning of the trans-
formation, but it is continously generated. Hence, it must be processed incremen-
tally, as elements arrive to the transformation process. For instance, if we aim at
processing tweets from Twitter, we can see tweets, users, hashtags, etc, as model
elements that are processed as they are generated by the Twitter users. This
model is indeed potentially infinite, and cannot be queried, matched or trans-
formed at once. Nevertheless, a streaming transformation is not only useful for
those cases in which the input model is inherently streamed and infinite, but it is
also a way to deal with large models by feeding a transformation process incre-
mentally, for instance to distribute a transformation, pipeline a transformation
chain, or to avoid overflowing the memory of a machine.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J.S. Cuadrado and J. de Lara

In this paper we report our findings on the elements and challenges involved
in streaming model transformations. We have looked into which features make
streaming transformations different from other types of transformations, and we
have identifed several challenges that must be tackled. Then we have explored
several strategies that can be used to deal with such challenges, and we have
implemented a concrete proposal into the Eclectic transformation tool [12]. The
paper is motivated and illustrated by means of a selected example that showcases
most of the elements of streaming transformations.

Organization. In Section 2, we analyse applicability scenarios for streaming
transformations. Section 3 introduces a running example, identifying challenges
to be tackled by streaming transformation engines. Section 4 deals with model el-
ement streams, Section 5 with transformation scheduling, and Section 6 with ar-
bitrarily large models and collections. Section 7 evaluates the proposal.
Section 8 reviews related research and Section 9 concludes.

2 Motivating Scenarios

The problems involved in data stream processing have been investigated in the
context of databases [1,20], XML [15] and the semantic web [2,24], where the
main applications are directed to querying, filtering and aggregating streamed
(sometimes unstructured) data. In contrast, model transformation techniques
unfold their potential when applied to scenarios in which there is a transfor-
mation problem involved, either to convert already structured data or to give a
model structure to unstructured data.

This difference in the applicability field implies that there is currently a lack
of concrete examples and usage scenarios for streaming model transformation,
which are needed to assess the potential of this new technique. For this reason
we begin by introducing some possible scenarios and concrete examples.

Processing natural streams. Some systems naturally generate data continously,
which might need to be transformed, e.g., for analysis or visualization. We dis-
tinguish two kinds of systems: (1) those which natively generate stream models
(data conforming to a meta-model) and (2) when the data does not conform to
a meta-model, but must be first converted to a model-based representation.

An example of (1) is the monitoring of a running system by generating model-
based traces of its execution. This will be used as our running example.

An example of (2) is applying streaming transformations to semantic sensor
web technologies [26]. This may include transforming native sensor data (e.g.,
temperature, precipitation) to the RDF format relating elements by Linked Data
URIs, then further manipulating it, for instance to add information coming from
other sources (e.g., amount of cars in a road segment) and to transform it to
some other formalism to perform predictions (e.g., traffic jams depending on the
weather conditions for certain road segments). As suggested in [25], data from
physical sensors can be enriched with data from social sensors, like tweets, taking

Streaming Model Transformations 3

advantage of their attached spatial and temporal information and some defined
microsyntax (like #hashtags, @usernames, subtags, or relations from predefined
vocabularies, like e.g., for weather or emergency conditions).

The usefulness of model transformations in this scenario is to facilitate the
implementation of stream-based applications in which there are an explicit or
implicit transformation task involved. The next scenarios apply the notion of
streaming data to solve problems in the model transformation domain.

Dealing with large models. An scalable solution to transform large models, is
to incrementally feed the transformation process with model fragments. As sug-
gested by [19], instead of loading a large model in memory and then transform
it all at once, the model is first split into meaningful parts, which are sent to
a stream. The transformation process deals with the elements of the stream in-
crementally, releasing resources as parts of the source model are transformed. In
some way, this imitates lazy transformations [27], but using a push approach.

As a concrete example, let us assume we are reverse engineering a Java model
into a KDM model [22]. The Java model would be available in some model
repository, and the abstract syntax model of each Java class could be streamed
separately (using lazy loading techniques [14]) to the transformation engine. The
engine would transform each class individually, discarding all source elements
and trace links no longer needed for transforming other classes (e.g., once a Java
expression has been transformed to KDM it can be discarded).

Distributed transformations. The idea of streaming transformation can be used
as a foundation to build distributed transformations. This is especially important
to integrate MDE services in the Cloud [6,7] since a large transformation could
use different physical resources depending on their availability. The underlying
idea is to replicate the same transformation in several execution nodes. Load
balancing techniques would then be used to stream disjoint parts of the input
model to such nodes. A shared repository could be used to store trace links and
the output models, although other advanced techniques of distributed systems
needs to be studied to improve scalability. Although this scenario is not addressed
in this paper, we believe that the techniques explained here are complementary
for developing distributed model transformations in practice.

Pipelining transformations. This scenario exploits the possibility of starting a
transformation (within a transformation chain) as soon as target elements are
generated by the previous transformation, in a similar way as Unix pipes. This
permits taking advantage of multi-core architectures, by scheduling the first
transformation in one core, and the subsequent transformations in different cores.

As an example, consider a parser that generates a concrete syntax model of
a Java system (i.e., a low-level Java model), which is then transformed into an
abstract syntax model (e.g., references between type definitions and type uses
are resolved), and then into KDM. Using streams, each transformation can begin
as soon as the previous one has finished processing a single Java class.

4 J.S. Cuadrado and J. de Lara

3 Running Example and Challenges

Assume we are interested in the reverse engineering of sequence diagrams from
the execution traces of a running object-oriented program. The example is an
adaptation of the one in [5], in which the actual transformation used to process
the execution traces and create the sequence diagrams is done off-line, after
having generated all the traces in a text file. In our case, the transformation
is on-line, that is, the sequence diagram is built as the execution traces are
generated, by means of a streaming transformation. This enables the run-time
monitoring of the system, and dealing with non-terminating systems.

MethodExecution

name : String

nodeId : Int

t imestamp : Int Instance

objectId : Integer

nodeId : Integer

receptor 1

Message

Instance

 1 1

 *

Operation

name : String

(b)(a)

caller 0..1

callee *

Local

Execution

Class

name : String

 class

Remote

Call

RemoteMethod

Execution

clientNodeId : Int

clientTimestamp : Int

Class

name : String

1

followingMessages

 {ordered}

source

target

1

{o rde red }

Fig. 1. (a) Trace meta-model (b) Sequence diagram meta-model (simplified)

The meta-models involved in the example are shown in Fig. 1. The trace
meta-model represents the execution of methods (MethodExecution), including
the information of which method performed the invocation, and the sequence of
future method executions performed by itself (caller and callee references). Also,
a method execution has a reference to the receptor instance. The meta-model is
directed to distributed applications (e.g., Java RMI applications), hence there
are three kinds of method executions: LocalExecution, normal method executions;
RemoteCall, for invocations in the client side (e.g., over a proxy obtained using
RMI); and RemoteExecution for the remote executions. Executions are identifed by
the nodeId and timestamp attributes. A remote execution records the clientNodeId

and clientTimestamp in order to identify the caller.
The sequence diagram meta-model represents messages from a source instance

to a target instance (note that the source and target are explicitly represented
by references, instead of by ids), and the sequence of messages that follows each
Message (reference followingMsgs).

Our aim is to specify streaming transformations using regular constructs of
rule-based model transformation languages. To illustrate the paper we have used
the Eclectic transformation tool [12]. In particular, we use the mapping language
which also allows attaching methods to metaclasses (helpers). The language can
be seen as a simplified version of ATL [17]. Fig. 2 shows the corresponding
transformation. Each LocalExecution is mapped to an Operation (lines 4-10). The
source and target instances of the message are obtained from the local context of
the call (i.e., the object in which the call is performed, a helper in lines 29–31)

Streaming Model Transformations 5

1 mapping trace2seqdiagram(trc) −> (seq)
2 trc : ’platform:/resource/example/trc.stream’
3

4 from exec : trc!LocalExecution
5 to msg : seq!Operation
6

7 msg.source <− exec.local context
8 msg.target <− exec.receptor
9 msg.followingMsgs <− exec.next executions

10 end
11

12 from exec : trc!RemoteMethodExecution
13 to msg : seq!Operation
14

15 msg.source <− exec.remote context
16 msg.target <− exec.receptor
17 msg.followingMsgs <− exec.next executions
18 end
19

20 from src : trc!Instance to tgt : seq!Instance
21 tgt.class <− src.class
22 end

23

24 from src : trc!Class to seq!Class
25 tgt.class <− src.class
26 end
27

28 // Start of helper methods
29 def trc!MethodExecution.local context
30 self.caller.receptor
31 end
32

33 def trc!MethodExecution.remote context
34 self.caller.caller.receptor
35 end
36

37 // Find those executions that happen in the context
38 // of the current execution, but not before (excerpt)
39 def trc!MethodExecution.next executions
40 trc!LocalExecution.allInstances.select { |me|
41 me.caller == self &&
42 me.timestamp > self.timestamp
43 }.union(...)
44 end

Fig. 2. Transforming traces to simplified sequence diagrams

and the receptor object. These bindings require rules that resolve the source in-
stance to target instances, which is done in lines 20-22. Classes are also mapped
(lines 24-26). Finally, the followingMsgs reference is filled by resolving those mes-
sages that correspond to the method executions calculated by the next executions

helper (lines 39–44), which basically retrieves all executions performed as part
of the execution of the current method (for simplicity only local executions are
considered here). A RemoteMethodExecution is mapped similarly (lines 12–18),
except that the source is obtained from remote context which access the actual
receptor object in the server side, and thus the client stub, which corresponds
to the first caller, must be skipped.

3.1 Challenges

From the transformation engine point of view, this is a simple transformation,
when applied in batch mode. However, it poses several challenges when the
source model is processed in streaming. We next review these challenges, using
the execution example shown in Fig. 3. The events are numbered in the order in
which they are received by the streaming transformation.

– Infinite model. The input model is potentially infinite, as a program may
be in execution indefinitely. The notion of infinite model has been studied
in [10]. Similarly, the trace model that keeps the correspondences between
source and target elements could also be infinite.
In the example, each time a method is invoked over a local instance, Meth-

odExecution, Instance and Class elements are created. They need to be trans-
formed as they arrive from the stream, generating the corresponding trace
links to allow bindings to be resolved (e.g., msg.target ← exec.receptor). As
the program generating the execution traces may be in execution for a long

6 J.S. Cuadrado and J. de Lara

class Company {

 @Remote

 PersistenceCtx ctx;

 void hire(Employee e) {

 e.setSalary(1000);

 ctx.save(e);

 }

}

class Employee {

 void setSalary(double i);

 void setCompany(Company c);

}

event #1 :MethodExec

name="hi re"

:Instance

objectId=1receptor

caller

:MethodExec

name="setSalary"

:Instance

objectId=2receptor

:RemoteCall

name="save"

nodeId=1

t imestamp=3

:Instance

objectId=1

 caller

event #4

:Class

name="Company"class

class

:Class

name="Employee"

class

:Class

name="Persist..."

:RemoteMethodExec

name="save

nodeId=2

clientNodeId=1

clientTimestamp=3

receptor

event #3

event #2

caller

Fig. 3. Execution example

time, strategies to reduce the amount of model elements and trace links are
needed to avoid overflowing the memory of the machine.

– Model element identity. Transformation engines rely on the object iden-
tities, e.g. to compare two objects for equality. In our case, fragments of
models can be streamed, and two or more fragments may contain the same
element, but with different in-memory object identity.

In the example, the processes generating the streammay create different Class
elements to represent the same class in the program being analysed (i.e., in
a distributed enviroment the same code is running in different machines).
This implies that object identity may be lost. Additionally, in a distributed
setting, a mechanism to serialize and deserialize fragments is needed.

– Dealing with references. A model fragment that is streamed may refer to
other fragments that have already been streamed or that may be streamed in
the future. Both cases are shown in the figure by the dashed arrows. Fragment
event #2 refers to fragment event #1 through the caller reference (same for
events #3 and #4). However, we do not want to emit all the elements of the
referenced fragment again, but just to refer to a particular element. Hence,
a mechanism to refer to elements in other fragments is needed.

– Transformation scheduling. In the example, obtaining the remote con-
text (through expression self.caller.caller.receptor, line 34), may be a blocking
operation since the caller may not be available when the rule is being pro-
cessed (see reference from event #3 to #4). Some mechanism is needed to
avoid stopping the execution of the whole transformation, and to resume the
rule execution when the expected element arrives.

In addition, rules must be executed as elements arrive, but the order is
unknown. Thus, a flexible rule scheduling mechanism is needed.

– Features with different semantics. Some features normally available in
model transformation languages are no longer adequate or their semantics
has to be changed. An example is “all instances of”, whose usual semantics
is not valid in this context. This is so as all objects of a certain class cannot
be generally available at a certain moment, either because they still need to

Streaming Model Transformations 7

arrive, or perhaps they have been discarded. Other features such as iterators
on collections like select also need to be adapted, as proposed in [10].
In the example, to obtain the executions that follows the current one (lines
40–43), the allInstances construct must be used. In both cases, a mechanism to
process the elements as they appear are needed. In the case of allInstances an
strategy to avoid dealing with a possibly infinite collection is also necessary.

As can be observed, streaming model transformations are an essentially differ-
ent problem from other scenarios, such as live/change-driven [4] and incremental
transformations [18,16], in which the aim is to change the model (source model
for in-place transformations, or target model for model-to-model transforma-
tions) as a response to changes in the source model. In our case the only change
is the generation of new elements, but the source model can be infinite.

4 Specifiying Model Streams

A streaming transformation deals with model fragments that are continously
made available. Hence, it is necessary to describe their characteristics so that
the transformation engine can deal with them transparently.

In our approach, the streaming unit is themodel fragment, made of one or more
model elements which may have intra-fragment references (both containment and
non-containment) and inter-fragment references (only non-containment, because
the ultimate goal of them is to refer to an element not defined in this fragment).

Model fragments may need to be serialized if they are to be sent to the machine
where the transformation is being executed. Thus, when creating and receiving
a fragment, there are two main elements to take into account: model element
identity and references. We have defined a small DSL to specify these features,
among others. The stream description for the running example is shown in the
following listing.

1 stream ”dynamic trace.ecore”
2 // Defining keys: simple, multiple, custom
3 key(Class) = name
4 key(Instance) = objectId, nodeId
5 key(MethodExecution) = { self.name + ” ” +
6 self.nodeId + ” ” + self.timestamp }

7 // inter−references
8 ref(MethodExecution.caller)
9 // Sliding windows

10 sliding for MethodExecution = 200 secs
11 sliding for Instance = 1000 elements

Model element identity. In the general case we cannot rely on plain object iden-
tity to compare model elements, as the elements of the stream may have been
generated by a machine different from where the transformation is executed, as
it is the case of the running example. This requires using the properties of the
model elements to identify the objects (i.e., rely on value identity), similar to
keys in the case of QVT-Relations [23]

Hence, we allow the key of an element to be specified in the stream description.
Keys can be either simple, or composed of several attributes, or generated by an
expression (lines 4, 5 and 6-7 respectively). Each time two elements of the same
type are compared, the key value is used if a key has been specified. If the whole
stream is generated in a single machine, the object identifier in this machine can
be attached to each object prior to serialization.

8 J.S. Cuadrado and J. de Lara

Inter-fragment references. Our approach for inter-fragment references is based
on creating a proxy per each referenced element. We do not rely on any par-
ticular technology, but we just create a new element (the proxy), of the same
type as the referenced element, setting its key attributes (or attaching a “Mem-
oryId” annotation). The advantage is that, from the serialization point of view,
inter-fragment references are not cross-references but just an annotation indi-
cating that an element is a proxy, making it straightforward to implement and
meta-modeling framework agnostic.

Upon arrival, our transformation engine replaces the proxy with the actual
element if it was streamed before. To this end, the engine internally uses an
associative table to keep the relationship between keys and actual elements. The
case in which the actual element arrives after a proxy needs a special treatment,
as discussed in Section 5.3.

In the DSL we allow specifying which references may hold a proxy (line 8).
While this is not compulsory, we use this information to optimize the lookup
and the replacement of proxies for the actual elements.

5 Transformation Scheduling

Our approach to schedule streaming transformations builds on our previous work
using continuations to schedule batch model transformations [11,12], extended to
consider the streaming setting, that is, rules fed incrementally by stream events
and partial execution of navigation expressions. Our Eclectic transformation tool
relies on an intermediate language, called IDC (Intermediate Dependency Code),
to which high-level languages are compiled to.

IDC is a simple, low-level language composed of a few instructions, some of
them specialized for model manipulation and transformation scheduling. IDC is
compiled to the Java Virtual Machine (JVM). Fig. 4(a) shows an excerpt of its
meta-model. Every instruction inherits from the Instruction abstract metaclass.
Since most instructions produce a result, they also inherit from Variable (via
InstructionWithResult) so that the produced result can be referenced as a variable.

The IDC language provides instructions to create closures, invoke methods,
create model elements and set and get properties (Set and Get in Figure 4),
among others. In IDC, there is no notion of rule, but the language provides a
more general mechanism based on queues. Compilers for high-level languages
are in charge of mapping actual rules to queues. A Queue holds objects of some
type, typically source model elements and trace links. The ForAllIterator receives
notifications of new elements in a queue, and executes the corresponding instruc-
tions. There are two special instructions to deal with queues: Emit puts a new
object into a queue, while Match retrieves an element of a queue that satisfies
a given predicate. If such an element is not readily available, the execution of
this piece of code is suspended into a continuation [9] until another part of the
transformation provides the required value via an Emit.

In the following we discuss, in the context of IDC, the elements involved to
schedule a streaming model transformation.

Streaming Model Transformations 9

Set

property : String

receptor: Variable

value : Variable

Instruction

Variable

name : String

Get

property : String

receptor: Variable

TypeQueue

 1

Instruction

WithResultEmit

value : Variable

ForAll

Iterator
*

Match

pred : Predicate

0..1 type

1 1

1. Queue q1 : trc!RemoteMethodExec

2. ForAll exec in q1

 2.1 create msg : seq!Message

 2.2 create lnk : Link(src=exec, tgt=msg)

 2.3 emit lnk to TraceQueue

from trc!RemoteMethodExecution

 to seq!Message

1

type

b) Compilation examplea) IDC meta-model

ModelQueue Suspended

proxies

1. o = get exec, "receptor"

2. match TraceQueue

 exists lnk / lnk.src = o

3. set tgt, "class", lnk.tgt

self.caller.caller.receptor

1. tmp1 = get self, "caller"

2. tmp2 = get tmp1, "caller"

3. get tmp2, "receptor"

1)

2)

3)

msg.target <-exec.receptor

Fig. 4. (a) Excerpt of the IDC meta-model, (b) Compilation example between the
Eclectic mapping language and IDC

5.1 Feeding Transformation Rules

Each time a new model fragment arrives, the source pattern of the transforma-
tion rules must be evaluated to trigger a rule if there is a match. Figure 4(b.1)
shows how the rule to transform RemoteMethodExecutions is compiled to IDC.
We create one queue per each type in the source pattern, and a ForAllIterator

instruction which acts as a closure that is invoked each time a new element in
the queue appears. In the example, a new Message element is created, as well as
the corresponding trace link which is sent (via the emit instruction) to a default
queue which is in charge of processing trace links (TraceQueue).

This mechanism permits the execution of rules on demand, as queues are
filled. ForAllIterator instructions can be nested allowing complex patterns to be
detected, and, as we will see in Section 6.1, our queues have “memory” (they
have a sliding window), which is needed to allow the nesting of iterators.

In contrast to batch transformations, we needed to check that the rule has not
been applied before for the current element, since an element with the same key
may have arrived before. To this end we have an index with the received model
elements, which is checked before feeding a queue. As explained in Section 3.1
this is the case with Class elements.

5.2 Resolving Source-Target Relationships

A common operation in model-to-model transformations is to retrieve a target
element from a source one already transformed by some rule. In the example
this is achieved using a binding construct, such as msg.target ← exec.receptor.

We compile a binding as shown in Figure 4(b.2). (1) The expression to the
right is compiled using regular model manipulation instructions, a Get in this
case. Then, (2) the source element resulting from evaluating the expression, o,
is used to match a trace link in the TraceQueue whose source is precisely o. If
such trace already exists (i.e., it has been previously added with an Emit, as in
Figure 4(b.1)), it is immediately retrieved. If not, the execution of the rule is

10 J.S. Cuadrado and J. de Lara

stopped, and a request is placed in the queue so that the rule is resumed when
some Emit instruction generates the trace link satisfying the request.

This approach has the advantage of its flexibility, since rules can be matched
and applied in any order. In a streaming setting, rules can be matched and
executed as elements arrive: if a binding needs a source element that has not
been processed yet, the rule will wait, letting other rules start their execution.

5.3 Evaluating Expressions

When evaluating a navigation expression over a streamed model it may happen
that part of the navigation path is not available yet. In our approach this can
be detected because the result of getting a property is a proxy object. Thus, the
evaluation of the expression must be suspended until the real object arrives. This
may in turn suspend the rule that depends on the evaluation of the expression.

We use a similar approach as for resolving trace links, applied to change the
semantics of the Get instruction to deal with incomplete models. It is worth not-
ing that this design is transparent to the high-level language, which see property
access as a regular Get, as illustrated in the compilation example of Figure 4(b.3).

The process is as follows. Given an instruction such as get self, “caller” we check
whether the receptor object or the result of the instruction is a proxy, and we
try to resolve the proxy with one of the already streamed elements. If not, the
evaluation of the expression is suspended into a continuation, placing a request
in a queue (Suspended proxies). Later, as new objects arrive they are passed
to this queue, to check if some of them satisfies one or more of the enqueued
requests, in order to resume the suspended Get instruction.

6 Infinite Models

Streaming model transformations deal with possibly very large models, whose
size is unknown. This requires strategies to reduce the memory footprint of the
transformation process. Besides, the fact that the whole model is unknown from
the beginning implies that some collection operations must be adapted to the
new setting. In this section we present our approach to both issues.

6.1 Reducing Memory Footprint

Model transformation engines typically keep the source model, the target model
and the traceability links in main memory. In many practical scenarios this is
the best alternative, but when the source model is expected to be very large,
alternative strategies to reduce the memory footprint are needed. So far, we have
considered two approaches: sliding windows and using secondary storage.

Sliding windows. A direct mechanism to deal with an infinite data stream is
to use a sliding window. In our setting, both source elements and trace links
outside the window will be discarded. As noted in [1], this is an approximation

Streaming Model Transformations 11

mechanism that may produce an incomplete target model, although in some
scenarios it is acceptable to assume this limitation.

In our approach sliding windows are specified with the DSL (see lines 10–11
in the example). There are two types: windows based on time (e.g., 200 seconds)
and on a number of elements of a given type (e.g., 1000 elements). A sliding
window works in a “first-in, first-out fashion”, so that the first element that
arrived is the first element to be discarded when the window must be “moved”.
When a source element is discarded, any other data structure that refers to it
must be discarded as well. In our case, they are the trace links, the continuations
created with a Match that expects a trace link with such source element, and the
index keeping the already streamed objects by key.

Please note that, when defining the windows, it is important to consider the
expected amount of data for each type. In the example we decided never discard
Class objects, as the number of classes in a system is limited.

Using secondary storage. If we want to guarantee that all bindings and proxies
are resolved (provided the corresponding elements are eventually streamed), a
solution would be to resort on a model repository, such as Morsa [14], to store all
or part of them. The main problem is that accessing the repository may slowdown
the transformation execution. Hence, this strategy may be practical depending
on the pace of stream, and therefore it will be best suited for a distributed
scenario in which load balancing is possible (see Section 2).

As an optimization we would like to use asynchronous I/O for accessing sec-
ondary storage. This approach fits naturally in our continuation-based schedul-
ing algorithm, since the access to the repository can be scheduled in a different
thread, storing the rule execution into a continuation, and so other elements in
the stream can be processed. When the repository provides the result, the rule
is seamlessly resumed.

6.2 Collection Operations

The implementation of collection operations such as select, collect, or allInstances

need to be adapted to take into account that the source model is not completely
available from the beginning. In our setting, this problem can be seen as a
simplification of the incremental evaluation of OCL expressions, in which there
are only addition events (elements are not deleted).

There are several approaches proposed in the literature [18,16,4], but we have
adapted and implemented the active collection operations proposed in [3] into
our transformation engine. For space reasons we just outline some of its elements.
Fig. 5 shows the API of our implementation.

We have added two extensions to the original ImmutableList type of IDC:
ActiveGenerator and ActiveOperation. The former is a collection in which elements
are initially injected from the stream. The ActiveAllInstances is connected to a
model queue that provides elements of the corresponding types as they arrive
(e.g., MethodExecution.allInstances), whereas ActiveGet is used to retrieve elements
from a multiple-valued feature (e.g., self.callee).

12 J.S. Cuadrado and J. de Lara

ActiveOperation

next(Object o)

Active

AllInstances

ModelQueue

Active

Select

ImmutableList

add(Object o) : ImmutableList

select(Closure cond) : ImmutableList

union(ImmutableList) : ImmutableList

ActiveGet

receptor : Object

feature : String

ActiveGenerator

ActiveSource

register(ActiveOperation op)

unregister(ActiveOperation op)

Active

Union

ActiveSet

receptor : Object

feature : String

src 1

 1 queue

Fig. 5. Excerpt of the API of our active collection operations implementation

The second extension reifies collection operations as classes (ActiveOperation

and operation subclasses such as ActiveSelect and ActiveCollect), so that an oper-
ation is kept active as an object that receives events through a source. A source
is represented by the ActiveSource interface, which permits registering and dereg-
istering an ActiveOperation. Given an expression such as the one in lines 39–44 in
Fig. 2, a tree of active operations is constructed. When an element arrives, it is
propagated from an active generator to the root.

Currently, we do not permit operations such as size or indexOf, as their
semantics cannot be naturally aligned to a streaming setting. Finding out an
aproppriate semantics for these operations is left for future work.

7 First Results and Evaluation

We have implemented a proof of concept streaming model transformation engine
on top of the Eclectic transformation tool1 [12], using the techniques presented
in the previous sections. To evaluate our approach we carried out three initial
experiments 2, which stress different elements of our approach (corresponding to
three scenarios explained in Section 2).

Natural streaming. We used the running example to test the first versions of
our implementation. Then, we built a simulator to generate execution traces
indefinitely, to feed the transformation. The mechanisms proposed in the paper
allowed us to keep the simulator running for some time, using different sizes
of sliding windows and available memory (from 24 MB to 256 GB, generating
between 10.000 and 100.000 execution traces).

Dealing with large models. We injected into the Morsa repository [14] the models
provided in the Grabats 2009 contest 3. They represent Java projects (conforming
to the Eclipse JDT meta-model) ranging from 70,000 to 500,000 elements (only
injecting the largest model requires a setting with 3 GB RAM). To test the

1 Source code and examples are at http://sanchezcuadrado.es/projects/eclectic
2 We have run the tests in an Intel i7 Quad Core, with 8 GB RAM, configuring the
JVM with different heap sizes (up to 2GB).

3 http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study

http://sanchezcuadrado.es/projects/eclectic
http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study

Streaming Model Transformations 13

possibility of dealing with such large models, we implemented a transformation
from JDT models to KDM. It transforms classes, methods, fields and resolve
types, and therefore only parts of the source model needs to be in memory at
a given time. We used the load-on-demand facility of Morsa to incrementally
feed the transformation, which allowed us to transform even the largest model
(requiring 2 GB RAM, taking 16 minutes).

Pipelining transformations. We implemented a simple pipeline with two pro-
cesses. The first process was in charge of parsing individual Java files into an
AST (using the JDK’s parser). The AST representing each class was then trans-
formed into the MoDisco Java meta-model. In this case we have considered
compilation units, classes and methods, and the inheritance reference between
classes. We compared the execution time of performing the transformation in
batch mode (parsing all models at once and then transforming) against schedul-
ing the transformation two threads: parsing and transforming. Our streaming
approach premits that, as soon as the parsing thread generates the AST of a
file, it is passed to the transformation thread. We have tested with projects be-
tween 2,000 and 15,000 Java files (roughly 30,000 and 300,000 objects), and our
results showed an speedup between 10% and 15% for the threaded approach.
Even more, if we manually release resources not needed for subsequent execu-
tions (compilation units and method declarations in this case), speedup increases
upto 10%, and memory footprint decreases 25%. As future work we aim at au-
tomatically identifying in which case resources can be safely released.

All in all, this initial evaluation shows the feasability of the approach, but
more work is still required. For instance, this experience taught us that we had
a few memory leaks which become very relevant in this setting, and that a
mechanism to discard parts of the target model or to incrementally store it in a
model repository is needed if the target model grows too large. Another future
line of work is to evaluate how Event Stream Processing engines, such as Esper4,
could be used as a backend for the transformation engine.

8 Related Work

Data stream processing has been investigated in the database community,
proposing extensions for SQL and mechanisms for sliding windows, sampling and
summarization [1]. Adapting query language designs and sliding windows
implementation techniques is particularly interesting for our case [20,21].

Works dealing with the processing of XML are also focussed on providing query
facilities [15] or in the case of XLST, simple transformations (in-place substitu-
tion). Notably, STX is a variant of XSLT intended for streaming transformations
of XML documents, based on SAX events instead of DOM [8]. These approaches
could be used to complement our work, in the pattern matching phase, which we
have currently implemented just by nesting forall iterators.

4 http://esper.codehaus.org/

http://esper.codehaus.org/

14 J.S. Cuadrado and J. de Lara

Proposals such as the semantic sensor web technologies [26] requires processing
streamed semantic data, typically in the form of RDF triples, which can be
queried with SPARQL extensions [13]. As noted in Section 2 our approach could
be applicable to this context to data format transformations and to integrate
data from heterogenous sources.

In [10] the authors provide a formal foundation for infinite models, as well as a
redefinition of some OCL operators to tackle infinite collections using coalgebra.
They identify transformations of such infinite models as a challenge. Lazy model
transformations [27] somehow deal with the converse scenario we tackle here:
on-demand generation of the target model. This scenario is useful if only some
part of the generated model is needed, which is produced on-demand. That
is, target elements are only produced when they are accessed. Change-driven
transformations [4], incorporate the notion of change (in the source model) as
a first-class concept in transformation languages. While this approach can be
used to implement, e.g., incremental transformations, our approach enables the
uniform specification of transformations, as if they were designed for a batch
scenario, but are applicable for streaming data.

Techniques for incremental transformations are closely related [16,18], but
taking into account that in our case just additions need to be considered. Thus,
we have used continuations to schedule the transformation execution [11,12] and
active collection operations [3] to implement infinite collections.

9 Conclusions and Future Work

In this paper we have presented our approach to streaming model transforma-
tions. We have motivated the problem by presenting four applicability scenarios,
and providing a complete example. From the example we have derived the set of
challenges that has driven our proposal, which includes mechanisms for specify-
ing model fragments, transformation scheduling and dealing with infinite mod-
els. Our first experiments show promising results, not only to deal with natural
streams, but also to deal with large models and to take advantage of multi-
core architectures. Additionally, we contribute a prototype implementation for
the Eclectic transformation tool. To the best of our knowledge, this is the first
model transformation engine with this capability.

As future work, we plan to perform further experiments, and to improve our
implementation, for instance to allow the incremental store of the target model in
a model repository and to take advantage of asynchronous I/O. Finally, we aim
at using streaming transformations to implement distributed transformations.

Acknowledgements. This work was funded by the Spanish Ministry of
Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D
programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).

Streaming Model Transformations 15

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS, pp. 1–16. ACM (2002)

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Record 39(1), 20–26 (2010)

3. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.-M.: Active operations on
collections. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 91–105. Springer, Heidelberg (2010)

4. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transformations
- change (in) the rule to rule the change. SoSyM 11(3), 431–461 (2012)

5. Briand, L., Labiche, Y., Leduc, J.: Toward the reverse engineering of uml sequence
diagrams for distributed java software. IEEE TSE 32(9), 642–663 (2006)

6. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: MDA4ServiceCloud 2010 Workshop at ECMFA 2010 (2010)

7. Cauê Clasen, M.T.: Marcos Didonet Del Fabro. Transforming very large models in
the cloud: a research roadmap. In: Workshop on MDE on and for the Cloud (2012)

8. Cimprich, P.: Streaming transformations for xml (stx) version 1.0 working draft
(2004), http://stx.sourceforge.net/documents/spec-stx-2004070.html

9. Clinger, W.D., Hartheimer, A., Ost, E.: Implementation strategies for first-class
continuations. Higher-Order and Symbolic Computation 12(1), 7–45 (1999)

10. Combemale, B., Thirioux, X., Baudry, B.: Formally defining and iterating infinite
models. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 119–133. Springer, Heidelberg (2012)

11. Cuadrado, J.S.: Compiling ATL with Continuations. In: Proc. of 3rd Int. Workshop
on Model Transformation with ATL, pp. 10–19. CEUR-WS (2011)

12. Sánchez Cuadrado, J.: Towards a family of model transformation languages. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 176–191. Springer,
Heidelberg (2012)

13. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Int. Sys. 24(6), 83–89 (2009)

14. Espinazo Pagán, J., Sánchez Cuadrado, J., Garćıa Molina, J.: Morsa: A scalable
approach for persisting and accessing large models. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 77–92. Springer, Heidelberg
(2011)

15. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst. 29(4), 752–788 (2004)

16. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Wang, J., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

17. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1), 31–39 (2008)

18. Jouault, F., Tisi, M.: Towards incremental execution of atl transformations. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 123–137. Springer,
Heidelberg (2010)

19. Kolovos, D.S., Paige, R.F., Polack, F.: The grand challenge of scalability for model
driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421,
pp. 48–53. Springer, Heidelberg (2009)

http://stx.sourceforge.net/documents/spec-stx-2004070.html

16 J.S. Cuadrado and J. de Lara

20. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Trans. Database Syst. 34(1) (2009)

21. Law, Y.-N., Wang, H., Zaniolo, C.: Relational languages and data models for
continuous queries on sequences and data streams. ACM Trans. Database
Syst. 36(2), 8 (2011)

22. KDM, v1.0, http://omg.org/spec/KDM/1.0
23. OMG. QVT, v1.1 (2011), http://www.omg.org/spec/QVT/1.1/
24. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data processing.

In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487,
pp. 245–289. Springer, Heidelberg (2012)

25. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: WWW, pp. 851–860. ACM (2010)

26. Sheth, A.P., Henson, C.A., Sahoo, S.S.: Semantic sensor web. IEEE Internet
Computing 12(4), 78–83 (2008)

27. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Lazy execution of model-to-model
transformations. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 32–46. Springer, Heidelberg (2011)

http://omg.org/spec/KDM/1.0
http://www.omg.org/spec/QVT/1.1/

Genetic-Programming Approach to Learn Model

Transformation Rules from Examples

Martin Faunes1, Houari Sahraoui1, and Mounir Boukadoum2

1 DIRO, Université de Montréal, Canada
2 Université du Québec à Montréal, Canada

Abstract. We propose a genetic programming-based approach to
automatically learn model transformation rules from prior transforma-
tion pairs of source-target models used as examples. Unlike current
approaches, ours does not need fine-grained transformation traces to pro-
duce many-to-many rules. This makes it applicable to a wider spectrum
of transformation problems. Since the learned rules are produced directly
in an actual transformation language, they can be easily tested, improved
and reused. The proposed approach was successfully evaluated on well-
known transformation problems that highlight three modeling aspects:
structure, time constraints, and nesting.

1 Introduction

The adoption of new technologies generally follows a recurrent cycle described
by Moore in [16]. In this cycle, user categories adopt a technology at different
moments depending on their profiles and the technology’s maturity. Moore iden-
tified the move from the early adopters category to the early majority category
as the gap that is the most difficult to cross and in which many technologies
spend a long time or just fail. Model Driven Engineering (MDE), as a new tech-
nology that changes considerably the way we develop software, does not escape
this observation. MDE received much attention in recent years due to its promise
to reduce the complexity of the development and maintenance of software appli-
cations. However, and notwithstanding the success stories reported in the past
decade, MDE is still at the early-adopters stage [15]. As mentioned by Selic1, in
addition to the economic and cultural factors, the technical factors, particularly
the difficulty of automation, represent major obstacles for MDE’s adoption.

Automation is a keystone and a founding principle of the MDE paradigm.
According to Schmidt, MDE technologies combine domain-specific modeling lan-
guages with transformation engines and generators to produce various software
artifacts [21]. By automating model-to-model and model-to-code transforma-
tions, MDE fills the conceptual gap between source code and models, and en-
sures that models are up to date with regards to the code and other models. In
recent years, considerable advances have been made in modeling environments

1 Bran Selic, “The Embarrassing Truth About Software and Automation and What
Should be Done About It”, Keynote talk, ASE 2007.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 M. Faunes, H. Sahraoui, and M. Boukadoum

and tools. However, in practice, automated model transformation and code gen-
eration has been restricted to niche areas such as database mapping and data-
intensive-application generation [15]. To address this limitation, a large effort has
been made to define languages for expressing transformation rules (e.g., ATL [9])
to make the writing of transformation programs easier.

Having a good transformation language is only one part of the solution; the
most important part is to define/gather knowledge about how to transform
any model conforming to a particular metamodel into a model conforming to
another metamodel. For many problems, this knowledge is incomplete or not
available. The difficulty of writing transformation rules is the main motivation
behind the research on learning transformation rules from examples. Although
the idea goes back to the early nineties, the first concrete work on Model Trans-
formation by Example (MTBE) was proposed by Varro in 2006 [24]. MTBE’s
objective was to derive transformation programs by generalizing concrete trans-
formations found in a set of prototypical examples of source and target models.
Since then, many approaches have been proposed to derive the transformation
rules (e.g., [22,1,6,4,12,20]) or to transform a model by analogy with transformed
examples [10].

Still, the existing MTBE approaches only solve the problem of rule deriva-
tion partially. Most of them require detailed mappings (transformation traces)
between the source and target model examples [1], which are difficult to pro-
vide in some situations; others cannot derive rules that test many constructs in
the source model and/or produce many construct in the target model, many-
to-many rules [22], a requirement in complex transformation problems. A third
limitation is the inability of some approaches to automatically produce complex
rule conditions to define precise patterns to search for in the source model [20].
Finally, some approaches produce abstract, non-executable rules that have to be
completed and mapped manually to an executable language [4].

In a previous work [5], we proposed a preliminary approach for the derivation
of complex and executable rules from examples without the need of transfor-
mation traces. The approach was inspired from genetic programming (GP) and
exploits GP’s ability to evolve programs in order to improve their capacity to
approximate a behavior defined by a set of valid pairs of inputs/outputs. The ap-
proach was quantitatively evaluated on the transformation of class diagrams to
relational schemas. Although 75% of the model constructs were correctly trans-
formed, many key transformation rules were not derived or only derived partially.
In this paper, we propose an improved version of the algorithm with new ways
of solution initialization, new program derivation from existing ones, and pro-
gram evaluation. This new version is evaluated on two transformation problems
that cover three important software modeling characteristics: structure, time
constraints, and nesting. In the first problem, the transformation of class dia-
grams to relational schemas, we test the ability of our approach to handle the
transformation of structural models. Time-constrained-model transformation is
considered in the second case study through the problem of sequence diagrams
to state charts. In this problem, the derived transformation should preserve the

Genetic-Programming Approach to Learn Model Transformation Rules 19

time constraints between the constructs. Our second case study also handles the
complex problem of nested-sequence-diagrams to state-charts transformation. In
this case, the transformation control is non trivial as the rules should transform
the nested elements before those that contain them. The obtained quantitative
and qualitative results show that our approach allows the derivation the correct
transformation rules for both problems.

2 Learning Rules from Examples

Our goal is to define a transformation-rule derivation process that may apply
to a wide range of transformation problems. To this end, our approach should
work even if fine-grained transformation traces are not available. Additionally,
constraints on the shape or size of the rules should be as limited as possible.
This includes the numbers of source and target-construct types and the nature
of rule conditions. Finally, the produced rule sets must be executable without a
manual refinement step.

2.1 Rule Derivation as an Evolutionary Process

Transformation rules are programs that analyze certain aspects of source models
given as input and synthesize the corresponding target models as output [21].
Learning complex and dynamic structures such as programs is not an easy
task [2]. Of the possible tools that can be used for automatic programs gen-
eration, Genetic Programming (GP) [13] is a strong contender for supremacy
as it was originally created for the purpose. This motivated our investigation
of GP to automatically derive rule sets, i.e., declarative programs, using exam-
ples of models transformations, i.e., complex inputs/outputs. GP draws inspira-
tion from Darwinian evolution and aims to automatically derive a program to
solve a given problem, starting from some indications about how the problem
should be solved. These usually take the form of input and output examples, and
the derivation process is done by iteratively improving an initial population of
randomly-created programs, i.e., by keeping the fittest programs for reproduc-
tion at each step, the reproduction being made by means of genetic operators
similar to those observed in nature. The typical GP cycle is sketched in Figure 1.

Before, starting the evolution process, the user must have a set of example
pairs describing the expected program behavior in the form of <input, output>.
The user must also define a way to encode and create the initial population of
random programs. Finally, a mechanism is needed to run the programs on the
provided inputs and compare the execution results with the expected outputs.
This is typically done by defining a fitness function that evaluates the closeness
between the produced and expected outputs.

To apply GP to the MTBE problem, we have to consider two issues. First,
transformation rules are not imperative programs and cannot be encoded as trees
as usually done in GP [13]; second, the outputs of transformations are models
(usually graphs) that are not easy to compare for evaluating the correctness of

20 M. Faunes, H. Sahraoui, and M. Boukadoum

Fig. 1. A typical GP cycle

a program. In the following subsections, we detail our adaptation of the GP
algorithm to the specific problem of MTBE. Note that, for our investigation,
we decided to use a simple metamodeling language to describe the metamod-
els and a generic rule language/engine JESS [8] for the writing and execution
of transformation rules. This decision was made to separate, in a first phase
of this research project, the intrinsic complexity of MTBE from the acciden-
tal complexity of conformance to standards and interoperability concerns. The
mapping between JESS and a transformation language such as ATL is pretty
easy to perform since both languages offer similar features such as declarative
and imperative structures as well as control mechanisms.

2.2 Encoding Rule Sets

Typical transformation problems require a set of transformation rules to cover all
the patterns in the source models. A program p is accordingly encoded as a set
of transformation rules, p = {r1, r2, ..., rn}. Each transformation rule ri is in turn
encoded as a pair ri = (SP, TP), whereSP is the pattern to search for in the source
model and TP is the pattern to instantiate when producing the target model.

Source Pattern. A source pattern SP is a pair SP = (SGC,G), in which SGC is
a set of generic source constructs and G is a guard. A generic source construct is
the specification of an instance of a construct type that has to be matched with
concrete constructs in the source model. For example, in the rule of Listing 1.1,
SGC = {C,A, S}, where C, A and S represent respectively a class, an attribute,
and an association. SGC could include more than one generic construct from the
same construct type, e.g., two classes and an association. Each generic construct
has the properties of its construct type in the source metamodel. When matched
with a concrete construct from the source model, these properties take the values
of the latter. For instance, an attribute A has its name (descriptive property)
and the name of the class it belongs to (join property) as properties. During
execution, the value of a property can be accessed as shown in Listing 1.1, e.g.,
A.name and A.class.

The guard G contains two types of conditions: join conditions and state con-
ditions. Join properties are used to define the set of join conditions, which al-
low to specify a source pattern as a model fragment, i.e., a set of interrelated
constructs according to the metamodel. For example, in the rule of Listing 1.1,
the join condition A.class = C.name states that A should be an attribute of

Genetic-Programming Approach to Learn Model Transformation Rules 21

class C whereas S.classFrom = C.name restricts the pattern to only classes
that are at the origin of associations.

Listing 1.1. Rule encoding example

Source pattern:

// Generic source element

Class C, Attribute A, Association S

// Guard: Join condition

(and (A.class = C.name) (S.classFrom = C.name))

// Guard: State condition

(and (S.maxCardFrom < 1) (S.maxCardTo > 1))

Target pattern:

// Generic target element

Table T, Column O

// Bindings

T.name := C.name

O.name := A.name

// Join -statement

O.table = T.name

State conditions involve the properties of the generic source constructs (both
join and descriptive ones). They are encoded as a binary tree containing elements
from terminal (T) and primitive (I) sets. T is the union of the properties of the
constructs in SGC and a set of constants C. For the rule of Listing 1.1, the prop-
erties are C.name, A.name, A.class, S.classFrom, S.classTo, S.MaxCardFr,
S.MaxCardTo, etc. As the properties are numbers and strings, numeric and
string constants such as {0, 1, Empty, ...} are added to the terminals. As condi-
tions are manipulated, the Boolean constants true and false are also added. The
set of primitives I is composed minimally of logical operators and comparators
(I = {and, or, not,=, >,<, ...}). Other operators, such as arithmetic or string
operators, could be added to test values derived from the basic properties. Since
this work uses the concrete rule language JESS [8], the conceptual distinction
between join and state conditions is not reflected in the actual code. Both types
of conditions form the condition tree with terminals as leaf nodes and primitives
as the other nodes. A rule without any condition will be represented by a tree
with the single node “true”. A rule is fired for any combination of instances for
which the condition tree is true.

Target Pattern. The target pattern TP is a triple TP = (TGC,B, TJ), where
TGC, B and TJ represent respectively a set of generic target constructs, a set of
binding statements, and a set of join statements. A generic target construct spec-
ifies a concrete construct to create in the target model when the rule is fired. In
the example of Listing 1.1, two constructs are created: a table T and a column
O. The set of bindings B determines how to set the property values of the cre-
ated constructs with the property values of the constructs that match the source
pattern. In Listing 1.1, the created table and column will respectively have the
same names as the selected class and attribute. Finally, the join statements TJ
allow to connect the created constructs to form a fragment in the target model.

22 M. Faunes, H. Sahraoui, and M. Boukadoum

In the example provided, column O is assigned to table T . The join statements
must conform to the target metamodel.

2.3 Creating Rule Sets

As stated in Section 2.1, deriving transformation rules using genetic program-
ming requires the creation of an initial population of random rule sets. Each
rule set has to be syntactically correct with respect to the rule language (JESS
in this work). Moreover, a rule set should be consistent with the source and
target metamodels. In this respect, rules should describe valid source and target
patterns. For the initial population, a number of rule sets nrs is created (nrs is
a parameter of the approach). The number of rules to create for each rule set is
selected randomly from a given interval. For each rule, we use a random com-
bination of elementary model fragments (building blocks) to create the source
and target patterns. The random combination of building blocks is intended to
reduce the size of the search space by considering connected model fragments
rather than arbitrary subsets of constructs. For each rule, two combinations are
performed respectively over the graphs of the source and target metamodels to
create the source and target patterns of the rule, SP and TP .

A building block is a minimal model fragment which is self-contained, i.e., its
existence does not depend upon the existence of other constructs. For example,
in a UML class diagram, a single class could form a building block. However, an
attribute should be associated to its class to form a block. Similarly, an inher-
itance relationship forms with two classes (superclass and subclass) a building
block. The determination of the building block for a given metamodel depends
only on this latter and not on the transformation of its models.

To create random patterns (source or target), a maximal number of generic
constructs nc is first determined randomly. Then, a first building block is ran-
domly selected and included within the pattern. If nc is not reached yet, another
building block is selected among those that could be connected to the blocks in
the current fragment. Two blocks could be connected if they share at least one
generic construct. The connection is made by considering both constructs to con-
nect as the same generic construct. The procedure is repeated until nc is reached.
To illustrate the pattern creation procedure, consider the following example.
Imagine that the maximum number of constructs is set to four. A first random
selection could add to the pattern the block (ClassC1, AttributA1, A1.class =
C1.name) containing two connected generic constructs C1 and A1. As the size
of the pattern is less than four, another random selection could add an inher-
itance block with constructs InheritanceI1, ClassC3, and ClassC4, and links
I1.class = C3.name and I1.super = C4.name. One of the two possibilities of
connections ((C1, C3) or (C1, C4)) is selected, let us say (C1, C4). C4 is then
replaced by C1 in the pattern including the links.

The last step toward the pattern creation is the random generation of the
state conditions (for a source pattern) or the binding statements (for a target
pattern). For a source pattern, a tree is created by randomly mixing elements
from the terminal set T , i.e., properties of the selected constructs and constants

Genetic-Programming Approach to Learn Model Transformation Rules 23

consistent with their types, and elements from the primitive set P of operators.
The creation of the tree is done using a variation of the“grow” method defined
in [13]. In the case of a target pattern, the binding statements are generated by
randomly assigning elements in the terminal set T of the source pattern to the
properties of the generic constructs of the target pattern that were not set by
the join statements (links). The random property-value assignments are done
according to the property types.

2.4 Deriving New Rule Sets

In GP, a population of programs is evolved and improved by applying genetic
operators (mutation and crossover). These operators are specific to the problem
to solve. As with the initial-population creation, the genetic operators should
guarantee that the derived programs are syntactically and semantically valid.
Before applying the genetic operators to produce new programs, programs from
the current generation are selected for reproduction depending on their fitness
values. For the derivation of transformation rule sets, roulette-wheel selection
is used. This technique assigns to each rule set a probability of being selected
that is proportional to its fitness. This selection strategy favors the fittest rule
sets while still giving a chance of being selected to the others. Note that some
program could be included directly into the new population, i.e., elitist strategy.

Crossover. The crossover operation consists of producing new rule sets by com-
bining the existing genetic material. It is applied with a given probability to each
pair of selected rule sets. After selecting two-parent rule sets for reproduction,
two new rule sets are created by exchanging parts of the parents, i.e., subsets
of rules. For instance, consider the two rule sets p1 = {r11, r12, r13, r14} hav-
ing four rules and p2 = {r21, r22, r23, r24, r25} with five rules. If two cut-points
are randomly set to 2 for p1 and 3 for p2, the offspring obtained are rule sets
o1 = {r11, r12, r24, r25} and o2 = {r21, r22, r23, r13, r14}. Because each rule is syn-
tactically and semantically correct before the crossover, this correctness is not
altered for the offspring.

Mutation. After the crossover, the obtained offspring could be mutated with
a given probability. Mutation allows the introduction of new genetic material
while the population evolves. This is done by randomly altering existing rules
or adding newly-generated ones. Mutation could occur at the rule set level or at
the single rule level. Each time, a rule set is randomly selected for mutation, a
mutation strategy is also randomly selected. Two mutation strategies are defined
at the rule-set level: (1) adding a randomly-created rule to the rule set and (2)
deleting a randomly-selected rule. To avoid empty rule sets, deletion could not
be performed if the rule set has only one rule.

At the rule level, many strategies are possible. For a randomly-selected rule,
one could replace the target pattern by a new one, randomly created. One could
also rebind one or more target pattern properties by picking a random number
of properties in the target pattern and randomly bind them to properties in the

24 M. Faunes, H. Sahraoui, and M. Boukadoum

source pattern and constants. These modifications, when done as in Section 2.2,
preserve the rule’s validity, both syntactically and semantically. For the source
pattern, it is also possible to introduce random modifications as for the target
pattern. However, the target pattern has to be modified accordingly to avoid
semantical and syntactical errors.

2.5 Evaluating Rule Sets

For the initial population and during the evolution, each generated rule set is
evaluated to assess its ability to perform correct transformations. This evalua-
tion is performed in two steps: (1) rule set execution on the examples and (2)
comparison of produced vs. expected target models. Rule sets are translated into
the JESS, and executed on the examples using the JESS rule engine. Metamodels
are represented as sets of fact templates and models as fact sets. The rule trans-
lation is straightforward with the particularities that generic-target-construct
declaration, join statements and bindings are merged into fact-assertion clauses.
Listing 1.2 shows the JESS translation of the rule in Listing 1.1.

Listing 1.2. An example of a JESS Rule

(defrule RuleListing1

(class (name ?C1))

(attribute (name ?A1)(class ?A2))

(association (maxCardFrom ?S1) (maxCardTo ?S2)(classFrom ?S3))

(test (and (and (eq ?A2 ?C1)(eq ?S3 ?C1))

(and (< ?S1 1)(> ?S2 1))))

=>

(assert (table(name ?C1)))

(assert (column(name ?A1)(table ?C1))))

Our fitness function measures the similarity between the target models pro-
duced by a rule set and the expected ones as given in the example model pairs.
Consider E the set of examples ei composed each of a pair of a source and a
target model (msi,mti). The fitness F (E, p) of a rule set p is defined as the
average of the transformation correctness f(mti, p(msi)) of all examples ei. The
transformation correctness f(mti, p(msi)) measures to which extent the target
model p(msi), obtained by executing p on the source model msi, is similar to
the expected target model mti of ei.

Comparing two models, i.e., two graphs with typed nodes, is a difficult prob-
lem (graph isomorphism). Considering that in the proposed GP-based rule deriva-
tion, the fitness function is evaluated for each rule set, on each example, and at
each iteration, this cannot afford exhaustive graph comparisons. Instead, a quick
an efficient graph kernel f is used. f , which is a model similarity measure, calcu-
lates the weighted average of the transformation correctness per construct type
t ∈ Tmti in the expected model mti. This is done to give the same importance
to all construct types regardless of their frequencies. Formally:

f(mti, p(msi)) =
∑

t∈Tmti

ft(mti, p(msi))

|Tmti |
(1)

Genetic-Programming Approach to Learn Model Transformation Rules 25

ft is defined as the weighted sum of percentages of the constructs of type t that
are respectively fully (fmt), partially (pmt), or non(nmt) matched:

ft(mti, p(msi)) = αfmt + βpmt + γnmt, α+ β + γ = 1 (2)

For each construct of type t in the expected model, we first determine if it is fully
matched by a construct in the produced model, i.e., it exists in the produced
model a construct of the same type that have the same property values. For the
constructs in the expected model that are not matched yet, we determine, in a
second step, if they can be partially matched. A construct is partially matched
if it exists in the produced model a construct of the same type that was not
matched in the first step. Finally, the last step is to classify all the remaining
constructs as not matched.

Coefficients α, β, and γ have each a different impact on the derivation process
during the evolution. α, which should be set to a high value (typically 0.6), is
used to favor rules that correctly produce the expected constructs. As mentioned
earlier, β, with an average value (≈ 0.3), allows to give more chances to rules
producing the right types of the expected constructs and helps converging to-
wards the optimal solution. Finally, γ has to be set to a small value (≈ 0.1). The
idea of giving a small weight to the not-matched constructs seems counterintu-
itive. However, our experience shows that this promotes diversity, particularly
during the early generations, and this helps avoid local solution optima.

The calculation of the transformation correctness assesses whether the con-
structs of the expected model are present in the produced model. As a conse-
quence, a good solution could include the correct rules that generate the right
constructs, but it could also contain redundant rules or rules that generate un-
necessary constructs. To handle this situation, we consider the size of the rule
set when selecting the best solution. Consequently, even if an optimal solution
is found in terms of correctness, the evolution process continues to search for
equally-optimal solutions, but with fewer rules.

3 Evaluation

We evaluate our approach from two perspectives. First, a quantitative evaluation
allows to answer the question: To which extent our approach generates rules that
correctly transform the set of provided examples? In a second phase, a qualita-
tive evaluation will help answering the question: If the examples are correctly
transformed, are the produced rules those that are expected? In this context,
we constructed a semi-real environment where the transformation solutions are
known and where the examples models are simulated by creating prototypical
source models and by deriving the corresponding target models using the known
transformations. We were aware of the limitations of this setting, but it helps
investigate more problems and it clearly defines the reference rule sets that the
approach should derive. Additionally, it reasonably simulates situations where
the examples have been manually created over a long period of time by experts.

26 M. Faunes, H. Sahraoui, and M. Boukadoum

The preliminary version of our approach was evaluated on the transforma-
tion of class diagrams to relational schemas [5]. This transformation, call it case
A, illustrates well the problem of transforming structural models. Its complexity
resides, among others, in the multiple possibilities of transforming the same con-
struct according to the values of its properties. In the evaluation of the improved
version presented in this paper, we also studied the transformation of UML2 se-
quence diagrams to state machines (Case B1 for basic sequence diagrams and
Case B2 for advanced ones). Such a transformation is difficult because, in addi-
tion to considering the transformation of single model fragments and ensuring
the structural coherence, it introduces two important modelling characteristics:
time constraints and nesting. In this transformation, the coherence in terms of
time constraints and weak sequencing should be guaranteed. On the other hand,
nesting is tested because this transformation have to deal with combined frag-
ments (alternatives, loops, and sequences) that can be nested at different levels,
and thus, this transformation has to manage the recursive compositions in ad-
dition to handling the structural and time coherence. For case A, we used the
transformation described in [3], whereas for cases B1 and B2, we rewrote, as
rules, the graph-based transformations given in [7]. As GP-based algorithms are
probabilistic in nature, five runs were performed in parallel for each case. For
each run, we set the number of iterations to 3000, the population size to 200
and elitism to 20 programs. Crossover probability was set to 0.9 and mutation
probability to 0.9. Unlike classical genetic algorithms, having a high mutation
probability is not unusual for GP algorithms (e.g. [18]). The weighs (α, β, γ) of
the fitness function were set to (0.6, 0.3, 0.1), as explained in Section 2.5.

3.1 Quantitative Results

For each case, an optimal solution was found in at least one of the five runs. This
is an indication that the search process has a good probability of convergence.
The charts with sampled data that are shown in figures 2 and 3 illustrate the
evolution of a successful run for cases A and B22. Three curves are displayed
in each plot: the fitness function value (F) and the proportion of full matches
(FM) (vertical axis on the left), and the rule set size (PS) (vertical axis on the
right). The curves correspond to the fittest rule set at each generation (iteration)
identified in the horizontal axis.

The solution evolutions for both cases follow the same pattern and differ
only in the number of generations needed to converge toward a solution and to
reach a minimal rule-set size. As expected, case A, with structural constraints
only, is the one with the fastest convergence. At the initial generation, which
is considered as a random transformation generation, half of the constructs are
correctly transformed (FM = 0.5). These are simple one-to-one transformations
(class-to-table or attribute-to-column) that have high chances of being generated
randomly. The optimal solution in terms of FM is found at the 59th generation

2 The complete data can be downloaded at
http://geodes.iro.umontreal.ca/en/projects/MOTOE/ICMT13

http://geodes.iro.umontreal.ca/en/projects/MOTOE/ICMT13

Genetic-Programming Approach to Learn Model Transformation Rules 27

Fig. 2. Search evolution for case A Fig. 3. Search evolution for case B2

with 10 rules. Once a solution with FM = 1 is found, the search process con-
tinues so that the current solution is replaced if another one with fewer rules
is found. This happened three times for case A, with the last occurrence at the
129th generation where the number of rules dropped to 7. No further improve-
ment was observed during the rest of the evolution in terms of number of rules.
Compared to the results obtained on this case with our previous work [5], a
significant improvement was observed (100% vs. 75% for FM).

Case B2, for which structural, time and nesting constraints are involved, took
many more generations (991) to converge to 100% of full match, with minimal
rules achieved at generation 2280. The complexity of the transformation and the
increase in the size of the search space also reduced the proportion of correct
transformations obtained randomly in the initial population (FM = 0.4 for the
initial generation compared to FM = 0.5 in case A). Case B1 has similar results
as B2, but with a faster convergence curve. From the computational perspective,
the parallel five runs took collectively between one hour for case A and three
hours for case B2 on a standard workstation (CPU @ 3.40GHz with 16 Go of
RAM). Although this time could be reduced by optimizing the code, it is not
considered excessive knowing that the process of learning new transformations
is not intended to be executed frequently.

3.2 Qualitative Results

Obtaining 100% correct transformations of examples does not necessarily mean
that we have derived the expected rules. In theory, for a limited sample of test
cases, the same output values could be produced by different programs. Thus,
to assess our results qualitatively, we need to compare the produced rules with
those used to generate the examples (expected ones).

For cases A, we were searching for rules to transform classes, associations
with various cardinalities and inheritance relationships. The expected rule set
was found with a slight difference in one rule. Indeed, as all the classes in our
examples contain at least one attribute, the rule that creates a table from a
class has an unnecessary condition on the presence of an attribute. This kind of
situations cannot be detected automatically because there is no counterexample.
In the case of B1, the expected rules to create a state machine for every object in
the sequence diagram, considering messages as events, were perfectly recovered.

28 M. Faunes, H. Sahraoui, and M. Boukadoum

Finally for B2, rules have to be found for every combined fragment (sequences,
loops, and alts) and for managing the nesting at different levels. Here again,
the best solution contains all the expected rules with an additional one. The
extra rule is subsumed by a correct rule that creates a start state from the
initial message of a combined fragment. Both rules have the same target pattern,
whereas the extra rule has additional conditions. This situation (subsumption)
could be easily detected by an automatic rule-set cleaning phase.

3.3 Discussion

During the development and evaluation of our approach, we faced several chal-
lenges to address or circumvent. This section discusses the most important ones.

Rule Execution Control. In the existing MTBE approaches, including ours,
rules are defined to search for model fragments in the source model following
a source pattern, and instantiate corresponding model fragments in the target
model according to a target pattern. The target model fragments are usually not
independent and have to be properly connected to form a coherent target model.
Connecting target model fragments is difficult because, in most transformation
languages, rules cannot check if a construct is present in the target model to
connect to the produced fragment. In most MTBE approaches, the connection
is achieved implicitly by using the same naming space both for source and target
models. In our work, we circumvent partially the connection problem by recre-
ating the target constructs. This technique was sufficient to handle the studied
transformation cases, but it may be of limited use for other complex transfor-
mation problems. A good solution to handle the connection problem may be an
explicit approach that uses global variables and meta-rules (execution control)
as explained in [17]. In such an approach, the derivation process would learn the
control separately or along with the transformation rules. We plan to explore
this idea in a future work.

Complex Value Derivation. In our experimental setting, rule conditions and
binding statements consider property values as data elements that cannot be
combined to create new data elements. For example, for a construct C1 in the
source model with two numeric properties p1 and p2 and a string property p3, a
condition like C1.p1 +C1.p2 ≤ 2 could not be created. Similarly, for a construct
C2 to create in the target model with a string property p4, we cannot derive the
binding statement C2.p4 = “Der − ” + C1.p3. In our approach, such conditions
and binding statements could be recovered by adding value-derivation operators
such as arithmetic and string operators in the primitive set I (see Section 2.2).
However, this can be done only at the cost of increasing the search-space size,
with an impact on convergence. We plan to consider these new operators in
the future after a code optimization phase to handle the extra computational
cost.

Transformation Examples. In the evaluation of our initial approach [5], we
used examples collected from the literature, whereas in the evaluation of the

Genetic-Programming Approach to Learn Model Transformation Rules 29

improved version, we used prototypical examples. Using prototypical examples
helped to find the correct solution faster, because a reduced number of examples
was necessary to cover the modeling space. However, these could be difficult to
define in real situations. The choice of using prototypical or existing examples
depend on the context: availability of expertise vs. availability of examples.

Model Comparison. The search for a solution is guided by the transforma-
tion correctness (fitness function). As mentioned in Section 2.5, an exhaustive
comparison between the produced and expected models is costly. A trade-off is
necessary between the comparison precision and the computational constraints.
From our experience, sophisticated comparisons such as the one described in [5]
do not impact the search much, when contrasted against the simple comparison
described in this paper. We plan to conduct a rigorous cost benefit study to
compare different alternatives of model-comparison functions.

4 Related Work

Learning transformations from examples takes inspiration from other domains
such as programming by example [19]. Existing work could be grouped into
two categories model transformation by example and model transformation by
demonstration. In the first categories, the majority of approaches takes as input
a set of pairs of source and target models. Models in each pair are generally
manually aligned through fine-grained mapping between constructs of the two
models [22]. Rule derivation is performed using Ad hoc algorithms [6,22], ma-
chine learning such as inductive logic programming in [1], or association rule
mining with formal concept analysis [4]. In our approach, we use a different cat-
egory of derivation algorithm, i.e., genetic programming. In this algorithm, can-
didate transformation programs are evolved with the objective of better match-
ing the provided transformation examples. The derivation does not require the
user alignment/mapping of models that could be difficult to formalize in many
cases. Indeed, once a candidate program is derived, it is executed on the example
source models and its output is compared to the example target models. One
positive side effect of our approach is that the obtained rules are executed and
tested during the derivation process, which helps assessing each rule individu-
ally and the rule set globally. In some of the above-mentioned approached, the
rules are not executable or are mapped in a subsequent step to an executable
language. For example, the work in [4] is extended by mapping the derived
association rules into executable ones in JESS [20]. In the same category of con-
tributions, the work by Kessentini et al. [11] brings a different perspective to the
MTBE problem. Rather than deriving a reusable transformation program, it
defines a technique that automatically transforms a source model by analogy
with existing transformation examples. Although this could be useful for some
situations, the inability to derive transformation rules/knowledge could be seen
as a limitation.

The second category of contributions in transformation rule learning is the
model transformation by demonstration (MTBD). The goal here is to derive

30 M. Faunes, H. Sahraoui, and M. Boukadoum

transformation patterns starting from step by step recorded actions on past
transformations. In [23], Sun et al. propose an approach to generalize model
editing actions (e.g., add, delete, update) that a user performs to refactor a
model. The user editing actions are recorded and serve as patterns that can be
later applied on a similar model by performing a pattern-matching process. This
approach is intended to perform endogenous transformations (refactoring) and
its generalization to exogenous transformation is not trivial. in [14], Langer et
al. proposes an MTBD approach, very similar to the previous one, with the im-
provement of handling exogenous transformations. MTBD solves many problems
of MTBE, as complex transformation could be abstracted. However, transfor-
mation patterns are derived individually and there is no guarantee that patterns
could be applied together to derive consistent target models. In our case, the fact
that rule sets are evaluated by executing them on the example source models,
helps assessing the consistency of the produced models.

In addition to the differences highlighted in the previous paragraphs, our ap-
proach allows generating many-to-many rules that search for non trivial patterns
in the source models and instantiate non trivial patterns in the target models. In
contrast with the state-of-the-art approaches, we do not try to derive patterns
by explicitly generalizing situations found among the examples. We instead use
an evolutionary approach that evolves transformation programs, guided by their
ability to correctly transform the example at hand. Finally, it is difficult to com-
pare quantitatively and qualitatively with the other approaches. The validations
of most of these are not or only partially reported.

5 Conclusion

Prior work has demonstrated that model transformation rules could be derived
from examples. However, these contributions require fine-grained examples of
model mapping or need a manual refinement phase to produce operational rules.
In this paper, we propose a novel approach based on genetic programming to
learn operational rules from pairs of unrelated models, given as examples. This
approach was evaluated on structural and time-constrained model transforma-
tions. We found that in virtually all the cases, the produced rule sets are opera-
tional and correct. Our approach is a new stone in the resolution of the MTBE
problem, and our evaluation provides a compelling evidence that MTBE could
be an efficient solution to many transformation problems. However, some limi-
tations are worth noting. Although the approach worked well for the addressed
problem, the evaluation showed that convergence is difficult to reach for complex
transformations. Future work should therefore include the explicit reasoning on
rule execution control to simplify the transformation rules. It should also better
consider transformations with complex conditions and bindings. In particular,
we consider dealing with source and target models that do not share the same
naming space using natural-language processing techniques.

Genetic-Programming Approach to Learn Model Transformation Rules 31

References

1. Balogh, Z., Varrò, D.: Model transformation by example using inductive logic
programming. Soft. and Syst. Modeling 8 (2009)

2. Banzhaf, W.: Genetic Programming: An Introduction on the Automatic Evolution
of Computer Programs and Its Applications. Morgan Kaufmann Publishers (1998)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45(3) (2006)

4. Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules
from transformation examples: An approach based on relational concept analysis.
In: Int. Enterprise Distributed Object Computing Workshops (2010)

5. Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation rules
from examples using an evolutionary algorithm. In: Aut. Soft. Engineering (ASE)
(2012)

6. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transforma-
tion by-example: An algorithm for generating many-to-many transformation rules
in several model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 52–66. Springer, Heidelberg (2009)

7. Grønmo, R., Møller-Pedersen, B.: From UML 2 sequence diagrams to state
machines by graph transformation. Journal of Object Technology 10 (2011)

8. Hill, E.F.: Jess in Action: Java Rule-Based Systems (2003)
9. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
10. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an

optimization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

11. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Omar, O.B.: Search-based model
transformation by example. Soft. and Syst. Modeling 11(2) (2012)

12. Kessentini, M., Wimmer, M., Sahraoui, H., Boukadoum, M.: Generating transfor-
mation rules from examples for behavioral models. In: Proc. of the 2nd Int. WS
on Behaviour Modelling: Foundation and Applications (2010)

13. Koza, J., Poli, R.: Genetic programming. In: Search Methodologies (2005)
14. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by

demonstration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 153–167. Springer, Heidelberg (2010)

15. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. In: Empirical Software Engineering

16. Moore, G.: Crossing the Chasm: Marketing and Selling Disruptive Products to
Mainstream Customers. HarperCollins (2002)

17. Pachet, F., Perrot, J.: Rule firing with metarules. In: SEKE (1994)
18. Ratcliff, S., White, D.R., Clark, J.A.: Searching for invariants using genetic

programming and mutation testing. In: GECCO (2011)
19. Repenning, A., Perrone, C.: Programming by example: programming by analogous

examples. Commun. ACM 43(3) (2000)
20. Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.: Generation of

operational transformation rules from examples of model transformations. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 546–561. Springer, Heidelberg (2012)

32 M. Faunes, H. Sahraoui, and M. Boukadoum

21. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
22. Strommer, M., Wimmer, M.: A framework for model transformation by-example:

Concepts and tool support. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE
2008. LNBIP, vol. 11, pp. 372–391. Springer, Heidelberg (2008)

23. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer,
Heidelberg (2009)

24. Varró, D.: Model transformation by example. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

Walk Your Tree Any Way You Want

Anya Helene Bagge1 and Ralf Lämmel2

1 Bergen Language Design Laboratory
Dept. of Informatics, University of Bergen, Norway

2 Software Languages Team
University of Koblenz-Landau, Germany

Abstract. Software transformations in the Nuthatch style are descri-
bed as walks over trees (possibly graphs) that proceed in programmer-
defined steps which may observe join points of the walk, may observe and
affect state associated with the walk, may rewrite the walked tree, may
contribute to a built tree, and must walk somewhere, typically along one
branch or another. The approach blends well with OO programming. We
have implemented the approach in the Nuthatch/J library for Java.

1 Introduction

Software transformations rely fundamentally on traversing tree or graph struc-
tures, applying rules or computations to individual scopes, and composing in-
termediate results. This is equally true for model transformation (in the narrow
sense), e.g., based on ATL [9] and for program transformation (including pro-
gram generation and analysis), e.g., based on Rascal [13], Stratego [4], Tom [2],
and TXL [6] as well as for less domain-specific programming models such as
adaptive (OO) programming [19], generic (functional) programming [15], or OO
programming with visitor combinators [30].

Transformation languages and programming models differ in how traversal is
specified and controlled. For instance, in plain term rewriting with a hardwired
normalization strategy such as innermost, traversal must be encoded in rewrite
rules tangled up with the more interesting rules for primitive steps of transfor-
mation. By contrast, in Stratego-style programming [29,30,18] and some forms
of generic functional programming [18,15], schemes of traversal are programmer-
definable abstractions that are parameterized in the rules or computations to
be applied along the traversal, possibly tailored to specific nodes. For instance,
consider this Stratego fragment for simplifying arithmetic expressions:
strategies
simplify = bottomup(try(UnitLawAdd <+ ZeroLawMult))

rules
UnitLawAdd : Add(x,0) -> x
ZeroLawMult : Mult(x,0) -> 0

The library-defined traversal scheme bottomup is applied to rewrite rules for
some laws of addition and multiplication. The programmer can reuse traversal
schemes or define problem-specific ones, if needed.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 33–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 A.H. Bagge and R. Lämmel

In this paper, we describe a new transformation approach and a corresponding
transformation language Nuthatch,1 which focuses programmer attention on
the step-wise, possible state-accessing progression of a traversal, in fact, a walk,
as opposed to the commitment to a traversal scheme and its application to rules.
As an illustration, consider the following Nuthatch fragment which matches
the earlier Stratego example:
1 walk simplify {
2 if up then {
3 if ?Add(x, 0) then !x;
4 if ?Mult(x, 0) then !0;
5 }
6 walk to next;
7 }

The defined walk abstraction defines a complete walk over a tree. A walk starts
at the root of the input term and (usually) ends there as well. In each step of
the walk, a conditional statement is considered (line 2); it constrains rewrite
rules (lines 3–4) to be applied when the walk goes up to the parent of the current
node. Each rewrite rule consists of a match condition (see ‘?’) and a replacement
action (see ‘ !’). The step is completed with a walk to statement (line 6) which
defines the continuation of the walk. That is, the walk continues to the next
node according to a default path for a comprehensive traversal.

Contributions

– We describe a notion of walks that proceed in programmer-defined steps
which may observe join points of the walk, may access state associated with
the walk, may rewrite the walked tree, may contribute to building a tree,
and must walk somewhere, typically along one branch or another.

– Wedescribe the realization ofwalks in the transformation languageNuthatch.
Conceptually,Nuthatchdraws insights from the concepts of tree automata [5],
tree walking automata [1], continuations [24], and zippers [8]. Importantly,
Nuthatch incorporates state and supports OO-like reuse.

– We sketch Nuthatch/J, an open-source library for walks in Java.2

The paper and accompanying material are available online.3

Road-map

§2 develops the basic notion of walks. §3 describes the Nuthatch transformation
language. §4 sketches the library-based implementation of Nuthatch in Java.
§5 discusses related work. §6 concludes the paper.
1 Named after the nuthatch (Sitta spp.), a small passerine bird known for its ability

to walk head-first towards the root of a tree, and on the underside of branches.
2 http://nuthatchery.org/
3 http://nuthatchery.org/icmt13/

http://nuthatchery.org/
http://nuthatchery.org/icmt13/

Walk Your Tree Any Way You Want 35

2 The Notion of Walks

Walks walk along trees. Walks select branches. Walks complete paths. The default
path is the starting point for all paths. Tree mutation may happen along the way.

2.1 Trees

In this paper, we mainly walk trees ; graphs can also be walked as long as some
distinguished entry node can replace the role of a root to reach all other nodes,
also subject to precautions discussed in §3.10. In fact, we commit to ordered
trees, i.e., trees with an ordering specified for the children. Ordered trees may
be defined in two common ways, i.e., recursively (like terms of a term algebra)
and graph-theoretically (with a designated root node and further constraints
on nodes and edges for ordered trees as opposed to more general graphs). The
graph-theoretical view is more helpful for intuitive understanding of walks.

We assume ‘rich’ trees in that nodes may be annotated with constructors
and types (as needed for common term representations); leaves may carry some
data (as needed for literals); edges (or ‘branches ’, as we will call them) may be
annotated with labels (as needed for records, for example).

Thus, any node n of a tree t can be observed as follows:
– n.arity: The arity ≥ 0 of t’s subtree rooted by n.
– n.root: Test for n being the root of t.
– n.leaf: Test for n being a leaf of t, i.e., n.arity = 0.
– n.name: The constructor name, if any, of n.
– n.type: The type, if any, of n.
– n.data: The data, if any, of n.
– n.parent: The parent node of n for n.root = false.
– n.child[i]: The i-th child of n for 1 ≤ i ≤ n.arity.
– n.label[i]: The label, if any, of the i-th child of n for 1 ≤ i ≤ n.arity.

2.2 Branches

We limit ourselves to walks along the branches of trees as opposed to ‘jumps’,
which would be possible in principle. This limitation seems to imply a more
‘structured’ programming technique. No need for jumps has arisen from our
applications so far.

It is convenient to use natural numbers for referring to branches because 1,
. . . , n.arity readily refer to the children of n, leaving 0 for the parent. Hence,
it makes sense to use branch numbers to say that we walk to the parent or
to a specific child. We may also use branches to track where we came from by
referring to the ‘previous node’ with the corresponding branch number.

2.3 Paths

If we assume immutable trees for a moment, then the walk over a tree may be
described as a path, i.e., sequence of nodes as they are encountered by the walk.

36 A.H. Bagge and R. Lämmel

+

5 *

+

7 3

0

1
2

3

4

5
6

7

8

9

10

11

12

The edge labels denote the order of walking along
branches. The default walk combines pre-, in-, and
post-order in that we walk down from the parent in
a depth-first manner, and we return to the parent
after each subtree.

Fig. 1. Illustration of the default path for an arithmetic expression

Paths always start at the root of a tree. In the regular case, paths also end at the
root. Paths for walks along branches can be effectively represented as sequences
of natural numbers.

We refer to the default path as the path which goes along each edge in the
tree in both directions (i.e., along each branch) to achieve depth-first, left-to-
right visiting order. Notably, a parent is visited before and after each child; see
Fig. 1 for an illustration. The visiting order of the default path can be described
by defining uniformly the next node (in fact, branch) relative to the current
node and one of its branches, from:

next �→
{
from+ 1, if current.arity > from
0, otherwise

We think of from as referring back to the node from which we walked to the
current node. This is the information that needs to be tracked by a walk. That
is, if we entered the current node from its parent (i.e., branch 0), then we walk
to the first child; if we (re-) entered the current node from its i-th child, then we
walk to the i+ 1-th child, if there is a next child, and to the parent otherwise.

The definition of next is powerful in so far as it is also usefully describes
continuation in ‘default order’, even for walks that diverted from the default
path. This follows from the fact that the definition only looks at the branch to
the immediately preceding node in the walk.

2.4 Join points

Walks (according to the default path or otherwise) expose ‘join points’ for trans-
formations, i.e., the join points corresponding to the encounter of nodes along
certain branches. Two important join points are described by these conditions
on current and from:

– down ≡ from = 0
– up ≡ current.leaf || from = current.arity

The down join point captures whether current was just entered from its parent.
The up join point captures whether the walk is about to return to the parent of

Walk Your Tree Any Way You Want 37

current. In §3 (see §3.6 specifically), we will see additional join points at work.
Programmers quantify join points combined with other conditions on the tree
and custom state to control the walk and to select stateful behavior.

2.5 Mutation

Let us consider walks on mutable trees. Thus, the steps of a walk may add
and remove nodes and edges before they pick any branch. While a walk on an
immutable tree is simply characterized by a sequence of contiguous branches, a
walk on a mutable tree is characterized by a sequence of states. A state s has
the following components:

– s.tree: The tree as seen in state s.
– s.current: The walk’s current node in s.tree.
– s.from: The branch referring back to the node prior to s.current.

We assume that state transition breaks down into two components: the mutation
of the tree and the actual step to advance current. Clearly, if we were to allow
arbitrary mutation, the semantics of walking becomes totally operational and
properties such as termination are no longer attainable.

We are specifically interested in the case that mutation replaces current and
its subtree, as in the application of a rewrite rule. When replacing current,
though, the associated from may no longer be meaningful. Consider these cases:

– If from = 0, prior to mutation, then the first child, if any, of current was set up
to be next. In this case, from shall be retained so that the first child, if any, of
current is also set up to be next past mutation.

– If current.arity > 0 ∧ from = current.arity, prior to mutation, then the parent
of current was set up to be next. Thus, from shall be assigned current.arity, as
seen past mutation, so that again the parent of current is set up to be next.

These two cases cover rewrite rules on the down and up join points; for now, we
take the view that current should not be replaced otherwise.

3 A Language for Walks

The Nuthatch transformation language supports walks, as described in the
previous section, on the grounds of an abstraction form for organizing walks in
steps along branches. Nuthatch can be mapped to an OO language such as
Java, as discussed briefly in §4.

At runtime, a walk encapsulates basic state, as described in §2.5, extra state to
be declared, and it provides a step action to be invoked repeatedly. (We assume
that walks are under the control of a main program which can start walks on trees,
observe results after a walk is complete, and possibly restart suspended walks.)

38 A.H. Bagge and R. Lämmel

3.1 Syntax Summary

A walk abstraction has a name (an id), an optional declaration part for extra
state associated with the walk and a statements part describing a step in terms
of observing, matching, and rewriting the tree, accessing the walk’s state and
identifying the branch to follow. Walks may be parameterized, as discussed in
§3.8. Thus:4

walk : ’walk’ closure ;
closure : id paras? ’{’ (’state’ declaration)* statement+ ’}’ ;
paras : ’(’ id (’,’ id)* ’)’ ;

There are Java-like variable declarations, but with an optional type and a re-
quired initializer:
declaration : type? id ’=’ expression ’;’ ;

These are the available statement forms:
statement : ’{’ statement+ ’}’
| ’if’ expression ’then’ statement (’else’ statement)?
| declaration | id ’=’ expression ’;’ | expression ’;’
| ’return’ expression ’;’
| ’walk’ ’to’ expression ’;’ | ’stop’ ’;’ | ’suspend’ ’;’
| ’!’ term ’;’
;

Statement grouping, if-then-else with dangling else, (local) variable declarations,
assignments, and expressions are Java-like. ‘returns’ are needed for functions;
see below. There are special statement forms to specify what branch to walk to,
to stop or suspend a walk. There is another special statement form to replace
the current term (see ‘ !’).

In addition to Java-like expression forms, there are these special forms:
expression : ... | ’?’ term | getter | ’~’ id paras? ;

That is, there is a special expression form for matching the current term (see
‘?’) in a condition that also binds variables. Further, there are ‘getters’ for trees
(arity, root, etc.), the basic walk state (tree, current, from), join points (down,
up), and next, as we set them up in §2. Tree observers are applied to the current
term if not specified otherwise. The last expression form (see ‘~ ’) deals with
nested walks, as discussed in §3.9.

Nuthatch also offers a simple abstraction form for actions which do not
walk anywhere. Other than that, they can maintain state and observe the basic
state of a walk in which they participate, if any. Likewise, there are functions
for expression abstraction. Thus:
action : ’action’ closure ;
function : ’function’ closure ;

Actions and functions are illustrated in §3.8.

4 We use ANTLR (http://antlr.org/) grammar notation.

http://antlr.org/

Walk Your Tree Any Way You Want 39

3.2 The Default Walk

The following Nuthatch walk captures the default path of §2.3:
walk default {
walk to next;

}

Each control-flow path of a Nuthatch action must end in a walk-to statement
which identifies the branch to walk to. The obvious options are next, parent
(overloaded to refer to branch 0), child[i] (overloaded to refer to branch i), first
(assumed to represent the branch 1 for the first child), and last (assumed to
represent the branch for the last child).

3.3 Diversion from the Default Path

The following example shows how a walk can be diverted depending on the
current node; in this case, to avoid traversing Expr subtrees. To this end, we
observe the type of the current node; we assume that Expr is one of the types of
terms that are walked:
walk skipExpr {
walk to (if type==Expr then parent else next);

}

(We use expression-level if-then-else.)

3.4 Derived Walks

New walks can be derived from existing walks. To this end, walk abstractions
are referred to in statements. The underlying semantics is that the referenced
walk’s step action is inlined. For instance:
walk skipExpr {
if type==Expr then walk to parent;
default;

}

If the referenced walk includes extra state (which is not the case in the above ex-
ample), then such state would be included into the referring walk automatically.

Because the default path is so prevailing, we assume that any walk abstraction
derives implicitly from default such that default’s action is appended at the end
of the step action. Accordingly, we shorten skipExpr:
walk skipExpr {
if type==Expr then walk to parent;

}

We note that this implicit derivation occurs only at the top level, not when a
walk is used to create a derived walk.

40 A.H. Bagge and R. Lämmel

3.5 Stateful Walks

A walk may carry state. Actions may hence read and write such state. For
instance, the following walk abstraction counts nodes; it takes advantage of the
implicit derivation from default, as just explained above:
walk countNodes {
state count = 0;
if down then count++;

}

That is, we declare a variable count to maintain the node count, which we initialize
to 0 and increment for each node, but only along the down join point—so that we
do not count nodes multiple times. (We could also use up as a condition here.)

3.6 Flexible Point-Cuts

We have started to invoke the AOP-like terminology of join points. Accordingly,
walks may quantify the join points of interest; in AOP speak: walks need to
express point-cuts. Consider the following walk abstraction which converts a
tree into a string, using a term-like representation with prefix operators and
comma-separated arguments as in “add(add(x,y),0)”:
walk toString {
state s = "";
if leaf
then s += data;

else {
if down then s += name + "(";
if up then s += ")";
if from>=first && from<last then s += ", ";

}
}

In the code, we carefully observe the position along the walk to correctly paren-
thesize and place commas where appropriate. For instance, “(“ belongs before
the first child; thus the condition down, i.e., from==parent. This simple example
clearly demonstrates how Nuthatch style does not explicitly recurse / tra-
verse into compound structures, as is the case with functional programming or
Stratego-like traversal schemes. Instead, Nuthatch style entails observation of
the branch on which the current node was entered and possibly other data.

3.7 Walks with ‘In Place’ Rewriting

Rewriting is straightforward; it relies on a special condition form for use in an
if-then-else statement to match (‘?’) a term pattern with the current term and
to bind variables for use in the replace (‘ !’) statement within the then-branch.
We also say ‘in place’ rewriting to emphasize the fact that the tree is modified.

Let us revisit the example from the introduction (§1). The example follows
the default path. When applied to the sample tree of Fig. 1, the result is ‘5’.

Walk Your Tree Any Way You Want 41

For what it matters, we mention that simplification would not be complete, if
we were using the down instead of the up join point in the example. (The unit
law of addition would not be applicable in the example on the way down.)

‘In place’ rewriting is suitable for endogenous transformations [20] and specif-
ically transformations that are meant to preserve many nodes and edges, as in
the case of ‘refining models’ according to [26], but see §3.11 for a discussion of
exogenous transformations [20].

3.8 Parameterized Walks

Common Stratego-like traversal schemes can be easily expressed by parameter-
izing walk abstractions, e.g.:
walk bottomup(s) { if up then s; }

The parameter s may abstract over actions such as rewrite rules. Let us revisit
the example from the introduction (§1); we capture these actions (as of §3.1):
action UnitLawAdd { if ?Add(x, 0) then !x; }
action ZeroLawMult { if ?Mult(x, 0) then !0; }
action BothLaws { UnitLawAdd; ZeroLawMult; }

Thus, bottom-up traversal for simplification can be recomposed as follows:
bottomup(BothLaws)

Here is a more problem-specific, still language-parametric example of a parame-
terized walk which deals with state-based scope-tracking as opposed to Stratego-
like traversal; such tracking is needed in various transformations, e.g., for the
purpose of hosting new abstractions in the same context as the current scope or
be it just for generating error messages.
walk scopeTracker(isDeclaration) {
state scopes = new Stack[Node]();
if down && isDeclaration then scopes.push(current);
if up && current==scopes.top() then scopes.pop();

}

In the context of a transformation for Java, isDeclaration may be a condition
(a function as of §3.1) that tests for a Java class declaration:
function isClassDec { return ?ClassDec(ClassDecHead(_,name,_,_,_),_); }

3.9 Nested Walks

Consider again the definition of bottomup, as given above. Now imagine that the
argument s is not a plain action, such as rewrite rule, but it is meant to be a walk
in itself. The existing definition would inline that walk according to the deriva-
tion semantics of §3.4, thereby disrupting the bottomup traversal. Instead, the
argument walk should be performed atomically, as part of the referring step’s ac-
tion, as opposed to participating in the enclosing walk. References to arguments
(which may be walks) can be accordingly marked as nested walks by ‘~ ’:

42 A.H. Bagge and R. Lämmel

walk topdown(s) { if down then ~s; }
walk bottomup(s) { if up then ~s; }
walk downup(s,t) { topdown(s); bottomup(t); }

(‘~ ’ is a no-op on non-walks such as actions.) We note that each nested walk
views the current node of the enclosing walk as the root. Note that no nested
walk designation happens for downup because derivation semantics (as of §3.4) is
appropriate here, if we want s to be applied on the way down and t on the way
up. For comparison, consider these definitions:
walk badDownup1(s,t) { ~topdown(s); ~bottomup(t); }
action badDownup2(s,t) { ~topdown(s); ~bottomup(t); }

badDownup1 performs a top-down walk followed by a bottom-up walk for each
node in the tree. badDownup2 performs a top-down walk followed by a bottom-up
walk for a given tree; both walks start from the root.

3.10 Termination of Walks

A walk terminates regularly, if the walk encounters the root of a tree through the
parent branch. A walk terminates irregularly if an unhandled exception is thrown
by the step action. A walk may also be terminated explicitly or suspended via
designated actions stop and suspend.

Accidentally, one may describe walks that do not terminate. This is implied
by the expressiveness and flexibility of the abstraction form for walks. For in-
stance, a transformation may continuously expand some redex for the down join
point. Other programming techniques for traversals are also susceptible to this
problem [16].

Another major challenge for termination is when graphs are walked. That is,
walks may be cyclic. In adaptive programming [19], strategic programming on
graphs [11], and OO programming with visitor combinator [30], this problem
can arise as well. The problem can be solved, if we can make sure that no object
is visited more than once. In Nuthatch, we can use an ‘enter once’ walk as the
starting point for any walk on a graph. Thus:
walk enteronce {
state seen = new WeakHashSet();
if down then
if seen.contains(current)
then walk to parent;
else seen.add(current);

}

Thus, the walk keeps track of all nodes that were encountered. This scheme
is not just useful for avoiding cyclic walks; it generally prevents walks from
entering nodes more than once, even in directed acyclic graphs. The problem of
non-termination or repeated walks into the same nodes can also be addressed if
additional metamodel information is available to distinguish composition versus
reference relationships, as in the case of walking EMF models, for example. That
is, edges for reference relationships shall not be followed by walks.

Walk Your Tree Any Way You Want 43

3.11 Walks Building Terms

When facing exogenous transformations [20] (i.e., transformations with a target
metamodel that is different from the source metamodel), then ‘in place’ rewriting
(see §3.7) may not be appropriate, unless it is acceptable to operate on trees that
use a ‘union’ metamodel for source and target models.

Suitable tree builders can be used to describe exogenous transformations or
even endogenous transformations, when the source of the transformation is to
be preserved. Consider the following walk that uses a tree builder to copy the
walked tree, which is a good starting point for an endogenous transformation
which preserves the walked tree:
walk copyall {
state result = new TreeBuilder();
if down then { result.add(current); result.moveDown(); }
if up then result.moveUp();

}

The idea is that a tree builder provides an interface to (building) a tree; there
are operations for adding nodes and edges. Further, the builder uses a cursor to
maintain the current focus for addition. The cursor is a pointer to the children list
of some node. Upon construction, the cursor points to the degenerated children
list that will hold the root of the built tree. In the ‘copy all’ walk, we use the
following operations:

– add : A given node (current in the example) is added to the children list pointed
to by the cursor, where information such name, type, and data as well as label
(for the edge to the parent) is copied over.

– moveDown: The cursor is set to point to the children list of the last node in the
children list currently pointed to by the cursor.

– moveUp: The cursor is set to point to the children list of the parent node of the
last node in the children list currently pointed to by the cursor.

When implementing exogenous transformations, tree builders are invoked to add
‘terms’ specific to the target model.

4 Walking in Java

In the following, we sketch the Nuthatch/J library for walking in Java.
Nuthatch transformations can be mapped to Java code that uses the
Nuthatch/J library.

4.1 Basic Interfaces

Nuthatch/J is designed as a generic tree walking library for Java which is
independent of the underlying data representation. Thus, the library can be
adapted by parameterization and subclassing for use with different kinds of trees,
including those of existing transformation systems; see §4.4.

Walks are specified by implementing the Walk interface:

44 A.H. Bagge and R. Lämmel

public interface Walk<W extends Walker<?, ?>> {
int step(W walker);

}

The step method performs a single step of the walk, can observe and manipulate
state, and returns the next branch to walk to. The Walker type of the library
encapsulates the tree-walking functionality and maintains the current node and
state as described in §2.5, and provides the tree observers of §2.1.

The Walk interface is parameterized by the walker type, thereby making the
extended features of a walker accessible in a type-safe manner. For example, the
following code (also available online) implements the example from §1:

public int step(ExprWalker w) {
if (down(w)) {

if (w.match(Add(var("x"), Int(0)))) w.replace(w.getEnv().get("x"));
if (w.match(Mul(var("x"), Int(0)))) w.replace(Int(0));

}
return NEXT;

}

ExprWalker is a subtype of Walker which fixes the generics parameters for the
expression terms of the example.

4.2 Extra State

Walk state is handled either by using variables in a closure or field variables
in the class which implements Walk. The following Java code uses the former
technique to replicate the example from §3.6:
final StringBuffer s = new StringBuffer(); // Accumulate result here.
Walk<ExprWalker> toTerm = new BaseWalk<ExprWalker>() {

public int step(ExprWalker w) {
if (leaf(w)) // We are at a leaf; print data value.

s.append(w.getData().toString());
else if (down(w)) // First time we see this node; print constructor name.

s.append(w.getName() + "(");
else if (up(w)) // Just finished with children ; close parenthesis .

s.append(")");
else // Coming up from a child (not the last); insert a comma.

s.append(", ");
return NEXT;

}
};

4.3 Combinator Style

A library of common parameterized walk or action combinators (in the sense
of §3.8) is available for various join points. In a combinator style, the simplifier
of §1 can be expressed as follows:

Walk Your Tree Any Way You Want 45

Walk<ExprWalker> w =
walk(up(sequence(match(Add(var("x"), Int(0)), replace(var("x"))),

match(Mul(var("x"), Int(0)), replace(Int(0))))));

The walk is built up using static methods calls, where ‘walk’ represents the
default walk, ‘up’ builds a conditional action for the up join point, ‘sequence’
executes all its arguments in the given order, ‘match’ executes its argument, if
the pattern matches, and ‘replace’ performs a replace action.

4.4 Tool Integration

Nuthatch/J integrates with Spoofax/Stratego/XT [4] and Rascal [13] so that
these systems can be used in Nuthatch/J applications. This is well in line with
other transformation systems that support diverse access methods. For instance,
Tom [21] can be applied to parse trees and object graphs of a domain model;
POM adapters [12] allow Stratego to transform an Eclipse JDT AST.

The Nuthatch/J+Stratego library supports untyped trees using the same
term implementation as the Java version of Stratego. It also provides an interface
to the JSGLR parser, including a pattern generator which generates pattern
builders from an abstract syntax specification. Syntax definitions and minimal
tooling for working on Java programs is also available, through the JavaFront
package for Stratego.

The Nuthatch/J+Rascal library wraps the Rascal data types into Nuthatch
trees, and can work on both concrete and abstract syntax trees (though without
support for making concrete syntax patterns, at the time of writing).

4.5 Performance

As of writing, Nuthatch/J has not yet been optimized for performance. Never-
theless, we have done some measurements of traversal and rewriting performance
on Java programs, comparing against Stratego. All Nuthatch/J measurements
were done using Stratego terms as the underlying data structure, so that we
could use the exact same data for both Nuthatch/J and Stratego, and check
that both implementations gave the exact same results.5

For reference, we also measured hand-written Java versions of some of the
transformations, in order to get an idea of the top performance possible using
the Stratego term library.

A few selected experiments are summarized in Table 1.6 The experiments show
that performance of Nuthatch/J is similar to that of the Stratego interpreter
for trivial traversals (topdown, downup), but slower than compiled Stratego code.

5 Stratego measurements were done using both interpreted and compiled code, both
using version 1.1 of the Spoofax language workbench. For interpretation, we used
the hybrid interpreter, which uses compiled-to-Java versions of the standard libraries,
but interprets user code on the fly. Measurements are an average of 5000 iterations,
run on an otherwise idle AMD FX-8350 computer, running OpenJDK 7u15.

6 See http://nuthatchery.org/icmt13/benchmarks.html for more details.

http://nuthatchery.org/icmt13/benchmarks.html

46 A.H. Bagge and R. Lämmel

Table 1. Some performance measurements of Nuthatch/J vs. Stratego, with exe-
cution times in milliseconds (average over 5000 runs) for Nuthatch/J, interpreted
Stratego, compiled Stratego (strj), and hand-written Java

Nuthatch/J Stratego STRJ Java
Collect Strings 3.0 5.0 4.2 —
Commute 4.6 29.8 0.9 0.8
Bottomup Build 5.6 3.2 1.2 —
Topdown 1.5 1.0 0.5 0.5
Downup 1.5 1.7 0.6 0.5

Simple transformations (commute) are a lot faster in Nuthatch/J than with
interpreted Stratego code, but again, compiled Stratego is faster. Nuthatch/J
has an advantage when using plain Java to accumulate state, and outperforms
compiled Stratego on collecting strings from a tree.

5 Related Work

Walks à la Nuthatch combine generic traversal, stateful behavior, OO-like
derivation, and parameterization. Accordingly, walks relate to Stratego-like
programming, visitor programming including visitor combinators, adaptive pro-
gramming, generic functional programming, and model transformation.

Stratego et al. Walks are inspired by the seminal work on strategies à la Strat-
ego [29,4]—the combination of term rewriting and programmable strategies, also
for traversal purposes. Walks depart from strategies in that the basic traversal ex-
pressiveness is about continuous walking along branches as opposed to recursive
one-layer traversal. Further, walks are designed around state, whereas strategies
only uses state in the special sense of dynamic rewrite rules [3]. Also, walks are
designed to be derivable (and parameterized), whereas strategies leverage param-
eterization only. §3.8 shows how walks represent Stratego-like traversal schemes.
The AspectStratego [10] variation on Stratego was proposed to leverage some
means of aspect orientation in the context of term rewriting. In this work, join
points of rewriting or the strategic program can be intercepted. By contrast,
walks à la Nuthatch interact with join points for walks along trees.

Visitor programming. In the OO programming context, traversal problems can
be addressed by means of visitors [22]. Specifically, advanced approaches use
visitor combinators [30,21] inspired by Stratego. The cited approaches transpose
Stratego style to an OO language context; they make limited use of OO-like
derivation and imperative state. When compared to walks, ‘visits’ are controlled
strategically (as above), as opposed to exposing join points of the walks to the
problem-specific functionality.

Adaptive programming. The notion of processing object graphs in a structure-shy
fashion has been realized in seminal work on adaptive programming [19], where
traversal specifications of objects to be visited are separated from actions to be
actually applied to the objects on the path. Stratego-like strategic programming

Walk Your Tree Any Way You Want 47

and adaptive programming are known to be related in a non-trivial manner [17].
Walks differ from adaptive programs in that they do not leverage any special
language constructs for traversal specifications. Also, each step of a walk may
affect the remaining path.
Generic functional programming. The parameterization- or combinator-based
approach of traversal programming has been pushed particularly far in a generic
functional programming context; see, e.g., the ‘mother of traversal’ [14,23]. In-
deed, such approaches offer highly parameterized abstractions for different traver-
sal instantiations. By contrast, walks à la Nuthatch additionally offer i) OO-
like derivation, ii) imperative OO-like stateful behavior, and iii) exposure of join
points of walks (traversals) for customized traversal behavior.
Model transformation. Because of the large amount MT languages in existence,
it is hard to compile a useful comparison. Overall, Nuthatch style is closer to
term rewriting approaches. We have in mind ATL [9] as a representative in what
follows. Thus, model transformations match source model elements and map
them to target model elements. Endogenous transformations, specifically, may
rely on some degree of implicit behavior (refinement) to copy or retain model
elements when not said otherwise [26]. MT rules are essentially declarative, with
some built-in scheme of applying rules to the source model. Escapes to imperative
features are needed in practice and thus supported. Join points of walks à la
Nuthatch are not established for MT languages.

6 Concluding Remarks

We have described a new approach to traversal programming with walks as the
central abstraction form. The development of the walk notion and all of our re-
lated experiments were based on the Nuthatch/J library for walks in Java. The
Nuthatch transformation language should be viewed as an ongoing effort to ex-
tract a transformationDSL fromtheNuthatch/J library.Nuthatch can express
traversal schemes à la Stratego and thus, it provides ‘proven expressiveness’. Im-
portantly, OO idioms (such as state, encapsulation, closures, and type derivation)
are also part of the Nuthatch programming model. The Nuthatch/J library
leverages adapters for tree formats of other transformation tools in the interest of
tool integration.

Proper DSL notation enables conciseness (when compared to Java), type check-
ing, static analyses for other properties of walks, and compile-time optimizations.
However, an external DSL approach makes it harder to provide all language ser-
vices. Therefore, we continue research on the Nuthatch/J’s combinator style of
§4.3 to perhaps settle on an internal DSL (in fact, DSL embedding) which is a popu-
lar approach for transformation languageswith functional host languages [18,25,7].
Nuthatch/J’s combinator style would also permit on-the-fly optimization, as it
has been used elsewhere for embedded DSL implementation [27,28].

Acknowledgments. This research is funded in part by the Research Council
of Norway.

48 A.H. Bagge and R. Lämmel

References

1. Aho, A.V., Ullman, J.D.: Translations on a Context-Free Grammar. Information
and Control 19(5), 439–475 (1971)

2. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking
Rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

3. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program Transformation with
Scoped Dynamic Rewrite Rules. Fundamenta Informaticae 69(1-2), 123–178 (2006)

4. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Sci. Comput. Program. 72(1-2),
52–70 (2008)

5. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

6. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3),
190–210 (2006)

7. George, L., Wider, A., Scheidgen, M.: Type-Safe Model Transformation Languages
as Internal DSLs in Scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 160–175. Springer, Heidelberg (2012)

8. Huet, G.: The Zipper. J. Funct. Program. 7(5), 549–554 (1997)
9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.

Sci. Comput. Program. 72(1-2), 31–39 (2008)
10. Kalleberg, K.T., Visser, E.: Combining Aspect-Oriented and Strategic Program-

ming. In: Workshop on Rule-Based Programming (RULE 2005). ENTCS, vol. 147,
pp. 5–30 (2006)

11. Kalleberg, K.T., Visser, E.: Strategic Graph Rewriting: Transforming and Travers-
ing Terms with References. In: 6th Intl. Workshop on Reduction Strategies in
Rewriting and Programming (WRS 2006) (2006), online publication

12. Kalleberg, K.T., Visser, E.: Fusing a Transformation Language with an Open
Compiler. In: 7th Workshop on Language Descriptions, Tools and Applications
(LDTA 2007). ENTCS, pp. 18–31. Elsevier (2007)

13. Klint, P., van der Storm, T., Vinju, J.J.: Rascal: A Domain Specific Language
for Source Code Analysis and Manipulation. In: 9th IEEE Intl. Working Conf. on
Source Code Analysis and Manipulation (SCAM 2009), pp. 168–177. IEEE CS
(2009)

14. Lämmel, R.: The Sketch of a Polymorphic Symphony. In: Reduction Strategies in
Rewriting and Programming (WRS 2002). ENTCS, vol. 70, pp. 135–155 (2002)

15. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate: a practical design pat-
tern for generic programming. In: ACM SIGPLAN Intl. Workshop on Types in
Languages Design and Implementation (TLDI 2003), pp. 26–37. ACM (2003)

16. Lämmel, R., Thompson, S., Kaiser, M.: Programming errors in traversal
programs over structured data. Sci. Comput. Program (2012) (in press),
doi:10.1016/j.scico.2011.11.006

17. Lämmel, R., Visser, E., Visser, J.: Strategic programming meets adaptive program-
ming. In: 2nd Intl. Conf. on Aspect-Oriented Software Development (AOSD 2003),
pp. 168–177 (2003)

18. Lämmel, R., Visser, J.: A Strafunski Application Letter. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 357–375. Springer, Heidelberg (2002)

http://www.grappa.univ-lille3.fr/tata

Walk Your Tree Any Way You Want 49

19. Lieberherr, K.J., Patt-Shamir, B., Orleans, D.: Traversals of object structures:
Specification and Efficient Implementation. ACM Transactions on Programming
Languages and Systems 26(2), 370–412 (2004)

20. Mens, T., Van Gorp, P.: A taxonomy of model transformation. ENTCS, vol. 152,
pp. 125–142 (2006)

21. Moreau, P.E., Reilles, A.: Rules and Strategies in Java. In: Reduction Strategies
in Rewriting and Programming (WRS 2007). ENTCS, vol. 204, pp. 71–82 (2008)

22. Palsberg, J., Jay, C.B.: The Essence of the Visitor Pattern. In: 22nd Intl. Computer
Software and Applications Conf (COMPSAC 1998), pp. 9–15. IEEE Computer
Society (1998)

23. Ren, D., Erwig, M.: A generic recursion toolbox for Haskell or: scrap your
boilerplate systematically. In: Proceedings of the ACM SIGPLAN Workshop on
Haskell, pp. 13–24. ACM (2006)

24. Reynolds, J.C.: The Discoveries of Continuations. Lisp and Symbolic Computa-
tion 6(3-4), 233–248 (1993)

25. Sloane, A.M.: Lightweight Language Processing in Kiama. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 408–425. Springer, Heidelberg (2011)

26. Tisi, M., Martínez, S., Jouault, F., Cabot, J.: Refining Models with Rule-based
Model Transformations. Tech. Rep. 7582, INRIA (2011)

27. Veldhuizen, T.L.: Expression templates. C++ Report 7(5), 26–31 (1995), reprinted
in C++ Gems, ed. Stanley Lippman

28. Viera, M., Swierstra, S.D., Lempsink, E.: Haskell, do you read me?: constructing
and composing efficient top-down parsers at runtime. In: 1st ACM SIGPLAN
Symposium on Haskell (Haskell 2008), pp. 63–74. ACM (2008)

29. Visser, E., Benaissa, Z., Tolmach, A.: Building program optimizers with rewrit-
ing strategies. In: 3rd ACM SIGPLAN Intl. Conf. on Functional Programming,
ICFP 1998, pp. 13–26. ACM Press (1998)

30. Visser, J.: Visitor combination and traversal control. In: 16th ACM SIGPLAN Conf.
on Object Oriented Programming, OOPSLA 2001, pp. 270–282. ACM (2001)

On an Automated Translation of Satellite

Procedures Using Triple Graph Grammars

Frank Hermann1, Susann Gottmann1,�, Nico Nachtigall1,�, Benjamin Braatz1,
Gianluigi Morelli2, Alain Pierre2, and Thomas Engel1

1 Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg

firstname.lastname@uni.lu
http://www.uni.lu/snt/

2 SES, Luxembourg
firstname.lastname@ses.com

http://www.ses.com/

Model transformation based on triple graph grammars (TGGs) is a general,
intuitive and formally well defined technique for the translation of models [5,6,2].
While previous concepts and case studies were focused mainly on visual models
of software and systems, this article describes an industrial application of model
transformations based on TGGs as a powerful technique for software translation
using the tool Henshin [1]. The general problem in this scenario is to translate
source code that is currently in use into corresponding source code that shall
run on a new system. Up to now, this problem was addressed based on manually
written converters, parser generators, compiler-compilers or meta-programming
environments using term rewriting or similar techniques (see e. g. [4]).

Within the joint research project PIL2SPELL1 with the industrial partner
SES (Société Européenne des Satellites), we applied TGGs for the translation of
satellite control software. SES is currently operating a fleet of 52 satellites, which
are manufactured by different vendors, who often use their own proprietary lan-
guages for operational procedures. In order to reduce the high complexity dur-
ing operation caused by this heterogeneity, SES decided to develop and use the
satellite control language SPELL [7] (Satellite Procedure Execution Language &
Library), which is nowadays used by more and more operators and may become
a standard in this domain. For this reason, SES is faced with the need to convert
satellite control procedures delivered by the manufacturers into SPELL proce-
dures. The main aim of this project was to provide a fully automated translation
of existing satellite control procedures written in the programming language PIL
(Procedure Intermediate Language) of the manufacturer ASTRIUM into SPELL
procedures. Since the procedures in PIL are already validated, several require-
ments are important: automation of the execution, maintainability of the trans-
lation patterns, readability of the output, and, most importantly, reliability in
terms of fidelity, precision and correctness of the translation. For SES, the listed
requirements are of very high importance to minimise the efforts for revalidation.

� Supported by the Fonds National de la Recherche, Luxembourg (3968135, 4895603).
1 This project is part of the Efficient Automation of Satellite Operations (EASO)
project supported by the European Space Agency (ESA).

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 50–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.uni.lu/snt/
http://www.ses.com/

Translating Satellite Procedures Using TGGs 51

The general idea of TGGs is to specify languages of integrated models, where
each integrated model contains a source model and a corresponding target model
together with explicit correspondence structures. In the present case, models are
given by abstract syntax trees of the source code of the source and target do-
mains. The operational rules for executing the translation are generated from
the specified TGG. The translation preserves the given source model and cre-
ates explicit tracebility links between corresponding fragments of the input and
output. These correspondence links are used in the validation phase for assuring
quality concerning precision and fidelity of the translation.

In the present scenario, the bidirectional features of TGGs were not of interest,
such that it would have been possible to use another unidirectional transforma-
tion approach, like ATL (ATLAS Transformation Language) [3]. Still, TGGs
showed benefits that were important for SES. The initial mapping document
provided by SES engineers contained translation patterns for example code frag-
ments. These patterns were loaded in the GUI of Henshin and generalised to rules
of the TGG, such that the resulting translator met the industrial requirement of
ensuring theses patterns in the translation. Since TGGs do not need recursion
and do not cause side effects, we were able to handle the occurring intermedi-
ate modifications of the mapping document by the domain experts during the
development of the TGG. The evaluation by SES and ASTRIUM domain ex-
perts delivered remarkable results concerning the listed requirements and as an
effective result, the communication satellite Astra 2F is operational in space and
controlled by the generated procedures that are running in ground control.

In future work, we will apply TGGs for the synchronisation between the source
code of satellite procedures and corresponding visualisations.

References

1. The Eclipse Foundation: EMF Henshin – Version 0.9.4 (2013),
http://www.eclipse.org/modeling/emft/henshin/

2. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Model Driven Interoperability (MDI 2010), pp. 22–31. ACM (2010)

3. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.
Science of Computer Programming 72, 31–39 (2008)

4. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

5. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

6. Schürr,A.,Klar,F.: 15years of triple graphgrammars. In:Ehrig,H.,Heckel,R., Rozen-
berg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer,
Heidelberg (2008)

7. SES Engineering: SPELL - Satellite Procedure Execution Language & Library –
Version 2.3.13 (2013), http://code.google.com/p/spell-sat/

http://www.eclipse.org/modeling/emft/henshin/
http://code.google.com/p/spell-sat/

The Graph Grammar Library - A Generic

Framework for Chemical Graph Rewrite Systems

Martin Mann1, Heinz Ekker2, and Christoph Flamm2

1 Bioinformatics, Institut for Computer Science, University of Freiburg,
Georges-Köhler-Allee 106, 79106 Freiburg, Germany,

mmann@informatik.uni-freiburg.de
2 Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17,

1090 Vienna, Austria,
xtof@tbi.univie.ac.at

Graph rewrite systems are powerful tools to model and study complex problems
in various fields of research [7]. Their successful application to chemical reaction
modelling on a molecular level was shown [1,2,6] but no appropriate and simple
system is available at the moment [8]. The Graph Grammar Library (GGL),
presented in this contribution and more extensively in [4], fills this gap and
provides feature-rich functionality especially for chemical transformation.

The GGL implements a simple generic Double Push Out approach for general
graph rewrite systems [7] on labeled undirected graphs. The object oriented C++
framework focuses on a high level of modularity as well as high performance,
using state-of-the-art algorithms and data structures, and comes with extensive
end user and API documentation. Central modules (e.g. graph matching, match
handling, graph storage) are combined via simple interfaces, which enables an
easy combining to tackle the problem at hand.

The large GGL chemistry module enables extensive and detailed studies of
chemical systems. It well meets the requirements and abilities envisioned by Ya-
dav et al. [8] for such chemical rewrite systems. Here, molecules are represented
as vertex and edge labeled undirected graphs while chemical reactions are de-
scribed by according graph grammar rules, see Fig. 1. Such a graph grammar
is a generating system for the explicit construction of an entire chemical space,

C=CC=O
convert from

SMILES

O

C=COC
convert from

SMILES

O

apply graph

rewrite rule

OO

convert to

SMILES
C1=COC(OC)CC1

Fig. 1. Illustration of the basic steps to convert the educt molecules acolein and methyl
vinyl ether via a Diels-Alder reaction [4] to the cyclic product molecule. Physico-
chemical properties for the molecules, such as free energies (ΔG), or for the reaction,
e.g. reaction rates, can be estimated either by using GGL built-in functionality or via
calls to the OpenBabel chemistry toolkit [5].

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 52–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The GGL - A Generic Framework for Chemical Graph Rewrite Systems 53

i.e. all molecules reachable from the initial molecules by iterative reaction ap-
plications. An extensive system of wildcards, degree and adjacency constraints,
and negative application conditions (NAC), such as the non-existence of edges,
makes it easy to formulate very specific graph transformation rules by modulat-
ing their context dependent matching behaviour. Rules are encoded using the
Graph Modelling Language (GML) easily understood and used by non-expert
users. The molecule graphs produced by the graph grammar encoded chemical
reactions have to pass extensive sanity checks and e.g. arromaticity correction
to ensure the production of proper molecules only.

Besides the efficient handling of chemical transformation the GGL offers ad-
vanced cheminformatics algorithms. Among them are methods for the estimation
of reaction rates or the free energies of molecules, the generation of canonical
SMILES (a popular line notation for molecules) or chemical ring or aromaticity
perception. Furthermore the entire functionality of the popular chemical toolbox
Open Babel [5] can be harnessed from within the GGL via the implementation of
a bi-directional interface for the exchange of chemical graphs. All these features
are used within the GGL-based toyChem tool part of the library that enables
the expansion and visualization of reaction networks given some initial molecules
and a set of chemical reaction rewrite rules.

The graph grammar based simulation of chemical reactions offered by the
GGL is a powerful tool for extensive cheminformatics studies on a molecular
level and it already provides rewrite rules for all enzymes listed in the KEGG
LIGAND database [3]. The GGL is freely available at

http://www.tbi.univie.ac.at/software/GGL

For a full description of all GGL features please refer to [4] available at
http://arxiv.org/abs/1304.1356

References

1. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry.
J Chem. Inf. and Comp. Sci. 43(4), 1085–1093 (2003)

2. Flamm, C., Ullrich, A., Ekker, H., Mann, M., Hoegerl, D., Rohrschneider, M.,
Sauer, S., Scheuermann, G., Klemm, K., Hofacker, I.L., Stadler, P.F.: Evolution
of metabolic networks: A computational framework. J. Syst. Chem. 1(1), 4 (2010)

3. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration
and interpretation of large-scale molecular data sets. Nuc. Acids Res. (2011)

4. Mann, M., Ekker, H., Flamm, C.: The graph grammar library - a generic framework
for chemical graph rewrite systems. arXiv (2013), http://arxiv.org/abs/1304.1356

5. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison,
G.R.: Open Babel: An open chemical toolbox. J. Cheminf. 3(1), 33+ (2011)

6. Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical
graph transformation. Electron. Notes Theor. Comput. Sci. 127, 157–166 (2005)

7. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc. (1997)

8. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph
transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G.
(eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004)

http://arxiv.org/abs/1304.1356

Fragmented Validation:

A Simple and Efficient Contribution
to XSLT Checking

(Extended Abstract)

Markus Lepper1 and Baltasar Trancón y Widemann1,2

1 <semantics/> GmbH, Berlin, DE
2 Ilmenau University of Technology, Ilmenau, DE

post@markuslepper.eu, Baltasar.Trancon@tu-ilmenau.de

Debugging and verifying XSLT programs is a tedious but important task, and
automated support is urgently requested by practice. Type checking of XSLT
is untractable in general. Very different theoretical and practical work exists in
this field, either restricting the involved languages, or aiming at approximations.

In contrast to these ambitious and expensive approaches, fragmented valida-
tion is light-weight. It does not consider the input document and the questions of
control flow, in XSLT especially complicated due to the dynamic pattern match-
ing, but restricts itself to the fragments of target language elements which are
statically embedded in an XSLT script, and which are the stencils for many (in
most cases: for all) elements of the result documents.

Fragmented Validation finds places in an XSLT program where output is
produced which is certainly illegal w.r.t. the document type of the intended
result. It does so by a kind of abstract interpretation. This can be performed in
linear time on the fly, when parsing an XSLT program. The usual deterministic
parsing alternates with a non-deterministic mode, the defining automata for
which are created dynamically on demand by two simple operations on relations.

The intended document type of the result must be given by a regular tree
grammar. This is a map from the set of all labels allowed for nodes of the
document tree to regular expressions over these labels, called content models in
the context of XML. This defines the allowed sequences of child elements, when
lifted from labels to elements. A W3C DTD is an example for such a regular
tree grammar. It can also be constructed for the XSLT language itself.

The structure of an XSLT program and the corresponding parsing process
divide into different zones, which fall in one of four categories:

1. Pure XSLT. The top of the document tree is an element defined by XSLT
(namely stylesheet), and contains further XSLT elements.

2. Embedded result sequences. As contents of selected XSLT elements,
sequences of result elements may appear.

3. Result elements’ contents. The contents of result elements in most cases
consist again of result elements only.

4. XSLT elements in result elements’ contents. The contents of result
elements may be interspered with further XSLT elements.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 54–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fragmented Validation: A Simple and Efficient Contribution 55

The execution of an XSLT program will result in a document which is con-
structed by concatenating the contained result elements sequences, and by replac-
ing the XSLT elements embedded therein by further evaluation results recursively.
This motivates the basic idea of fragmented validation.

The two “pure” zones of the input document, XSLT or result elements only,
can be parsed as usual, in a deterministic way: The content models of all ele-
ments of both languages are translated into one deterministic finite automaton,
DFA each. Each DFA has, as usual, one start state, a set of accepting states,
and transitions labeled with the tags of consumed child elements. By represent-
ing these DFAs as relations between states, our method becomes most easy to
understand and to implement. Parsing is realized by applying this relation to a
set of states, which is a singleton set in the two cases of deterministic parsing.

Whenever the zone “2” is entered and as soon as the first result element
embedded as child of an XSLT element is consumed, all those states from all
content models are put into the set of current states which are reachable by
a transition labelled with that element’s tag. So a non-deterministic parsing
process starts, which realizes a kind of “reading at more than one grammar
position simultanuously”, because we do not know at which position of the result
grammar this particular fragment will end up later, on execution. Nevertheless,
at least one such point must exist for the program to be sensible. So parsing in
this non-deterministic way must always be able to proceed for the whole XSLT
element’s contents, and an error is detected as soon as the set of current states
becomes empty. (To reach an accepting state is not required, since the contents
of the future result element may be completed correctly by some other XSLT
rule. This context information is beyond the scope of fragmented validation!)

When the contents of a particular result element are parsed, this starts in a
deterministic way, with the set of current states containing only the start state
of the DFA, as usual. But as soon as an embedded, content generating XSLT
element appears, the transitive and reflexive closure of the transition relation
(ignoring all transition labels) is applied to this set. This is an abstract interpre-
tation of the later execution, since we do not know how many of the following
allowed result elements the later expansion of the inserted XSLT element will
contribute. Parsing continues as usual. When parsing the closing tag of the con-
taining result element, at least one accepting state of its content model must be
contained in the set, otherwise again an error is detected.

This abstract interpretation is also applied in the previous case, so that both
kinds of non-determinism combine naturally, whenever necessary.

This is the whole idea, and it turned out that it is capable of finding from fifty
to hundred percent of the errors found by much more sophisticated validation
techniques, when applied to acknowledged real-world test material.

Model Querying with FunnyQT
(Extended Abstract)

Tassilo Horn

Institute for Software Technology
University Koblenz-Landau, Germany

horn@uni-koblenz.de

FunnyQT is a new model querying and transformation approach. It is designed as
an extensible API in the functional, JVM-based Lisp dialect Clojure. FunnyQT
targets the modeling frameworks JGraLab and EMF, and it is extensible to other
frameworks as well. Its querying parts are already stable while its transformation
parts are still in early stages of development, so this paper focuses on the former.
Clojure API. FunnyQT is not a separate language with its own concrete syn-
tax and semantics, but a Clojure API, i.e., FunnyQT queries are essentially
Clojure expressions. Clojure’s JVM-basing guarantees efficient and wrapper-free
interoperability with existing Java libraries including almost all modeling frame-
works. Clojure provides a large set of features including higher-order functions
and control structures that can be used directly. Clojure programs also tend to
be much more concise than equivalent programs in imperative languages. A first
case study involving complex, parallelized FunnyQT queries on large models has
been released as a whitepaper [2].
Modeling frameworks. FunnyQT is applicable to any modeling framework in
principle, and support for EMF [5] and JGraLab [3] are already built-in.
FunnyQT uses the framework-specific model representations, and there is no
adaption layer unifying access to models and model elements. Instead, for any
modeling framework, FunnyQT has a framework-specific core namespace pro-
viding functions for accessing models and model elements. These functions are
named according to the terminology of the corresponding framework, and they
expose all its characteristics. Built on top of these framework-specific APIs, there
are generic APIs applicable to any supported modeling framework which provide
various features discussed in the following.
Basic querying & model management. The basic querying API contains func-
tions for sequencing the elements contained in a model, functions for accessing
the attributes and referenced elements of a given model element, comprehen-
sions, quantified expressions, and polymorphic functions dispatching on meta-
model types. Combined with Clojure’s standard functions and control structures,
these parts of the FunnyQT API enable model querying similar to OCL. Fun-
nyQT’s model management facilities enable loading and storing of models and
metamodels, creation and deletion of model elements, setting of property values,
and visualization of models or extracts thereof. Combined with the basic query-
ing API, these facilities enable typical model management tasks and algorithmic
transformations similar to the Epsilon Object Language [4].

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 56–57, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model Querying with FunnyQT 57

Regular path expressions. Regular path expressions (RPEs) are a very powerful
querying concept borrowed from GReQL [1]. An RPE can be used to calculate
the set of elements reachable from a given element by traversing a path specified
by role names and typed edge symbols combined with regular path operators
such as sequence, option, alternative, or transitive (reflexive) closure.

Pattern matching. FunnyQT also supports pattern matching using an internal
DSL implemented with Clojure’s metaprogramming facilities. A pattern is spec-
ified using a special FunnyQT macro and contains named and typed node and
edge symbols specifying the structure of the subgraph to be matched. Further-
more, negative application conditions are supported, arbitrary constraints may
be specified, and patterns may be composed of other patterns. At compile-time,
the macro transforms such a pattern definition to an ordinary function. When
being called, the function results in a lazy sequence of all matches in the queried
model. The lazyness of the sequence means that the matches are not calculated
until they are retrieved from the sequence one at a time. Thus, finding the first
few matches is much cheaper than computing all matches.

Concludingly, FunnyQT at the current point in time provides a comprehensive
approach to model querying and model management. Its core characteristics are
its support for multiple modeling frameworks, its functional alignment as Clojure
API, its extensibility, and the ability to exploit existing Clojure and Java libraries
like demonstrated in [2], where Java’s new ForkJoin library has been used to
parallelize complex queries.

FunnyQT’s basic querying API including the features inherited by its host
language Clojure already enable an expressivity comparable to OCL or EOL,
and its support for regular path expressions and pattern matching provide even
more powerful querying capabilities.

In future work, FunnyQT will be extended to a comprehensive querying and
transformation approach. A first preview on FunnyQT transformations can be
experienced at this year’s Transformation Tool Contest1, where FunnyQT solu-
tions have been submitted for all three case studies.

References

1. Ebert, J., Bildhauer, D.: Reverse Engineering Using Graph Queries. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 335–362. Springer, Heidelberg (2010)

2. Horn, T.: FunQL: A Functional Graph Query Language. Whitepaper (January 2012),
http://www.uni-koblenz.de/~horn/funql-whitepaper.pdf

3. JGraLab Hompage (March 2013), http://jgralab.uni-koblenz.de
4. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book (March 2013),

http://www.eclipse.org/epsilon/doc/book/
5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd edn. Addison-Wesley Professional (2008)

1 http://planet-sl.org/ttc2013

http://www.uni-koblenz.de/~horn/funql-whitepaper.pdf
http://jgralab.uni-koblenz.de
http://www.eclipse.org/epsilon/doc/book/
http://planet-sl.org/ttc2013

Yet Another Three QVT Languages

Edward Willink1, Horacio Hoyos2, and Dimitris Kolovos2

1 Willink Transformations Ltd., Reading, UK
ed@willinktransformations.co.uk
2 The University of York, York, UK,

horacio.hoyos.rodriguez@ieee.org, dimitris.kolovos@york.ac.uk

The early enthusiasm, in 2002, for model to model transformation languages led
to eight submissions for an OMG standard[1] comprising three languages, yet no
commercial products. The QVT Core language was intended as the foundation
for QVT Relations but the available implementations have ignored the core lan-
guage. Rather than ignoring the core language, we take the opposite approach
and introduce three more core languages. Progressive program-to-program trans-
formation through these core languages terminates in an easily implemented
imperative language that supports declarative transformations.

There are currently only two freely available but discouragingly stable imple-
mentations of QVTr. There are no implementations for QVTc. The Eclipse QVT
Declarative project provides only models, editors and parsers for both QVTr and
QVTc. We outline progress to remedy the execution deficiency.

The original work for Eclipse QVTd execution considered only QVTr and
confirmed that direct tooling of a complex declarative language such as QVTr
is rather hard. Three years ago, the direct approach was abandoned and the
progressive approach shown in the Figure was first posted on the web. Work on
this approach has at last started.

At the left we have the two QVT Declarative languages, with QVTr realized by
a QVTr to QVTc program-to-program transformation. Our three new languages,
QVTu, QVTm and QVTi are syntactic and semantic simplifications of QVTc.
QVTi is realized by extending the OCL support of Eclipse OCL. This enables
the Xtext editing, OCL and UML model support and the OCL to Java code
generator to be exploited.

The utility of the new languages and the program to program transformations
are summarized below.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 58–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Yet Another Three QVT Languages 59

QVTc toQVTu (Unidirectional). TheQVTc transformation is aligned to the
user’s invocation context to extract a uni-directional declarative representation.

– the redundant multi-directionality and enforcement modes are eliminated.

QVTu to QVTm (Minimal). The QVTu transformation is normalized to
give as simple and as uniform a declarative representation as possible.

– syntactic sugar is removed
– representation alternatives are normalized

QVTm to QVTi (Imperative). A practical multi-pass implementation is
synthesized that can be easily executed on a model-friendly Virtual Machine.

– a reconciler is synthesized if an update transformation is required
– a pattern matching schedule serializes declarative input matches
– a pattern generation schedule serializes declarative output updates

QVTc differs from other transformation languages in requiring traceability to
be made explicit in an additional middle metamodel. QVTi exploits the middle
model to provide a convenient buffer between the reconciliation, input match-
ing and output update passes. The reconciliation for an update transformation
populates the middle model with the pre-existing matches. An in-place transfor-
mation ensures that all input context is cached in the middle model before any
potentially conflicting output updates are made. A solution to these complexi-
ties is prepared at compile time, and expressed in QVTi, so that the run-time
execution is naive and efficient.

These new languages are not just a convenience for realizing QVTc, they
also offer important interchange points for other transformation technologies to
exploit and so share the tool chain.

– QVTu provides a high level interchange point for other uni-directional
declarative transformation languages such as ATL or ETL.

– QVTm provides a normalized representation at which declarative transfor-
mation composition and optimisation can be applied.

– QVTi provides a low level interchange point that imperative transformation
languages such as QVTo, ALF or EOL may exploit.

The extension of Eclipse OCL VM[2] to support execution of QVTi proved to
be surprisingly easy. Some simple transformations have confirmed how simple
QVTi can be. It is now only necessary to develop the QVTr to QVTc to QVTu
to QVTm to QVTi program transformation chain.

References

1. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
version 1.1 (January 2011), http://www.omg.org/spec/QVT/1.1/

2. Willink, E.D.: An extensible ocl virtual machine and code generator. In:
Proceedings of the 12th Workshop on OCL and Textual Modelling, OCL 2012,
pp. 13–18. ACM (2012)

http://www.omg.org/spec/QVT/1.1/

A Methodological Approach for the Coupled Evolution
of Metamodels and ATL Transformations

Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio

Department of Information Engineering,
Computer Science and Mathematics University of L’Aquila

{davide.diruscio,ludovico.iovino,alfonso.pierantonio}@univaq.it

Abstract. Model-Driven Engineering is a software discipline that relies on
(meta) models as first class entities and that aims to develop, maintain and evolve
software by exploiting model transformations. Analogously to software, meta-
models are subject to evolutionary pressures which might compromise a wide
range of artefacts including transformations. In contrast with the problem of
metamodel/model co-evolution, the problem of adapting model transformations
according to the changes operated on the corresponding metamodels is to a great
extent unexplored. This is largely due to its intricacy but also to the difficulty
in having a mature process which on one hand is able to evaluate the cost and
benefits of adaptations, and on the other hand ensures that consistent methods are
used to maintain quality and design integrity during the adaptation. This paper
proposes a methodological approach to the coupled evolution of ATL transfor-
mations aiming at evaluating its sustainability prior to any adaptation step based
on the assessment of change impact significance.

1 Introduction
Model-driven engineering (MDE) is a software discipline that employs models for de-
scribing problems in an application domain by means of metamodels. Different ab-
straction levels are bridged together by automated transformations which permit source
models to be mapped to target models. These artifacts and the interrelationships among
them constitute an ecosystem at whose core there are metamodels [4]. Since evolution
in software is anything but a rare occurrence [12], it can affect metamodels as well [19]
causing a ripple effect over the rest of the ecosystem. However, whenever a metamodel
undergoes modifications, it is of vital relevance that the impact of such changes is fully
understood prior initiating their propagation: regardless how urgent the motivations for
changing a metamodel are, underestimating the difficulties in restoring the consistency
in the ecosystem can lead to an impasse, in which no progress can be made [6].

The problem of metamodel/model coupled evolution1 has been already extensively
investigated (e.g., see [6,2,16,8,10]). The existing approaches provide tools and tech-
niques to define and apply migration strategies able to take models conforming to the
original metamodel and to produce models conforming to the evolved metamodel. On
the contrary, despite its relevance the metamodel/transformation co-evolution problem

1 Throughout this paper we will use the terms coupled evolution, co-evolution and co-adaptation
as synonyms whenever it does not give place to misinterpretations.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 60–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Methodological Approach for the Coupled Evolution 61

is still open and requires further investigations. In fact, adapting transformations does
not only take into account the domain conformance [14] between the definition of a
transformation and its metamodels but must consider also the intelligence used by
the transformation for generating the target model elements. Very few attempts have
been made so far and generally they tend to re-apply the same techniques used for the
metamodel/model co-evolution, as in [13] where higher-order transformations (HOTs)
are used to migrate, whenever possible, existing transformations according to occurred
metamodel changes. Thus, only the most obvious cases, such as renamings and dele-
tions, are covered leaving the responsibility of managing the most complex ones to the
modeler who typically face the problem with individual and spontaneous skills. This
is largely due to the intricacies of the problem but also to the lack of a mature pro-
cess which on one hand is able to evaluate the cost and benefits of adaptations, and on
the other hand ensures that consistent methods are used to maintain quality and design
integrity during the adaptation.

This paper proposes a comprehensive and methodological approach to the coupled
evolution of ATL transformations. As with many engineering activity, measurement is
crucial in order to assess at early stages of a process the sustainability of the costs versus
the benefits. Therefore, a process is proposed for the systematic co-evolution of artifacts
and which includes the following activities: i) establishing the dependencies between a
transformation and its (source) metamodel; ii) evaluating the cost of the adaptation; iii)
deciding whether it is sustainable or not by eventually reconsidering certain decisions;
and finally iv) if the assessment has a positive outcome the impacted transformation
is adapted. The main contribution of the paper is to define a methodology in which an
early assessment of the impact cost and significance is conducted and which can provide
the modeler with the right tools and techniques for addressing a complex problem in a
more disciplined way.

The structure of the paper is as follows: In Section 2, we discuss an example which
motivates the metamodel/transformation coupled evolution problem. In Section 3 we
discuss a classification of metamodel changes according to their impact on the existing
transformations. The proposed process for the systematic co-evolution of metamod-
els and ATL transformations is described in Section 4. Related work is described in
Section 5, and the paper is concluded in Section 6.

2 Motivating Scenario

In MDE model transformations play a key role since they are able to generate tar-
get models starting from source ones according to transformation rules, which are de-
fined with respect to source and target metamodels. For instance, Listing 1.1 shows an
ATL transformation able to transform models conforming to the PetriNet metamodel
reported in Figure 1.a, and to generate Petri Net Markup Language (PNML) [1] models
conforming to the metamodel in Figure 2.

According to the metamodel in Figure 1.a a PetriNetModel mainly consists of
Places and Transitions which are contained in the Net element. Concerning the
metamodel in Figure 2, the metaclass PNMLDocument represents the root element which
is composed of Petri nets specified by means of NetElement instances. A Petri net

62 D. Di Ruscio, L. Iovino, and A. Pierantonio

is composed of NetContent elements which are distinguished into Arc, Place, and
Transition. Net elements and net contents can have a Name, which is a Labeled

Element composed of Labels.

Listing 1.1. Fragment of the PetriNet2PNML ATL transformation

1helper context PetriNetMM0!Transition def: createArcsSrc(parent:PNML!NetElement):
PNML!Arc=

2 self.src->iterate(e; res : PNML!Arc=OclUndefined| thisModule.createArcSrc(e,
parent,self));

3helper context PetriNetMM0!Transition def: createArcsTrs(parent:PNML!NetElement):
PNML!Arc=

4 self.dst->iterate(e; res : PNML!Arc=OclUndefined | thisModule.createArcTrs(self,
parent,e));

5rule Net {
6 from s: PetriNetMM0!Net
7 to t: PNML!NetElement (
8 name<-s.name,
9 contents <- s.places.union(s.transitions),

10 id<-s.name
11),
12...}
13rule Place {
14 from s: PetriNetMM0!Place(s.oclIsTypeOf(PetriNetMM0!Place))
15 to t: PNML!Place(
16 name <- name,
17 id <- s.name+’_src:’+s.src.size().toString()+’_dst:’+ s.dst.size().toString()),
18...}
19rule Transition {
20 from s: PetriNetMM0!Transition
21 to t: PNML!Transition(
22 name <- s.name,
23 id <- s.name+’_dst:’+s.dst.size().toString()),
24 ...
25 do{
26 s.createArcsSrc(t.net);
27 s.createArcsTrs(t.net);
28 }}...

The transformation shown in Listing 1.1 is a revised version of the one available in
the ATL Transformation Zoo2 and consists of the following rules:

a) Initial version b) Revised version

Fig. 1. Different versions of the source PetriNet metamodel

2 http://www.eclipse.org/m2m/atl/atlTransformations/

http://www.eclipse.org/m2m/atl/atlTransformations/

A Methodological Approach for the Coupled Evolution 63

Fig. 2. Target PNML metamodel

� Net generates a target NetElement for each instance of the source Net metaclass.
The name of the generated NetElement is the same of the source Net. Moreover, the
content of the target NetElement consists of the union of the place and transition
elements contained in the source Petri net model (see lines 7-11 in Listing 1.1).
Figure 4 shows the PNML model (represented as an object diagram) automatically gen-
erated from the PetriNet model in Figure 3. The instance netElement1 in Figure 4 has
been generated by the Net rule from the source net1 element in Figure 3. Interest-
ingly, the content of the target NetElement consists of the union of the target elements
corresponding to the source places and transitions;
� Place generates a target Place element for each place in the source model. The name
of the generated element is the same as the source. Moreover, the value of the target
attribute id is a string concatenation which considers the number of the incoming and
outgoing transitions of the input Place (see lines 15-18 in Listing 1.1). For instance,
the id value of the place p2 in Figure 4 is p2 src:1 dst:0 since the source place has
only one incoming transition and no outgoing transitions;
� Transition generates a Transition element for each transition in the source model.
The value of the id attribute maintains the number of destination places of the con-
sidered transition as the sample transition t1 in Figure 4 (see lines 21-23 in List-
ing 1.1). The generation of target Arc elements is performed by means of the helpers

Fig. 3. Sample PetriNet model

64 D. Di Ruscio, L. Iovino, and A. Pierantonio

Fig. 4. Sample PNML model

createArcsSrc and createArcsTrs which are executed in the action block of the
Transition rule (see lines 25-28 in Listing 1.1).

Let us consider the exemplar PetriNet metamodel evolution [19] by refining the
metamodel in Figure 1.a to obtain the new version shown in Figure 1.b. The new ver-
sion of the metamodel has been produced by operating a number of changes, such as:

1. the TransitionToPlace and PlaceToTransition metaclasses have been
added;

2. the new metaclass Arc has been added as a superclass of the TransitionToPlace
and PlaceToTransition metaclasses;

3. the metaclass Net has been renamed as PetriNet;
4. the old references places and transitions in the old Net metaclass have been

merged in the elements reference of the new PetriNet metaclass.

Because of the operated modifications, the existing ATL transformations relying on the
first version of the PetriNet metamodel can require some adaptations. For instance, in
the case of the sample PetriNet2PNML transformation in Listing 1.1, the rule Net has
to be adapted since the references places and transitions used in the binding of
the property contents (see line 9 in Listing 1.1) do not exist in the new version of the
metamodel. Also, the input pattern of the same rule has to be changed since the meta-
class Net is not available because of the renaming modification operated on it to obtain
the new metaclass PetriNet. In general, manually adapting ATL transformations is
error-prone and can give place to inconsistencies. Moreover, it is very difficult to real-
ize all the parts of the transformation which are potentially affected by the metamodel
modifications. Such an issue becomes very relevant when dealing with complex ATL
transformations with a considerable number of rules and helpers. In the next section we
discuss a classification of metamodel changes, which are organized with respect to the
kind of required transformation adaptations.

3 Metamodel Changes and Transformation Adaptations

Changes to metamodels might have an impact to the models, editors, generated code,
and model transformations that depend on the aforementioned metamodels. Concern-
ing model transformations, because of changes to a given metamodel, transformation

A Methodological Approach for the Coupled Evolution 65

inconsistencies can occur and are those elements in the transformation, which do not
longer satisfy the domain conformance [14]. For instance, a sample domain confor-
mance constraint might state that the source elements of every transformation rule must
correspond to a metaclass in the source metamodel [15]. Consequently, when a concept
is removed from a metamodel, existing transformations that use the removed concept
are no longer domain conformant with the evolved metamodel. Hereafter, we say that
a metamodel change affects a transformation when there are some transformation ele-
ments, which do not longer satisfy the domain conformance with the new metamodel.

In this section we investigate the problem by discussing some typical metamodel
changes together with the corresponding co-changes of already existing ATL transfor-
mations. We depart from catalogues of metamodel changes as they are available in the
literature, e.g., [19,10] and previous work of the authors [2,5]. Moreover, we take into
account also the terminology proposed in [13] to classify metamodel changes. In par-
ticular, according to [13], in the case of metamodel/transformation co-evolution, meta-
model changes can be classified as follows:

– fully automated, when they affect existing transformations which can be automati-
cally migrated without user intervention;

– partially automated, when they affect existing transformations which can be adapted
automatically even though some manual fine-tuning is required to complete the
adaptation;

– fully semantic, when they affect transformations which cannot be automatically
migrated, and the user has to completely define the adaptation.

To better comprehend such a classification, in the following we discuss three meta-
model changes, one representative for each category in the previous classification. The
interested reader can refer to [2] and to the material available on-line3 for an extensive
catalogue of metamodel changes and their effects on corresponding artifacts.

Rename metaelement. There are changes which can be automatically managed without
user intervention. This is the case of metaelement renaming, where transformations can
be fully adapted by simply replacing all the occurrences of the old metaelement with the
new one. For instance, the input pattern of the adapted Net rule shown in Listing 1.2 has
been obtained by replacing Net with PetriNet (see line 3) according to the renaming
change operated on the source Net metaclass.

Listing 1.2. Fragment of the Net rule which has been adapted after the rename metaelement and
merge references changes

1rule Net {
2 from
3 s : PetriNetMM0!PetriNet --Warning: element Net has been changed !
4 to
5 t : PNML!NetElement (
6 name <- name,
7 document <- thisModule.document,
8 contents <- s.elements->select(e | e.oclIsKindOf(PetriNetMM0!Place)).union(s

.elements->select(e | e.oclIsKindOf(PetriNetMM0!Transition))),
9 ...

10),

3 http://www.metamodelrefactoring.org/

http://www.metamodelrefactoring.org/

66 D. Di Ruscio, L. Iovino, and A. Pierantonio

Merge references. Given an existing metamodel, existing references can be merged by
giving place to a new one. For instance, in the new version of the PetriNet metamodel
shown in Figure 1.b, the references places and transitions in the metaclass Net
have been merged in the new reference elements having the new metaclass Element
as type. Element is also the superclass of Place and Transition metaclasses. In
this case, a default migration policy can be adopted by changing the occurrences of
the merged references as reported in the adapted version of the Net rule shown in
Listing 1.2. In particular, each occurrence of the references places and transitions
is replaced with a select statement to filter Place and Transition instances on the
new elements reference (see line 8 in Listing 1.2).
Add metaclass. According to [13] this modification is fully semantic since it is impossi-
ble to derive new transformation rules from new metaclasses, without any information
about how the added elements should be automatically manipulated. However, we be-
lieve that in these cases, some default actions can be undertaken, then the user can
refine or amend them. For instance, whenever a new metaclass is added, the considered
ATL transformation can be migrated by adding a new transformation rule having the
added metaclass as a source input pattern. Then, the user can refine such a rule by im-
plementing the target pattern. For example, because of the addition of the metaclasses
TransitionToPlace in the initial PetriNet metamodel in Figure 1.a, the matched rule
in Listing 1.3 can be added to the transformation shown in Listing 1.1.

Listing 1.3. New transformation rule to manage the addition of the TransitionToP lace
metaclass

1--@Rule for TransitionToPlace added subclass
2rule TransitionToPlace {
3 from
4 s_TransitionToPlace : PetriNetMM0!TransitionToPlace (s_TransitionToPlace.

oclIsTypeOf(PetriNetMM0!TransitionToPlace))
5 to
6 -- t_TransitionToPlace : PNML!"Type your matching element name"
7}

According to the discussion above, the metamodel/transformation co-evolution prob-
lem is complex especially because in most of the cases transformations can be adapted
in different manners and user intervention is required. Existing approaches, like [13,14]
introduce techniques mainly to support fully automated changes. However, adaptations
are performed by means of individual and spontaneous skills without adhering to a
well-established process, which beyond the actual adaptation activities would include
also an evaluation of the cost and benefits of the changes to be operated.

4 Adaptation of ATL Transformations

In this section we propose a methodology for supporting the adaptation of ATL transfor-
mations according to the changes operated on the corresponding metamodels.
The methodology consists of a number of activities that encompass the specification
of the metamodel changes, the evaluation of their impact on the existing artifacts, the
sustainability of the induced adaptations, and the actual migrations of the affected arti-
facts. For each activity, supporting techniques that can be employed are mentioned, and

A Methodological Approach for the Coupled Evolution 67

more space is devoted to the cost evaluation of the required adaptations (Section 4.2),
and to their concrete application (Section 4.3).

4.1 Overview of the Methodology Activities

The activities of the proposed methodology are shown in Figure 5 and detailed in the
rest of the section.

Relation Definition. This activity is independent from the specific metamodel evolution
and the affected transformations, thus it is performed once forever as long as both the
transformation language and the metamodeling language do not evolve. In particular,
in this activity the ATL and the ECore metamodels are considered in order to establish
correspondences between them. Such correspondences are used later in the process to
automatically derive the dependencies between an evolving metamodel and the existing
transformations. This activity can be done by using the work in [11] that exploits weav-
ing models and megamodels to specify and manipulate correspondences among related
and evolving artifacts. The upper side of Figure 6 shows a sample weaving model (as
defined in [11]), which specifies the relation between the ECore metaclass EClass and
the ATL metaclass OclModelElement.

Dependencies Elicitation. Given the correspondences defined in the previous activity, it
is possible to automatically derive a weaving model representing all the dependencies
between the evolving metamodel, and the existing ATL transformations. The lower side
of Figure 6 shows the dependencies between the metaclasses of the PetriNet meta-
model and the elements of a given ATL transformation having it as source metamodel.
For instance, the first rule of the transformation shown on the right-hand side of Fig-
ure 6 contains an OclModelElement named Net, thus it is connected with the EClass
element similarly named on the left-hand side of the figure. Such a dependency link
specifies that changing the name of the Net metaclass in the PetriNet metamodel
implies to propagate such a change to each OclModelElement linked to it.

Metamodel Changes Specification. The changes that modeler wants to operate on a
given metamodel should be properly represented in order to enable automatic manipu-

Fig. 5. Methodology activities

68 D. Di Ruscio, L. Iovino, and A. Pierantonio

Fig. 6. Relation Definition and Dependencies Elicitation

lations and the subsequent phases of the process. For instance, in this phase it is possi-
ble to adopt the metamodel independent approach to difference representation proposed
in [3] already used to deal with other coupled evolution problems (e.g., adaptation of
models [2], and GMF editors [5]).

Change Impact Analysis. In general, change impact analysis can be considered as the
activity of detecting which modeling artifacts within the metamodeling ecosystem are
impacted by a change made in the evolving metamodel. In the specific case of ATL
model transformations, according to the dependencies previously elicited, all the trans-
formation elements which are in relation with the changed metamodel elements are
identified and used as input during the adaptation cost evaluation as discussed in the
following. It is important to note that in this phase both affected transformation rules
and helpers are taken into account. Concerning the latter specific management might be
required in case of complex helpers that entail the execution of other affected ones.
Adaptation Cost Evaluation. By considering the affected elements identified in the pre-
vious phase, modelers evaluate the cost for adapting the affected transformations. In
this respect, if the adaptation is too expensive (according to an established threshold)
modelers can decide to refine the metamodel changes to reduce the corresponding costs,
otherwise they can accept the operated metamodel changes. The evaluation is based on
an adaptation cost function as discussed in the next section.

A Methodological Approach for the Coupled Evolution 69

Metamodel Changes Commit. Once the metamodel changes have been evaluated, mod-
elers can commit them in order to concretely apply the previously evaluated
transformation adaptations.

Transformation Adaptation. In this phase the existing transformations which have been
affected by the committed metamodel changes are adapted. Proper tools are required to
support this step. Over the last years different approaches have been proposed to support
the coupled evolution of metamodels and related artifacts. In Section 4.3 we show how
EMFMigrate [4] can be used as possible supporting tool in this phase.

4.2 Evaluating the Adaptation Cost of Model Transformations

Proper cost functions have to be considered to evaluate the sustainability of adapting
existing transformations. The cost related to the adaptation cannot be uniquely defined
since it depends on many factors, e.g., the application domain, the stage of the consid-
ered development process, and the execution environment. In this section we present a
possible adaptation cost function, and show an explanatory example about how it can
influence the choice of the metamodel changes to be operated.

Definition 1. (Adaptation Cost) Let Δ = {δ1, δ2, ..., δn} be a difference model con-
forming to the difference metamodel DM and consisting of metamodel changes δi as
in the catalogue in [2]. The cost of adapting ATL transformations affected by the meta-
model changes in Δ is the function c : DM → N defined as

c(Δ) = cenv +

n∑
i=1

kiw(δi)

where cenv ∈ N is the cost for setting up the used adaptation environment, ki is the
number of transformation elements which are affected by δi (as discovered in the change
impact analysis activity) and

w(δi) =

⎧⎪⎨
⎪⎩
ca if δi is automated

cpa if δi is partially automated

cfs if δi is fully semantic

(1)

where ca, cpa, cfs ∈ N are the costs of automated, partially automated, and fully
semantic adaptations, respectively.

To discuss a simple application of the previous adaptation cost function, let us con-
sider the situation in Figure 7. It consists of a simple metamodel, and an endogenous
ATL transformation, which creates a copy of models conforming to the shown meta-
model. For some reason, let us assume that the modeler wants to refine the metamodel
by renaming all the occurrences of the attributes name as id (see the left-hand side of
Figure 8). Even though this is a simple modification, it has some impact on the ATL
transformation. According to the previous adaptation cost function, since the modifica-
tion is fully automated, the cost of the adaptation is cenv + 5 × ca and corresponds to
the cost for operating the changes highlighted in the right-hand side of Figure 8 (i.e., all
the bindings name <- s.name have to be replaced by id <- s.id).

70 D. Di Ruscio, L. Iovino, and A. Pierantonio

Fig. 7. Simple metamodel and endogenous ATL transformation

Fig. 8. First proposed metamodel refactoring and corresponding adaptation

As it is possible to notice, the metamodel in Figure 8 can be enhanced by adding
a superclass for the metaclasses A, B, C, D, and E, in order to pull-up the attribute id

as shown in Figure 9. Even though the resulting metamodel is more well-designed than
the metamodel in Figure 8, the consequent transformation adaptation cost is higher than
the previous one. In fact, by considering the cost function previously defined, adapting
the transformation would cost cenv+7×ca, corresponding to the addition of an abstract
rule for managing the new superclass, and the changes to be operated on the existing
transformation rules (see the right-hand side of Figure 9). It is important to note that
such a transformation adaptation is one of possible ones that can be selected from a
library of adaptations (and in case manually refined) as discussed in Section 4.3. Even
tough this is a simplified case, it permits to show how in some cases, modelers have
to make a trade-off by accepting less elegant metamodel changes while reducing the

A Methodological Approach for the Coupled Evolution 71

Fig. 9. Second proposed metamodel refactoring and corresponding adaptation

Fig. 10. Overview of EMFMigrate

impact on existing transformations. This aspect is more evident in cases of complex
transformations, which have been already tested and validated. In such situations, it
might have sense performing metamodel changes, which do not require a complete re-
validation of the new transformations. Informally, we can say that we are talking about
optimization problems whose solutions depend on a number of contrasting factors, most
importantly the expressiveness of the resulting metamodels against the impact on the
affected transformations.

4.3 Transformation Adaptation with EMFMigrate

In this section we propose the adoption of EMFMigrate as a possible tool support-
ing the last step of the methodology proposed in Section 4.1. EMFMigrate permits to
specify, customize, and apply migrations of any kind of artifact, which has been af-
fected by changes operated on the corresponding metamodel. Thus, we show how it
is possible to employ EMFMigrate to adapt ATL transformations. The overall archi-
tecture of the approach is shown in Figure 10. EMFMigrate permits to specify default
adaptations, and collect them in libraries. The idea is having one library for each kind
of artifacts. Adaptations are applied with respect to the occurred metamodel changes,
properly represented by means of a difference model. The default migrations can be

72 D. Di Ruscio, L. Iovino, and A. Pierantonio

Listing 1.4. Sample migration rules in EMFMigrate
1rule mergeReferences
2 [
3 mergeReferences(ref1,ref2,newName)
4]
5{
6 <NavigationOrAttributeCallExp s>
7 [name == ref1.name] -> [[%{newName}->select(e |
8 e.oclIsKindOf(%{ref1.type}))
9]];

10
11 <NavigationOrAttributeCallExp s>
12 [name == ref2.name] -> [[%{newName}->select(e |
13 e.oclIsKindOf(%{ref2.type}))
14]];
15...}

extended or even amended by users which can specify custom migration rules to refine
or replace default transformation adaptations.

By considering the sample PetriNet metamodel in Figure 1.a, the references places
and transitions have been merged in the new reference elements as shown in
the new version of the metamodel in Figure 1.b. The adaptation implemented by the
migration rule mergeReferences in Listing 1.4 rewrites all the occurrences of the
matched references ref1 and ref2 with target ATL select operations which prop-
erly filter the new reference newName by selecting elements of type ref1.type and
ref2.type. For instance, in case of the reference place of the running example, all the
instances of NavigationOrAttributeCallExp named place will be rewritten with
elements->select(e | e.oclIsKindOf(Place)) (see lines 6-14 in Listing 1.4).
It is important to recall that NavigationOrAttributeCallExp is the metaclass of
the ATL metamodel which is used to refer to structural features of a given element. For
instance, on the right-hand side of Figure 11, there are two NavigationOrAttribute
CallExp instances since the references places, and transitions of the source
metaclass Net are used to set the value of the target contents reference.

To simplify the specification or rewriting rules, EMFMigrate permits to specify terms
by using the concrete syntax of ATL between the symbols “[[” and “]]”, instead of its
abstract syntax (see the right-hand side of the rewriting rules in Listing 1.4).

As said in Section 3, there are metamodel changes that require the intervention of
the users since it is not possible to fully automate the migration of the affected trans-
formations. However, in such situations it is possible to implement default migration
policies which can be refined/completed or even fully replaced by the user. Interested
readers can refer to [6,4,20] for a more detailed presentation of EMFMigrate and its
comparison with related approaches.

5 Related Work

The techniques and the methodology of our work are inspired by research on co-
evolution in model-driven engineering [7]. Much of this work is concerned with co-
transforming models in reply to metamodel changes [19,16,2,10].

In this work we deal with another kind of co-evolution problem, even though re-
lated to the previous one, which concerns the adaptation of ATL transformations that

A Methodological Approach for the Coupled Evolution 73

Fig. 11. Sample ATL transformation rule and its abstract syntax

have been affected by metamodel changes. Only recently, the problem of metamodel
evolution/transformation adaptation has gained attention and so far, only few attempts
have been provided to deal with it in a dedicated way [13,9,14]. In [13] the authors
propose HOTs which are able to support the adaptation of existing transformations de-
veloped in the GME/GReAT toolset. The approach is able to automate certain parts of
the evolution and when automation is not possible, their algorithms automatically alert
the user about the missing information, which can then be provided manually after the
automatic part of the interpreter evolution. The process proposed in [9] is divided in
two main stages: the detection stage, where the changes to the metamodel are detected
and classified, while the required actions for each type of change are performed at the
co-evolution stage. Our approach permits to specify ATL migrations by means of con-
structs which are easier than specifying HOTs. Moreover, a dedicated support is also
provided to develop customizations in an integrated manner. In [14] the authors investi-
gate the problem of metamodel/transformation co-evolution and introduce the domain
conformance as the relation between occurring between metamodels and transforma-
tions. Even though the authors propose an adaptation process consisting of three phases
(impact detection, impact analysis, and transformation adaptation) the cost related to
the adaptations (as shown in this paper) are completely neglected.

In [17] the authors propose a change impact analysis for Object-Oriented programs.
The authors provide feedback on the semantic impact of a set of program changes. This
analysis is used to determine the existing test programs affected by a set of changes.
Similarly to our approach, the authors consider of crucial relevance the activity of
analyzing the change impact even though they do not propose a measure for the adap-
tation cost, which has to be considered to evaluate if the changes have to be actually
performed. In [18] Vignaga presents a set of metrics which make ATL transformations
measurable, and enables assessing their quality. Such metrics can be used in our ap-
proach to extend the adaptation cost function in order to take into account also quality
aspects of the transformations during their adaptation.

74 D. Di Ruscio, L. Iovino, and A. Pierantonio

6 Conclusions and Future Work

Restoring the consistency of an ATL transformation when its corresponding metamod-
els are modified is a difficult problem. In this paper, we proposed a process in which
measurement plays an important role as it permits on one hand to assess the sustainabil-
ity of the costs versus the benefits of the prospected adaptation; and on the other hand
to ensure that consistent methods are used to maintain quality and design integrity. In
fact, proceeding without a preliminary evaluation of the difficulties can easily lead to a
situation, in which either no progress can be made or inconsistencies with consequent
information erosion are introduced. The proposed approach starts with defining the re-
lations between the transformation language and the metamodeling language; then the
dependencies are automatically obtained and highlighted and the modeler specifies the
metamodel evolution. A change impact analysis produces an adaptation costs evalua-
tion and the modeler has to make a choice. Then committing the changes the existing
transformation needs to be adapted and in this direction we proposed EMFMigrate.

In our ongoing research, we intend to focus on more complex adaptation cost func-
tions in order to take into account all the possible aspects which are involved in the
adaptation process. The function proposed in this paper, even though simplified, is a
starting point to formalize the problem as a multi-objective optimization since different
objective functions have to be optimized simultaneously. For instance, as shown in the
paper, typically modelers want to maximize the expressive power of the evolving meta-
models and minimize the cost related to the adaptation of the affected transformations.

References

1. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, Technology, and Tools.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Heidelberg (2003)

2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in
model-driven engineering. In: Procs. ECOC 2008, pp. 222–231. IEEE Computer Society
(2008)

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology 6(9), 165–185 (2007)

4. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: How to manage
coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 20–37. Springer, Heidelberg (2012)

5. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor models.
In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 143–162.
Springer, Heidelberg (2011)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engineering.
IEEE Software 29(6), 78–84 (2012)

7. Favre, J.-M.: Meta-Model and Model Co-evolution within the 3D Software Space. In:
Procs. of ELISA 2003, Amsterdam (September 2003)

8. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by precise de-
tection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

A Methodological Approach for the Coupled Evolution 75

9. Garcı́a, J., Diaz, O., Azanza, M.: Model transformation co-evolution: A semi-automatic
approach. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 144–163.
Springer, Heidelberg (2013)

10. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope - automating coupled evolution of
metamodels and models, pp. 52–76 (2009)

11. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution
in mde. Journal of Object Technology 11(3), 1–33 (2012)

12. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego (1985)

13. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel approach to
semi-automated evolution of DSML model transformation. In: van den Brand, M., Gašević,
D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41. Springer, Heidelberg (2010)

14. D. Méndez, A. Etien, A. Muller, and R. Casallas. Transformation migration after metamodel
evolution. In International Workshop on Models and Evolution - MODELS 2010.

15. Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., Polack, F.: Comparing model-
metamodel and transformation-metamodel coevolution. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, Springer, Heidelberg (2010)

16. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with epsilon flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer,
Heidelberg (2010)

17. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In: Proceedings
of PASTE 2001, pp. 46–53. ACM, New York (2001)

18. Vignaga, A.: Metrics for measuring atl model transformations. Technical report (2009)
19. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E. (ed.) ECOOP

2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)
20. Wagelaar, D., Iovino, L., Di Ruscio, D., Pierantonio, A.: Translational semantics of a

co-evolution specific language with the EMF transformation virtual machine. In: Hu, Z.,
de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 192–207. Springer, Heidelberg (2012)

Metamodel-Specific Coupled Evolution Based
on Dynamically Typed Graph Transformations

Christian Krause1,�, Johannes Dyck2, and Holger Giese2

1 SAP Innovation Center Potsdam
me@ckrause.org

2 Hasso Plattner Institute, University of Potsdam

Abstract. A key challenge in model-driven software engineering is the
evolution of metamodels and the required effort in migrating their in-
stance models. Even though there already exist both theoretical work
and tool support for coupled evolution of metamodels and models, the
existing approaches lack expressive power for defining metamodel-specific
coupled changes or are too generic to permit assurance of metamodel con-
formance. In this paper, we devise a mechanism to define and execute
coupled evolutions of metamodels and instance models based on graph
transformations. We target the Eclipse Modeling Framework (EMF) and
achieve the coupling of changes by bridging the conceptual gap between
the metamodel and the instance model levels using a wrapper for EMF
instance models. Coupled evolutions are then defined by means of dy-
namically typed graph transformation rules. This specification approach
is expressive as it allows the developer to model customized migration
rules, which are pivotal for metamodel-specific changes. We present static
and run-time consistency checks and show how to decouple the execution
of migrations. Our implementation consists of a wrapper package that is
used in conjunction with the model transformation tool Henshin.

1 Introduction

Metamodels constitute central artifacts in model-driven engineering as they are
used to define the abstract syntax of domain-specific modeling languages. At the
same time, metamodels are subject to constant change because the requirements
and the concepts of the specified languages evolve over time. Metamodel changes,
however, can break the conformance of instance models. Therefore it is necessary
to migrate the instance models to accommodate for the metamodel changes.

The main aspect which makes metamodel evolution and instance model mi-
gration challenging is the fact that changes on the two modeling levels have
circular dependencies. To remove a concept realized by a class in a metamodel,
it is first necessary to remove or migrate all instances of this class. Conversely,
using a new concept on the instance level requires that the corresponding class
has been added to the metamodel first. Thus, it is crucial to realize metamodel
evolutions and model migrations in a coordinated way, which is referred to as
coupled evolution [1] or co-evolution in the literature.
� Corresponding author.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 76–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Metamodel-Specific Coupled Evolution Based on Graph Transformations 77

An empirical study on the histories of two industrial metamodels [2] indi-
cates that different types of metamodel changes are relevant in practice. In this
study, half of the metamodel changes required the migration of instance models.
This class of coupled changes further divides into metamodel-independent and
metamodel-specific changes. Metamodel-independent changes can be realized by
generic evolution strategies, e.g., refactorings [3], and form the majority of these
changes. However, the study also revealed that for the two industrial case studies
22% of the coupled changes were metamodel-specific, i.e., they required domain
knowledge about the target language and manually specified migration strate-
gies. A typical example of a metamodel-specific change is the refinement of a
metamodel concept based on the properties of its instances. For example, a lan-
guage for Petri nets that includes a class for places with a capacity attribute
could be refined into one class for places with finite capacities and another class
for places with unbounded capacities. The required metamodel changes alone
could be easily achieved using standard refactorings. However, the migration
of the instance models is non-trivial as place instances need to be mapped to
different concepts depending on the specific values of their capacity attributes.

In the recent years, several approaches and tools have been developed for cou-
pled metamodel and model evolutions (see Section 7). All of them are suitable
for realizing metamodel-independent changes, such as the renaming of a class.
However, metamodel-specific changes as described above are either not well sup-
ported or the approaches are too generic to statically ensure metamodel confor-
mance. A uniform approach for modeling the coupled evolution at the metamodel
and the instance model levels and ensuring its consistency is still missing.

In this paper, we present an approach for specifying coupled evolutions of
metamodels and instance models based on graph transformations. The key idea
is to bridge the conceptual gap between the metamodel and the instance model
levels using instance model wrappers. These wrappers allow us to access and
change the type information of objects using ordinary structural class features.
Wrappers also provide generic access to an object’s links and attribute values. We
then specify coupled evolutions using dynamically typed graph transformation
rules. In this approach, only the changes to the metamodels and instance models
are specified. Moreover, metamodel-specific changes are directly supported. In
particular, non-trivial migration strategies can be directly specified along the
metamodel changes. To ensure consistency, specifically, type conformance of the
migrated models, we provide static and run-time checks. The former can be used
to guarantee conformance at design-time. Moreover, we show how the execution
of instance model migrations can be decoupled from the metamodel evolution.

Our prototypical tool support targets metamodels defined in the Eclipse Mod-
eling Framework [4] (EMF) and is based on the model transformation language
and tool Henshin [5]. Our implementation is entirely encapsulated in the wrapper
model. Thus, no intrusive changes to EMF or Henshin are required.

The rest of this paper is organized as follows. In Section 2 we recall prelimi-
naries on EMF and Henshin. In Section 3 we introduce our wrapper model. In
Section 4 we present our approach to coupled evolution. In Section 5 we define

78 Christian Krause, Johannes Dyck, Holger Giese

consistency checks. In Section 6 we show how to decouple the execution of mi-
grations. Section 7 contains related work, Section 8 conclusions and future work.

2 Preliminaries

Our approach targets the Eclipse Modeling Framework [4] (EMF) and is based
on graph transformations and the model transformation tool Henshin [5]. EMF
is widely used in the industry for defining domain-specific languages (DSLs) as
well as the basis for higher-level modeling languages such as UML.

The concepts for defining metamodels in EMF are defined in the Ecore
metametamodel. Fig. 1 shows the for us relevant parts of Ecore and a user-
defined metamodel for Petri nets. Ecore’s metaclasses EClass, EReference, and
EAttribute are used to define classes, associations, and attributes, respectively.
Ecore also defines the metaclass EObject, which serves as the base class for all in-
stance objects. EMF supports reflection, i.e., it is possible to find out the type of
an EObject. However, the type information cannot be accessed through a struc-
tural feature, i.e., there is no reference from EObject to EClass. Instead, types
must be obtained using reflection methods defined in EObject (not shown here).

Fig. 1. Ecore metametamodel (left) and a user-defined metamodel for Petri nets (right)

Graphs and graph transformations are means for both formal and intuitive
descriptions of structure and structural changes (see, e.g., [7]). A graph consists
of sets of nodes and edges representing entities and relations between them. The
instance-of relationship between a model and its metamodel can be captured
using (instance) graphs and type graphs. Similarly to classes in a metamodel,
nodes in a type graph can define a number of primitive typed attributes.

Fig. 2. Rule deleteTransition(x)

Graph transformation rules are used to
specify changes to graphs, i.e., removing
or adding nodes or edges or changing at-
tribute values. Formally, a rule is given by
two graphs: A left-hand side (LHS) describ-
ing the precondition and a right-hand side
(RHS) specifying the changes. The appli-
cation of a transformation rule to a graph
amounts to finding a match of the LHS in

Metamodel-Specific Coupled Evolution Based on Graph Transformations 79

this graph and replacing it by the RHS. In this paper, we depict a rule using
a single graph with node and edge stereotypes for the action to be performed.
Fig. 2 shows an example rule that deletes a transition in a Petri net model
including all its source and target edges.

We use the EMF model transformation tool Henshin [5] which is based on
graph transformations. Transformations are executed in Henshin in-place, i.e.,
directly to a given model. A feature of Henshin essential to our approach of
coupled evolution is rule amalgamation [5,8]. Formally, a kernel-rule can be em-
bedded in one or more multi-rules. While a kernel-rule is matched and applied
only once, a multi-rule is executed for all possible matches. In Henshin, multi-
rules can be used again as kernel-rules and thus nested. In this paper, we employ
amalgamation to specify the transformation of all relevant instance entities dur-
ing model migration whereas we execute the evolution rule only once. Elements
in multi-rules are denoted using ∗-stereotypes, e.g., the place nodes in Fig. 2.

3 Wrapping EMF Instance Models

Our approach for coupled metamodel and model evolution is based on the idea of
making the type-instance relations for objects, attributes and links between ob-
jects available as ordinary structural features of objects. Moreover, the attribute
values of an object and its links to other objects should be accessible in a generic
way, i.e., without the need of knowing the type of the object resp. feature.

One approach to achieve such a functionality is to enrich Ecore itself by such
reflective structural features. For instance, the EObject metaclass could be ex-
tended with a structural feature for accessing its type, i.e., with a reference to
EClass. The other required features could be realized in a similar way. This ap-
proach, however, would be an intrusive change to Ecore and would require the
use of a customized version of EMF.

An alternative approach which we advocate in this paper is based on the idea
of wrapping the objects in EMF instance models, i.e., instances of EObject, by
appropriate wrapper objects that provide the necessary features. The wrapper
objects and their features are defined again by a metamodel.

3.1 The Wrap Metamodel

The wrap metamodel is shown in Fig. 3. An instance of the class WObject repre-
sents a wrapper for an arbitrary EObject. The wrapped EObject can be obtained
using the eObject reference and its type using the eClass reference. Thereby, we
bridge the conceptual gap between the instance and the metamodel level. Wrap-
per objects contain a set of members, which are instances of either WValue or
WLink. WLinks represent links to other (wrapped) objects and can be regarded
as instances of EReferences. Similarly, WValues represent specific values of an
attribute of the object and can be seen as instances of EAttributes. The type of
a WMember can be accessed via the eStructuralFeature reference. The data value
encapsulated in a WValue can be accessed through the eValue attribute.

80 Christian Krause, Johannes Dyck, Holger Giese

Fig. 3. The wrap metamodel and its references to Ecore

This simple wrap metamodel provides all features needed in our approach for
a coupled metamodel and model evolution. In particular, it allows us to match
an object together with its type, to dynamically create an instance of a type that
is unknown at design-time, and also to change the type of an object at run-time.
A similar functionality is available for attribute values and links to other objects.
In addition to these object level operations, the wrapper concept also allows us
to make changes to the type level, i.e., to the metamodels.

3.2 Usage

To illustrate the usage of wrapper models and the achieved higher expressiveness,
we use a simple graph transformation rule shown in Fig. 4, and the equivalent
rule using wrappers in Fig. 5. The simple rule matches an object n of type Net
with a value x for the name attribute. The rule creates an object p of type Place
and a link of type places between n and p. Thus, it realizes the creation of a
place in a Petri net. The corresponding rule with wrappers contains in total
eight objects. The four objects in the upper row represent the metamodel level
and contain class and feature definitions. Specifically, two classes with the names
‘Net’ and ‘Place’ are matched together with an attribute feature called ‘name’ and
a reference ‘places’. The lower row consists of wrapper objects which represent
instances of the metamodel elements. The type-instance relations manifest here
as edges from the wrapper objects to the metamodel elements.

The simple and the wrapper-based rules are in fact behaviorally equivalent.
Furthermore, wrapper-based rules can be automatically generated from simple
rules. However, there are important differences in the usage and the expressive-
ness. In the classical approach, the metamodel is fixed and must be available

Fig. 4. A statically
typed rule

Fig. 5. Corresponding rule with wrappers (dynamically typed)

Metamodel-Specific Coupled Evolution Based on Graph Transformations 81

at design-time. In contrast, the rule using wrappers matches the required meta-
model elements at run-time together with their instances. The only design-time
dependencies of the wrapper-based rule are to Ecore and the (generic) wrap
metamodel. Due to these differences in the typing, we say that the simple rule
is statically typed whereas the wrapper-rule is dynamically typed. Since there are
no design-time dependencies to the targeted metamodel, the wrapper-based rule
could even transform the metamodel and the instance models at the same time.
For example, the rule could create a new class and directly create instances of it.
Thus, the wrapper-based approach has a higher expressive power which is the
basis for realizing coupled evolutions of metamodels and instance models.

Although the two rules in Fig. 4 and 5 are behaviorally equivalent, we can-
not naively apply the wrapper-based rule in the same way as the simple rule.
To ensure that the wrapper-based approach works in the intended way, the us-
age scenario with wrappers should consist of the following three steps. First,
all instance models are wrapped using a provided implementation of the wrap
metamodel. Specifically, for every EObject, a corresponding WObject is created.
For every attribute value of an EObject, a corresponding WValue is created in
its wrapper. Similarly, for every link to an EObject, a corresponding WLink is
created. This functionality is provided as part of the implementation of the
wrap package and can be reused. Second, the wrapper models and the meta-
models are transformed using either an in-place model transformation language
or a general-purpose programming language. The provided implementation of
the wrap metamodel transparently performs all locally consistent changes made
to the wrappers also at the wrapped EObjects (see Section 3.3). Changes are
allowed to be made only to the wrappers and the metamodels, but not to the
wrapped EObjects. Third, the changed metamodels are directly available and
can be persisted. To obtain the migrated instance models, the changed EObjects
are extracted from the wrapper objects using the eObject reference in WObject.

Thus, we first wrap all instance models, then transform the wrappers (and the
metamodels), and finally extract the changed metamodels and the migrated in-
stances. Hence, the actual coupled metamodel and model evolution is performed
in step 2. An important aspect of this approach is that the provided implemen-
tation of the wrap metamodel automatically reflects all consistent changes made
to the wrappers to the wrapped EObjects, thereby ensuring compliance of the
models. We discuss compliance and consistency in detail in the following section.

3.3 Compliance and Consistency

A wrapper model is compliant with its underlying instance model if they are
structurally equivalent. This notion of equivalence can be formalized by requir-
ing that the map that associates WObjects with their wrapped EObjects forms a
graph isomorphism for typed, attributed graphs which makes appropriate type
conversions and translates WLink objects to edges. We omit the formal definition
here. Note that step 1 in the previous section produces by construction a com-
pliant wrapper model. Our goal is to ensure that after step 2, the wrapper model
is still compliant, meaning that the transformation performed on the wrapper

82 Christian Krause, Johannes Dyck, Holger Giese

model is also correctly performed on the instance model. However, compliance
can be ensured only if the transformation yields a consistent wrapper model.
Definition 1 (Consistency). A WObject is called locally consistent if its
eClass is set and instantiable and all its members are locally consistent. A WLink
is locally consistent if its eStructuralFeature is a valid EReference of the wrapper’s
EClass and the wTarget is set and its eObject is a valid value for this reference.
A WValue is locally consistent if its eStructuralFeature is a valid EAttribute of
the wrapper’s EClass and the eValue is set and a valid value for this attribute. A
wrapper model is consistent if all its wrapper objects are locally consistent and
all involved metamodels are consistent.
Consistency of a metamodel is defined and can be checked using standard con-
straints for Ecore, e.g., the type of an EReference must be always set.

All locally consistent changes made to a wrapper model during the transfor-
mation are performed also on the underlying instance model. The execution of
inconsistent changes is deferred until the local inconsistencies are resolved in the
wrapper. The default implementation of WObject performs the following actions
when changes are made to its features:

– Setting the class. If the new EClass is set and instantiable, the eObject
reference is updated with a fresh instance of the new EClass. For all locally
consistent WValues and WLinks, the corresponding attribute and reference
values are also set in the new EObject. If the eClass reference has been unset
or is not instantiable, the eObject reference is unset. All incoming WLinks
are notified that their targets changed.

– Adding or removing a member. If the eObject reference is set and the
member is locally consistent, then the feature change is also performed on
the EObject.

Similarly, changes to a WMember have the following effects:
– Setting the structural feature. If the member was locally consistent

before the change, the value is removed from the old feature of the EObject.
If the member is locally consistent after the change, the value is added to
the new feature of the EObject.

– Setting the target or value. If the member is a WLink and was locally
consistent before the change, the old target is removed from the EObject’s
reference. If the link is locally consistent after the change, the new target is
added to the EObject’s reference. Analogously if the member is a WValue.

In addition to these automatic changes, the wrappers also monitor relevant
metamodel elements and perform similar actions. This behavior ensures that
all locally consistent changes are correctly propagated to the wrapped objects.
Local inconsistencies in the wrappers, e.g., members with incompatible features,
are explicitly allowed during the migration. However, if the migration follows
steps 1-3 in the previous section, and all wrapper models are consistent after
the transformation in step 2, then they are also compliant. Thus, it suffices to
ensure that the transformation result is consistent. We discuss means to ensure
consistency later in Section 5.

Metamodel-Specific Coupled Evolution Based on Graph Transformations 83

4 Coupled Metamodel and Model Evolution

The key problem for realizing coupled metamodel evolution and instance model
migration is that the transformations have to be defined both on the type level
and the object level. Moreover, as described in Section 1, there are dependencies
between these two modeling levels. Our solution to this problem is to use wrap-
pers, which provide us with a technical means to connect the metamodel and
the instance model levels. Specifically, wrappers allow us to use standard model
transformation languages with in-place semantics to realize coupled evolution.

4.1 Evolution Scenario

We consider an example of a metamodel evolution for a Petri net metamodel,
shown in Fig 6. The evolution consists of two main parts.

In the first part, the src reference from Transition to Place is removed in favor
of a new class, called ArcPT, which is used to represent an arc from a place to a
transition. The new class ArcPT contains an integer attribute weight which can
be used to specify the weight of an arc. Similarly, we could also introduce a class
ArcTP for modeling arcs from transitions to places. We omit this for simplicity
here. This part of the evolution is essentially a replacement of a reference with a
class and introducing a new attribute with a default value for all instance models.
Therefore, this part of the evolution can be regarded as metamodel-independent.

The second part of the evolution concerns the class Place, which is made ab-
stract and refined into the two new classes UnboundedPlace and BoundedPlace.
The capacity attribute of Place is moved to BoundedPlace. The migration of the
instance models should translate instances of Place with a positive capacity to
BoundedPlace, and instances with a negative capacity value to instances of Un-
boundedPlace. This change is metamodel-specific because the migration of Place
objects non-trivially depends on the specific values of the capacity attribute.

4.2 Solution

We realize this coupled metamodel and model evolution using wrapper-based
graph transformation rules in Henshin [5].

=⇒

Fig. 6. Example of a Petri net metamodel evolution

84 Christian Krause, Johannes Dyck, Holger Giese

M
ig

ra
ti

on

Fig. 7. Coupled evolution rule createArcPT

M
ig

ra
ti

on

Fig. 8. Coupled evolution rule splitPlaceClass

Fig. 7 shows the rule createArcPT for the first part of the evolution and the
migration. The metamodel evolution parts can be found in the top and the
bottom of the rule, whereas the model migration is realized by the middle part.
The metamodel evolution consists of the deletion of the src reference of the
Transition-class, the creation of the new class ArcPT together with its structural

Metamodel-Specific Coupled Evolution Based on Graph Transformations 85

features, and the creation of a new containment reference for arcs in the Net-
class. The model migration part consists of replacing every wrapper object that
represents a src-link from a transition to a place by a fresh instance of the new
class ArcPT. Note that this migration is performed on all such links because of the
star in the action stereotypes, which is Henshin’s syntax for multi-rules [5,8]. This
also means that the coupled evolution is realized as a transaction that performs
the metamodel evolution and the migration of all instances in an atomic step.1

Fig. 8 shows the rule splitPlaceClass which realizes the second part of the
coupled evolution. The upper part specifies the metamodel evolution where Place
is made abstract, the two new classes BoundedPlace and UnboundedPlace are
created, and the capacity attribute is moved to the new class BoundedPlace. The
model migration is realized using two star-rules, respectively call bounded and
unbounded. The star-rule bounded matches all places with a positive capacity
(checked using the attribute condition x ≥ 0) and changes their type from Place
to BoundedPlace. Analogously, the star-rule unbounded matches all places with
a negative capacity and changes their type from Place to UnboundedPlace. Thus,
the rule expresses both the metamodel evolution as well as the non-trivial and
metamodel-specific migration of instance models in a concise way. To reduce the
amount of manual specification, it may be possible to generate default coupled
evolution rules from metamodel evolution rules and allow for customization of
the rules’ migration parts to account for non-trivial conditions as seen above.

At this point we want to highlight that the in Section 1 mentioned interde-
pendencies between the metamodel changes and the instance model changes are
completely hidden for the designer, i.e., there is no need to define the specific
order of the low-level structural operations.

5 Ensuring Consistency

As discussed in Section 3.3, the correctness of a coupled evolution mainly relies
on the compliance of the transformation result, which in turn can be ensured
by showing that the transformation produces a consistent wrapper model. Thus,
it is important to support the developer to ensure consistency. To this end, we
consider static and run-time consistency checks.

5.1 Static Consistency

Static consistency checks are performed at design-time by checking structural
constraints in the transformation rules. We discuss relevant consistency condi-
tions for rules which could be automatically checked or enforced by rule editors.

To ensure consistency of wrapper objects, it is important that their properties
are immediately set on creation, and unset on deletion. Therefore, the following
objects and edges should be created or deleted together in a rule: WObjects
and their eClass edge; WValues and their eStructuralFeature edge; WLinks and
1 Comparable with the notion of coupled transactions in [1].

86 Christian Krause, Johannes Dyck, Holger Giese

their eStructuralFeature and wTarget edge. The value of a new WValue should
be set on construction. In most cases, new elements should be added to an
existing container object on creation, except for new root elements, such as a
new package in a metamodel. When deleting a metamodel-element, all instances
of this element should be also deleted. In Henshin, this can be realized, e.g., using
starred action stereotypes. An example of such a scenario is the EReference “src”
which is deleted together with all its instance links in the rule createArcPT. In a
similar way, classes should be deleted only together with all their instances, and
attributes together with all their values. If a rule does not delete the instances
of a deleted type, this is a strong indicator for an incorrect migration.

Another important aspect that can be statically checked is the type confor-
mance of links and attribute values. Specifically, the target of a link should be
typed over a class that is a valid type of the links’ reference. This can be en-
sured at design-time by using one of the rule patterns shown in Fig. 9. Similarly,
type conformance of attribute values can be ensured. Together with the afore-
mentioned constraints, these patterns allow us to automatically detect possible
problems occurring during the migrations already at design-time. As one of the
most crucial correctness criteria, type conformance can be ensured statically.

Fig. 9. Two rule patterns that statically ensure type conformance of links

5.2 Run-Time Consistency
In addition to the static analysis methods, we also employ consistency checks at
run-time. The simplest way is to directly check the consistency constraints from
Def. 1 on the transformation result. If this check succeeds, the transformation
result is consistent and thus also compliant. Furthermore, we can also intercept
possible inconsistencies already during a rule application. Specifically, by em-
ploying double-pushout graph transformations [7], a rule is applicable only if no
dangling edges are produced. This ensures that a metamodel-element is deleted
only if all its instances are also deleted.

Together with the static consistency checks, the automatic run-time checks
are helpful tools to support the developer to safely execute the coupled evolution.

6 Decoupled Execution of Model Migrations
In practice, applying the metamodel evolution and the migrations of all instance
models at the same time as suggested in the previous sections is often not a

Metamodel-Specific Coupled Evolution Based on Graph Transformations 87

feasible solution. The typical scenario consists of two independently executed
steps. First, the developer of a modeling language evolves the metamodel. Then
the user is confronted with a new version of the metamodel and needs to migrate
her instance models. Thus, it is important to be able to decouple the execution
of the model migrations from the metamodel evolutions (cf. also [9]).

To support independently executed migrations, we propose to separate the
coupled evolution rules into sets of (1) metamodel evolution rules, and (2) mi-
gration rules. These rules can be automatically generated at design-time from
coupled evolution rules to execute the metamodel evolution and the model
migrations separately. We describe these two steps in more detail now.

6.1 Metamodel Evolution

Metamodel evolution rules are generated from coupled evolution rules simply by
deleting all instance level elements, i.e., all nodes and links that refer to types of
the wrap metamodel. For the coupled evolution rules in Fig. 7 and 8 this means
that the migration regions are removed.

The derived metamodel evolution rules can be directly applied to adapt the
metamodels. In order to facilitate the model migrations, we assume that the
new versions of the metamodels get a different namespace URI and are saved
separately from the old versions. This is important to distinguish old model
instance from migrated ones and to perform the migration without changing the
metamodels. The user simply obtains the new version of the metamodel together
with generated migration rules to migrate her instance models (see below).

6.2 Model Migration

The migration rules are also generated from the coupled evolution rules. For sim-
plicity, we assume that only a single metamodel package was subject to changes.
Let oldURI denote the namespace URI of the old version of this package and
newURI be the namespace URI of the new version. For a given coupled evolution
rule, we obtain the corresponding migration rule as follows:

1. Add two package declarations to the rule, one with oldURI and the other
with newURI as its namespace URI.

2. Add a containment edge from the old package to all classifiers marked for
deletion in the rule. Add a containment edge from the new package to all
classifiers marked for creation. Change the action for all metamodel ele-
ments to preserve and remove all attribute conditions other than the name-
constraints.

3. Duplicate all preserved classifiers in the rule. Add a containment edge from
the old package to the original classifier and a containment edge from the
new package to the duplicate.

4. For all wrapper nodes whose type is preserved, replace the preserved type
edge by these two edges: one delete edge to the old type and one create edge
to the corresponding new type (the duplicate created in 3). Note that the
types of all other nodes are already handled by the original rule.

88 Christian Krause, Johannes Dyck, Holger Giese

Fig. 10. Generated migration rule migrate_splitPlaceClass

Fig. 11. Generic rule for migrating objects with unchanged types

Fig. 10 shows the migration rule generated from rule splitPlaceClass in Fig. 8.
The upper left part contains the relevant elements of the old metamodel, the
upper right part the relevant elements of the new metamodel, and the lower part
the migration of the instance model elements. Note that the old and the new
metamodels are distinguished by their namespace URIs and that no metamodel
changes are performed by this rule. The effect of applying this rule is that all
instance model objects targeted by this rule are properly migrated to the new
metamodel. However, elements that are not handled by this rule, e.g. Transition
objects, need to be migrated to the new metamodel version, too. Fortunately, we
can simply change the types of these objects from the old to the corresponding
new metamodel element. This can be achieved using the generic migration rule
shown in Fig. 11. Thus, it suffices to first apply the generated migration rule in
Fig. 10 and then the generic migration rule in Fig. 11 for the remaining objects.
Thereby, the executions of model migrations can be completely decoupled from
the metamodel evolution and even from migrations of other model instances.

Metamodel-Specific Coupled Evolution Based on Graph Transformations 89

7 Related Work

Mantz et al. present a graph transformation based approach for coupled EMF
evolution which guarantees type conformance for the model migration [10]. How-
ever, migration rules are automatically generated from metamodel evolution
rules and, thus, cannot be manually specified as in our approach. Similarly,
Taentzer et al. present a formalization of coupled evolutions based on category
theory [11] which also assumes that migration rules are automatically generated.

The COPE [1] tool (now Edapt [12]) realizes an operator-based approach for
coupled evolution. Customized model migration as supported in our approach
cannot be specified using operators but must be implemented in COPE using a
scripting language. Moreover, COPE requires the integration of the co-evolution
operators with the metamodel editing tools. The limitations of a number of
approaches for automating model migrations are formalized and discussed in [13].

Epsilon Flock [9] is a domain-specific language for model migrations. Only the
migration rules are specified in Flock, but not the metamodel evolution. Flock
supports two types of rules: delete rules and migrate rules. Migrate rules can
be applied only to a single object in the source metamodel, but not to larger
structures, because Flock performs an implicit copying of all unchanged objects.

EMFMigrate [14] is a domain-specific language for defining coupled evolu-
tions where the migration targets arbitrary dependent artifacts. Migration rules
are specified separately from metamodel changes, can be assembled to reusable
libraries and refined for customizations. Different to our approach, it is not pos-
sible to check the correctness of the migration rules at design-time, i.e., that the
types of the migrated instance models are conform with the changed metamodel.

Hößler et al. present a graphical language for describing coupled evolutions [15]
with a focus on a number of typical patterns. The syntax of the transformation
language allows customizable rules but the type conformance of the migration
results cannot be guaranteed. Sprinkle et al. describe a visual language for meta-
model evolution [16]. The approach requires implicit copying of unchanged meta-
model elements and makes no conformance guarantees.

8 Conclusions and Future Work

In this paper, we presented a new approach for specifying coupled metamodel
evolutions and instance model migrations based on graph transformations. Our
key idea was to enable a combined modeling approach for metamodels and in-
stance models by introducing wrappers for EMF, thus alleviating the problem
of circular dependencies between metamodel evolution and migrations. Our ap-
proach is both expressive and enables the assurance of consistency constraints.

For future work, we plan to define a more high-level syntax for coupled evolu-
tion rules that automatically ensures consistency by construction. In addition, we
plan to support the generation of default coupled evolution rules from metamodel
evolution rules, which then can be customized in order to refine the migration
logic. In another line of research, we plan to employ critical pair analysis [17] to
ensure uniqueness of migration results.

90 Christian Krause, Johannes Dyck, Holger Giese

References

1. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled
evolution of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 52–76. Springer, Heidelberg (2009), doi:10.1007/978-3-642-
03013-0_4

2. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer,
Heidelberg (2008), doi:10.1007/978-3-540-87875-9_45

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

4. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2009)

5. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 121–135. Springer, Heidelberg (2010), doi:10.1007/978-3-642-16145-2_9

6. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.:
Graphical definition of in-place transformations in the Eclipse Modeling Frame-
work. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006), doi:10.1007/11880240_30

7. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph
transformation. foundations, vol. I. World Scientific Publishing Co., Inc. (1997)

8. Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel independence
of amalgamated graph transformations applied to model transformation. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010),
doi:10.1007/978-3-642-17322-6_7

9. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 184–198. Springer, Heidelberg (2010), doi:10.1007/978-3-642-13688-7_13

10. Mantz, F., Jurack, S., Taentzer, G.: Graph transformation concepts for meta-
model evolution guaranteeing permanent type conformance throughout model mi-
gration. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233,
pp. 3–18. Springer, Heidelberg (2012), doi:10.1007/978-3-642-34176-2_3

11. Taentzer, G., Mantz, F., Lamo, Y.: Co-transformation of graphs and type
graphs with application to model co-evolution. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 326–340. Springer, Heidelberg (2012), doi:10.1007/978-3-642-33654-6_22

12. Edapt: Project homepage: http://www.eclipse.org/edapt
13. Herrmannsdoerfer, M., Ratiu, D.: Limitations of automating model migration in

response to metamodel adaptation. In: Ghosh, S. (ed.) MODELS 2009. LNCS,
vol. 6002, pp. 205–219. Springer, Heidelberg (2010), doi:10.1007/978-3-642-12261-
3_20

14. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for manag-
ing co-evolution in MDE? In: IWMCP 2011, pp. 30–38. ACM (2011),
doi:10.1145/2000410.2000416

http://www.eclipse.org/edapt

Metamodel-Specific Coupled Evolution Based on Graph Transformations 91

15. Hößler, J., Soden, M., Eichler, H.: Coevolution of models, metamodels and
transformations. In: Models and Human Reasoning, pp. 129–154. Wissenschaft
und Technik Verlag (2005)

16. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model
evolution. Journal of Visual Languages & Computing 15(3-4), 291–307 (2004),
doi:10.1016/j.jvlc.2004.01.006

17. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph
transformation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002),
doi:10.1007/3-540-45832-8_14

Robust Real-Time Synchronization
between Textual and Graphical Editors

Oskar van Rest1,2, Guido Wachsmuth1,3, Jim R.H. Steel2,
Jörn Guy Süß2, and Eelco Visser1

1 Delft University of Technology, The Netherlands,
o.f.vanrest@student.tudelft.nl, g.h.wachsmuth@tudelft.nl,

visser@acm.org
2 The University of Queensland, Australia,

jsteel@uq.edu.au, jgsuess@itee.uq.edu.au
3 Oracle Labs, Redwood Shores, CA, USA

Abstract. In modern Integrated Development Environments (IDEs),
textual editors are interactive and can handle intermediate, incomplete,
or otherwise erroneous texts while still providing editor services such
as syntax highlighting, error marking, outline views, and hover help. In
this paper, we present an approach for the robust synchronization of
interactive textual and graphical editors. The approach recovers from
errors during parsing and text-to-model synchronization, preserves tex-
tual and graphical layout in the presence of erroneous texts and models,
and provides synchronized editor services such as selection sharing and
navigation between editors. It was implemented for synchronizing tex-
tual editors generated by the Spoofax language workbench and graphical
editors generated by the Graphical Modeling Framework.

1 Introduction

Modeling languages such as Behavior Trees [3,17] or QVT Relational [18] provide
both textual and graphical concrete syntax. Textual and graphical editors for
such languages need to synchronize textual representations, graphical represen-
tations, and underlying models. During this synchronization, layout in textual
and graphical representations needs to be preserved.

Textual editors generated by textual modeling frameworks such as TEF [19]
and Xtext [8] synchronize only on user request. Embedded textual editors based
on TEF synchronize on open and close [20]. Xtext-based editors synchronize on
save [16]. This breaks the interactive nature of integrated development environ-
ments (IDEs), where editors provide a wide variety of language-specific services
such as syntax highlighting, error marking, code navigation, content completion
and outline views in real-time, while their content is edited. Furthermore, those
editors can only synchronize valid models and tend to break either textual or
graphical layout. TEF-based editors ignore textual layout by design. Xtext-based
editors typically preserve textual layout, but tend to break layout in graphical
editors once identifiers change.

Robust real-time synchronization of textual and graphical editors is mainly
prevented by current text-to-model transformation practice, where model ele-
ments are temporarily deleted and recreated during parsing, existing persisted

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 92–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Robust Real-Time Synchronization between Textual and Graphical Editors 93

text AST

model graph

model

AST

1 2

5

3

4

6

textual editor

graphical editor

Fig. 1. Steps involved in synchronizing textual and graphical editors: ➊ Parsing,
➋ tree-to-model transformation, ➂ model merge, ➃ edit policy, ➎ model-to-text trans-
formation, ➅ pretty-printing. Steps marked black support error recovery. Steps marked
white support layout preservation.

models are ignored and overwritten by new models, and error recovery is limited.
In this paper, we propose a new approach which is outlined in Fig. 1. To synchro-
nize textual changes with a model, the text is ➊ parsed into an abstract syntax
tree, which is ➋ transformed into a model. The resulting model is ➂ merged
with the model in a graphical editor, which invokes an edit policy to ➃ update
its graphical representation of the model. To synchronize graphical changes with
a text, the edit policy ➃ changes the underlying model, which is ➎ transformed
into a tree. The resulting tree is ➅ merged with the tree in the textual editor and
turned back into text. The approach was implemented for synchronizing textual
editors generated by the Spoofax language workbench [13] and graphical editors
generated by the Graphical Modeling Framework for the Eclipse IDE. We ap-
plied this approach to Behavior Trees. Fig. 2 shows the textual and graphical
editor, which both share the same Behavior Tree model.

We proceed as follows. We first describe a mapping from grammars to meta-
models and the corresponding transformations ➋➎ between trees and models.
In Sect. 3, we discuss error recovery in steps ➊➋➎. In Sect. 4, we elaborate on
the preservation of textual and graphical layout in steps ➂➃➅. In Sect. 5, we
present our case study on the development of synchronizing editors for Behavior
Trees. Finally, we discuss related work in Sect. 6.

2 Tree-to-Model and Model-to-Tree Transformations

The textual syntax definition is the starting point of our approach. In this sec-
tion, we present a mapping from textual syntax definitions to metamodels and a
corresponding bidirectional mapping between abstract syntax trees conforming
to the textual syntax definition and models conforming to the generated meta-
model. We start with abstract mappings which need to be adapted for concrete
formalisms. We then discuss such an adaptation using the examples of Spoofax’
syntax definition formalism SDF [9,26], its name binding language NaBL [14],
and EMF’s metamodeling formalism Ecore [24].

2.1 Mapping Textual Syntax Definition to Metamodel

We start with minimalistic grammar and metamodeling formalisms. In these for-
malisms, grammars,metamodels and models are represented as terms. Fig. 3 shows

94 O. van Rest et al.

Fig. 2. Behavior Tree model in a textual editor (left) and in a graphical editor (right).
Both editors edit the same model and synchronize changes with each other.

the corresponding signatures. These signatures are of the form c : T → s with c
a constructor for sort s and T a declaration of the number and types of arguments
of c. The mapping is specified in Fig. 4 by rewrite rules expressed in Spoofax’
transformation language Stratego [1,11]. These rules are of the form r : t1 →
t2 where s with r the rule name, t1 and t2 first-order terms, and s a strat-
egy expression. A rule applies to a term if the term matches t1 and s succeeds,
resulting in the instantiation of t2.

Grammars, metamodels, and models. A grammar consists of a lexical syn-
tax definition, a context-free syntax definition, and a list of namespace spec-
ifications (Fig. 3, line 1). Both lexical and context-free syntax are defined by
productions, which are grouped by the sorts they define (l. 2). Productions and
sorts are named, and each production provides a list of symbols (l. 3). A symbol
is either a character class (typically used to define lexical sorts), a string, a ref-
erence to a lexical sort, or a reference to a context-free sort (ll. 4-7). References
are named (first ID), refer to a sort by name (second ID), and might come with
a postfix operator for options, lists, or optional lists. References to lexical sorts
can be involved in name bindings, either as definition or use sites of a name
in a namespace (ll. 8-11). This integration of name binding into productions is
similar to Xtext’s approach. But in contrast to Xtext, we decouple namespaces
from sorts and allow them to be hierarchically structured.

A metamodel consists of a list of types, which are either primitive data types,
enumerated data types, abstract classes, or concrete classes (ll. 16-21). Type
names are qualified, providing a simple packaging mechanism. Both kinds of
classes consist of a list of qualified parent class names, defining the inheritance
hierarchy, and a list of features. We distinguish attributes, references, and con-
tainments (ll. 22-24). Each feature is named, refers its type by qualified name,
and defines a lower and upper bound (ll. 25-26).

Robust Real-Time Synchronization between Textual and Graphical Editors 95

1 Grammar: List(Sort)*List(Sort)*List(NSpace) → Grammar
2 Sort : ID*List(Prod) → Sort
3 Prod : ID*List(Symbol) → Prod
4 Chars : List(Char) → Symbol
5 Literal: String → Symbol
6 LSort : ID*ID*Binding*Operator → Symbol
7 CfSort : ID*ID*Operator → Symbol
8 None : Binding
9 DefSite: ID → Binding

10 UseSite: ID → Binding
11 NSpace : ID*List(ID) → NSpace
12 None : Operator
13 Option : Operator
14 List : Operator
15 OptList: Operator

16 MM : List(Type) → Metamodel
17 DType : QID → Type
18 Enum : QID*List(Literal) → Type
19 AClass : List(QID)*QID*List(Feature) → Type
20 CClass : List(QID)*QID*List(Feature) → Type
21 Literal: ID → Literal
22 Attr : ID*QID*Bounds → Feature
23 Ref : ID*QID*Bounds → Feature
24 Contain: ID*QID*Bounds → Feature
25 QID : ID*ID → QID
26 Bounds : INT*UnlimitedINT → Bounds

27 M : Object → Model
28 Obj : Opt(URI)*QID*List(Slot) → Object
29 : Value → Slot
30 : Opt(Value) → Slot
31 : List(Value) → Slot
32 Data : String → Value
33 Link : URI → Value
34 Contain: Object → Value

Fig. 3. Signatures for grammars (top), metamodels (center), and models (bottom)

A model is represented as a single root object (l. 27). An object consists of
an optional URI, the qualified name of the class it instantiates, and a list of
slots (l. 28). A slot may hold a single value or a list of values, where a value
is either an instance of a data type represented as a string, a link to an object
represented as the URI of this object, or a contained object (ll. 29-34). Slots do
not refer to features. Instead, we assume an immutable order of the features of
a class, which links slots of an object to the features of its class.

Lexical Syntax. We are not interested in the inner structure of lexical tokens
and represent them as basic data at the leaves of abstract syntax trees. We
can keep the same basic data in models. Thus, we map lexical sorts from a
grammar to data types in a metamodel (Fig. 4, ll. 7-14). Predefined data types
(enumerations and primitives) are provided by the metamodel formalism and the
condition lex2qid ensures that user-defined data types are only generated when
no corresponding predefined data type exists. When a lexical sort defines
only a finite number of literals, an enumeration is generated (sort2enum).
Only when sort2enum fails, we try to generate a primitive with sort2dtype

96 O. van Rest et al.

1 grammar2mm:
2 Grammar(lex∗, cf∗, ns∗) → MM([ty1∗, ty2∗, ty3∗])
3 where
4 <filter(sort2enum <+ sort2dtype)> lex∗ ⇒ ty1∗ ;
5 <mapconcat(sort2classes)> cf∗ ⇒ ty2∗ ;
6 <map(ns2class)> ns∗ ⇒ ty3∗

7 sort2enum:
8 Sort(name, prod∗) → Enum(<lex2qid> name, <map(prod2lit)> prod∗)
9

10 prod2lit: Prod(_, [Literal(name)]) → Literal(name)
11
12 sort2dtype: Sort(name, _) → DType(<lex2qid> name)
13
14 lex2qid: name → QID("lex", name) where <not(predefined)> name

15 sort2classes:
16 Sort(name, prod∗) → [AClass([], QID("cf", name), [])|class∗]
17 where
18 <map(prod2class(|name)))> prod∗ ⇒ class∗
19
20 prod2class(|parent):
21 Prod(name, sym∗) → CClass([parent|parent∗], Q("ast", name), feat∗)
22 where
23 <filter(symbol2parent)> sym∗ ⇒ parent∗ ;
24 <filter(symbol2feature)> sym∗ ⇒ feat∗
25
26 symbol2feature:
27 LSort(label, sort, None(), op) → Attr(label, ty, <op2bounds> op)
28 where
29 <predefined <+ user−defined> sort ⇒ ty
30
31 symbol2feature:
32 CfSort(lbl, sort, op) → Contain(lbl, QID("cf", sort), <op2bounds> op)
33
34 op2bounds: None() → Bound(1, 1)
35 op2bounds: Option() → Bound(0, 1)
36 op2bounds: OptList() → Bound(0, Unbound())
37 op2bounds: List() → Bound(1, Unbound())

38 ns2class:
39 NSpace(name, ns∗) → AClass(<map(ns2qid)> ns∗, QID("ns", name), [])
40
41 ns2qid: name → QID("ns", name)
42
43 symbol2parent: LSort(_, _, DefSite(nspace), _) → QID("ns", nspace)
44
45 symbol2feature:
46 LSort(label, sort, DefSite(_), op) → Attr(label, ty, <op2bounds> op)
47 where
48 <predefined <+ user−defined> sort ⇒ ty
49
50 symbol2feature:
51 LSort(label, _, UseSite(ns), op) → Ref(label, QID("ns", ns), bounds)
52 where
53 <op2bounds> op ⇒ bounds

Fig. 4. Rewrite rules defining a grammar-to-metamodel transformation in Stratego

(in the first condition for grammar2mm, <+ encodes a deterministic choice). To
avoid name conflicts, we organize generated data types in a package lex.

Context-free Syntax. Abstract syntax trees represent the structure of sen-
tences. We can express such trees also as models. Therefore, the metamodel
needs to capture the structural rules of the context-free syntax. We achieve

Robust Real-Time Synchronization between Textual and Graphical Editors 97

1 tree2model: t → M(<term2obj>)
2 term2obj : c#(t∗) → Obj(<def−uri>, QID("ast", c), <map(term2slot)> t∗)
3 term2slot : None() → None()
4 term2slot : Some(t) → Some(<term2slot> t)
5 term2slot : t∗ → <map(term2slot)> t∗
6 term2val : t → Data(t) where is−string; not(ref−uri)
7 term2val : t → Link(<ref−uri>)
8 term2val : t → Contain(<term2obj> t) where is−compound
9

10 model2tree: M(obj) → <obj2term> obj
11 obj2term : Obj(_, QID("ast", c), s∗) → c#(<map(slot2term)> s∗)
12 slot2term : None() → None()
13 slot2term : Some(val) → Some(<slot2term> val)
14 slot2term : val∗ → <map(slot2term)> val∗
15 val2term : Data(val) → val
16 val2term : Link(uri) → <name−of> uri
17 val2term : Contain(obj) → <obj2term> obj

Fig. 5. Rewrite rules defining corresponding tree-to-model and model-to-tree transfor-
mations in Stratego

this by generating classes from context-free sorts and productions (ll. 15-24).
To avoid name conflicts, we organize them in separate packages cf and ast.
For each context-free sort, we generate an abstract class (sort2classes). For
each production of this sort, we generate a concrete class subclassing the abstract
class (prod2class). Features are generated from the symbols of the produc-
tion (ll. 26-32). We generate an attribute for each lexical sort (first rule). The
type of this attribute is derived from the lexical sort. For each context-free sort,
we generate a containment reference (second rule). Bounds of generated features
depend on operators (ll. 34-37). Options get a lower bound of 0, while all other
symbols get a lower bound of 1. Lists get an unlimited upper bound, while all
other sorts get an upper bound of 1.

Name Binding. In our minimalistic grammar formalism, namespaces and sorts
are separate concepts. Thus, namespaces impose their own class hierarchy on
the generated metamodel. For each namespace, we generate an abstract class
which subclasses its parent namespaces (ll. 38-43). When a production defines a
definition site of a name, the concrete class generated from this production needs
to subtype the namespace of the definition site. Therefore, symbol2parent
collects the namespaces of definition sites. At definition sites, the generated
feature is the same as for ordinary lexical sorts (ll. 45-48). At use sites, a reference
to the namespace is generated instead (ll. 50-53).

2.2 Bidirectional Mapping between Trees and Models

We specify a bidirectional mapping between trees and models as a pair of uni-
directional mappings tree2model and model2tree in Fig. 5.

To transform a tree into a model, we transform its term representation into an
object (tree2model). This is done by decomposing the term into its constructor
c and subterms t*. The constructor is used to identify the corresponding class
in the operator and the subterms are transformed into slots. When a term is the

98 O. van Rest et al.

lexical syntax
[a−zA−Z][a−zA−Z0−9]∗ → ID

context−free syntax
"module" id:ID types:Type∗ → Start {"Module"}
"entity" ID "{" Property∗ "}" → Type {"Entity"}
"datatype" ID → Type {"DataType"}
ID ":" ID → Property {"Property"}

namespaces Module Type Property

binding rules
Module(m, _):

defines non−unique Module m
scopes Type

Entity(e, _):
defines unique Type e
scopes Property

DataType(t):
defines unique Type t

Property(p, t):
defines unique Property p
refers to Type t

Fig. 6. Syntax definition in SDF (top), name binding rules in NaBL (left) and generated
Ecore metamodel (right) for an entity language.

definition site of a name, we expect def-uri to provide a URI for it. Otherwise,
it should yield None(). The first rule of term2val transforms strings (the
leaves of a tree) into (one of) the slot’s value(s). The rule only works if the
string is not the use site of a name. The second rule covers such use sites, by
generating a link with a URI. We expect ref-uri to provide the URI of a
bound name. Otherwise, it should fail. The third rule of term2val transforms
compound terms into contained objects.

The rules for model2tree mirror the rules for tree2model. We expect
name-of to yield the name which establishes the binding to the linked object.

2.3 Connecting Spoofax and EMF

In Spoofax, lexical and context-free syntax are defined in SDF [9,26]. Name
binding and scope rules are defined separately in NaBL [14]. From these defi-
nitions we generate metamodels in Ecore, EMF’s metamodeling formalism [24].
Fig. 6 shows syntax definition, name binding rules and generated metamodel for
a small data modeling language.

SDF and NaBL differ from the minimalistic grammar formalism in several
ways. First, naming conventions are different. Since symbols are only optionally
labeled in SDF, we generate missing labels either from sorts or from referred
namespaces. We use annotated constructor names as production names. Since
these are not required to be unique in SDF, we generate unique names where
needed. Second, SDF supports special injection and bracket productions,which
we model by inheritance. Third, SDF provides additional kinds of EBNF-like
operators and allows to apply them not only to sorts, but on any symbol. We
introduce intermediate sorts to break down such applications. Finally, NaBL

Robust Real-Time Synchronization between Textual and Graphical Editors 99

separates name binding rules from productions. We weave productions and name
binding rules based on their constructors.

Ecore differs from the minimalistic metamodel formalism as well. The only
relevant differences are order and uniqueness of many-valued features. Since text
is sequential, we generate ordered features. While references and containments
are inherently unique in Ecore, we generate non-unique attributes. In a post-
processing step, we simplify the generated metamodel. We fold linear inheritance
chains, merge classes which share all their subclasses, and pull common features
from subclasses into their parent class.

For the mapping between trees and models, we apply the previously shown
transformations.Additionally, we provide a thin, generic Java layer which can
convert between models as Spoofax terms and models as EMF objects.

3 Error Recovery

Error recovery is crucial for real-time synchronization between editors. Further-
more, it allows for persisting erroneous models using the textual syntax. We
distinguish three kinds of errors which affect editor synchronization. Parse er-
rors and unresolved names are discovered in the textual editor when the text
is parsed to an AST which is afterwards statically analyzed. Graphical syntax
errors occur in the graphical editor when a model does not satisfy lower bound
constraints of its metamodel. Graphical editors relax this constraint to allow
for incremental modeling. More specific, semantic errors do not affect synchro-
nization and error marking for such errors is allowed in either the textual or
graphical editor, or both.

Parse Errors. Modern IDEs parse text with every change that is made to
it, ensuring rapid syntactic and semantic feedback as a program is edited. As
text is often in a syntactically invalid state as it is edited, parse error recovery
is needed to diagnose and report parse errors, and to construct a valid AST
for syntactically invalid text. Therefore, Spoofax has strong support for parse
error recovery [4]. It introduces additional recovery productions to grammars
that make it possible to parse syntactically incorrect text with added or missing
characters. These rules are automatically derived from the original grammar.
Spoofax’ parsing algorithm activates these rules only when syntax errors are
encountered and uses layout information to improve the quality of recoveries for
scoping structures, while still ensuring efficient parsing of erroneous text. This
approach avoids the loss of AST parts when a correct text is changed into an
incorrect one, which is crucial for real-time synchronization.

Unresolved names. Spoofax resolves names after parsing with an algorithm
which is based on declarative name binding and scoping rules [14]. The algorithm
is language-independent, handles multiple files, and works incrementally, which
allows for efficient re-analysis after changes. During intermediate editing stages,
not all references may be resolved. Fig. 7 illustrates this with a simple data
model. It contains a property title of type Strin, which cannot be resolved.

100 O. van Rest et al.

entity Book {
title : Strin

}

entity Author {}

datatype String

entity Book {
title : Strin
x : Author

}

entity Author {}

datatype String

Fig. 7. Recovery from a name resolution error and from a graphical syntax error

We recover from such errors during tree-to-model transformation (step ➋).
Spoofax provides special URIs for unresolved references. When we discover such
a URI, we do not fill the corresponding slot in the model. GMF handles such
underspecified models and visualizes model elements with unfilled slots. In the
example from Fig. 7, the property appears in the graphical editor without any
type. The user can specify the missing type either by continue typing or by
choosing the type in the properties view of the graphical editor.

Graphical syntax errors. During graphical editing, newly added model ele-
ments are typically underspecified. Since graphical editors do not enforce comple-
tion, a user might first create a number of such underspecified elements before she
starts to complete them. To recover from such errors, the model-to-tree transfor-
mation needs to handle incomplete models (step ➎). A simple fix would be to map
unfilled slots to empty strings in the AST. Step ➅ would add these empty strings at
positions where the parser expects text for the missing element. The parser recov-
ers from such errors, but might report the error at a different position, confusing
the user. To overcome this problem, the model-to-tree transformation creates tex-
tual default values for unspecified attributes and references and ignores elements
with unspecified containments.

Both attributes and references are represented by strings in text. If they are
unspecified upon model-to-text transformation, we generate a default value that
conforms to the lexical syntax. For example, if an integer is expected, we take
default value 0, while if a string is expected, we take default value x (cf. Fig. 7).
Note that in case of a reference, it is important not to choose an existing name,
since this will connect every new model element to an existing one. The genera-
tion of default values introduces unresolved names and possibly semantic errors
as well. These errors are marked until they are resolved by completing under-
specified elements. Users may also switch to textual editing in the meantime, and
resolve the errors by typing. The solution can be further improved by allowing
users to specify default values in the syntax definition, as one may not prefer the
‘default’ defaults. Unspecified containments should ideally not be permitted by
graphical editors. In the graphical Behavior Trees editor (Sect. 5), for example, we
automatically create both an atomic sequence and a contained node upon using
the node tool. However, this is not possible if multiple subtypes are allowed, in
which case the user needs to manually indicate the type of the contained element.
Therefore,we ignore elements with unspecified containments during model-to-tree
transformation. This means that users are required to complete such an element

Robust Real-Time Synchronization between Textual and Graphical Editors 101

entity Book {
title : String
//comment

}
entity Author {}

entity Book {
title : String
//comment
author : Author

}
entity Author {}

Fig. 8. Textual layout preservation and pretty-printing in reaction to a new property

before switching to the textual editor, or the element will be destroyed upon the
next text-to-model transformation.

4 Layout Preservation

Textual layout consists of comments and whitespace, while graphical layout con-
sists of positions and sizes of graphical elements. This information needs to be
preserved during editor synchronization. Our approach to layout preservation is
based on merging in both directions (steps ➂➅). New ASTs or models are com-
pared against their old version to calculate differences between them. Differences
are then merged into the relevant representation, which causes the representation
to be incrementally updated with changes from the other editor.

Textual Layout Preservation. Spoofax supports textual layout preservation
for refactorings [5]. To achieve this, it combines origin tracking with pretty-
printing. We reuse this feature to preserve textual layout when propagating
changes from the graphical editor to text. Origin tracking relates nodes in an
AST with text fragments. This information is propagated by transformations.
It is lost when we transform a tree into a model, but it is still available in
the AST of the textual editor. Pretty-printing considers this old AST and a
new one generated by model-to-tree transformation. It compares both ASTs and
preserves text corresponding to unchanged parts. Fragments corresponding to
removed parts are removed from the text. New AST nodes are pretty-printed and
inserted into the text. For this purpose, Spoofax generates pretty-printing rules
from the syntax definition, which can be enhanced with user-defined rules [4].

Fig. 8 shows an example for the data modeling language that involves pretty-
printing. First, a reference of type Author is added to the entity Book in the
graphical editor. A new object is added to the underlying model and positional
information for the connection anchors is added to the notation model. Model-
to-tree transformation yields a new AST. Each of its subterms will match with
a term in the old AST, except for the term corresponding to the new reference.
This term is pretty-printed and inserted into the text. Comments and whitespace
in the surrounding text are preserved.

The approach works in the presence of any type of syntactic or semantic error.
However, it fails during a graphical cut-and-paste operation. Cutting destroys

102 O. van Rest et al.

entity Boo {
title : String
//comment
author : Author

}
entity Author {}

entity Book {
author : Author
title : String
//comment

}
entity Author {}

Fig. 9. Graphical layout preservation in reaction to a changed order of properties

the corresponding textual element and its associated layout. The element is
recreated upon pasting, but its original layout is lost.

Graphical Layout Preservation. Spoofax re-parses text once it changes.
Tree-to-model transformation turns the new AST into a model which is merged
with the model from the graphical editor. We rely on EMF Compare [28,2]
for comparing and merging models. Since old and new model will typically show
much resemblance, difference calculation is very precise and changes that require
merging are very small.

An example is given in Fig. 9 where we change the order of entities in the
text. The text is parsed and a new AST is created that shows the reordering
of two subterms. Tree-to-model transformation yields a new model which is
compared against the old one. The only difference is a change in the order of the
owned references of the Module object. We merge this into the old model, which
result in a reordering of a list. Since the order of the entities is not graphically
represented, GMF keeps the notation model and the diagram unchanged.

Fig. 9 shows another example in which we change the identifier of an entity.
Many model merging approaches use identifiers of objects for matching. When
an identifier changes, objects are no longer matched resulting in a deletion and
re-creation. Layout of the deleted object is lost. EMF Compare takes not only
identifiers but all slots of an object into account. It typically matches renamed
elements and layout information can be preserved.

This is also shown in Fig. 9. Here, we change the name of entity Boo into
Book. This change is reflected in the new AST and the new model. Since the
name slots of the old and new Entity object show much resemblance and since
both objects contain the same property, the objects match. During merging,
only the value of the name attribute changes. During synchronization with the
graphical editor (step ➃), no information is added to the notation model, but
the label corresponding to the attribute is re-rendered to show the new name.

The approach works in the presence of any type of semantic or graphical syn-
tactic error. However, sometimes we cannot recover from a parse error, in which
case only a partial AST is created. Synchronization will then destroy the graph-
ical elements corresponding to the erroneous text region. Upon resolving the
error, the graphical elements are recreated, but their original layout is lost. Fur-
thermore, similarly to textual layout preservation, graphical layout preservation
fails during textual cut-and-paste operations.

Robust Real-Time Synchronization between Textual and Graphical Editors 103

5 Case Study: Behavior Trees

A behavior tree (see Fig. 2 and Fig. 10 for examples) is a formal, tree-like graphi-
cal form that represents behavior of individual or networks of entities [7]. The Be-
havior Trees (BT) language has formed the base of Behavior Engineering (BE),
an approach to systems development that supports the engineering of large-scale
dependable software intensive systems [17].

Tooling support for BT initially focused on graphical editors only [27,22]. Re-
cently, the language was extended with a formal textual syntax [3] and TextBE,
a textual editor combined with a visualizer based on EMFText and SVG Eclipse,
was introduced [17]. Although textual editing greatly reduced the time to create
behavior tree models, TextBE is still limited in that it visualizes only on-save,
which inhibits the expected interaction in an IDE, prevents manual layout of
the graphical representation, which affects use cases like printing and sharing
seriously, and does not provide navigation means between textual and graphical
representation, which inhibits fast visual search. We applied our approach to
BT in order to create an integrated textual and graphical editor. The editors
synchronize in real-time, allow for manual and automated textual and graphical
layout, preserve layout during synchronization, and support selection sharing to
navigate between both representations.

Fig. 10 illustrates the robustness of the text-to-model transformation. First,
the identifier of state Closed changes from 2 into 21. As a consequence, refer-
ences to this state become unresolved and the label in the graphical model van-
ishes. Next, a semicolon is added after the node which results in a parse error.
Though, a new model element appears since the semicolon indicates a following
node. When we continue typing R1 C3 1, the graphical node is incrementally

#RT R1 R1
#C C1 CAR
#S 1 Arrives

2 Proceeds
#C C2 GATE
#L 1 Open

2 Closed

#T R1 C1 1 #N{
R1 + C2 2
R1 + C2 1

}

#RT R1 R1
#C C1 CAR

#S 1 Arrives
2 Proceeds

#C C2 GATE
#L 1 Open

21 Closed

#T R1 C1 1 #N{
R1 + C2 2
R1 + C2 1;

}

#RT R1 R1
#C C1 CAR
#S 1 Arrives

2 Proceeds
#C C2 GATE
#L 1 Open

21 Closed

#T R1 C1 1 #N{
R1 + C2 21
R1 + C2 1; R1 C1 2

}

Fig. 10. Graphical layout preservation and auto-layout during textual editing and in
the presence of parse errors and unresolved references.

104 O. van Rest et al.

#T R1 C1 1 #N{
R1 + C2 2 #N{
R1 + C2 1

}
}

#T R1 C1 1 #N{
R1 + C2 2 #N{
}
R1 + C2 1

}

Fig. 11. Graphical layout preservation during textual drag-and-drop

!?#\%+&∗)#N
#T R1 C1 1 #N{

R1 + C2 2 //comment
}

!?#\%+&∗)#N
#T R1 C1 1 #N{

R1 + C2 2 //comment
x x 0

}

Fig. 12. Textual layout preservation and pretty-printing during graphical editing in
the presence of both graphical and textual syntax errors

built up while its original assigned position is maintained. Finally, we update the
broken reference by typing an additional 1. This resolves the reference such that
the graphical representation shows the same label as before. Fig. 11 illustrates
a more drastic change, where text is dragged from an inner scope and dropped
in an outer scope. Graphically, connections between nodes change accordingly,
while all positions of nodes are preserved. Fig. 12 shows the text before and after
a new node is created in the graphical editor. Although mandatory features are
not yet specified, we already obtain a textual representation of the node. The
pretty printer automatically indents the node, while layout information consist-
ing of whitespace and a comment is preserved. This all works in the presence of
an erroneous text region (cf. !?#%+&*)#N) which is also preserved.

6 Discussion

There are two classes of tools that support textual and graphical model editing.
Textual modeling frameworks such as Xtext [8], MontiCore [15], EMFText [10],
TCS [12], and TEF [19] support textual editing by parser generation and a
generic tree-to-model mapping. First, we discuss their specification approach
and then we discuss their support for editor synchronization, error-recovery
and layout preservation. Similar to our approach, Xtext provides a grammar-
based formalism and generates metamodels. However, name binding constructs
provided by the formalism are limited. Scope and import rules, which can be
declaratively defined in NaBL, need to be implemented in Java instead. This is

Robust Real-Time Synchronization between Textual and Graphical Editors 105

a limitation of the other frameworks as well. MontiCore provides a formalism
for describing both a grammar and a metamodel. While we automatically derive
a set of abstract classes and an inheritance hierarchy from the textual syntax
definition, MontiCore allows users to manually specify those. This provides more
flexibility to influence the resulting metamodel. TEF requires the user to specify
both grammar and metamodel, which is very redundant. EMFText and TCS
take the opposite approach and start from a metamodel. TCS requires the user
to specify templates, which are then used for parsing and pretty-printing. With
EMFText, user-defined templates are optional, since it generates default ones
based on the UML Human-Usable Textual Notation [23].

Of all the frameworks, only TEF merges textual and graphical models, while
the others only inherit limited synchronization capabilities from EMF and GMF,
where models are synchronized on save. Saving overwrites the previous model
and breaks references from the notation model. A GMF edit policy then tries
to repair references, which often leads to deletions followed by re-creations of
notations and a loss of layout. All frameworks except TEF support textual lay-
out preservation. However, in on-save synchronization multiple model changes
are merged into the text at once, making the merging process imprecise such
that layout is not always preserved correctly. All frameworks have only limited
error recovery capabilities such that switching between textual and graphical
editing is only possible if models are not broken. However, on-save synchroniza-
tion does not introduce the problem of layout being destroyed when elements
are temporarily lost due to parse errors or cut-and-paste operations. Our ap-
proach could possibly be improved by providing additional means to maintain
such layout, or by delaying synchronization until parse errors don’t result in
partial ASTs anymore and cut-and-paste operations are completed.

Projectional editors as provided by MPS [6] or Intentional [21] support dif-
ferent views and different concrete syntax projections which are automatically
synchronized since they all share the same abstract syntax model. Editing di-
rectly affects the abstract syntax, similar to graphical editing. However, typical
textual operations such as indentation or rearranging are not possible, but can
be simulated to a certain degree. Another notable tool that provides mappings
between text and models is Enso [25], which requires the user to provide both a
grammar and a metamodel that need to be kept consistent.

7 Conclusion

This paper presented an approach for robust real-time synchronization between
textual and graphical editors. It recovers from errors during synchronization and
preserves textual and graphical layout during editing, even in the presence of
errors. It allows for a new type of highly interactive editors and has successfully
been applied to the Behavior Trees modeling language.

106 O. van Rest et al.

References

1. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17.
A language and toolset for program transformation. SCP 72(1-2), 52–70 (2008)

2. Brun, C., Pierantonio, A.: Model differences in the Eclipse Modeling Framework.
In: UPGRADE, IX (April 2008)

3. Colvin, R., Hayes, I.J.: A semantics for Behavior Trees using CSP with specification
commands. SCP 76(10), 891–914 (2011)

4. de Jonge, M., Nilsson-Nyman, E., Kats, L.C.L., Visser, E.: Natural and flexible
error recovery for generated parsers. In: van den Brand, M., Gašević, D., Gray, J.
(eds.) SLE 2009. LNCS, vol. 5969, pp. 204–223. Springer, Heidelberg (2010)

5. de Jonge, M., Visser, E.: An algorithm for layout preservation in refactoring
transformations. In: Sloane, A., Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940,
pp. 40–59. Springer, Heidelberg (2012)

6. Dmitriev, S.: Language oriented programming: The next programming paradigm
(2004)

7. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: SEFM,
pp. 2–11 (2003)

8. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: OOPSLA, pp. 307–309 (2010)

9. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN 24(11), 43–75 (1989)

10. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
refinement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009)

11. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. SoSyM 9(3), 375–402
(2010)

12. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE, pp. 249–254 (2006)

13. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: OOPSLA, pp. 444–463 (2010)

14. Konat, G., Kats, L., Wachsmuth, G., Visser, E.: Declarative name binding and
scope rules. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745,
pp. 311–331. Springer, Heidelberg (2013)

15. Krahn, H., Rumpe, B., Völkel, S.: Integrated definition of abstract and concrete
syntax for textual languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 286–300. Springer, Heidelberg (2007)

16. Mülder, A., Nyßen, A.: TMF meets GMF. Kombination textueller und grafischer
Editoren. Eclipse Magazin 3, 74–78 (2011) (in German)

17. Myers, T.: TextBE: A textual editor for behavior engineering. In: ISSEC (2011)
18. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/

Transformation Specification. Version 1.1 (January 2011)
19. Scheidgen, M.: Integrating content assist into textual modelling editors. In:

Modellierung, pp. 121–131 (2008)
20. Scheidgen, M.: Textual modelling embedded into graphical modelling. In:

Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095,
pp. 153–168. Springer, Heidelberg (2008)

Robust Real-Time Synchronization between Textual and Graphical Editors 107

21. Simonyi, C.: The death of computer languages, the birth of intentional programming.
In: NATO Science Committee Conference (1995)

22. Smith, C., Winter, K., Hayes, I.J., Dromey, R.G., Lindsay, P.A., Carrington, D.A.:
An environment for building a system out of its requirements. In: ASE, pp. 398–399
(2004)

23. Steel, J., Raymond, K.: Generating human-usable textual notations for information
models. In: EDOC, pp. 250–261 (2001)

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work, 2nd edn. Addison-Wesley (2009)

25. van der Storm, T., Cook, W.R., Loh, A.: Object grammars: Compositional &
bidirectional mapping between text and graphs. In: Czarnecki, K., Hedin, G. (eds.)
SLE 2012. LNCS, vol. 7745, pp. 4–23. Springer, Heidelberg (2013)

26. Visser, E.: A family of syntax definition formalisms. Technical Report P9706,
Programming Research Group, University of Amsterdam (August 1997)

27. Wen, L., Colvin, R., Lin, K., Seagrott, J., Yatapanage, N., Dromey, R.G.:
“Integrare”, a collaborative environment for behavior-oriented design. In: Luo, Y.
(ed.) CDVE 2007. LNCS, vol. 4674, pp. 122–131. Springer, Heidelberg (2007)

28. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing.
In: ASE, pp. 54–65 (2005)

Achieving Practical Genericity in Model

Weaving through Extensibility�

Max E. Kramer1, Jacques Klein2, Jim R.H. Steel3, Brice Morin4, Jörg Kienzle5,
Olivier Barais6, and Jean-Marc Jézéquel6

1 Karlsruhe Institute of Technology, Karlsruhe
2 University of Luxembourg, Luxembourg
3 The University of Queensland, Brisbane

4 SINTEF ICT, Oslo
5 McGill University, Montréal

6 IRISA-INRIA, Triskell, Rennes

Abstract. Many tasks inModel-Driven Engineering (MDE) involve cross-
cutting model modifications that are bound to certain conditions. These
transformation tasks may affect numerous model elements and appear in
different forms, such as refactoring, model completions or aspect-oriented
model weaving. Although the operations at the heart of these tasks are
domain-independent, generic solutions that can easily be used and cus-
tomized are rare. General-purpose model transformation languages as well
as existing model weavers exhibit metamodel-specific restrictions and in-
troduce accidental complexity. In this paper, we present a model weaver
that addresses these problems using an extensible approach that is defined
for metamodelling languages and therefore generic. Through examples of
different formalisms we illustrate how our weaver manages homogeneous
in-place model transformations that may involve the duplication, merge,
and removal of model elements in a generic way. Possibilities to extend
and customize our weaver are exemplified for the non-software domain of
Building Information Modelling (BIM).

1 Introduction and Motivation

In Model-Driven Engineering (MDE), various activities require the modification
of several areas of a model that satisfy specific properties. Such activities may take
the shape of refactoring tasks or search-and-replace tasks similar to those sup-
ported in textual editors of IntegratedDevelopment Environments (IDEs). Others
appear as model-completion transformations or aspect-oriented model weaving.
These activities are composed of atomic add, change, and remove operations
similar to Create, Read, Update, Delete (CRUD) operations of databases. Al-
though these operations are problem-independent, generic solutions that can be
easily reused and customized for arbitrary domains are rare. Existing solutions

� This work is supported by the Fonds National de la Recherche (FNR), Luxembourg,
under the MITER project C10/IS/783852.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 108–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Achieving Practical Genericity in Model Weaving through Extensibility 109

are restricted to certain types of models, do not support conditional application
of changes, ignore domain-specific properties, or introduce accidental complexity.

General-purpose model-to-model transformation languages, for example, have
not been designed specifically for homogeneous in-place refinement transforma-
tions, but support a multitude of scenarios. As a result, domain experts wanting
to add or change model details have to make efforts to master these powerful, yet
general-purpose, transformation languages. They have to reason about languge
technicalities that are not central to their task, such as copying elements.

Model weaving approaches provide specific constructs for model changes that
cross-cut the system’s main decomposition. Currently available model weavers,
however, tend to complicate these simple tasks just as general-purpose transfor-
mation languages do. The complexity results from the need for detailed weaving
instructions, preparatory transformations of input models to weaving-supporting
formalisms, or incomplete automation. Nevertheless, industrial domain-specific
applications of model weaving, e.g. for communication infrastructure [4] or
robustness modelling [1], suggest that these shortcomings can be overcome.

This paper presents a generic, extensible, and practical model weaver, called
GeKo [5], together with a demonstration of its use in different domains. Our
approach is generic because it is defined on top of a metamodelling language. It
can be applied to all instances of arbitrary metamodels that were defined using
this metamodelling language. Our approach is extensible because domain-specific
solutions can be used without modifications of the generic core weaving logic.
Finally, it is practical because it can be used together with existing MDE tools. It
is not necessary to learn new notations or to understand new frameworks in order
to apply the weaver. The presented approach evolved from earlier work on generic
model weaving [22]. We added extension support, automated customization steps
and improved the join point detection mechanism, the weaving implementation
and the formalization. Our weaver was used to integrate building specification
information into models of buildings. It is currently being integrated into the
Palladio [3] IDE for model-driven development of component-based systems.

The contributions of this paper are:

– The presentation of a generic model weaver proving that practical generic
model weaving can be defined on the level of metamodelling languages.

– The illustration of an extension mechanism for this weaver, showing that
little work is needed to customize the generic approach to specific domains.

– The detailed description of challenging weaving scenarios for examples of two
formalisms that illustrate the atomic metamodel-independent operations.

The remainder of this paper is structured as follows. Section 2 provides the
background for our work. In Section 3, we present the key characteristics and the
individual weaving phases. Section 4 explains how we ensure that our concepts
and implementations are generic and extensible. The customization capabilities
are illustrated in Section 5 through an application of our approach to Building
Information Modelling (BIM). Section 6 details the generic realisation of atomic
duplication, merge, and removal operations during model composition. Section 7
presents related work and Section 8 draws some final conclusions.

110 M.E. Kramer et al.

2 Foundations

2.1 Model Weaving and Aspect-Oriented Modelling

Aspect-Oriented Modelling (AOM) provides explicit language constructs for
cross-cutting concerns. Many AOM techniques use constructs similar to those
of Aspect-Oriented Programming (AOP). A pointcut describes at which points
of a model an aspect should be applied. An advice defines what should be done
whenever a part of a model matches the description of a pointcut. Together,
pointcut and advice form an aspect. The points in a base model that match a
pointcut are called join points. After identification of these points, the changes
described in an advice can be executed at these points. This process of incor-
porating advice information into a base model is called model weaving. Other
approaches to model composition, e.g. [6], do not provide new constructs such as
pointcuts as they merge models expressed using the same notation.

2.2 Building Information Modelling

The term Building Information Modelling (BIM) [7] refers to models of buildings
that contain semantic information in addition to three-dimensional geometric
information. BIM started to replace two-dimensional models in the last decade,
but is still not completely widespread [10]. Most BIM design tools use proprietary
formats to represent and render models. For interoperability these tools usually
provide import and export functionalities for a standard format called Industry
Foundation Classes (IFC) [11]. The weaver presented in this paper was used
together with a framework that bridges the technological spaces of BIM and
MDE [27] in order to apply MDE techniques to models of buildings. Such an
application of MDE presents challenges in terms of scalability and integration
as many stakeholders use partial models of significant size and complexity.

A common technique to avoid adding the same details at several places in a
model of a building is to define them in a document called a building specification.
As building specifications, like all natural-language texts, can be ambiguous and
open to different interpretations, it is hard to use them in automated processes.
Nevertheless, building specifications and models are used as the main inputs for
analysis tasks like cost estimation. These analyses would be easier if cross-cutting
specification concerns were directly woven into models of buildings [17].

3 Overview

In this section we introduce our approach to model weaving. First, we describe
five key features that characterise our approach in addition to the genericity and
extensibility explained in Section 4. Then, we outline the main weaving phases.

3.1 Key Characteristics

Asymmetric Weaving of Ordinary Models. In our approach, aspects that
are defined by a pointcut model and an advice model are woven into a base model.
This kind of approach is called asymmetric as the arguments have different roles

Achieving Practical Genericity in Model Weaving through Extensibility 111

(base, pointcut and advice), in contrast to symmetric approaches, such as [6],
which weave entities that are not distinguished using roles or types.

Implicit Join Points allow Direct Use. Our approach uses implicit join
points that are identified using a join point detection mechanism. This means
that points at which a model should be changed can be defined using an ordinary
model snippet, which serves as a detection pattern. No preparatory steps, such as
manually annotating a model or executing transformations that mark elements
to be changed, are needed as is the case for other approaches [13,26].

Aspect Definition using Familiar Syntax. In our approach, pointcut and
advice models are defined using relaxed versions of the original metamodel. In
these metamodels, constraints, such as lower bounds and abstract metaclasses,
are relaxed in order to allow the definition of incomplete model snippets. Such
a relaxed metamodel is a supertype of the original metamodel as every model
conforming to the original metamodel also conforms to the relaxed metamodel.
Therefore, aspects can be defined with existing tools that only have to be slightly
modified in order to support instantiations of abstract metaclasses and allow
violations of lower bounds. Relaxed metamodels were previously presented [24],
but they have not been realised in an automated, metamodel-independent way.

Declarative Mapping from Pointcut to Advice. In our approach, users
declaratively define which elements of the pointcut correspond to which elements
of the advice. This indirect weaving specification relieves the user from the need
to explicitly specify weaving steps as they are inferred from the mapping. In
most cases the mapping can even be determined automatically. In contrast to
declarative transformation languages like QVT-R, this mapping is metamodel-
independent. The foundations of such declarative weaving instructions have been
presented previously [22], and continue to be a unique feature of GeKo.

Metamodel-independent Operations. Our generic model weaver is able to
process instances of arbitrary metamodels. This is possible because weaving
operations are based on the properties of the metamodel to which the model
conforms. These metamodel properties are automatically retrieved for every
metamodel and not hard-coded for a specific metamodel. They can be attributes,
which store primitive types, or references to complex types. Attributes and
references are part of various metamodelling languages, such as the standard
EMOF 2.0 or KM3 [12]. Therefore, our approach can even be used for different
metamodelling languages. Metamodel-independent operations have already been
proposed [22], but have never been realised in a completely generic way. Our cur-
rent implementation [5] is based on the metamodelling language Ecore, which is
a variant of EMOF 2.0.

3.2 Weaving Phases

Our approach consists of five different phases, shown in Fig. 1. Six out of the
seven extension points discussed in Section 4 are also displayed.

0) Loading Makes the relevant base, pointcut, and advice models available.

112 M.E. Kramer et al.

Base
Model

Pointcut
Model

Advice
Model

Join Point
Model

Mapping
Model

Woven
Model

Step 0:
Loading

Step 1: Join
Point Detection

Step 2: Mapping
pc & av

Step 3:
Composition

Step 4:
Clean Up

e2

e3 e4

e5
e7

e6

Fig. 1. The models, phases, and major extension points of the weaving process

1) Join Point Detection. The first phase of weaving identifies all locations
of the base model that match the model snippets defined in the pointcut model.
As an intermediate result, we obtain for each matched location a one-to-one
mapping from pointcut elements to base elements, which we call join points.
Depending on the structure and size of base and pointcut models, this prepara-
tory step can dominate the overall time required for weaving. For this reason,
we decouple it completely from the other phases of weaving. This allows for
different matching algorithms as well as for domain-specific pointcut matching
optimisations that are independent of the remaining weaving steps.

In our current implementation, join point detection is fully automated by
generating rules targeting the business logic integration platform Drools, which
implements the Rete algorithm [8]. This is similar to the SmartAdapters ap-
proach [23]. The main difference, however, is that we do not generate advice
instantiation rules but decoupled this from the advice-independent join point de-
tection in order to separate steps that are subject to different evolution
pressure.

2) Inferring a Pointcut to Advice Mapping. In order to know how elements
before weaving correspond to elements after the weaving we need a mapping from
pointcut to advice elements. This mapping is a model consisting of entries that
list references to pointcut and advice elements. It can be defined independent
of the way the pointcut and advice model itself are defined. To relieve the user
from as much complexity as possible, the weaver automatically infers the map-
ping and skips ambiguous cases. Unambiguity is given, if every pointcut element
matches at most one advice element of the same type having the same primitive
attributes. Fortunately, this happens to be the case for many weaving scenarios
such as the one presented in Fig. 2. The mapping inference algorithm matches
pointcut elements to advice elements that exhibit all attributes of the pointcut
element. Therefore, it rather produces false negatives than false positives. If an
automatically inferred mapping is incomplete, only the remaining unmapped el-
ements have to be mapped manually. As the m-to-n mapping may relate multiple
pointcut elements with multiple advice elements, it may induce duplication and
merge operations, which are discussed in detail in Section 6.2 and Section 6.3.

Achieving Practical Genericity in Model Weaving through Extensibility 113

a b a b
t1

t1

t2

(a) pointcut model (b) advice model

Fig. 2. An example of a pointcut and advice model with an unambiguous mapping
(dotted arrows) from pointcut to advice elements that can be automatically inferred.

3) Model Composition. The central weaving phase composes the base and
advice models by merging the property values of their elements. Property values
of the advice are used to replace or complete base property values, but removal
operations are deferred to the last phase. At the end of the composition phase,
newly introduced elements are added to containers using the involved contain-
ment references. A detailed description of the composition phase is given in
Section 6.

4) Removal and Clean-up. In the last phase of weaving, base elements that
correspond to pointcut elements, but that do not correspond to any advice ele-
ments, are removed. In order to keep the model consistent, references to these el-
ements need to be removed as well. If model elements violate the lower bounds
of reference properties as a result of these removals, then they are removed as
well. This is necessary to guarantee that wovenmodels still conform to their meta-
model. An example for this removal of inconsistencies is presented in Section 6.4.

4 Genericity and Extensibility

In this section we explain the techniques used in order to provide a generic and
extensible approach, which can be customized for arbitrary metamodels.

4.1 Genericity

The key design decision that makes our approach generic is to transform models
solely by operations formulated on the meta-metamodel level. These operations
allow us to add, change, and remove elements of a metamodel instance using the
properties of the metamodel that in turn conforms to a meta-metamodel. Let us
illustrate this using a small example. Suppose a single join point element j in a
base model matches a pointcut element p that corresponds to an advice element
v. Such a match leads to a woven model in which j exhibits the properties of
v. In order to perform this weaving it is irrelevant whether the model elements
j and v are entities of a UML diagram or elements of a construction plan of a
building. It is sufficient to inspect and update the values of the properties that
are defined in the metamodel for the metaclasses of j and v.

To make this metamodel-independent approach work, we give users the ability
to formulate pointcut and advice model snippets as instances of automatically
derived metamodel variants with relaxed constraints. We already described the
derivation and use of these relaxed metamodels in Section 3.1. A convenient

114 M.E. Kramer et al.

consequence is that users can express weaving instructions using the familiar
syntax for ordinary models. No domain-specific aspect languages are needed.

4.2 Extensibility

Our generic approach may not handle all weaving circumstances for all meta-
models in the way desired by its users. Therefore, we give users the ability to
reuse parts of our generic weaver and to customize them to obtain a domain-
specific weaver. In this section, we briefly present the customization capabilities
and in Section 5 we show an exemplary customization for the domain of BIM.

Some of the extension points that we provide can be used to change the
default weaving behaviour of GeKo. Others can be used to perform additional
work before or after general weaving operations. In some cases we provide two
extension points for the same task in order to give users the ability to provide
simple as well as more elaborate extensions. In the current implementation of
our approach the customization possibilities are realised as Eclipse extension
points that can be extended without directly modifying the original plug-ins.

We will now briefly describe the customization facilities in their order of use:
EP 1: During the preparatory derivation of relaxed metamodels for pointcut

and advice models the default generator model can be modified. It specifies how
Java classes that realise the metaclasses of the metamodel are generated.

EP 2: The process of loading and storing models before and after the actual
weaving can be customized using a simple and a detailed extension point.

EP 3: Join point detection can be completely customized as its result is an
ordinary one-to-one mapping from pointcut to base elements for every join point.

EP 4: It is possible to ignore specific properties of metaclasses during join
point detection and model comparison using another extension point.

EP 5: For the automatic inference of a mapping from pointcut elements to
advice elements the calculation of unique identifiers can be customized. These
identifiers are used to match pointcut elements to advice elements.

EP 6: The introduction of new base elements corresponding to advice model
elements that do not have associated pointcut elements can be customized.

EP 7: The determination of containment references can be customized for
advice elements that are not unambiguously contained in another element.

All of these extension points, except EP 3 and EP 5, are used for the BIM
customization of our weaver, which we present in the next section. EP 3 is
required, for example, when model semantics have to be considered during join
point detection. For behavioural models, such as sequence diagrams, it is possible
that join points do not appear explicitly with the same syntax in the base model.
In the presence of loops, for example, the first part of the join point can appear
in a first iteration of the loop, whereas the second part of the join point occurs
on a second iteration of the loop [14]. In such a case, the join point detection
mechanism has to be extended to account for the semantics of such elements.

Achieving Practical Genericity in Model Weaving through Extensibility 115

5 Customizing GeKo to Support BIM Weaving

To give the reader a better idea of the extension capabilities of our generic
approach we present a set of weaver extensions for IFC models of buildings.

The first two extensions to our model weaver are necessary because we can-
not use default XMI serialisation for IFC models. We load IFC models serialised
in ASCII text files as instances of an Ecore metamodel using a technological
bridge [27]. In our first extension (EP 1) we propagate the IFC-specific changes
in the bridge’s code generator into the code generator for the relaxed pointcut
and advice metamodels. The second extension (EP 2) customizes the resource
loader to retrieve content model elements from wrapping elements that model
the serialisation format. Because the serialisation and the domain metamodel
are defined using Ecore, we do not have to provide all loading and storing in-
frastructure but can reuse most of the generic facilities of GeKo and EMF.

The third extension (EP 4) ensures that the weaver ignores specific values
of properties of metaclasses during join point detection and model comparison.
Specifically, when creating a pointcut model and specifying that a property’s
value is irrelevant, it is important to avoid that the default value specified by
IFC is applied. During join point detection, there are certain properties, such
as globally unique identifiers, which cannot be omitted from the pointcut (for
reasons specific to the IFC metamodel) but which we do not wish to detect in
join points. The third extension allows us to ignore values for these properties.

The fourth extension (EP 6) ensures that model elements that are not con-
venient to express in the aspect are included in the woven model. For example,
every IFC element is required to include an “owner history”, which details the
person responsible for making changes to the model. It is inconvenient to repeat
this information for every pointcut and advice element, so this extension makes
it possible to have this information propagated implicitly.

The last extension (EP 7) for IFC models applies at the very end of the
weaving process. It ensures that all elements added to the base model during
the weaving that are not yet contained in any building element are added to
the main container using the correct containment reference. This extension il-
lustrates an advantage of our approach resulting from the decision to support
pointcut and advice definition using incomplete model snippets. IFC models
may exhibit deeply nested hierarchies. A window, for example, may be part of a
hierarchy that starts with a storey and includes a building container, building,
site container, site, project container, and project. If pointcut and advice models
were complete models, the whole hierarchy beginning with the building project
would have to be specified. In our approach, however, it is possible to refer to
arbitrarily nested elements at the first level of pointcut and advice models. If
new elements are added during the weaving, we can use information available at
the join points to hook these new elements into the containment hierarchy.

Given the practical experience of providing a set of domain-specific exten-
sions to our own generic approach, we are convinced that this strategy is gen-
erally suitable for modifying domain-specific models. The fact that less than
10% additional code (0.5 KLOC customization code, 5.1 KLOC generic code)

116 M.E. Kramer et al.

Bremove

Bupdate

base

pointcut

advice

Aadd

woven
j

m

n

B

P

A

Fig. 3. Formalisation visualisation showing involved models, sets and mappings

was needed to customize the weaver for IFC models suggests that applying our
generic approach requires less effort than the development of domain-specific
model weavers. This, however, needs to be confirmed by future experiments that
involve new extensions for other DSMLs.

6 Composition: Duplication, Merge and Removal

This section illustrates some model composition operations executed during the
application of our generic weaving approach. First, we provide a short description
of the formalisation upon which all composition operations are built. Second, we
exemplify duplication, merge and removal operations using examples for Labelled
Transition Systems (LTS) and Building Information Modelling (BIM). We chose
a well-known formalism to ease the understanding and provide examples from the
construction domain to illustrate the metamodel-independence of the operations.

6.1 Weaving Formalisation

We present the essential concepts of a set-theoretic formalisation of our approach.
The input to our weaving algorithm is a set of base-model elements B, a set of
pointcut-model elements P , and a set of advice-model elements A. From these,
a join point mapping from pointcut to base elements j : P → B, and a mapping
from pointcut to advice elements m : 2P → 2A are calculated as intermediate
results in steps 1) and 2) of our weaving process (see Section 3.2). Finally, the
woven model is obtained using three sets and a bidirectional m-to-n mapping
that we present in this section. A visualisation of the presented formalisation
is displayed in Fig. 3. The interested reader is referred to an initial [22] and
complete [15] description of our formalisation.

The first set contains all base-model elements that have to be removed dur-
ing the weaving. These are all elements of the base model that correspond to

Achieving Practical Genericity in Model Weaving through Extensibility 117

an element of the pointcut model with no corresponding element in the ad-
vice model. More formally, given B,P,A, j and m as defined above, we define
Bremove := {b ∈ B | ∃ p ∈ P : j(p) = b ∧m({p}) = ∅}.

We define a second set that contains all base-model elements to be updated
during the weaving. These are all base elements that correspond to at least one
pointcut element with a corresponding advice element. In the same context as
Bremove we define Bupdate := {b ∈ B | ∃ p ∈ P : j(p) = b ∧m({p}) �= ∅}.

The third set contains all advice-model elements that have to be added to the
base model during the weaving. It is independent of a join point and contains all
advice elements that correspond to no pointcut model element. More formally,
given the input as above, we define Aadd := {a ∈ A | � p ∈ P : a ∈ m({p})}.

The bidirectional m-to-n mapping relates base-model elements with the cor-
responding advice-model elements using the detected join-point mapping from
pointcut to base elements and the mapping from pointcut to advice elements.
In the same context as forBremove andBupdate we define the mapping nbase−advice

as b �→ {a ∈ A | ∃ p ∈ P : j(p) = b ∧ a ∈ m({p})} and the mapping nadvice−base

as a �→ {b ∈ B | ∃ p ∈ P : j(p) = b ∧ a ∈ m({p})} as compositions of j and m.
Our approach is inspired by graph transformations but different: In contrast

to other approaches [28,20] our formalisation and implementation [5] uses sets
that directly contain model elements. No translation to nodes, edges and their
types and attributes is performed. Relations between set members are only han-
dled different than other attributes after removal operations. The mapping from
pointcut to advice elements can also be non-injective and not right-unique.

6.2 Duplication

The first weaving scenario that we present involves the duplication of a base
model element. Such a duplication is needed if a pointcut element corresponds to
more than one advice element (m is non-injective). The consequence for each join
point is as follows: All the base elements representing the advice elements that are
involved in the duplication have to be updated. After the duplication, these base
elements have to exhibit all properties of the base element that corresponds to the
pointcut element of the duplication. This is achieved by introducing the attribute
and reference values of the base element that corresponds to the pointcut element
into the base elements that correspond to the advice elements.

Fig. 4 illustrates such a duplicationwith examplemodels of a LTS. The pointcut
element b corresponds to the two advice elements b1, b2 (Fig. 4(b)). The only pos-
sible join point maps this pointcut element b to the base element b. More formally,
nbase−advice(b) = {b1, b2}. As a result, all incoming transitions t1 and all outgoing
transitions t3, t4 of bareduplicated for b1 and b2during theweaving (Fig. 4(c)).The
transition tnew from b1 to b2 is newly introduced independent of this duplication
operation as tnew ∈ Aadd.

Fig. 5 illustrates a duplication scenario for models of buildings. The purpose of
the aspect is to duplicate cable ports. In IFC (see Section 2.2) a cable port is rep-
resented as an IfcPort that is related via an IfcRelConnectsPortToElement

to an IfcFlowSegment that is typed using IfcCableSegmentType (Fig. 5.a). To

118 M.E. Kramer et al.

a b

c d

t1

t2
t3

t4

(a) base model

b

b1 b2
tnew

pc

av

(b) pointcut and
advice model

a b1

b2

c d

t1

t1

tnewt2

t3
t3

t4

t4

(c) woven model

Fig. 4. Weaving an aspect into a LTS while duplicating the base element b

achieve a duplication of such ports, the advice model (Fig. 5.b) contains the
same elements as the pointcut model and an additional IfcPort together with
an additional relation. The mapping from pointcut to advice elements relates
the single IfcPort of the pointcut to both IfcPorts of the advice and the sin-
gle IfcRelConnectsPortToElement to both instances of the advice. All other
pointcut and advice elements have a one-to-one correspondence. We do not vi-
sualise this mapping or a woven example as this would require too much space.

6.3 Merge

A scenario that can be seen as the dual to duplication occurs if more than
one pointcut element corresponds to an advice element (m is not right-unique).
The resulting merge has to ensure that the relevant advice elements exhibit all
properties of all corresponding pointcut elements. This is realised by introducing
all attribute and reference values of the base elements corresponding to the
pointcut elements into the base element corresponding to the advice element.

: IfcPort

: IfcRelConnectsPortToElement

: IfcFlowSegment

: IfcRelDefinesByType

: IfcCableSegmentType

RelatingPort

RelatedElement

RelatedObjects

RelatingType

(a) pointcut model

: IfcPort

: IfcRelConnectsPortToElement

: IfcFlowSegment

: IfcRelDefinesByType

: IfcCableSegmentType

r2 : IfcRelConnectsPortToElement

p2 : IfcPort

RelatingPort

RelatingPort

RelatedElement

RelatedElement

RelatedObjects

RelatingType

(b) advice model

Fig. 5. An example aspect for IFC models which duplicates cable ports

Achieving Practical Genericity in Model Weaving through Extensibility 119

a

b c

d

t1

t3

t5

t2

t4

(a) base model

b c

bc

t3

pc

av

(b) pointcut and
i.t advice

modeli.the

a

bc

c

t1

t5

t2

t4

(c) woven
model

Fig. 6. Weaving an aspect into a LTS while merging the base elements b and c

The merge weaving scenario is illustrated for LTS in Fig. 6. The two pointcut
elements b and c correspond to the advice element bc (Fig. 6(b)). The only
possible join point maps these pointcut elements b and c to the elements with
the same names in the base model. More formally nbase−advice(b) = {bc} =
nbase−advice(c). During the weaving of this example b’s incoming transition t1
and c’s incoming transition t2 are merged into the resulting element of the woven
model bc (Fig. 6(c)). The same applies for b’s outgoing transition t4 and c’s
outgoing transition t5. Independent of this merge operation the transition t3
from b to c is removed as it is bound to the transition t3 of the pointcut model
but has no correspondence in the advice model (t3 ∈ Bremove).

A similar merge scenario for IFC models is shown in Fig. 7. The aspect ensures
that every door with an unspecified fire rating obtains the properties of a fire
resistant door. To achieve this, the property set that contains the unspecified fire
rating value (and other property values which should be preserved) is merged

: IfcDoor

: IfcRelDefinesByProperties

: IfcPropertySet

Name = ‘PSet DoorCommon’

: IfcPropertySingleValue

Name = ‘FireRating’
Value = ‘’

: IfcPropertySet

Name = ‘PSet FireResistantDoor’

RelatedObjects

RelatingPropertyDefinition

HasProperties

(a) pointcut model

: IfcDoor

: IfcRelDefinesByProperties

: IfcPropertySet

Name = ‘PSet DoorCommon’

: IfcPropertySingleValue

Name = ‘FireRating’

RelatedObjects

RelatingPropertyDefinition

HasProperties

(b) advice model

Fig. 7. An example aspect for IFC models which merges properties

120 M.E. Kramer et al.

a b

c d

t1

t2
t3

t4

(a) base model

a b a

c c

pc av

(b) pointcut and advice model

a

c d

t2 t1

(c) woven model

Fig. 8. Weaving an aspect for a small LTS while removing the base element b

with a property set of fire resistance properties. Instead of listing all these prop-
erties (e.g. fire rating = “AS 1905.1”, smoke stop = true), the corresponding
property sets are listed in the pointcut and mapped to a single property set in
the advice.

6.4 Removal

The last scenario that we discuss in detail involves the removal of base elements
and illustrates the final clean-up phase. As explained in Section 6.1, a base ele-
ment has to be removed during the weaving at a join point if this join point binds
the base element to a pointcut element without a correspondence in the advice.
After removing these unmatched elements it may be that other base elements
that referred to a removed element violate lower bound constraints of the meta-
model. Therefore, we have to detect these inconsistent elements and remove them
too. Because this removal of inconsistencies can produce new inconsistencies, we
have to continue the clean-up until all constraints are satisfied.

We illustrate a removal scenario using LTS example models in Fig. 8. The
pointcut model element b corresponds to no advice-model element (Fig. 8(b)).
Thus b ∈ Bremove and therefore b is removed from the woven model (Fig. 8(c)).
As a result, the transition t3 that originally went from c to b violates the lower-
bound constraint for its mandatory target attribute as it refers to no element.
The same applies for the source attribute of the transition t4 that originally
went from b to d. During the clean-up phase of the weaving both t3 and t4 are
removed. Note, however, that although no element refers to it, the state d is
not removed during the clean-up as it does not violate any constraint of the
metamodel. Because the transition from a to b in the pointcut is mapped to the
transition corresponding to t1, the target of t1 is changed. Without this mapping
t1 would have been deleted and inserted with a possible loss of further attributes.
This target change and the addition of the final attribute to c are independent
of the removal and clean-up operations. We do not provide another example for
IFC models as building specifications do not specify removals.

7 Related Work

In this section we discuss approaches to homogeneous in-place transformations
that are generic in the sense that they can be applied to different metamodels.

Achieving Practical Genericity in Model Weaving through Extensibility 121

SmartAdapters is a model weaving technique for which join points had to
be specified manually in the initial version. First, it had to be tailored to spe-
cific metamodels, such as Java Programs [19] and Class Diagrams [18]. Then,
it has been generalised to support arbitrary metamodels [21]. Later efforts fo-
cused on its use for adapting component models at runtime so that initially
generic weaving functionality can no longer be separated from advanced concepts
for component-based systems. Despite this specialisation, SmartAdapters shares
various concepts with GeKo. A major difference, however, is the representation
of weaving instructions. In addition to a declarative pointcut and advice model,
SmartAdapters needs a composition protocol with imperative weaving instruc-
tions. It supports sophisticated weaving operations that cannot be expressed
with GeKo, but it also requires explicit definitions for very basic weaving tasks.

MATA [28] is a concept for generic model weaving based on graph transforma-
tions. It converts a base model into an attributed type graph, applies graph rules
obtained from composition rules, and converts the resulting graph back to the
original model type. Composition rules are defined as left-hand-side (pointcut)
and right-hand side (advice), but can also be expressed in a single diagram. Al-
though the approach is conceptually generic, we are only aware of an application
in which composition rules are defined using the concrete syntax of the UML. An
aspect is defined using a UML profile with stereotypes to mark elements that
have to be created, matched, or deleted. In contrast to our approach, MATA
does not directly operate on the input models but requires conversions and does
not provide extension possibilities for domain-specific weaving.

Almazara [25] is a model weaver that generates graph-based model transfor-
mations from Join Point Designation Diagrams (JPDDs) using transformation
templates. These diagrams are defined using a UML Profile and support various
selection criteria, such as indirect relationships. The generated transformations
collect runtime information, evaluate dynamic selection constraints and realise the
weaving. This is very different from snippet-replacing approaches as it heavily in-
tegrates matching and weaving. Although JPDDs provide specialised constructs
for behavioural weaving, the authors state that Almazara can be used with any
modelling language. We are, however, not aware of such non-UML applications.

The Atlas Model Weaver (AMW) was developed to establish links between
models that can be stored as so called weaving models. The links are created
semi-automatically and can be used for comparing, tracing, or matching related
elements. Published applications of AMW [6] use the links for heterogeneous
model transformations and model comparison, but they can also be used to weave
elements into a model instance. An unpublished example [2], in which attributes
are woven into metaclasses, shows that join points have to be specified manually
as no means are provided for pointcut definition or join point detection.

The Reuseware Composition Framework [9] provides a generic mechanism for
composing modelling languages. In order to compose languages they either have
to be manually extended so that they represent a component description lan-
guage or a non-invasive extension has to be provided using OCL-expressions. The
authors state that it is possible to reuse much composition logic once a language

122 M.E. Kramer et al.

was made composable. Nevertheless, they do not describe an automated way to
retrieve such language extensions. Furthermore, the focus of Reuseware is rather
permanent language modularity than transitional composition of instances.

The Epsilon Merging Language (EML) [16] can be used to merge heteroge-
neous models using a syntax that is similar to declarative model transformation
languages like QVT-R. These general-purpose languages support various trans-
formation scenarios and are not specialized for in-place asymmetric homogeneous
weaving according to property-based conditions. As a result, basic weaving oper-
ations, such as merging two instances of the same metaclass, have to be redefined
for every application domain. This disadvantage can be mitigated using advanced
transformation approaches. Higher-Order Transformations (HOTs) [13], for ex-
ample, adapt transformation patterns to a domain and to individual model parts.
Similarly, Generic Model Transformations [26] provide transformation templates
that can be bound to specific metamodels. These approaches only support re-
stricted pattern matching and need to be explicitly instantiated. Furthermore,
users have to express transformations using constructs of the approaches and
cannot describe their tasks solely with concepts of their domain.

We summarize our discussion of related work in three points. First, only our
approach offers a declarative and domain-specific notation for homogeneous in-
place transformations that is automatically derived in a generic way. Second, no
other approach reduces the verbosity and complexity of weaving instructions and
sophisticated weaving scenarios such as duplication or merge like we do it with
pointcut to advice mappings. Last, related work neither separates matching from
modifying logic to allow for combinations of different approaches nor provides it
explicit extension points to support domain-specific customizations.

8 Conclusions and Future Work

In this paper we have presented GeKo, a generic model weaver working purely on
metamodelling language constructs. We have shown that GeKo is both practical
and generic because it uses declarative aspects formulated in existing notations
and because it can be applied on instances of any kind of well-defined metamodel.
With a selection of extension points for the refinement of weaving behaviour we
have also shown that GeKo is easily extensible. This feature is crucial for a
generic approach, in that it allows for customizations for domain-specific needs
while reusing generic core operations. Finally, we have shown how the formali-
sation of GeKo allows the management of challenging weaving scenarios such as
duplication, merge, and removal. With examples based on BIM and LTS we have
illustrated that the operations induced by related pointcut and advice snippets
can solve the problems of these scenarios in a generic way.

Further application of GeKo to weaving problems in other domains will as-
sist in evaluating the sufficiency and usefulness of currently available extension
points, and, if necessary, the identification of new ones. Also, it will be interesting
to investigate alternative engines and concepts for the detection of join points,

Achieving Practical Genericity in Model Weaving through Extensibility 123

e.g. to ensure scalability in the presence of large base models and numerous join
points or to allow for join point detection based on pointcut semantics.

References

1. Ali, S., Briand, L., Hemmati, H.: Modeling robustness behavior using aspect-
oriented modeling to support robustness testing of industrial systems. Software
and Systems Modeling,1–38 (2011)

2. AMW Use Case: Aspect Oriented Modeling,
http://www.eclipse.org/gmt/amw/usecases/AOM/

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82, 3–22 (2009)

4. Cottenier, T., van den Berg, A., Elrad, T.: The motorola WEAVR: Model weaving
in a large industrial context. In: Proceedings of the 5th International Conference
on Aspect-Oriented Software Development (AOSD 2006). ACM (2006)

5. Current prototype,
http://code.google.com/a/eclipselabs.org/p/geko-model-weaver

6. Didonet Del Fabro, M., Valduriez, P.: Towards the efficient development of model
transformations using model weaving and matching transformations. Software and
Systems Modeling 8, 305–324 (2009)

7. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook. Wiley (2011)

8. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

9. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-independent
model modularisation. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.)
Transactions on AOSDVI. LNCS, vol. 5560, pp. 39–82. Springer, Heidelberg (2009)

10. Howard, R., Björk, B.C.: Building information modelling - experts’ views on stan-
dardisation and industry deployment. Advanced Engineering Informatics 22(2),
271–280 (2008)

11. Industry Foundation Classes (IFC2x Platform), ISO/PAS Standard 16739:2005

12. Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

13. Kapova, L., Reussner, R.: Application of advanced model-driven techniques in
performance engineering. In: Aldini, A., Bernardo, M., Bononi, L., Cortellessa, V.
(eds.) EPEW 2010. LNCS, vol. 6342, pp. 17–36. Springer, Heidelberg (2010)

14. Klein, J., Hélouet, L., Jézéquel, J.M.: Semantic-based weaving of scenarios. In:
Proceedings of the 5th International Conference on Aspect-Oriented Software
Development (AOSD 2006). ACM (2006)

15. Klein, J., Kramer, M.E., Steel, J.R.H., Morin, B., Kienzle, J., Barais, O., Jézéquel,
J.M.: On the formalisation of geko: a generic aspectmodels weaver. Technical Report
(2012)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon
merging language (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

17. Kramer, M.E., Klein, J., Steel, J.R.: Building specifications as a domain-
specific aspect language. In: Proceedings of the Seventh Workshop on
Domain-Specific Aspect Languages, DSAL 2012, pp. 29–32. ACM (2012)

http://www.eclipse.org/gmt/amw/usecases/AOM/
http://code.google.com/a/eclipselabs.org/p/geko-model-weaver

124 M.E. Kramer et al.

18. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel,
J.M.: Introducing variability into aspect-oriented modeling approaches. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 498–513. Springer, Heidelberg (2007)

19. Lahire, P., Quintian, L.: New perspective to improve reusability in object-oriented
languages. Journal of Object Technology (ETH Zurich) 5(1), 117–138 (2006)

20. Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model weav-
ing. In: Rashid, A., Ossher, H. (eds.) Transactions on AOSD V. LNCS, vol. 5490,
pp. 235–263. Springer, Heidelberg (2009)

21. Morin, B., Barais, O., Jézéquel, J.M., Ramos, R.: Towards a generic aspect-oriented
modeling framework. In: Models and Aspects Workshop, ECOOP 2007 (2007)

22. Morin, B., Klein, J., Barais, O., Jézéquel, J.M.: A generic weaver for supporting
product lines. In: Proc. of the 13th International Workshop on Early Aspects at
ICSE 2008, EA 2008, pp. 11–18. ACM (2008)

23. Morin, B., Klein, J., Kienzle, J., Jézéquel, J.M.: Flexible model element introduc-
tion policies for aspect-oriented modeling. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 63–77. Springer, Heidelberg
(2010)

24. Ramos, R., Barais, O., Jézéquel, J.M.: Matching model-snippets. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 121–135. Springer, Heidelberg (2007)

25. Sánchez, P., Fuentes, L., Stein, D., Hanenberg, S., Unland, R.: Aspect-oriented
model weaving beyond model composition and model transformation. In:
Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 766–781. Springer, Heidelberg (2008)

26. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic model transformations:
write once, reuse everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS,
vol. 6707, pp. 62–77. Springer, Heidelberg (2011)

27. Steel, J., Duddy, K., Drogemuller, R.: A transformation workbench for building
information models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 93–107. Springer, Heidelberg (2011)

28. Whittle, J., Jayaraman, P.: Mata: A tool for aspect-oriented modeling based
on graph transformation. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002,
pp. 16–27. Springer, Heidelberg (2008)

A Rete Network Construction Algorithm

for Incremental Pattern Matching

Gergely Varró� and Frederik Deckwerth��

Technische Universität Darmstadt,
Real-Time Systems Lab,

D-64283 Merckstraße 25, Darmstadt, Germany
{gergely.varro,frederik.deckwerth}@es.tu-darmstadt.de

Abstract. Incremental graph pattern matching by Rete networks can
be used in many industrial, model-driven development and network anal-
ysis scenarios including rule-based model transformation, on-the-fly con-
sistency validation, or motif recognition. The runtime performance of
such an incremental pattern matcher depends on the topology of the
Rete network, which is built at compile time. In this paper, we propose
a new, dynamic programming based algorithm to produce a high quality
network topology according to a customizable cost function and a user-
defined quantitative optimization target. Additionally, the Rete network
construction algorithm is evaluated by using runtime measurements.

Keywords: incremental graph pattern matching, search plan generation
algorithm, Rete network construction.

1 Introduction

The model-driven development and the network analysis domains both have
industrial scenarios, such as (i) checking the application conditions in rule-based
model transformation tools [1], or (ii) recognition of motifs [2,3] (i.e., subgraph
structures) in social, financial, transportation or communication networks, which
can be described as a general pattern matching problem.

In this context, a pattern consists of constraints, which place restrictions on
variables. The pattern matching process determines a mapping of variables to the
elements of the underlying model in such a way that the assigned model elements
must fulfill all constraints. An assignment, which involves all the variables of a
pattern, is collectively called a match.

When motif recognition, which aims at collecting statistics about the appear-
ance of characteristic patterns (i.e., subgraph structures) to analyze and improve
(e.g., communication) networks, is carried out by a pattern matching engine, two
specialties can be identified which are challenging from an implementation aspect
due to their significant impact on performance. On one hand, motifs frequently

� Co-funded by the DFG as part of the CRC 1053 MAKI.
�� Supported by CASED. (www.cased.de)

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 125–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.cased.de

126 G. Varró and F. Deckwerth

and considerably share subpatterns, whose common handling can spare a sub-
stantial amount of memory. On the other hand, the motif searching process is
invoked and executed several times on network graphs which are only slightly
altered between two invocations. This observation opens up the possibility of
using incremental pattern matchers which store matches in a cache, and up-
date these matches incrementally in a change propagation process triggered by
notifications about changes in the model (i.e., network graph).

Many sophisticated incremental pattern matchers [4,5,6] are implemented as
Rete networks [7] which are directed acyclic graphs consisting of data process-
ing nodes that are connected to each other by edges. Each node represents a
(sub)pattern and stores the corresponding matches, while edges can send events
about match set modifications. At compile time, the incremental pattern matcher
builds a Rete network by using the pattern specifications. At runtime, each node
continuously tracks the actual set of matches. When the network receives noti-
fications about model changes, these modifications are processed by and prop-
agated through the nodes. When the propagation is terminated, the network
stores the matches for the patterns according to the altered model.

In the state-of-the-art Rete-based incremental pattern matching engines, the
recognition of shared subpatterns, which can strongly influence the runtime
memory consumption, is carried out at compile time during the construction
of the Rete network by hard-wired algorithm implementations, whose design is
based on the qualitative judgement of highly-qualified, experienced profession-
als. This approach hinders (i) the reengineering of the network builder module,
(ii) the introduction of quantitative performance metrics, and (iii) the flexible
selection of different optimization targets.

In this paper, we propose a new, dynamic programming based algorithm to
construct a Rete network which has a high quality according to a customizable
cost function and a user-defined quantitative optimization target. The algorithm
automatically recognizes isomorphic subpatterns which can be represented by a
single data processing node, and additionally, it favours those network topologies,
in which a large number of these isomorphic subpatterns are handled as early
as possible. Finally, the effects of the Rete network construction algorithm are
quantitatively evaluated by using runtime measurements.

The remainder of the paper is structured as follows: Section 2 introduces basic
modeling and pattern specification concepts. The incremental pattern match-
ing process is described in Sec. 3, while Sec. 4 presents the new Rete network
construction algorithm. Section 5 gives a quantitative performance assessment.
Related approaches are discussed in Sec. 6, and Sec. 7 concludes our paper.

2 Metamodel, Model and Pattern Specification

2.1 Metamodels and Models

A metamodel represents the core concepts of a domain. In this paper, our ap-
proach is demonstrated on a real-world running example from the network anal-
ysis domain [2] whose metamodel is depicted in Fig. 1(a). Classes are the nodes

A Rete Network Construction Algorithm for Incremental Pattern Matching 127

in the metamodel. Our example domain consists of a single class MotifNode.1

References are the edges between classes which can be uni- or bidirectionally
navigable as indicated by the arrows at the end points. A navigable end is la-
belled with a role name and a multiplicity which restricts the number of targets
that can be reached via the given reference. In our example, a MotifNode can be
connected to an arbitrary number of MotifNodes via bidirectional motifEdges.

Figure 1(b) depicts a model from the domain, whose nodes and edges are
called objects and links, respectively. The model shows an instance consisting of
three objects of type MotifNode connected by two links of type motifEdge.

«EClass»
MotifNode

motifEdge
0..*

0..* src

trg

(a) Metamodel

a cb
(b) Model in concrete syntax

CBA
n(A), n(B), n(C),
e(A,B),e(B,C)

(c) Chain pattern

ED
n(D), n(E)
e(D,E), e(E,D)

(d) Reciprocity pattern

Fig. 1. Metamodel, model and 2 patterns from the motif recognition scenario

2.2 Pattern Specification

A user of the pattern matcher specifies a set of patterns P . As defined in [8,9],
a pattern P = (VP , CP , tP , pP) is a set of constraints CP over a set of variables
VP . A variable v ∈ VP is a placeholder for an object in a model. A constraint
c ∈ CP specifies a condition (of a constraint type tP (c)) on a set of variables
(which are also referred to as parameters in this context) that must be fulfilled
by the objects which are assigned to the parameters. A pattern must be free of
undeclared parameters and unused variables.

No undeclared parameters. The parameters of a constraint c must be vari-
ables from the set VP , formally, ∀c ∈ CP , ∀i ≤ ar(tP (c)) : pP (c, i) ∈ VP ,
where pP (c, i) denotes the ith parameter of constraint c and the inequality
i ≤ ar(tP (c)) expresses that a constraint c of (constraint) type tP (c) has an
arity ar(tP (c)) number of parameters.

No unused variables. Each variable v must occur in at least one constraint
as parameter, formally, ∀v ∈ VP , ∃c ∈ CP , ∃i ≤ ar(tP (c)) : pP (c, i) = v.

Metamodel-Specific Constraint Types: Constraint type n maintains a ref-
erence to class MotifNode in the metamodel. Constraints of type n prescribe that
their single parameter must be mapped to objects of type MotifNode. Constraint

1 The intentionally simple metamodel enables a compact data structure representation
throughout the paper, which was required due to space limitations. However, this
choice yields at the same time to the algorithmically most challenging situation (due
to the high complexity of isomorphism checks in ,,untyped” graphs).

128 G. Varró and F. Deckwerth

type e refers to association motifEdge. Constraints of type e require a link of type
motifEdge that connects the source and the target object assigned to the first
and second parameter, respectively.

Example. Figures 1(c) and 1(d) show two sample patterns in visual and tex-
tual syntax. The Chain pattern (Fig. 1(c)) has 3 variables (A, B, C), 3 unary
constraints of type n, and 2 binary constraints of type e. Constraints of type n
and e are depicted by nodes and edges in graphical syntax, respectively. E.g.,
n(A) prescribes that objects assigned to variable A must be of class MotifNode.

Pattern related concepts. A morphism m = (mV ,mC) is a function on pat-
terns which consists of a pair of functions mV and mC on variables and con-
straints, respectively. A morphism m is constraint type preserving if ∀c ∈ CP :
tm(P)(mC(c)) = tP (c); and parameter preserving if ∀c ∈ CP , ∀i ≤ ar(tP (c)) :
pm(P)(mC(c), i) = mV (pP (c, i)).

Patterns P and P ′ are isomorphic (denoted by �(P) = P ′) if there exists
a constraint type and parameter preserving, bijective morphism � from P to
P ′. The join of patterns Pl and Pr on join variables vx1 , . . . , vxq ∈ VPl

, and
vy1 , . . . , vyq ∈ VPr is a pattern with |VPl

|+ |VPr | − q variables and |CPl
|+ |CPr |

constraints which is produced by a morphism pair ��l and ��r as follows. Each
corresponding pair (vxz , vyz) of the q join variables is mapped to a (shared) new
variable v′z (i.e., ��l

V (vxz) = ��r
V (vyz) = v′z). Each non-join variable vx and vy

of pattern Pl and Pr are mapped to a new variable v′x and v′y by ��l and ��r,

respectively. Formally, ��l
V (vx) = v′x and ��r

V (vy) = v′y. A new constraint c′l (c
′
r)

is assigned to each constraint cl (cr) from pattern Pl (Pr) by ��l
C (��r

C) in a
constraint type and parameter preserving manner.

A subpattern P ′ of pattern P consists of a subset of constraints of pattern P
together with the variables occurring in the selected constraints as parameters.
Two subpatterns P1 and P2 of a pattern P are unifiable if they have common
variables. These common variables are referred to as unifiable variables. Two
subpatterns of a pattern are independent if they do not share any constraints.
The union of two independent subpatterns P1 and P2 of a pattern (denoted by
P1 ∪ P2) is produced by independently computing the union of the variables
(VP1∪P2

:= VP1 ∪ VP2) and the constraints (CP1∪P2
:= CP1 ∪ CP2) of the two

subpatterns and using identity morphisms idl and idr which map P1 to P1 ∪P2

and P2 to P1 ∪ P2, respectively, in a constraint type and parameter preserving
manner. A set of subpatterns of a pattern constitutes a partition if they are pair-
wise independent, and their union produces the pattern itself. In the following,
the subpatterns of a pattern constituting a partition are called components.

Note that union is performed on components of a given pattern, and results
in another component of the same pattern which will replace the operands in
the partition. In contrast, a join operates on arbitrary patterns, and yields to a
new pattern which is unrelated to the operand patterns. In the context of a join
operation, each of the operands and the result pattern has its own variable set.

Example. Figure 2(b) is used to exemplify the concepts of this section. Nodes
with s labels in the center (on white background) represent patterns. Each pattern

A Rete Network Construction Algorithm for Incremental Pattern Matching 129

B C

A B

C

B

A D E

E D

D

E

12 22 e(12,22)
s2n(11)

11
s1

(a) Initial state stored in T [8][1]

n(13)

13 23 e(13,23)
s3

C

A B

B C

E D

D E

i2 12 22i1 11

r1 13 r2 13 23

12 22 e(12,22)
s2n(11)

11
s1

(b) State inserted into T [4][1]

Fig. 2. Illustration of pattern related concepts and the algorithm execution (k = 1)

has its own, distinguished set of variables which are marked by indexed integers.
The pattern in s3 is the join of the patterns in s1 and s2 on join variables 11 and 12.
In this case, function��l

V maps variable 11 to 13, while��r
V assigns variables 13 and

23 to 12 and 22, respectively. Constraints n(11) and e(12, 22) are mapped by ��l
C

and ��r
C to n(13) and e(13, 23), respectively. The patterns on the left side (with

grey background) show the components of the Chain (Fig. 1(c)) pattern which
share variables labelled by capital letters with the latter pattern. The union of
these components can be computed along the (unifiable) variables with the same
name resulting in the Chain pattern. The components of the Reciprocity (Fig. 1(d))
pattern are shown on the right side.

3 Incremental Pattern Matching Process

As [9] states, pattern matching is the process of determining mappings for all
variables in a given pattern, such that all constraints in the pattern are fulfilled.
The mappings of variables to objects are collectively called a match which can
be a complete match when all the variables are mapped, or a partial match in all
other cases.2 The overall process of incremental pattern matching is as follows:

Compile time tasks. At compile time, a Rete network [7], whose structure is
presented in Sec. 3.1, is built from the pattern specifications by a network
construction algorithm which will be discussed in details in Sec. 4.

Runtime behaviour. At runtime, the Rete network continuously tracks (i) the
complete matches for all patterns in the underlying model and (ii) those
partial matches that are needed for the calculation of the complete matches.
These matches are stored in the Rete network and incrementally updated
in a change propagation process which is triggered by notifications about
model changes as presented in Sec. 3.2.

3.1 Rete Network

A Rete network is a directed acyclic graph whose nodes are data processing units
which are organized into a parent-child relationship by the edges (considering the

2 A match maps only pattern variables to model objects, while a morphism maps
variables and constraints of a pattern to their counterparts in another pattern.

130 G. Varró and F. Deckwerth

traditional source-to-target direction). The nodes are partitioned into skeletons
S, indexers I, and remappersR. The connections expressed by the edges are also
restricted, because skeletons, remappers, and indexers can only be connected to
remappers, indexers, and skeletons, respectively.

A skeleton calculates matches for a pattern in the Rete network. A basic
skeleton, which corresponds to a pattern with a single constraint, has no outgoing
edges. A joined skeleton is connected in the Rete network by edges to its left rl
and right rr child remappers, and it represents a pattern with several constraints
which is assembled from 2 smaller patterns, whose (great-grandchild) skeletons
can be reached in the Rete network via paths (of length 3) along the left and
right child remappers of the joined skeleton, respectively.

A remapper maintains an array-based mapping from the variables of its grand-
child skeleton to the variables of its parent joined skeleton to support the match
computation performed in the latter node.

An indexer stores the matches produced by its child skeleton in a table. Each
field of this table contains the mapping of a variable (represented by a column) to
an object according to the match (symbolized by a row). The matches are sorted
according to the values that were assigned to a subsequence of variables (the
so-called indexed variables) of the child skeleton. The skeleton and its indexed
variables uniquely identify the corresponding indexer in the Rete network.

Example. Figure 3 depicts two sample Rete networks, which track the matches
of the patterns of Figs. 1(c) and 1(d) on the model of Fig. 1(b). The identifiers of
skeletons s, indexers i and remappers r are marked in the (leftmost) rectangles in
the node headers. The pattern represented by a skeleton is shown in the header as
well. In Fig. 3(b), basic skeleton s1 corresponds to the pattern which has a single
unary constraint of type n on parameter 11. This skeleton produces matches for
the Rete network which map variable 11 to all MotifNodes from the model. These
matches are stored sorted according to the values assigned to indexed variable 11
(shown by the grey column) in indexer i1. MotifEdges are entered into the Rete
network in skeleton s2 and stored in indexer i2. This indexer sorts the motifEdges
according to their source objects, as only variable 12 is indexed. Joined skeleton
s3 carries out a join of patterns in skeletons s1 and s2 on join variables 11 and
12. To perform this operation, (i) join variables 11 and 12 have to be indexed
in the grandchild indexers i1 and i2, respectively, (ii) variable 11 of skeleton s1
has to be remapped by (left child) remapper r1 according to ��l to variable 13 of
skeleton s3, and similarly (iii) variables 12 and 22 must be remapped by (right
child) remapper r2 according to ��r to variables 13 and 23, respectively. Joined
skeleton s4 joins patterns in skeletons s1 and s3 on join variables 11 and 23. Note
that this join operation only involves variable 23 from skeleton s3, consequently,
indexer i3 must only index this variable. Skeletons s5 and s6 represent patterns
which are isomorphic to the Chain and the Reciprocity pattern, respectively. As
a consequence, the matches produced by skeleton s5 are the complete matches
for the Chain pattern (in the left grey framed table), while skeleton s6 creates
no complete matches for the Reciprocity pattern. Note that skeleton s6 joins the
pattern in skeleton s3 via two distinct paths by using join variables 13 and 23 in

A Rete Network Construction Algorithm for Incremental Pattern Matching 131

1 2 e(1,2)
s2n(1)

1
s1

ED
ba c
BA C

i7 15 25 35
a b c

r8 16 26 36

i1 11
a
b
c

n(23)

13 23 e(13,23)
s3

r2 13 23r1 23

n(23)

13 23 e(13,23)
s3 n(14)

14 24 e(14,24)
s4

i3 13 23
a b
b c

i4 14 24
a b
b c

i5 14 24
a b
b c

i6 24 14
b a
c b

r5 25 35 r6 15 25

n(15) n(35)

15 25 35 e(15,25) e(25,35)
s5

r7 26 r9 17 27 r10 17 27

n(16) n(26) n(36)

16 26 36 e(16,26) e(26,36)
s6 n(17) n(27)

17 27 e(17,27) e(27,17)
s7

i2 12 22
a b
b c

r4 14 24r3 14

(a) Rete network with 7 indexers

12 22 e(12,22)
s2

n(11)

11
s1

i2 12 22
a b
b c

i1 11
a
b
c

r1 13

r4 14 24

n(15) n(25) n(35)

15 25 35 e(15,25) e(25,35)
s5 n(16) n(26)

16 26 e(16,26) e(26,16)
s6

ba c
BA C ED

n(14) n(24)

14 24 e(14,24)
s4

r3 24

r2 13 23

n(13)

13 23 e(13,23)
s3

i4 13 23
a b
b c

i3 13 23
a b
b c

i5 23 13
b a
c b

i6 14 24
a b
b c

r6 25 35 r7 15 25 r8 16 26 r9 16 26

(b) Rete network with 6 indexers

Fig. 3. Sample Rete networks

the left branch, and 23 and 13 in the right branch. As the left and right paths
both involve 2 join variables, indexers i4 and i5 must use both join variables 13
and 23 for indexing (however, in a different order).

3.2 Incremental Pattern Matching at Runtime with Rete Network

To demonstrate the runtime behaviour of a Rete network in an incremental
setting, let us suppose that the Rete network is already filled with matches
computed from the initial content of the underlying model. More specifically,
(i) indexers store the (partial or complete) matches calculated by their child
skeleton, (ii) basic skeletons provide access for the Rete network to the model,
and (iii) the top-most joined skeletons (i.e., without skeleton ancestors) already
produced the complete matches for the corresponding patterns.

When the underlying model is altered, the Rete network is notified about
this model change. This notification triggers a bottom-up change propagation
process, which passes match deltas (i.e., representing match additions or dele-
tions) from basic skeletons towards the top-most joined skeletons. As a common
behaviour in this process, each node carries out 3 steps, namely, it (i) receives a
match delta from one of its child nodes as input, (ii) performs data processing
which might result in new match deltas as output, and (iii) optionally propagates
all the output match deltas to all of its parent nodes.

Example. If the link between objects a and b is removed from the model of
Fig. 1(b), then the matches marked by (red) crosses in Fig. 3(b) are deleted from

132 G. Varró and F. Deckwerth

the indexers of the Rete network in a bottom-up change propagation process
starting at basic skeleton s2 and terminating at joined skeletons s5 and s6.

4 Dynamic Programming Based Network Construction

As demonstrated in Fig. 3, the number of indexers has an obvious and significant
influence on the runtime memory usage of the Rete network. As a consequence,
our network construction algorithm uses this parameter as an optimization target
to quantitatively characterize Rete network topologies.

A Rete network with few indexers is built by a dynamic programming based
algorithm which iteratively fills states into an initially empty table T with n+1
columns and k rows, where n is a value derived from the initial state and k ≥ 1
is a user-defined parameter that influences the trade-off between efficiency and
optimality of the algorithm. A state represents a partially constructed Rete net-
work, whose quality is defined by an arbitrary cost function. A state is addition-
ally characterized by a unification point (UP) indicator which is the “distance”
of the partial Rete network from a final topology that must symbolize all pat-
terns in the specification. In table T , the column T [col] stores the best k states
(in an increasing cost order), whose UP indicator is col, while T [col][row] is the
rowth best from these states.

The main distinguishing feature of the algorithm is that the table only stores
a constant number of states in each column, immediately discarding costly net-
work topologies, which are not among the best k solutions, and implicitly all
their possible continuations. The algorithm itself shares its core idea (and its
two outermost loops) with the technique presented in [10] which was used for
generating search plans for batch pattern matchers, but the current approach
uses completely different data structures in the optimization process.

Algorithm data structures. A state S contains a Rete network RNS, sets of
components CompS and skeleton patterns SkelS , and an isomorphism function
isoS . Each pattern P in the specification will be represented in the component set
CompS of state S by a partition of its subpatterns which are called components
of pattern P in state S (denoted by CompPS) in the following. The component set
CompS is the collection of all components of all patterns in state S. A skeleton
pattern Ps corresponds to skeleton s in the Rete network RNS , and it represents
a set of isomorphic components which are mapped to skeleton pattern Ps by
the isomorphism function isoS . The skeleton patterns that have a corresponding
skeleton in network RNS are contained in set SkelS . The cost cS of a state S
can be arbitrarily defined. In this paper, the number of indexers |IRNS | in the
Rete network RNS is used as a cost function.

Unification points. A unification point (UP) on variable v is a situation, when
variable v is unifiable by a pair of components of a pattern P in a state S. To
compactly characterize the number of UPs on variable v, a unification point
indicator upivS for variable v is introduced as the number of those components
of pattern P in state S which contain variable v. The unification point indicator

A Rete Network Construction Algorithm for Incremental Pattern Matching 133

upiS of a state S is calculated as
∑

P∈P
∑

v∈VP
(upivS − 1). The subtraction is

only required to be able to evaluate the term
∑

v∈VP
(upivS − 1) to 0, if and only

if each variable of pattern P appears in a single component from the set CompS .

Example. Figure 2 depicts two states from the Rete network construction pro-
cess. The tables on the left and right sides of each state (on the area with grey
background) represent the components, whose union always results in the Chain
and Reciprocity patterns, respectively. These components are mapped by the iso-
morphism function isoS (denoted by the dashed lines) to the (jointly depicted)
skeleton patterns and Rete network in the middle. Note that a skeleton pattern
always unambiguously corresponds to a skeleton. The two states have 0 and 2
indexers, respectively, which are used as costs of the states. In Fig. 2(a), the
UP indicators for variables B, D, E are 3, as each of these variables appears in
3 components, while the UP indicators for variables A and C are 2. The UP
indicator of the state itself is 3 · (3− 1) + 2 · (2− 1) = 8.

Initialization. Each pattern P in the specification is split into components
CP
1 , . . . ,C

P
|CP | with single constraints which trivially constitute a partition of

pattern P . Components CP
1 , . . . ,C

P
|CP | of each pattern P are added to the set

CompS0
. For each constraint type t appearing in any of the patterns, a skeleton

st and a corresponding skeleton pattern Pst are added to the Rete network RNS0

and skeleton pattern set SkelS0 , respectively. The skeleton pattern Pst has ar(t)
new variables and one constraint of type t with the newly created variables as
parameters. In this way, all components C consisting of a single constraint of
type t, which are obviously isomorphic, can be represented by skeleton pattern
Pst which is registered into the isomorphism function as isoS0(C) = Pst .

Algorithm. Algorithm 1 determines the UP indicator upiS0 of the initial state
S0 (line 1), and stores this state S0 in T [n][1] (line 2). Then, the table is traversed
by processing columns in a decreasing order (lines 3–11). In contrast, the inner
loop (lines 4–10) proceeds in an increasing state cost order starting from the best
state T [col][1] in each column T [col]. For each stored state S, the possible exten-
sions ΔSkel of the skeleton pattern set SkelS are determined by calculateDeltas

(line 6) which are used by calculateNextStates (line 7) to produce all contin-
uations of state S. Each next state S′ (lines 7–9) is conditionally inserted into
the column T [upiS′] identified by the corresponding UP indicator upiS′ in the
procedure conditionalInsert (line 8) if the next state S′ is among the k best
states in the column T [upiS′]. When the three loops terminate, the algorithm
returns the Rete network RNT [0][1] (line 12).

The basic idea when producing all continuations of a state S (lines 6–7) is
that unifiable components are aimed to be replaced by their union. As (i) iso-
morphic components are represented by a single skeleton pattern in state S (and
a corresponding skeleton in the Rete network RNS), and (ii) the union of com-
ponents can be expressed by a new skeleton pattern, which is the join of the
skeleton patterns of the unifiable components, a single join operation can also
characterize the unification of numerous component pairs from the set CompS .

134 G. Varró and F. Deckwerth

Algorithm 1. The procedure calculateReteNetwork(S0, k)

1: n := upiS0

2: T [n][1] := S0

3: for (col := n to 1) do
4: for (row := 1 to k) do
5: S := T [col][row] // current state S
6: ΔSkel := calculateDeltas(S)
7: for each (S′ ∈ calculateNextStates(S,ΔSkel)) do
8: conditionalInsert(T [upiS′], S′)
9: end for
10: end for
11: end for
12: return RNT [0][1]

In order to support effective subpattern sharing in the Rete network, a single
join should represent as many unifications as possible. This can only be achieved
if the complete set of applicable joins and their corresponding unifications are
determined in advance, and the actual computation of next states is delayed.

Section 4.1. The procedure calculateDeltas(S) iterates through all unifiable
components of all patterns in state S, and for each unification, a correspond-
ing join is determined in such a manner that the union of the components is
isomorphic to the result of the join. In other words, the set of applicable joins
(i.e., the skeleton deltas in Sec. 4.1) is calculated together with a grouping
of unifications (i.e., the component deltas in Sec. 4.1), in which each group
contains those unifications that can be characterized by a single join.

Section 4.2. The procedure calculateNextStates(S,ΔSkel) iterates through
all applicable joins, and for each corresponding group, all those independent
subsets are calculated which do not share any unifications. The unifications
in these subsets can be used for preparing the next states.

The procedure conditionalInsert(T [upiS′], S′) calculates index c which
marks the position at which state S′ should be inserted based on its cost. In-
dex c is set to k + 1 if state S′ is not among the best k states. Formally, c is
the smallest index for which cS′ < cT [upiS′][c] holds (or T [upiS′][c] = null). If
c < k + 1, then state T [upiS′][k] is removed, elements between T [upiS′][c] and
T [upiS′][k − 1] are shifted downward, and state S′ is inserted at position c.

Example. Due to space limitations, Fig. 2 can only exemplify an incomplete,
single iteration of the algorithm execution. The initial state (Fig. 2(a)) has a
UP indicator 8. Consequently, table T (not shown in Fig. 2) has 8 columns,
and the initial state is inserted into T [8][1]. When this state is processed by the
procedure calculateDeltas(S), all unifiable component pairs are evaluated.
During this evaluation, it is determined that e.g., (J1) if skeletons s1 and s2 are
joined on variables 11 and 12 (see s3 in Fig. 2(b)), then this join alone repre-
sents the unification of the component pairs (i) n(A), e(A,B); (ii) n(B), e(B,C);

A Rete Network Construction Algorithm for Incremental Pattern Matching 135

(iii) n(D), e(D,E); and (iv) n(E), e(E,D). Three additional join possibilities (not
shown in Fig. 2) are identified in the same stage, namely, (J2) skeletons s1 and s2
can be joined on variables 11 and 22 as well (resulting in a node with an incoming
edge). Skeleton s2 can be joined to itself (J3) either on variable sequences 12, 22
and 22, 12 (forming a cycle from the two edges), (J4) or on variables 22 and 12
(providing a chain from the two edges). The procedure calculateDeltas(S)
computes the information exemplified on case (J1) for all the 4 joins, which is
passed as ΔSkel to the procedure calculateNextStates(S,ΔSkel) in line 7 for
further processing. The 4 unifiable component pairs of case (J1) have no con-
straints in common, consequently, these four unifications and the corresponding
join can be directly used to build a next state (Fig. 2(b)), in which skeleton s3
alone represents the 4 (isomorphic) components on the sides. Three additional
next states are constructed for cases (J2)–(J4) as well. The next states prepared
for cases (J1), (J3), and (J4) are inserted into empty slots T [4][1], T [6][1], and
T [7][1], respectively, according to their UP indicators, while the state created
for case (J2) (again with UP indicator 4) is discarded (in line 8), as the state of
Fig. 2(b) stored already in slot T [4][1] has less indexers. When the three loops
terminate, Alg. 1 returns the Rete network of Fig. 3(b) from the field T [0][1].

4.1 Skeleton Pattern Delta Calculation

The procedure calculateDeltas(S) uses skeleton deltas and component deltas
as new data structures to represent applicable, but delayed joins and unions,
respectively. A skeleton delta consists of a set of component deltasΔs′ , a skeleton
pattern Ps′ and a Rete network RNs′ . A component delta in the set Δs′ contains
two components Cl and Cr, and an isomorphism � which maps the union Cl∪Cr

of the components to the skeleton pattern Ps′ .
The procedure calculateDeltas(S) (Algorithm 2) iterates through each pair

CP
l , C

P
r of unifiable components of pattern P in state S (lines 2–3). For each such

pair, the method createSkeletonPattern (line 5) prepares a skeleton pattern
Ps′ and an isomorphism �, such that � maps the union of the components CP

l

and CP
r to the skeleton pattern Ps′ (i.e., �(CP

l ∪ CP
r) = Ps′). If the skeleton

pattern Ps′ is already represented in the set ΔSkel by another skeleton pattern
Ps∗, which is isomorphic to Ps′ according to an other morphism �∗ (line 6), then
the component delta (CP

l ,C
P
r ,� ◦�∗) is simply added to the already stored set

Δs∗ (line 7), as CP
l ∪CP

r is isomorphic to skeleton pattern Ps∗ as well. Otherwise,
a new Rete network RNs′ is created by createReteNetwork (line 9), a new
singleton set Δs′ is prepared with the component delta (CP

l ,C
P
r ,�) (line 10),

and the skeleton delta (Δs′ , Ps′ , RNs′) is added to the set ΔSkel (line 11).
To describe the procedure createSkeletonPattern, let us suppose that com-

ponents CP
l and CP

r are mapped by function isoS to skeleton patterns Psl and
Psr , respectively. Consequently, there exists an isomorphism �l (�r) from com-
ponent CP

l (CP
r) to skeleton pattern Psl (Psr). The new skeleton pattern Ps′

is the join of skeleton patterns Psl and Psr (by using ��l and ��r), where the
join variables in skeleton pattern Psl (Psr) are the images of the unifiable vari-
ables of components CP

l and CP
r according to isomorphism �l (�r). The new

136 G. Varró and F. Deckwerth

Algorithm 2. The procedure calculateDeltas(S)

1: ΔSkel := ∅
2: for each (P ∈ P) do
3: for each (CP

l ,C
P
r ∈ CompPS) do

4: if (CP
l �= CP

r ∧ areUnifiable(CP
l ,C

P
r)) then

5: (Ps′ ,�) := createSkeletonPattern(isoS,C
P
l ,C

P
r)

6: if (∃(Δs∗ , Ps∗ , RNs∗) ∈ ΔSkel,∃�∗ : �∗(Ps′) = Ps∗) then

7: Δs∗ := Δs∗ ∪
{
(CP

l ,C
P
r ,� ◦ �∗)

}

8: else
9: RNs′ := createReteNetwork(RNS, isoS,C

P
l ,C

P
r)

10: Δs′ :=
{
(CP

l ,C
P
r ,�)

}

11: ΔSkel := ΔSkel ∪ { (Δs′ , Ps′ , RNs′) }
12: end if
13: end if
14: end for
15: end for
16: return ΔSkel

isomorphism � can be defined as a composition of morphisms ��l,r and �l,r,
namely, ∀v ∈ VCP

l
: �V (v) := ��l

V (�l
V (v)), ∀c ∈ CCP

l
: �C(c) := ��l

C(�l
C(c)),

∀v ∈ VCP
r

: �V (v) := ��r
V (�r

V (v)), and ∀c ∈ CCP
r

: �C(c) := ��r
C(�r

C(c)).
The procedure createReteNetwork creates a new Rete network RNs′ by

adding a new skeleton s′ and its left rl and right rr remappers (plus the corre-
sponding edges) to the old network RNS . Indexer il (ir) is either reused from
RNS if RNS already contained it as a parent of skeleton sl (sr), or newly cre-
ated. The edges between these indexers and skeletons are handled analogously.
As the exact internal parameterization of network nodes is easily derivable from
morphisms ��l, ��r, �l, and �r, it is not discussed here due to space limitations.

4.2 Next State Calculation

The procedure calculateNextStates(S,ΔSkel) (Algorithm 3) iterates through
all skeleton deltas (Δs′ , Ps′ , RNs′) in the set ΔSkel (line 2). In order to clarify the
role of the inner loop (lines 3–8), let us examine its body (lines 4–7) first. The
new Rete network RNS′ simply uses the network RNs′ from the skeleton delta
(line 4). The skeleton pattern Ps′ is added to the skeleton pattern set SkelS of
state S to produce the new one (line 5). The procedure calculateComponents

(line 6) creates a new component set CompS′ from the old one CompS by re-
placing the components Cl and Cr of each component delta (Cl,Cr,�) from the
set ΔI

s′ with their union Cl ∪ Cr. The new isomorphism function isoS′ retains
the mappings of those components from the old one isoS that do not appear in
any component deltas from the set ΔI

s′ , while the union Cl ∪ Cr of component
pairs mentioned in a component delta (Cl,Cr,�) is mapped to skeleton pattern
Ps′ (i.e., isoS′(Cl ∪ Cr) = Ps′). A new state S′ = (RNS′ , SkelS′ ,CompS′ , isoS′) is
added to the set ΔS representing the possible continuations of state S (line 7).

A Rete Network Construction Algorithm for Incremental Pattern Matching 137

Algorithm 3. The procedure calculateNextStates(S,ΔSkel)

1: ΔS := ∅
2: for each ((Δs′ , Ps′ , RNs′) ∈ ΔSkel) do
3: for each

(
ΔI

s′ ∈ allMaximalIndependentSets (Δs′)
)
do

4: RNS′ := RNs′

5: SkelS′ := SkelS ∪ {Ps′ }
6: (CompS′ , isoS′) := calculateComponents(S,ΔI

s′)
7: ΔS := ΔS ∪ { (RNS′ ,SkelS′ ,CompS′ , isoS′) }
8: end for
9: end for
10: return ΔS

As the set CompS′ must also contain independent components, the replace-
ment in line 6 is only allowed if all component delta pairs (CPα

l ,CPα
r ,�Pα) and

(C
Pβ

l ,C
Pβ
r ,�Pβ) from the set ΔI

s′ are independent, which means that they either
originate from different patterns (i.e., Pα �= Pβ), or they do not share any com-

ponents (i.e., CPα

l,r �= C
Pβ

l,r). As pairwise independence does not necessarily hold
for the component deltas in set Δs′ , the method allMaximalIndependentSets

carries out the Bron-Kerbosch algorithm [11] (line 3), and calculates all such
subsets of Δs′ , whose (component delta) elements are pairwise independent.

5 Measurement Results

In this section, we quantitatively assess the effect of subpattern sharing on the
number of indexers by comparing the case when our algorithm builds a separate
Rete network for each pattern with the situation when isomorphic subpatterns
are represented by shared skeletons (i.e., combined approach). For the evaluation,
we used the patterns from [2], and the algorithm parameter k was set to 1.

The measurement results are presented in Table 1. A column header has to
be interpreted in a cumulative manner including all patterns which appear in
the headers of the current and all the preceding columns. A value in the first
row shows the sum of the number of indexers3 in those Rete networks that have
been separately built for the patterns in the (current and its preceding) column
headers. In contrast, a value in the second row presents the number of indexers3

in the single Rete network that has been constructed by the combined approach
which used the patterns in the (current and its preceding) column headers as
input. The values in the third row express the memory reduction as the ratio
of the values in the first two rows. Rows four and five denote the Rete network
construction runtimes4 for the separate and combined approach, respectively,
while the sixth row depicts the ratio of the values from the previous two rows.

3 The parent indexers of the basic skeletons were not included in either case, as their
functionality (e.g., navigation on edges) is provided by the underlying modeling layer.

4 The runtime values are averages of 10 user time measurements performed on a 1.57
GHz Intel Core2 Duo CPU with Windows XP Professional SP 3 and Java 1.7.

138 G. Varró and F. Deckwerth

Table 1. Measurement results

FeedForward FeedBack Caro DoubleCross InStar OutStar Reciprocity
Separate 4 8 13 17 21 25 27
Combined 4 5 7 11 14 20 21

Ratio Combined / Separate 1.00 0.63 0.54 0.65 0.67 0.80 0.78

Separate 12.500 14.063 23.438 28.126 79.689 134.377 134.377
Combined 10.938 21.875 56.250 106.250 428.125 770.313 843.750

Ratio Combined / Separate 0.88 1.56 2.40 3.78 5.37 5.73 6.28

Pattern

Runtime [ms]

Indexers [#]

The most important conclusion from Table 1 is that the combined approach
uses 20–46% less indexers than the separate approach for the price of an increase
in the algorithm runtime by a factor of 1–6 which is not surprising as the com-
bined approach has to operate on tables that are wider by approximately the
same factor. For a correct interpretation, it should be noted that the number of
indexers influences the memory consumption at runtime, while the algorithm is
executed only once at compile time.

6 Related Work

Motif recognition algorithms. The state-of-the-art motif recognition algo-
rithms are excellently surveyed in [12]. These are batch techniques which match
all non-isomorphic (graph) patterns up to a certain size, in contrast to our in-
cremental approach, which builds a Rete network only for the (more general,
constraint-based) patterns in the specification (and for a small part of their sub-
patterns). In the rest of this section, which is still knowingly incomplete, only
Rete network based incremental approaches are mentioned.

Rete network construction in rule-based systems. As Rete networks were
used first in rule-based systems, different network topologies have been analyzed
in many papers from the artificial intelligence domain including [13], which rec-
ognized that linear structures can be replaced by (balanced) tree-based ones.
However, this report provided neither cost functions to characterize the quality
of a Rete network, nor algorithms to find good topologies.

A graph based Rete network description was proposed in [14] together with
cost functions that could be used as optimization targets in a network construc-
tion process. Furthermore, the author gives conditions for network optimality
according to the different cost metrics, in contrast to our dynamic programming
based approach, which could only produce provenly optimal solution if the num-
ber of rows was not limited by the constant parameter k. On the other hand, no
network construction algorithm is discussed in [14].

Rete network construction in incremental pattern matchers. Incremen-
tal graph pattern matching with Rete networks [7] was examined decades ago in
[4] which already described an advanced network compilation algorithm (beyond
the presentation of the runtime behaviour of the Rete network). This approach
processed pattern specifications one-by-one, and it was able to reuse network
nodes in a restricted manner, namely, if a subpattern was isomorphic to an-
other one from a previous pattern, for which a network node had actually been

A Rete Network Construction Algorithm for Incremental Pattern Matching 139

generated earlier in the construction procedure. In this sense, the recognition of
isomorphic parts in two patterns depends on the order, in which the subpatterns
of the first pattern had been processed. However, [4] gives no hint how such an
order can be found.

Another sophisticated, Rete network based incremental graph pattern match-
ing engine [6] has recently been used for state space exploration purposes in graph
transformation systems. In this setup, the standard Rete approach was extended
by graph transformation related concepts such as quantifiers, nested conditions,
and negative application conditions. Additionally, disconnected graph patterns
could also be handled. Regarding the Rete network construction, [6] uses the
same technique as [4] with all its strengths and flaws.

IncQuery [5,15] is also a high quality pattern matcher that uses Rete networks
for incremental query evaluation. Queries can be defined by graph patterns which
can be reused and composed in a highly flexible manner. If isomorphic subpat-
terns are identified as standalone patterns, then they can be handled by a single
node which can be reused by different compositions leading to the original pat-
terns, but the automated identification of isomorphic subpatterns is not yet sup-
ported in contrast to our approach. As another difference, the constructed Rete
network has always a linear topology in IncQuery, while our algorithm can pro-
duce a balanced net structure as well. Considering the Chain and the Reciprocity
patterns, the Rete network of Fig. 3(b) can only be constructed in IncQuery
if the user manually specifies skeletons s3 and s4 as patterns and the complete
network structure by pattern compositions.

7 Conclusion

In this paper, we proposed a novel algorithm based on dynamic programming
to construct Rete networks for incremental graph pattern matching purposes.
The cost function and the optimization target used by the algorithm can be
easily replaced and customized. As the basic idea of the proposed algorithm is
similar to the technique presented in [10] for batch pattern matching, our fully
implemented network building approach can be easily integrated into the search
plan generation module of the Democles tool which will be able to handle batch
and incremental scenarios in an integrated manner.

As an evaluation from the aspect of applicability, the proposed algorithm can
(i) use model-sensitive costs (originating from model statistics), (ii) handle n-ary
constraints in pattern specifications, and (iii) be further customized by setting
parameter k which influences the trade-off between efficiency and optimality.

The most important future task is to assess the effects of network topologies
on the runtime performance characteristics of the pattern matcher in industrial
application scenarios by using different cost functions and optimization targets
in the proposed network construction algorithm.

140 G. Varró and F. Deckwerth

References

1. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

2. von Landesberger, T., Görner, M., Rehner, R., Schreck, T.: A system for interac-
tive visual analysis of large graphs using motifs in graph editing and aggregation.
In: Magnor, M.A., Rosenhahn, B., Theisel, H. (eds.) Proceedings of the Vision,
Modeling, and Visualization Workshop, DNB, pp. 331–339 (2009)

3. Krumov, L., Schweizer, I., Bradler, D., Strufe, T.: Leveraging network motifs for
the adaptation of structured peer-to-peer-networks. In: IEEE Proceedings of the
Global Communications Conference, pp. 1–5 (2010)

4. Bunke, H., Glauser, T., Tran, T.-H.: An efficient implementation of graph gram-
mar based on the RETE-matching algorithm. In: Ehrig, H., Kreowski, H.-J.,
Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 174–189. Springer,
Heidelberg (1991)

5. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In: Proc. of the 3rd Int.
Workshop on Graph and Model Transformation, pp. 25–32. ACM (2008)

6. Ghamarian, A.H., Jalali, A., Rensink, A.: Incremental pattern matching in graph-
based state space exploration. In: de Lara, J., Varró, D. (eds.) Proc. of the 4th
International Workshop on Graph-Based Tools. ECEASST, vol. 32 (2010)

7. Forgy, C.L.: RETE: A fast algorithm for the many pattern/many object match
problem. Artificial Intelligence 19, 17–37 (1982)

8. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In: Workshop on Graph Transformation and Visual Modeling
Techniques, vol. 6, ECEASST (2007)

9. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012)

10. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generat-
ing model-sensitive search plans for EMF models. In: Hu, Z., de Lara, J. (eds.)
ICMT 2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

11. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

12. Wong, E., Baur, B., Quader, S., Huang, C.-H.: Biological network motif detection:
Principles and practice. Briefings in Bioinformatics 13(2), 202–215 (2012)

13. Perlin, M.W.: Transforming conjunctive match into RETE: A call-graph caching
approach. Technical Report 2054, Carnegie Mellon University (1991)

14. Tan, J.S.E., Srivastava, J., Shekhar, S.: On the construction of efficient match
networks. Technical Report 91, University of Houston (1991)

15. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 76–90. Springer, Heidelberg (2010)

Interactive Visual Analytics
for Efficient Maintenance of Model Transformations

Andreas Rentschler, Qais Noorshams, Lucia Happe, and Ralf Reussner

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{rentschler,noorshams,kapova,reussner}@kit.edu

Abstract. Maintaining model transformations remains a demanding task due to
the sheer amount of metamodel elements and transformation rules that need to be
understood. Several established techniques for software maintenance have been
ported to model transformation development. Most available techniques proac-
tively help to design and implement maintainable transformations, yet however,
a growing number of legacy transformations needs to be maintained. Interactive
visualization techniques to support model transformation maintenance still do not
exist. We propose an interactive visual analytics process for understanding model
transformations for maintenance. Data and control dependencies are statically
analyzed and displayed in an interactive graph-based view with cross-view nav-
igation and task-oriented filter criteria. We present results of an empirical study,
where we asked programmers to carry out typical maintenance tasks on a real-
world transformation in QVT-O. Subjects using our view located relevant code
spots significantly more efficiently.

1 Introduction

Model transformations are of key importance in model-driven software development
(MDSD). With the growing application of model-driven techniques in industry, mainte-
nance costs of transformations move into a stronger focus.

During the life-cycle of a model-driven software system, transformations have to
be adapted to evolving models, requirements, and technologies. Many established tech-
niques to achieve maintainable software exist, including software quality metrics, pro-
gram analysis, software testing, and modular programming. In recent years, substantial
effort has been expended in porting such techniques to the specific field of model trans-
formation development. The program comprehension community studies the way hu-
mans understand source code and how tools and techniques can support maintenance [1].
Program analysis techniques assist software maintainers in understanding unknown
code and detecting code anomalies. When understanding a program, most parts are ir-
relevant as they do not contribute to a particular functional or non-functional concern.
Slices can be automatically computed by statically analyzing the data and control flow
of a program (static program slicing), or for a certain input to a program (dynamic pro-
gram slicing). Software visualization tools [2] combine program analysis with informa-
tion visualization techniques to create various displays of software structure, behavior,
and evolution. In the recent past, approaches for detecting code anomalies and visual-
izing data and control flow had been transferred to the world of model transformation
development, as well.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 141–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 A. Rentschler et al.

Comprehension of programs with computations on complex data structures has
rarely been studied so far. Existing static analysis approaches to support model transfor-
mation maintenance do not integrate data and control flow [3], and proposed graphical
representations of dependencies [4] are too complex to effectively support understand-
ing for a particular task. None of the approaches has been empirically validated. What
is needed is a visual analytics approach [5] that allows for task-oriented data reduction
and interaction between data and users in order to discover knowledge.

In this paper, we propose an interactive visual analytics process to understand model
transformations for maintenance. One part of the process is to statically analyze model
transformations for their data and control dependencies. Task-oriented filtering aligns
the level of detail to a variety of comprehension and maintenance tasks. Results are
displayed in an interactive graphical view with cross-view navigation and dynamic se-
lection of filter criteria. To the best of our knowledge, this is the first validated approach
to interactively support maintenance of model transformations.

In a qualitative and quantitative study, we asked programmers to carry out mainte-
nance tasks on a real-world transformation in QVT-Operational (QVT-O). Programmers
using our editor extension located relevant code spots significantly more efficiently than
programmers without the extension.

To sum it up, this paper makes the following contributions.

– We define an interactive visual analytics process to support understanding of model
transformations for maintenance.

– We define a generic dependency model for model transformations, unifying control
and data flow information in a graph-like structure.

– We propose a set of task-oriented filter rules to exclude details from the dependency
graph that can be considered irrelevant to carry out a certain maintenance activity.

– We present results from an empirical experiment to see how task-oriented depen-
dency graphs improve the efficiency for locating features in a transformation.

This paper is structured as follows. First, we present a motivating example in Section 2.
In Section 3, we introduce our visualization process, in Section 4 a model for a generic
dependency graph, and in Section 5 task-oriented filtering. Section 6 illustrates how the
approach had been empirically validated. In Section 7 related work is discussed. Finally,
Section 8 presents conclusions and proposes directions for future work.

2 Motivating Example

Consider a QVT-O implementation of the UML2RDBMS example scenario. One rule,
Attribute2Column, is mapping elements of type Attribute to elements of type
Column:

mapping Attribute::Attribute2Column() : Column
merges Attribute::IdAttribute2AutogenColumn {

result.name := self.name;
result.type := UmlTypeToDbtype(self.type.name);

}

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 143

QVT-O Editor
View

Dependency
Graph

program analysis
transformation

Dependency
View

chained filter
transformation

Transformation Information Flow Data Representation

navigation position filter criteria
navigation position Developer

view interaction

view interaction

Fig. 1. Visual analytics process

By means of two practical scenarios, a comprehension scenario and a maintenance
scenario, we demonstrate that even in an editor as advanced as that of Eclipse QVT-O,
there is little support to cope with a transformation’s inherent complexity.

Comprehension scenario. In this first scenario, we want to trace a bug resulting in
missing Column objects in the target model. As a first step, we want to understand
the context in which a rule Attribute2Column is used. In the QVT-O editor under
Eclipse, we need to start a text-based search by the rule’s name. If the transformation is
modularized, we need to repeat the search in any other module with an import of the
rule’s containing module. To detect occurences, it is important to know that in QVT-O,
keywords disjuncts, merges, inherits and map all have call-semantics.

Maintenance scenario. In the second scenario, we want to add a third attribute to class
Column. Before we do so, it is useful to know about further locations in the program
where Column or possible subclasses are instantiated. Again, we need to carry out a
text-based search by the class name on all existing modules. In QVT-O, there are three
ways to instantiate objects: implicitly via a mapping, or explicitly via the object
operator, or by calling the corresponding constructor via new operator.

From these two scenarios it is clear that developers, especially those who are less fa-
miliar with QVT-O concepts, need to invest a lot of effort to identify relevant control and
data dependencies in complex transformation programs. Program analysis techniques
can automatically extract dependencies and present these graphically. However, large
dependency graphs are difficult to read. In the next section of this paper, we propose a
visual analytics process which takes the burden off developers to visualize only those
dependencies which are considered as relevant for a particular activity.

3 Methodology Overview

To solve the information overload problem, visual analytics processes combine
analytical approaches together with advanced visualization techniques. They can be char-
acterized by four properties [6]:

“Analyse First – Show the Important – Zoom, Filter and Analyse Further –
Details on Demand”

We define an interactive visualization process which adheres to these principles. In
this paper, we apply our approach to the QVT-O language. However, our concepts are

144 A. Rentschler et al.

general enough to be transferred to further declarative and imperative languages. The
process contains two transformation steps, a dependency analysis and a filter transfor-
mation (Figure 1). Code and graph representation are kept in sync regarding navigation
position and code modifications. A user can interact with both views in parallel, and he
can select and configure filters to fit his current task. In the following we show that our
process meets all four properties of a visual analytics process.

Analyze first. Eclipse QVT-O features a textual representation, the QVT editor view.
QVT-O automatically maintains a second representation, a model of the transformation
and referenced metamodels. This model adheres to the QVT specification [7], thus of-
fering a standardized interface for code analysis. The leftmost transformation in our
process extracts data and control dependencies from the QVT model. Static control and
data flow analysis results in an instance of a dependency graph model. This model is
presented in Section 4.

Show the important. We already showed in the motivating example that, depending on
what maintenance task is performed, a different subset of elements and element types
available in the graph is required for reasoning. Which elements will be filtered out is
configurable by the user. In Section 5, we explain our concept of task-oriented filters
and we further define a set of useful types of filters.

Zoom, filter and analyse further. Humans are capable to only perceive a small subset
of information at a time. Thus, we provide filters which remove any information out of
focus. Depending on the task to be solved, a user’s focus may lie on a certain method
in the program, on a particular type of dependencies, or on a higher abstraction level.
Because each view is limited regarding the information conveyed, interaction is needed.
A feedback loop is established by dynamic filters, which can be quickly exchanged
and configured, and which react on changes to the editing location. In Figure 1, filter
dynamics are reflected by information flows leading to the filter transformation. Views
are navigable, as pointed out by interactions between the developer and the views.

Fig. 2. Dependency graph model

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 145

Details on demand. Occasionally, if maintainers require full details, the dependency
view enables users to navigate to the underlying program code of a mapping or the
actual definition of a data element. This kind of feature is called cross-view navigation
and is illustrated in Figure 1 by an information flow pointing back to the editor view.

4 Dependency Graph Model

An important step in the visualization process is to analyze rule-based model trans-
formations for control units, data units, and interdependencies. Control-units are trans-
formation rules and other top-level constructs to specify behavior, for example query
functions and helper methods in QVT-O. Data units are metamodeling concepts, classes,
attributes, and references. Figure 2 shows how we defined these concepts in the Ecore
metamodeling language. In the model, a transformation (Transformation) consists
of control elements (ControlElement) and metamodel domains (ModelDomain).
Each domain refers to a metamodel name and has a direction (IN, OUT, or INOUT).
Control elements have references (ControlReference) to other rules for reuse pur-
poses (inherits or merges in QVT-O), tagged REUSE, but also for calls (map
or disjuncts in QVT-O), tagged CALL. Control elements are typed. In QVT-O a
mapping equals a RULE, method main equals TOPRULE, query and helper func-
tions correspond to QUERY and HELPER. A control element can have data dependen-
cies, represented by instances of ModelReference. Referencing a model element
(ModelElement) can be either read-only (READ), or the referenced model element

: Operational
Transformation

: MappingOperation

++ : eOperations
++

: Transformation

type := RULE

: Rule

++ : rules
++

type := SIGNATURE

: Block

++ : blocks
++

: OT2T

: IO2R ++

: IO2B ++

(a) Constructing an instance of Rule from a QVT-O mapping operation

: MappingOperation

: VarParameter

++ : result
++

: Block

mode := MODIFY

: ElementReference

++ : elementReferences
++

: ModelClass

++ : element

: IO2B

: VP2ER++

: EClassifier

++ : eType

: EC2MC

(b) Constructing an ElementReference instance from a QVT-O mapping’s result parameter

Fig. 3. Constructing dependency graphs from QVT-O transformations

146 A. Rentschler et al.

can be instantiated or its content modified (MODIFY for both cases). The model differ-
entiates between access to a class and access to an attribute or reference (ModelClass
and ModelAttribute). Like in Java, there is no distinction between references and
attributes. Classes can further reference super classes. Any model element belongs to
exactly one domain.

A graph model instance is constructed from instances of QVT-O’s abstract syntax
metamodel [7]. Figure 3 demonstrates by two exemplary triple graph grammar (TGG)
rules in compact notation [8], how QVT-O mappings correspond to rules in the graph,
and result parameters are represented by element references with write access mode.

For our implementation and in this paper, we decided to visualize dependency graphs
as node-link diagrams (NLDs). An illustrative mapping between graph elements and
notational elements is given in Figure 4.

5 Task-Oriented Filtering

Dependency graphs of model transformations can be huge, bearing the danger that use-
ful information gets lost when studied by humans. Our idea is to identify and remove
details which are irrelevant for performing a particular task before display. In this sec-
tion, we present three filter functions and four useful combinations thereof.

As prerequisite for defining the filter functions, we formalize our dependency
graph as follows: Let ControlElement, ModelClass, and ModelAttribute be
sets that represent instances of metamodel classes of the same name, respectively.
Furthermore, let ModelElement := ModelClass ∪̇ ModelAttribute denote the
set of ModelElement instances, i.e., the set containing instances of ModelClass
and ModelAttribute. For referenced instances, let functions modelReferences,
modelElement, controlReferences, controlElement, superClasses, attributes
be defined by representing sets of instances of their respectively named metamodel ref-
erence. When applied to sets, functions are applied element-wise and the result is the
union of each mapping.

Then, we create the dependency graph G as a tuple of vertices V and Edges E, i.e.,
G = (V,E). V and E elements are created using ControlElement, ModelClass,
and ModelAttribute elements by defining sets V ControlElement, V ModelClass, and
V ModelAttribute, as well as bijective functions φX (i.e., mapping rules), where

φControlElement : ControlElement → V ControlElement

φModelClass : ModelClass → V ModelClass

φModelAttribute : ModelAttribute → V ModelAttribute

ModelClass

superClasses

ControlElement
[type = TOPRULE]

ControlElement
[type = QUERY]
[type = HELPER]

ControlReference
[type = CALL]

ModelClass

ModelClass

ModelReference
[mode = READ]

ControlElement
[type = RULE]

……………………...

……….

.…..………………..…. ……….

……………………….
…………..………………………….

…
… ModelClass

ModelAttribute

attributes……………...

…

………
ModelReference
[mode = MODIFY]

Fig. 4. Notational elements

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 147

(a) Control dependencies for QVT-O mapping Attribute2Column

(b) Data and control dependencies for class Column

Fig. 5. Filtered dependency graphs for the introductory example

We imply V ControlElement, V ModelClass, V ModelAttribute are pairwise disjunct by
construction and define V := V ControlElement ∪̇ V ModelClass ∪̇ VModelAttribute .
We further define V ModelElement := V ModelClass ∪̇ V ModelAttribute. To obtain E
elements, where E ⊆ V × V , we use the following four derivation rules:1

∀r1, r2 ∈ ControlElement :

r2 ∈ (controlElement ◦ controlReferences)(r1) ⇐⇒
(φControlElement(r1), φControlElement(r2)) ∈ E

∀r ∈ ControlElement, e ∈ ModelElement :

e ∈ (modelElement ◦ elementReferences)(r) ⇐⇒
(φControlElement(r), φModelElement(e)) ∈ E

∀c1, c2 ∈ ModelClass :

c2 ∈ superClasses(c1) ⇐⇒ (φModelClass(c1), φModelClass(c2)) ∈ E

∀a ∈ ModelAttribute, c ∈ ModelClass :

a ∈ modelAttributes(c) ⇐⇒ (φModelAttribute(a), φModelClass(c)) ∈ E

Now we can define three filter functions on top of the computed graph structure G.

Filtering control nodes. We define a filtering function removing data dependencies by

f controlflow (V,E) := (V ′, E′) , where

V ′ := V \ V ModelElement

E′ := E \ (V ControlElement × V ModelElement)

\ (V ModelClass × V ModelClass)

\ (V ModelClass × V ModelAttribute)

1 The function composition operator “◦” is defined as: (g ◦ f)(x) = g(f(x)).

148 A. Rentschler et al.

Filtering direct dependencies. Let vcurrent ∈ V be the node whose direct dependen-
cies shall be filtered. Contextual filtering is defined by function

f context
vcurrent

(V,E) := (V ′, E′), where

V ′ := {v ∈ V | (v, vcurrent) ∈ E ∨ (vcurrent, v) ∈ E} ∪ {vcurrent}
E′ := {(v1, v2) ∈ E | v1 = vcurrent ∨ v2 = vcurrent}

Filtering classes without attributes. To reduce complexity, attributes of classes and
dependencies can be filtered by

f classes (V,E) := (V ′, E′) , where

V ′ := V \ V ModelAttribute

E′ := E \ (V ControlElement × V ModelAttribute)

\ (V ModelAttribute × V ModelClass)

These filter functions can be arbitrarily combined. However, the order in which func-
tions are applied is relevant, and not all combinations can be conceived as useful. We
define four filter combinations together with their primary field of application:

F1 := f controlflow, F2 := (f context
vcurrent

◦ f controlflow),

F3 := f context
vcurrent

, F4 := (f context
vcurrent

◦ f classes).

F1: Show control dependencies of the whole transformation. Resulting view helps to
initially grasp the overall control structures of an unknown transformation. The
filter is useful for investigating transformations of smaller size.

F2: Show control dependencies in context of the currently selected control node. When
navigating the rules, data dependencies are not always of interest. For the compre-
hension scenario from Section 2, this filter is the optimal choice. In context of map-
ping Attribute2Column the filter would yield the graph shown in Figure 5a.
A developer quickly recognizes two rules calling mapping Attribute2Column.
The filter helps at understanding larger transformation programs.

F3: Show control and data dependencies in context of the currently selected control or
data node, vcurrent. When reading transformation rules, it makes sense to primarily
concentrate on direct dependencies. In contrast to slicing criteria, only direct depen-
dencies are displayed, both in forward and backward directions. In the maintenance
scenario from Section 2, we apply the filter in context of class Column to show all
operations modifying or reading the element. There are seven mappings modify-
ing the element (incoming connections in Figure 5b. The filter helps to cope with
change requests where details at the attribute-level are required to locate concerns.

F4: Show control and data dependencies in context of the currently selected control
or data node, but remove information about accessed class attributes. The resulting
view leaves only data dependencies at the class-level. This filter is useful for change
requests where details at the class-level are sufficient to locate concerns.

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 149

6 Empirical Evaluation

To evaluate how our approach supports important maintenance tasks, we carried out
a case study, where users had to identify code locations affected by typical change
requests. For the case study, we implemented our approach for QVT-O under Eclipse.2

6.1 Design

The purpose of the study is to empirically show that our approach makes maintaining
model transformations more efficient (process-related improvement), the outcome is of
higher quality (product-related improvement), and the developer experiences less effort
(improvement regarding user experience).

In order to accomplish our set goal, we explored the following three hypotheses:
H1: Effectiveness. Subjects who use dependency graphs locate affected places more

effectively than equally classified subjects who do not use it.
H2: Time expenditure. Subjects who use dependency graphs are faster in performing

the maintenance tasks than equally classified subjects who do not use it.
H3: Perceived strain. Subjects who use dependency graphs are less strained than

equally classified subjects who do not use it.
We varied the availability of the tool (control variable) and took measurements to as-
sess effectiveness, time consumption and perceived strain (response variables). We used
the following metrics: To evaluate the effectiveness, we determined the numbers of
false positives and false negatives of each given answer. Based on these, we used the
f-measure with β = 1 to compute the harmonic mean value of precision and recall. The
f-measure is a widely-used measure for assessing quality of information retrieval. It is
also suitable for evaluating feature location tasks [9].

Subjects had been asked to record starting and ending time for each task, so we
could calculate the actual time needed. Regarding the subjectively felt level of strain,
we asked for the user’s personally experienced difficulty level on six-level Likert items
in the post-session questionnaire.

According to a classification scheme by Juzgado and Moreno [10], this experiment
follows a between-subjects design. Its single dimension tool usage has two levels (with
or without). It is a quasi-experiment, since assignment to groups had been done based
on information determined from the pre-questionaire, rather than purely randomly.

The study had been carried out in an exam-style situation on 2 bachelor students,
12 master students and 8 experienced researchers, all of them reasonably trained in the
tools and activities of model transformation development.

We decided for an example transformation from a large scientific project, the Palladio
Research Project [11]. The project provides a set of methods and tools for predicting
the reliability and performance of software architectures. The QVT-O transformation
PCM2QPN transforms Palladio Component Model (PCM) instances to Queuing Petri
Nets (QPN). It encompasses 2886 lines of code, plus 952 lines of code distributed over
4 library modules. We decided for QVT-Operational because of its stable integration

2 The tool we implemented can be downloaded from
http://sdqweb.ipd.kit.edu/wiki/Transformation_Analysis.

http://sdqweb.ipd.kit.edu/wiki/Transformation_Analysis

150 A. Rentschler et al.

into the Eclipse IDE, its adherence to a language standard, and its wide acceptance.
There is one source metamodel, the Palladio Component Model (PCM), consisting of
154 classes, and SimQPN’s Petri net model as target model, consisting of 20 classes.

Each subject was asked to understand certain aspects, and to locate concerns of a set
of change requests to a correct set of code places. In software engineering, there are typ-
ically four types of maintenance tasks [12], preventive, corrective, perfective and adap-
tive. In accordance to this widely used classification, we name five classes of change
requests:
Bug fix request (Corrective): This request is about finding a bug which is present in

the transformation, either the program does not compile, or the output is wrong.
For instance, as a reaction to modifications to the metamodels, developers need to
adapt the transformation accordingly.

Feature request (Perfective): To match new functional requirements, new functional-
ity needs to be added, or existing functionality needs to be changed or removed.
Because changes may originate from or have impact on depending artifacts, fea-
ture requests may result not only in modification of a transformation but also of
metamodels, models and documentation.

Non-functional improvement (Perfective): A perfective task can also target non-
functional requirements, it can even have an impact that is orthogonal to code
structure.

Refactoring request (Preventive): Refactoring means organizing code structure with-
out adding or removing existing functionality. For instance, a class attribute could
be pulled up, which can result in an attribute assignment being pulled up a rule
inheritance chain accordingly.

Environmental change request (Adaptive): Transformation programs do not func-
tion in isolation. Input metamodels change, or language concepts are updated.

Subjects were asked to not perform the actual change, because of the limited time
frame, and because people brought a varying level of knowledge and experience with
QVT-O and the underlying Object Constraint Language (OCL). Subject had to handle
the following seven tasks:3

T1: Comprehension task / Searching for keywords
“Where does the transformation create elements in the target model? Name one
example for each of the three variants for element instantiation.”

Subjects had to look for the keywords constructor, object, mapping. They
were asked to name one example for each instantiation type, 3 locations in total.
Note that for mappings, non-tool users had to check for a return type, with implicit
instantiation semantics. Tool users could check write-access edges in the graph, but
still had to check the underlying code for the actual used instantiation type. Filter
4 combined with cross-navigation was the optimal choice. This task served as a
warm-up question.

T2: Comprehension task / Analyzing control flow
“Which call trace leads from the entry method to a method creating instances of

3 The experiment’s tasks can be understood without knowledge of the PCM and QPN
metamodels.

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 151

ExternalCallAction? Do not use the debugger or execute instrumented code.”
A manual depth-first search using the browsing history had to be conducted, in
order to find paths in the overall control flow leading from the entry method’s node
to the target method. Non-tool users had to use text-based search and hyperlink
navigation. Tool users could use Filter F2, after identifying the target method as a
method having write-access to the named class (Filter F4). The trace was 8 methods
deep, and included downcasts regarding the contextual type of a mapping.

T3: Refactoring request / Analyzing control flow.
“Name all unused methods.”

Non-tool users were required to search for occurences of each method’s name. The
transformation’s main file had 41 mappings, 117 helpers, and 10 queries. Tool users
could check for unreferenced nodes in the general control-flow view (Filter F1).
There were 12 unused methods in total, 7 mappings and 5 helpers.

T4: Non-functional improvement / Analyzing data element usage
“Assert statements need to be added to check consistency of created connections.
Please name all methods that instantiate objects of type ConnectionType.”

Subjects had to look for the keywords constructor, object, mapping, in
conjunction with ConnectionType. Non-tool users had to use the search com-
mand. Tool users could rely on write-access dependencies (Filter F4). There were
33 instantiating methods in total, 30 mapping rules and 3 helper methods.

T5: Feature request / Analyzing data element usage
“A new subtype of AbstractAction is planned to be added to the source meta-
model. Where are AbstractAction elements handled? Name all occurences.”

Here, subjects had to check data dependencies. While non-tool users had to use the
search command, tool users could select Filter F4 and check outgoing or incom-
ing edges in context of class AbstractAction. The correct answer included 5
mappings and 5 queries, where 2 queries were located in an external module.

T6: Feature request / Analyzing data element usage
“Class ForkAction, subtype of AbstractAction, should be used as blue
print for the new subtype of AbstractAction to be added. Where does the trans-
formation handle the ForkAction element? Name all occurences.”

The right answer encompasses 8 queries and 6 mappings. Tool users could check
data dependencies in context of ForkAction (Filter F4), others had to do a text-
based search for the name.

T7: Bug fix request / Analyzing data flow for unused class attributes
“Created target models contain objects of class Place with an uninitialized at-
tribute departureDiscipline. Identify the buggy lines of code.”

Only one single mapping did create elements of type Place without proper initial-
ization. Tool users were able to use Filter F3 in context of class Place, and check
attribute dependencies for each displayed method.

152 A. Rentschler et al.

6.2 Execution

Students had participated in two practical training sessions on transformation develop-
ment. Training was done within scope of a practical course on MDSD. Each session
ended with graded exercise sheets. We sent our fellow researchers training material to
brush up their knowledge of the QVT-O language.

Assignment to one of the two groups happened randomly. Beforehand, participants
had to fill out a pre-session questionnaire, where they rated their own expertise level on
a 5-point Likert item and stated their academic degree. Based on this information, we
randomly swapped participants between both groups so that each group had 7 students
and 4 researchers, and the mean expertise level for both groups was equally balanced.

The experiment started with a 30 minutes tutorial on how to use the tool. Each partic-
ipant was assigned to one workstation with a preconfigured Eclipse IDE. Then, subjects
were handed out the task sheets, they were asked to answer tasks in prescribed order, and
to note down when they started and when they ended a task. Subjects could freely par-
tition their available time to the tasks. Subjects could decide to end a task prematurely,
without the option to resume later. After 75 minutes total, the experiment closed with a
post-session questionnaire. Using a debugger or executing the code was not permitted.

6.3 Analysis

For analysis, none of the outliers had been removed from the data set.

H1: Effectiveness. For hypothesis H1 we investigated the f-measure. Boxplots in Fig-
ure 6a contrast program with control group on a per-task level. Applying Welch’s
one-tailed t-test to the f1-measures at the default significance level of α = 0.05, tool
users showed a significant improvement over non-tool users for tasks 2-6 (p2 = 0.015,
p3 = 0.001, p4 = 0.047, p5 = 0.003, p6 = 0.034). For tasks 1 and 6, Welch’s two-
tailed t-test did not reveal a significant difference (p1 = 0.160, p7 = 0.283). We are
able to reject H1’s corresponding null hypothesis for all tasks but task one and task
seven.

H2: Time expenditure. For H2 we tested time consumption. Figure 6b shows boxplots
for the consumed time per task and added up. Welch’s t-test had been used to test
for significancy. We can confirm hypothesis H2 only for task 3 with a one-tailed test
revealing p = 0.010. For the other tasks, two-tailed tests did not indicate any significant
difference between groups.

H3: Perceived strain. H3 was based on subjective data from the questionnaires. All
answers were posed using 6-point Likert items, ranging from “strongly disagree” to
“strongly agree”. One question was if subjects would rate the tasks as difficult to solve
(see Figure 6c for details). Further questions asked tool users if they think that the tool
helps in understanding, debugging, refactoring, and extending a previously unknown
transformation, based on their experience they gained at the respective task. Figure 6d
shows respective boxplots. Mean values report that non-tool users found the tasks to
be “rather hard”, while tool users found the tasks to be “rather easy”. Additionally,
tool users rated the tool’s usability for understanding, debugging, and refactoring a

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 153

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Tasks 1−7

0.00

0.25

0.50

0.75

1.00

Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool

A
c
c
u

ra
c
y
 [

F
1

 s
c
o

re
]

(a) Effectiveness calculated from precision and recall

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0

10

20

30

Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool

T
im

e
 r

e
q

u
ir
e

d
 [

m
in

u
te

s
] Tasks 1−7

50

60

70

Tool ¬Tool

T
im

e
 r

e
q

u
ir
e

d
 [

m
in

u
te

s
]

(b) Timing

Difficulty

Strongly
 disagree

Disagree

Rather
 disagree

Rather
 agree

Agree

Strongly
 agree

Tool ¬Tool

S
u

b
je

c
ti
v
e

 r
a

ti
n

g

(c) Rating of the overall
task difficulty

Understanding Debugging Refactoring Extending

Strongly
 disagree

Disagree

Rather
 disagree

Rather
 agree

Agree

Strongly
 agree

Expert Novice Expert Novice Expert Novice Expert Novice

S
u

b
je

c
ti
v
e

 r
a

ti
n

g

(d) Rating of the tool’s ability to assist at one of the tasks,
grouped by experts and novices

Fig. 6. Measured response variables4

transformation on a 6-level Likert item. On average, participants agreed that the tool
helps in all four disciplines.

6.4 Discussion

H1: Effectiveness. Effectiveness is significantly improved for all tasks except the first
and the last. For the first task, thought to be a warm-up exercise, we argue that even
if tool users could profit from navigating the graph, they still had to check the under-
lying code for the keywords, making tool-based navigation only slightly better than a
common text-based search. Many users did not find enough time for the last task, 4 out
of 11 non-tool users and 3 out of 11 tool users did not even begin to process this task.

4 In the boxplots, individual values are marked as dots jittered horizontally (and for discrete
values also vertically) by a random value. A cross marks the mean, and a bar the median value.

154 A. Rentschler et al.

A known problem lies in the tool’s inability to detect attributes accessed from within a
constructor.

H2: Time expenditure. The overall expenditure of time was almost indifferent. Task
3 was solved significantly faster, and with better results. This indicates that for some
maintenance tasks our approach produces much better results than for others.

H3: Perceived strain. According to the ratings, tool users perceived the same tasks
less difficult than non-tool users. Based on their experiences, most tool users found
the tool to support understanding, debugging, refactoring and extending transforma-
tions, although to a limited extend. Novices were less convinced of the tool’s help for
debugging tasks. We expect developers to prefer the Eclipse debugging perspective over
static analysis for most types of bugs.

Because of a significant improvement of the overall effectiveness, the indifferent
overall expenditure of time, and a less perceived strain, we are able to attribute a higher
efficiency to tool users. Results show that for some tasks, the abstraction level offered
by our tool is too high.

6.5 Threats to Validity

Construct validity. The study’s primary construct is the use of data and control de-
pendencies to locate concerns. The choice of change requests was carefully chosen to
represent a real-life situation. We are aware that there are change requests which are not
in alignment to data flow and code structure, e.g. cross-cutting concerns, others require
finer-grained knowledge, e.g. details of the program code. For instance, the tool’s pro-
gram analysis did miss two dependencies, resulting in a slightly smaller recall value for
task 5 (cf. Figure 6a). A second threat is due to the metrics we used. In feature location
scenarios, using the f-measure is considered as a common method to compare product-
related quality [9]. Since people could freely partition their available time to the tasks,
recorded times are not accurate, particularly towards the end. Subjective ratings need to
be treated with care.

Internal validity. Blind testing was not possible, but people were assigned to one group
at the latest possible time. Subjects were equally trained, advice had been given for
each task on how to optimally use the tool and an alternative IDE feature. None of the
subjects had been involved in the tool’s development. We refrained from asking subjects
to perform the actual maintenance task, because we expect the tool to show its particular
strength in understanding code and locating concerns rather than in editing code.

External validity. Generalizability is threatened by the fact that we investigated only
a single transformation written in a single transformation language. We are confident
the transformation together with the two incorporated Ecore metamodels, the Palladio
component model (PCM) and the queueing Petri-net model (QPN), reflect industrial
quality standards. Program and model artifacts had been reviewed at least once. We
also believe that our mix of novices and experts approximated to a real-world situation.
We compared our tool to the bare Eclipse QVT-O environment, as we do not know of
similar tools for QVT-O. Yet, by further equipping non-tool users with diagrammatic

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 155

visualizations as those suggested by van Amstel et al. [4], we could check if our inter-
active approach would outcompete a static visualization approach.

7 Related Work

Program Analysis. Program analysis techniques are already applied to model trans-
formations. Varro and his colleagues transfer graph transformations into Petri nets [13],
where they are able to prove termination for many programs. Ujhelyi, Horvath and
Varro analyze VIATRA2 VTCL programs for common errors in transformation pro-
grams [14]. The same authors suggest a dynamic backward slicing approach [15] to
understand program behavior for a certain input. In comparison, our approach is based
on static program analysis, aiming to support the process of understanding for mainte-
nance rather than reasoning about program properties. Schönböck et al. use Petri nets
to integrate data and control structures into a graphical view [16] to foster debuggabil-
ity. Their approach is designed for declarative rule-based transformation languages and
lacks validation.

Vieira and Ramalho developed a higher order transformation [3] to automatically ex-
tract dependencies from ATL transformations. Their objective is similar to ours, namely
to assist developers inspecting transformation code. The unvalidated approach is ATL-
specific, it lacks data dependencies and filters. A user interface is still missing.

Eclipse editors, including that for QVT-O, support hyperlinked syntax. However, con-
trol dependencies are not computed live, and navigation over calls is only possible in
the forward direction. Learning about data dependencies from code requires good cog-
nitive abilities and a thorough knowledge of all the relevant language concepts. Still,
data dependencies derived from other methods can not directly be seen. Furthermore, it
is not possible to directly learn about all the places a particular data element is accessed.
Program Visualization. Software visualization tools had been surveyed by Diehl in his
book from 2007 [2]. Telea et al. make a comparison between hierarchical edge bundling
(HEB) visualizations and classical node-link diagrams (NLDs) when used for compre-
hending C/C++ code [17]. Our graph notation can be classified as an NLD. Recently,
van Amstel et al. have been conquering HEB diagrams for visualizing a transforma-
tion’s data and control dependencies and metamodel coverage [4]. However, data and
control dependencies are not integrated into a single view, and effectiveness and effi-
ciency of static HEB diagrams for maintenance tasks remain to be validated.

8 Conclusions and Outlook

We demonstrated a novel approach to visualize data and control flow dependencies
of metamodels and transformations using interactive node-link diagrams (NLDs). Ef-
ficiency of our approach has been shown in an experiment, where subjects using our
approach were significantly more efficient and effective carrying out maintenance tasks.
Results suggest that it is the large number of dependencies among metamodel elements
and transformation rules that hampers understandability of model transformations.

156 A. Rentschler et al.

Our study indicates that maintenance processes can be heavily improved by reveal-
ing dependency information to maintainers. Instead of utilizing program analysis tech-
niques, transformation languages could proactively provide concepts to let program-
mers explicitly declare dependencies for program elements, e.g. rules and modules.
Since prevalent module concepts are coined towards reuse rather than maintenance [18],
we consider a module concept where dependencies can be declared upfront. For exist-
ing transformations, a module’s dependencies can be derived automatically with our
approach. A clustering algorithm based on dependency metrics could even propose suit-
able modular structures [19]. Next, we plan to try different types of visualizations, for
example filtered HEBs. In future experiment runs, we would like to test transformations
in further dialects, and compare our approach with other existing approaches. Addition-
ally, analysis of OCL expressions [20] needs to be refined, as not all data dependencies
are captured yet.

Acknowledgements. This research has been funded by the German Research Foun-
dation (DFG) under grant No. RE 1674/5-1. We thank our experimentees for their
valuable time.

References

1. Storey, M.A.D.: Theories, Tools and Research Methods in Program Comprehension:
Past, Present and Future. Software Quality Journal 14(3), 187–208 (2006)

2. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolution of
Software. Springer (2007)

3. Vieira, A., Ramalho, F.: A Static Analyzer for Model Transformations. In: MtATL 2011.
CEUR Workshop Proceedings, vol. 742, pp. 75–88. CEUR-WS.org (2011)

4. van Amstel, M.F., van den Brand, M.G.J.: Model Transformation Analysis: Staying Ahead
of the Maintenance Nightmare. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 108–122. Springer, Heidelberg (2011)

5. Keim, D.A., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the Information Age - Solv-
ing Problems with Visual Analytics. Eurographics Association (2010)

6. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics:
Scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining.
LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)

7. Object Management Group (OMG): MOF 2.0 Query/View/Transformation, version 1.1
(January 2011), http://www.omg.org/spec/QVT/1.1/PDF/

8. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations,
and Application Scenarios. Technical Report TR-RI-07-284, Univ. of Paderborn (2007)

9. Wang, J., Peng, X., Xing, Z., Zhao, W.: An Exploratory Study of Feature Location Process:
Distinct Phases, Recurring Patterns, and Elementary Actions.. In: ICSM 2011. IEEE (2011)

10. Juzgado, N.J., Moreno, A.M.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers (2001)

11. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Component-Based
Software Architecture Models to Queueing Petri Nets. In: MASCOTS 2011, pp. 339–348.
IEEE (2011)

12. Saleh, K.A.: Software Engineering. J Ross Publishing (2009)

http://www.omg.org/spec/QVT/1.1/PDF/

Interactive Visual Analytics for Efficient Maintenance of Model Transformations 157

13. Varró, D., Varró–Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination Analysis of
Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 260–274. Springer, Heidelberg
(2006)

14. Ujhelyi, Z., Horváth, Á., Varró, D.: A Generic Static Analysis Framework for Model
Transformation Programs. Technical report, Budapest Univ. of Technology and Economics
(2009)

15. Ujhelyi, Z., Horváth, Á., Varró, D.: Dynamic Backward Slicing of Model Transformations.
In: ICST 2012, pp. 1–10. IEEE (2012)

16. Schönböck, J., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Wimmer, M.:
Catch Me If You Can - Debugging Support for Model Transformations. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 5–20. Springer, Heidelberg (2009)

17. Telea, A., Hoogendorp, H., Ersoy, O., Reniers, D.: Extraction and Visualization of Call
Dependencies for Large C/C++ Code Bases: A Comparative Study. In: VISSOFT 2009,
pp. 81–88. IEEE (2009)

18. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.:
Fact or Fiction – Reuse in Rule-Based Model-to-Model Transformation Languages. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 280–295. Springer, Heidelberg
(2012)

19. Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., Duchrow, M.: Cluster Analysis of Java
Dependency Graphs. In: SoftVis 2008, pp. 91–94. ACM (2008)

20. Jeanneret, C., Glinz, M., Baudry, B.: Estimating Footprints of Model Operations. In:
ICSE 2011, pp. 601–610. ACM (2011)

Checking Model Transformation Refinement

Fabian Büttner1, Marina Egea2, Esther Guerra3, and Juan de Lara3

1 École des Mines de Nantes - INRIA, France
fabian.buettner@inria.fr

2 Atos Research & Innovation Dept., Madrid, Spain
marina.egea@atosresearch.eu

3 Universidad Autónoma de Madrid, Spain
{Esther.Guerra,Juan.deLara}@uam.es

Abstract. Refinement is a central notion in computer science, meaning
that some artefact S can be safely replaced by a refinement R, which
preserves S’s properties. Having available techniques and tools to check
transformation refinement would enable (a) the reasoning on whether
a transformation correctly implements some requirements, (b) whether
a transformation implementation can be safely replaced by another one
(e.g. when migrating from QVT-R to ATL), and (c) bring techniques
from stepwise refinement for the engineering of model transformations.

In this paper, we propose an automated methodology and tool sup-
port to check transformation refinement. Our procedure admits hetero-
geneous specification (e.g. PaMoMo, Tracts, OCL) and implementation
languages (e.g. ATL, QVT), relying on their translation to OCL as a
common representation formalism and on the use of model finding tools.

1 Introduction

The raising complexity of languages, models and their associated transformations
makes evident the need for engineering methods to develop model transforma-
tions [12]. Model transformations are software artefacts and, as such, should
be developed using sound engineering principles. However, in current practice,
transformations are normally directly encoded in some transformation language,
with no explicit account for their requirements. These are of utmost importance,
as they express what the transformation has to do, and can be used as a basis
to assert correctness of transformation implementations. While many proposals
for requirements gathering, representation and reasoning techniques have been
proposed for general software engineering [15,23], their use is still the exception
when developing model transformations.

Specifications play an important role in software engineering, and can be
used in the development of model transformations in several ways. First, they
make explicit what the transformation should do, and can be used as a basis for
implementation. Specifications do not necessarily need to be complete, but can
document the main requirements and properties expected of a transformation.
Then, they can be used as oracle functions for testing implementations [11].

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 158–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Checking Model Transformation Refinement 159

Transf. Spec.
(reqs)

Transf. Impl.
(ATL,…)

«refines»

Transf. Impl.
(QVT,…)

Transf. Impl.
(ATL,…)

«refines»

Transf. Spec.
(reqs)

Transf. Spec.
(refinement)

«refines»

(a) (b) (c)

Fig. 1. Refinement scenarios

In this setting, it is useful to know when
a transformation T refines a specification
S. Intuitively, this means that T can be
used in place of S without breaking any
assumption of the users of S. Some other
times, we need to know whether a trans-
formation T refines another transforma-
tion T ′ and can replace it. Fig. 1 gathers
several scenarios where checking transformation refinement is useful. In (a), an
implementation refines a requirements specification, hence ensuring correctness
of the implementation with respect to the specification. In (b), a transformation
implementation (e.g. in QVT) is refined by another one (e.g. in ATL) which
can replace the former safely. This is especially useful if we want to migrate
transformations, ensuring correctness of the migrated transformation. Finally,
in (c), a specification refines another specification, which enables the application
of stepwise refinement methodologies for transformation development.

In this paper, we tackle the previous scenarios by proposing an automated
methodology to check transformation refinements. Our proposal relies on OCL
as a common denominator for both specification languages (e.g. PaMoMo [13],
Tracts [25] and OCL [18]) and transformation languages (e.g. QVT-R [21], triple
graph grammars [22] and ATL [16]). For this purpose, we profit from previ-
ous works translating these languages into OCL [6,7,13,25]. Hence, transfor-
mation specifications and implementations are transformed into transformation
models [4] and we use SAT/model finding [6] techniques to automatically find
counterexamples that satisfy properties assumed by the specification, but are
incorrectly implemented. While refinement has been previously tackled in [25],
our work is novel in that it proposes an automated procedure for performing this
checking, and is able to tackle heterogeneous specification and transformation
languages by using OCL as the underlying language for reasoning.

Paper organization. Section 2 motivates the need for transformation refinement
using an example. Section 3 introduces model transformation refinement. Sec-
tion 4 details our methodology to check refinements. Section 5 provides more
examples, Section 6 compares with related work and Section 7 concludes.

2 A Motivating Example

Assume we have gathered the requirements for the Class2Relational transforma-
tion, and want to use them as a blueprint to check whether an implementation
correctly addresses them. Fig. 2 shows part of a specification of the require-
ments using the PaMoMo specification language [13], though we could choose
any other transformation specification language instead (like Tracts or OCL).

PaMoMo is a formal, pattern-based, declarative, bidirectional specification
language that can be used to describe correctness requirements of transforma-
tions and of their input and output models in an implementation-independent

160 F. Büttner et al.

c: Class
name=X

P(SomeClassInHierarchy2Table)

t: Table
name=X

N(AncestorMapped)

c: Class
name=X

t2: Table
name=Y

cp: Class
name=Y

anc

N(ChildMapped)

cc: Class
name=Z

t3: Table
name=Z

c: Class
name=X

anc

c: Class
name=X

P(ClassMapped)

t: Table
name=X

P(Attribute2Column)

a: Attribute
name=Y

co: Column
name=Y

c: Class
name=X

t: Table
name=X

P(InheritedAttribute2Column)

a: Attribute
name=Y

co: Column
name=Y

c: Class
name=X

t: Table
name=X

cp: Class
anc

c: Class
name=X

P(ClassMapped)

t: Table
name=X

INVARIANTS PRECONDITIONS

POSTCONDITIONS

t1: Table
name=X

N(UniqueTableName)

t2: Table
name=X

co1: Column
name=X

N(UniqueTableColumnName)

co2: Column
name=X

t: Table

c1: Class
name=X

N(UniqueClassName)

c2: Class
name=X c: Class

N(NoInhCycle)

anc

Fig. 2. A specification for the Class2Relational transformation

way. These requirements may correspond to pre-/postconditions that input/out-
put models should fulfill, as well as transformation invariants (i.e. requirements
that the output model resulting from a particular input model should satisfy).

Preconditions, postconditions, and invariants are represented as graph pat-
terns, which can be positive to specify expected model fragments, or negative
to specify forbidden ones. They can have attached a logical formula stating ex-
tra conditions, typically (but not solely) constraining the attribute values in the
graph pattern. Optionally, patterns can define one enabling condition and any
number of disabling conditions, to reduce the scope of the pattern to the loca-
tions where the enabling condition is met, and the disabling conditions are not.
The interested reader can find the formalization of these concepts in [13,14].

Fig. 2 shows to the left three invariants that our Class2Relational transforma-
tion should fulfill. This specification is very general, in the sense that it gathers
only the minimal requirements that any implementation of the Class2Relational
should satisfy, leaving room for different transformation strategies. In particu-
lar, the specification only requires the transformation of at least one class in
every class hierarchy, allowing freedom as to how many classes per hierarchy to
transform (being 1 the minimum). This condition is checked by invariant Some-
ClassInHierarchy2Table, which states that if a class c does not have ancestors or
children that have been transformed (disabling conditions AncestorMapped and
ChildMapped respectively), then c should be transformed into a table (invariant
SomeClassInHierarchy2Table). In the invariant, assigning the same variable to
different attributes accounts for ensuring equality of their values, like X , which
is assigned to the name of both the class c and the table t, meaning that both
objects should have the same name. Moreover, relation anc is the transitive clo-
sure of the inheritance relation. Altogether, this invariant states that at least
one class in each hierarchy should be transformed. The remaining invariants in
this specification handle the correct transformation of attributes. To its right,
invariant Attribute2Column states that if a class c is transformed (enabling con-
dition ClassMapped), then its owned attributes should be converted into columns
of the table. Below, invariant InheritedAttribute2Column states that all inher-
ited attributes should be transformed into columns as well. Finally, another

Checking Model Transformation Refinement 161

invariant (omitted for reasons of space) states that attributes of non-mapped
children classes should also be transformed for their mapped ancestors.

Fig. 2 shows to the right some pre- and postconditions for the input/output
models. Whereas the shown invariants are positive and therefore their satisfac-
tion is demanded, the shown pre- and postconditions are negative, indicating
forbidden situations. Thus, precondition UniqueClassName forbids duplicated
class names for input models, and NoInhCycle forbids having inheritance cycles.
Three additional preconditions, not shown for space constraints, forbid duplicate
attribute names in the same class, either defined locally or inherited. Similarly,
postcondition UniqueTableName forbids duplicated table names in output mod-
els, and UniqueTableColumnName forbids two equally named columns in the
same table. Note that although this is not the case, we could also define nega-
tive invariants, as well as positive pre- and postconditions, in specifications.

Developers can use the specification in Fig. 2 as a guide to implement the
transformation in their favorite language. As an example, Listing 1 shows a
possible implementation in ATL. The strategy followed is transforming each class
and, in the generated table, creating columns coming from the attributes defined
in the class or its ancestor classes (checked in line 10). The specification would
also admit other transformation strategies, like mapping only top classes or only
leaf classes. Note that the implementation transforms packages into schemas in
lines 3–4, though the specification does not state how to handle them (there is
just a multiplicity constraint saying that classes are always in a package).

1 module AllClasses; create OUT : SimpleRelational from IN : SimpleClass;
2

3 rule P2S { from p : SimpleClass!Package
4 to s : SimpleRelational!Schema }
5

6 rule C2T { from c : SimpleClass!Class
7 to t : SimpleRelational!Table (name <− c.name, schema <− c.package) }
8

9 rule A2A { from ua : SimpleClass!Attribute,
10 c : SimpleClass!Class (c = ua.owner or c.ancestors()−>includes(ua.owner))
11 to col : SimpleRelation!Column (name <− ua.name, owner <− ua.owner) }

Listing 1. Transformation implementation using ATL (“AllClasses.atl”)

Then, the question arises whether the implemented transformation is a re-
finement of the specification, i.e., whether for any valid input model (satisfying
the preconditions), its transformation yields a model satisfying the invariants
and postconditions of the specification. As we will see in Section 4, the answer
to this question is no because this implementation does not guarantee the in-
variant InheritedAttributeToColumn, since the rule A2A contains a little bug
(which we will uncover in Section 4.1). While finding this bug can be done man-
ually by testing, in this paper we propose an automated procedure to detect the
postconditions and invariants of the specification that are not satisfied.

Other scenarios for checking refinement are also of practical use. For exam-
ple, if we want to migrate this transformation into QVT-R, we might want to
ensure that the target transformation is compatible with the original one. The
next section discusses the notion of transformation refinement, while Section 4
presents our approach to automatically assess the scenarios identified in Fig. 1.

162 F. Büttner et al.

3 Model Transformation Refinement

Conceptually, a model-to-model transformation S from a source metamodel
Msrc to a target metamodel Mtar can be represented by a relation Sem(S)
between pairs of source and target models of the metamodels1.

Sem(S) = {(Msrc,Mtar) : Msrc S Mtar, where

Msrc is a model of Msrc, and Mtar is a model of Mtar}

A relation S does not need to be functional, i.e., the same source model may be
related with several target models. In this way, we support both deterministic
and non-deterministic transformations. Based on this characterization, we can
express a refinement relation of a transformation.

Def. 1 (Refinement) Given two transformation specifications S, S ′ between
a source metamodel Msrc, and a target metamodel Mtar. S ′ refines S iff the
following conditions hold:

∀Msrc,Mtar : ((Msrc,Mtar) ∈ Sem(S ′) ∧ ∃M ′
tar : (Msrc,M

′
tar) ∈ Sem(S))

⇒ (Msrc,Mtar) ∈ Sem(S) (1)

∀Msrc,Mtar : (Msrc,Mtar) ∈ Sem(S) ⇒ (∃M ′
tar : (Msrc,M

′
tar) ∈ Sem(S ′)) (2)

The second condition specifies the executability of S ′: S ′ must accept all inputs
that S accepts. The first condition requires that S’ behaves consistent to S on
those inputs. Fig. 3 illustrates this relationship using a set notation. The source
models accepted by S are given by set Dom(S) (its domain, i.e., the models in the
source metamodel of S). The definition domain of S is the set Ran(S) (its range,
made of the models in the target metamodel of S). Models are represented as
dots, pairs of models in Sem(S) are joined by a solid arrow, and pairs of models
in Sem(S ′) are joined by dashed arrows. Fig. 3(a) shows a valid refinement as
the upper pair in Sem(S ′) is also in Sem(S). Since refinement is not concerned
with source models not considered by S, the lower source model is allowed to be
related with any target model in Sem(S ′). Fig. 3(b) is not a refinement because
the pair in Sem(S ′) is not in Sem(S), while the source model of this pair is in
Dom(S). Fig. 3(c) is not a refinement, as Sem(S ′) misses one source model of
Dom(S). Altogether, the figure illustrates that the domain of S ′ should include
the domain of S and be consistent with the elements in the domain of S.

For the sake of simplicity, we assume that S and S ′ share the same metamod-
els. In practice, S may focus on the most important aspects of a transformation,
while a refinement S ′ may be defined in more detail and over larger source/-
target metamodels. Provided that the metamodels for S ′ are subtypes of the
metamodels of S [24], we can always silently extent the metamodels for S to
those of S ′ in Definition 1.

1 Notice that we are assuming source-to-target transformations.

Checking Model Transformation Refinement 163

(b) (c)(a)

Dom(S)

Sem(S)

Sem(S’)

Dom(S)

Dom(S’)
Ran(S’)

Ran(S)

Dom(S)

Ran(S)

Dom(S’) Ran(S’)

Ran(S)

Dom(S’) Ran(S’)

Fig. 3. Valid (a) and invalid (b, c) refinements

Some approaches, like model transformation contracts [9,14], characterize the
semantics of a transformation S from a source to a target metamodel by means
of three types of constraints: preconditions (PreS), invariants (InvS) and post-
conditions (PostS). We capture this semantics in Def. 2. In the definition, we
represent by PreS the set of preconditions prei that the source models of S
must fulfill, and use PreS(Msrc) to indicate that the model Msrc fulfills all the
preconditions of S, i.e., pre1(Msrc) ∧ . . . ∧ pren(Msrc). We use a similar nota-
tion for invariants and postconditions as well. For this kind of transformations,
assuming that their conditions can be translated into first-order logic, we can
restate Def. 1 in terms of characterizing predicates as follows.

Def. 2 (Contract-based transformation specification) Let S be a
contract-based transformation specification from a source metamodel Msrc to
a target metamodel Mtar. The relation set Sem(S) defined by S can be charac-
terized by three types of predicates that represent S’s preconditions, invariants
and postconditions (the contract of S) in the following way

Sem(S) = {(Msrc,Mtar) : (Msrc ∈ Msrc) ∧ (Mtar ∈ Mtar)∧
PreS(Msrc) ∧ InvS(Msrc,Mtar) ∧ PostS(Mtar)}

(3)

with the additional condition that ∀(Msrc ∈ Msrc)

(PreS(Msrc) ⇒ ∃(Mtar ∈ Mtar) : InvS(Msrc,Mtar) ∧ PostS(Mtar)) (4)

Prop. 1 (Refinement for contract-based transformation specifications)
Let S and S ′ be contract-based transformation specifications from a source meta-
model Msrc to a target metamodel Mtar. S ′ refines S iff the following conditions
hold

∀(Msrc ∈ Msrc,Mtar ∈ Mtar)(PreS(Msrc) ∧ InvS′(Msrc,Mtar) ∧
PostS′(Mtar)) ⇒ (InvS(Msrc,Mtar) ∧ PostS(Mtar))

(5)

∀(Msrc ∈ Msrc) (PreS(Msrc) ⇒ PreS′(Msrc)) (6)

Proof. We can show that using Def. 2, conditions (1) and (2) hold iff conditions
(5) and (6) hold. The proof is included in the extended version of this paper2.

2 http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement

http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement

164 F. Büttner et al.

This proposition allows checking refinement using satisfiability solving for
transformations that can be characterized by contracts, as the next section will
show.

Notice that Def. 2 characterizes an ‘angelic’ choice [3] for the executability:
given a valid source model (w.r.t. PreS), there must be at least one target model
such that InvS and PostS hold. We do not require that PreS and InvS always
imply PostS , like one often expects an implementation to imply a postcondition
in program verification. In our context, InvS is part of the specification, just as
PreS and PostS .

Strong refinement. We demanded above that a refining transformation speci-
fication S ′ must accept all input models that the refined transformation S accepts
(specified by PreS), and that the output models of S ′ for those inputs are valid
w.r.t. InvS , and PostS . We did not characterize the effect of S ′ for input models
not fulfilling PreS . However, if we think of PostS as a contract that any trans-
formation execution needs to fulfill, it makes sense to define a new notion of
refinement that we call strong refinement. Thus, S ′ is a strong refinement of S
iff it is a refinement and ∀(Msrc ∈ Msrc,Mtar ∈ Mtar)

((PreS′(Msrc) ∧ InvS′(Msrc,Mtar) ∧ PostS′(Mtar)) ⇒ PostS(Mtar)) (7)

Previous works [25] have approached transformation refinement from a testing
perspective. Hence, given a set of (manually created) input models, developers
might discover an implementation result violating some postcondition or invari-
ant, but cannot prove refinement. In the next section, we provide a stronger,
automated methodology based on constraint solving to perform the checking.

4 Checking Refinement Using OCL Model Finders

Our methodology for checking transformation refinement builds on the fact that
transformations in several declarative languages can be translated into a unified
representation using OCL contracts. This unified representation, called trans-
formation model [4], can be easily checked and analyzed using readily available
OCL model finders. In short, the source and target metamodels are merged,
and OCL constraints over this merged metamodel expresses the transformation
semantics.

While such contracts are not directly executable, they are well-suited for auto-
mated checking of transformation properties as they allow expressing conditions
covering the source and target models of the transformation at the same time.
The checking can be done using a model finder, i.e., a satisfiability checker for
metamodels, to verify the absence of counter examples for a given property. This
way, for example, we have shown in [6] how to check if an ATL transformation
can create output models that violate given constraints. Thus, we propose to
generate and combine the OCL contracts for two transformation specifications
in order to analyze the refinement relation between them following Prop. 1.

Checking Model Transformation Refinement 165

condition 1

Counter example
condition 2

(over MMsrc + MMtar)

(step 3)(step 2)(step 1)

Equiv. OCL contract
(over MMsrc + MMtar)

Specification
S: MMsrc −> MMtar

Counter example

Equiv. OCL contract

sat?
in

yes

check next

no

counter example for
"S’ refines S"

Model
Finder

Specification
S’: MMsrc −> MMtar

Fig. 4. Steps in the methodology to check refinement

Fig. 4 shows the steps in our refinement checking methodology: (1) gener-
ation of the OCL contracts from both specifications S and S ′, (2) generation
of counter example conditions, and (3) checking unsatisfiability of the counter-
example conditions with an OCL model finder. Next, we detail these steps.

(1) Generation of OCL transformation contracts. First, each of the spec-
ifications S and S ′ is translated into equivalent sets of OCL constraints, cons(S)
and cons(S ′), over the combination of the source and target metamodels, Msrc

and Mtar. Namely, cons(S) = precons(S) ∪ invcons(S) ∪ postcons(S), where
precons(S), invcons(S), and postcons(S) are OCL encodings of PreS , InvS , and
PostS , fulfilling the conditions explained in Def. 2. Thus, in this setting we have
(Msrc,Mtar) ∈ Sem(S) iff the evaluation of the constraints in cons(S) over Msrc

combined with Mtar is true (and analogously for S ′).
Generators of such sets of OCL constraints have been described for several

declarative, rule-based, specification/implementation transformation languages,
including PaMoMo [13], QVT-R [7], triple grammars [7] and ATL [6].

(2) Generation of counter-example conditions. In order to check the two
conditions for refinement of Prop. 1, we need that invcons(S) ∧ postcons(S)
is implied by precons(S) ∧ invcons(S ′) ∧ postcons(S ′) and that precons(S ′) is
implied by precons(S) for every instance of Msrc combined with Mtar. This
can be expressed as the following counter-example conditions that must all be
unsatisfiable:

1. For each constraint c in invcons(S) ∪ postcons(S), the set of constraints
precons(S)∪ invcons(S ′)∪postcons(S ′)∪{negated(c)} must be unsatisfiable.

2. For each constraint c in precons(S ′), the set of constraints precons(S) ∪
{negated(c)} must be unsatisfiable.

3. (For strong refinement) For each constraint c in PostS , the set of constraints
precons(S ′)∪ invcons(S ′)∪postcons(S ′)∪{negated(c)} must be unsatisfiable.

If none of the counter-example conditions in 1–2 (1–3) is satisfiable, then S ′

refines (strongly refines) S.

(3) Satisfiability checking of counter-example conditions. We use OCL
model finders to check the counter-example conditions. There are several ap-
proaches for checking the satisfiability of OCL constraints, and our methodology

166 F. Büttner et al.

is independent of them. For example, UML2Alloy [1] and the USE Validator [17]
translate the problem into relational logic and use a SAT solver to check it, while
UMLtoCSP [8] translates it into a constraint-logic program. The approach of
Queralt et al. [20] uses resolution, and Clavel et. al [10] map a subset of OCL
into a first-order logic and employ SMT solvers to check unsatisfiability. In this
paper, we have used the USE Validator because it supports a large subset of OCL
and because the underlying SAT solver provides robust performance for a variety
of problems. This tool performs model finding within given search bounds, using
finite ranges for the number of objects, links and attribute values. Thus, when
a counter example is found, we have proven that there is no refinement; if no
counter example is found, we only know that the refinement is guaranteed up to
the search bounds. However, not finding a counterexample is a strong indication
of refinement if wide enough bounds are chosen for the search.

4.1 Running Example

In Sect. 2, we presented a specification of the Class2Relational transformation
using PaMoMo (cf. Fig. 2), as well as a possible implementation of the All-
Classes strategy using ATL (cf. Listing 1). Next, we illustrate our methodology
by checking whether AllClasses refines Class2Relational.

(1) Generation of OCL transformation contracts. First, we generate the
OCL contracts for Class2Relational and AllClasses. Following the compilation
and tool support presented in [14], we generate one OCL invariant from each
PaMoMo pattern. Listing 2 shows the OCL invariants for precondition Unique-
ClassName, invariant Attribute2Column and postcondition UniqueTableColumn-
Name. These constraints belong to the sets precons(Class2Relational),
invcons(Class2Relational) and postcons(Class2Relational), respectively. Notice
that we silently assume a singleton class GlobalContext which hosts all OCL in-
variants. We refer the reader to [14] for a detailed presentation of this compilation
scheme, and just highlight that the OCL expressions derived from preconditions
only constrain the source models, those from postconditions only constrain the
target models, and those from invariants constrain both.

1 context GlobalContext inv Pamomo Pre UniqueClassName:
2 not Class.allInstances()−>exists(c1 | Class.allInstances()−>exists(c2 | c2<>c1 and c1.name=c2.name))
3

4 context GlobalContext inv Pamomo Inv Attribute2Column:
5 Class.allInstances()−>forAll(c |
6 Attribute.allInstances()−>forAll(a | c.atts−>includes(a) implies
7 Table.allInstances()−>forAll(t | c.name=t.name implies
8 Column.allInstances()−>exists(co | t.cols−>includes(co) and a.name=co.name))))
9

10 context GlobalContext inv Pamomo Pos UniqueTableColumnName:
11 not Table.allInstances()−>exists(t |
12 Column.allInstances()−>exists(c1 | t.cols−>includes(c1) and
13 Column.allInstances()−>exists(c2 | c2 <> c1 and t.cols−>includes(c2) and c1.name=c2.name)))

Listing 2. Some OCL invariants generated from the PaMoMo specification.

Then, we derive an OCL contract for the ATL implementation, follow-
ing the rules and tool described in [6]. In this case, precons(AllClasses) and

Checking Model Transformation Refinement 167

postcons(AllClasses) only contain the source and target metamodel integrity
constraints, like multiplicity constraints. Listing 3 shows some OCL constraints
in invcons(AllClasses). They control the matching of source objects, the creation
of target objects and the bindings of properties in the target objects (see [6] for
details).

1 context Attribute inv ATL MATCH A2A:
2 Attribute.allInstances()−>forAll(l ua |
3 Class.allInstances()−>forAll(l c | (l c.ancestors()−>includes(l ua.owner)) implies
4 A2A.allInstances()−>one(l A2A | l A2A.ua = l ua and l A2A.c = l c)))
5

6 context A2A inv ATL MATCH A2A COND: self.c.ancestors()−>includes(self.ua.owner)
7

8 context C2T inv ATL BIND C2T t name: self.t.name=self.c.name
9 context A2A inv ATL BIND A2A col name: self.col.name=self.ua.name

10 context A2A inv ATL BIND A2A col owner: self.col.owner=self.c.c2t.t
11

12 context Column inv ATL CREATE Column: self.a2a−>size()=1

Listing 3. OCL invariants generated from the ATL rule A2A.

Notice that the mapping used for ATL [6] imposes a limitation for
invcons(AllClasses): The OCL constraints use additional trace classes connect-
ing the source and target objects in the transformation model. This means that
we can use these constraints only in their positive form in the counter-example
conditions, because for the negation we would need to express “there is no valid
instance of the trace classes such that. . . ”, which is not available in OCL. In
practice, this means that, using this OCL compilation, we can check whether an
ATL specification refines any other transformation specification, but not the op-
posite. The compilations for PaMoMo and QVT-R do not have this limitation.

(2) Generation of counter-example conditions. From the full version of
Class2Relational (Fig. 2 only shows an excerpt), we obtain 7 OCL invariants in
precons (5 coming from PaMoMo preconditions and 2 from multiplicity con-
straints), 4 invariants in postcons (2 and 2), and 4 invariants in invcons. From the
ATL version of AllClasses, we obtain 2 invariants in each precons and postcons
for the multiplicity constraints, and 10 invariants in invcons characterizing the
ATL rules. This gives 4 counter-example conditions to check for the first condi-
tion in Prop. 1, as explained on page 165, plus 2 cases for the second. If we want
to check for strong refinement, we have 4 more counter-example conditions.

(3) Satisfiability checking of counter-example conditions. Checking the
10 counter-example conditions, for example with the USE Validator, yields
the counter example shown in Fig. 5(a). The counter example satisfies all
invariants that characterize AllClasses (hence it is a model of a valid ATL
execution), but the OCL expression derived from the PaMoMo invariant
InheritedAttribute2Column is violated (hence this pair of models is not in
Sem(Class2Relational)). In particular, the problem is that the attribute in-
herited by class1 is not attached to table1, but it is incorrectly attached to

168 F. Büttner et al.

(a) AllClasses (ATL) (b) BottomClasses (checkonly)

Fig. 5. Refinement counter examples, checking against Class2Relational

table2. Consequently, the instance is a counter example for postcondition
UniqueTableColumnName as well.

If we examine the rule A2A in Listing 1 based on this counter example, we
discover that the binding owner<-ua.owner is incorrect and should be changed
to owner<-c. Fixing this error and checking the updated counter-example con-
ditions again yields no counter example. Thus, the fixed version of AllClasses is
a refinement of Class2Relational.

The ATL transformation is not a strong refinement of the PaMoMo specifi-
cation though, since without demanding unique names in the source, ATL does
not establish uniqueness of names in the target.

4.2 Tool Support

For the first step in Fig. 4, the generation of transformation models, we have
automated generators available for PaMoMo and ATL. So far, the generation
from QVT-R is performed manually. For the second step, we have created a pro-
totype to automate the construction of the counter-example conditions. For the
third step, we call the USE Validator [17] to find refinement counter examples.

5 Further Examples

In this section, we discuss some more results for the case study. We have con-
sidered a ‘zoo’ of various specifications of Class2Relational using different lan-
guages (PaMoMo, ATL and QVT-R) and following three strategies (mapping
all classes, only top classes, or only bottom classes). We have applied our method-
ology to check refinement for each pair of specifications (110 counter-example
conditions in total). Fig. 6 shows the results. The absence of an arrow indicates
no refinement (except for ATL, which can only be checked on the implementa-
tion side of the refinement relation). The details for all strategies are online3,
here we just highlight some interesting points.

We have considered two PaMoMo specifications: Class2Relational (the run-
ning example), and a refinement of this called TopOrAll which demands a ‘uni-
form’ mapping either of all classes in the source model, or only of the top ones.

3 http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement

http://www.emn.fr/z-info/atlanmod/index.php/ICMT_2013_Refinement

Checking Model Transformation Refinement 169

(QVT−R; check−only)

(QVT−R; enforce)
BottomClasses

TopClasses amended
(QVT−R; checkonly)

AllClasses (fixed)
(ATL)

(QVT−R; checkonly)
AllClasses

(QVT−R; enforce)
AllClasses

(QVT−R; enforced)
TopClasses

strongly refines
refines

(ATL)
BottomClasses

(Pamomo)
Class2Relational

(Pamomo)
TopOrAll

(QVT−R; checkonly)
TopClasses

(ATL)
TopClasses

(ATL)
AllClasses (Sect. 2)

(QVT−R; checkonly)
BottomClasses

BottomClasses amended

Fig. 6. Refinements between strategies (transitively reachable links are omitted)

The ATL implementation of the TopClasses strategy does not refine the
Class2Relational specification. This strategy translates each top class into a
table, and the attributes of the top class and its subclasses into columns of
the table. However, if two subclasses of a top class have an attribute with the
same name (which is not excluded by the preconditions of Class2Relational)
then the generated table gets two columns with the same name, violating the
postcondition UniqueTableColumnName. By contrast, the ATL versions of All-
Classes (discussed in the previous section) and of BottomClasses are refinements
of Class2Relational. AllClasses even refines the stronger specification TopOrAll.

Our methodology is also applicable to QVT-R. A QVT-R transformation S
can be used in enforce mode to create a target model from scratch starting from
a source model4, or in checkonly mode to check the relation between an existing
pair of models. Hence, we distinguish the sets SEMENF (S) of source models and
target models generated by S, and SEMCHK (S) of accepted pairs of source and
target models. We will see that they are not equal.

Listing 4 shows the QVT-R implementation of the BottomClasses strategy.
Interestingly, using this implementation in enforce mode is a refinement of the
Class2Relational specification, but using it in checkonly mode is not. This is
because the checkonly mode checks for the elements that should be created
by the enforce mode, but the target model can contain more elements. The
problem is that these extra elements can violate invariants or postconditions
from the requirements specification. For example, Fig. 5(b) shows a refinement
counter example violating the postcondition UniqueClassName, while satisfying
the QVT-R transformation in checkonly mode.

1 transformation BottomClasses (source : SimpleClass, target : SimpleRelational) {
2 key SimpleRelational::Table {name};
3 key SimpleRelational::Column {owner, name};
4

5 top relation PackageToSchema {
6 checkonly domain source p : SimpleClass::Package {};
7 enforce domain target s : SimpleRelational::Schema {}; }
8

9 top relation ClassToTable {
10 cn : String;
11 checkonly domain source c : SimpleClass::Class {
12 package = p : SimpleClass::Package {}, name = cn };
13 enforce domain target t : SimpleRelational::Table {
14 schema = s : SimpleRelational::Schema {}, name = cn };
15 when { c.children−>size()=0 and PackageToSchema(p, s); }

4 QVT-R also supports the incremental scenario, but we leave it out here.

170 F. Büttner et al.

16 where { AttributeToColumn(c, t); SuperAttributeToColumn(c, t); } }
17

18 relation AttributeToColumn {
19 an : String;
20 checkonly domain source c : SimpleClass::Class {
21 atts = a : SimpleClass::Attribute { name = an } };
22 enforce domain target t : SimpleRelational::Table {
23 cols = cl : SimpleRelational::Column { name = an } }; }
24

25 relation SuperAttributeToColumn {
26 checkonly domain source c : SimpleClass::Class {
27 package = p : SimpleClass::Package { classes = sc : SimpleClass::Class {} } };
28 enforce domain target t : SimpleRelational::Table {};
29 when { c.ancestors()−>includes(sc); }
30 where { AttributeToColumn(sc, t); } }
31 }

Listing 4. QVT-R implementation of the BottomClasses strategy.

In order to make the checkonly transformation a refinement of Class2Relational,
we need to include a top-level relation stating that non-bottom classes do not
have an associated table. This extra relation is non-constructive and is not con-
cerned with the creation of target elements, but with their absence. As ATL can
only be used in enforce mode, this constraint is built-in into ATL.

Finally, the ‘check-before-enforce’ semantics of QVT-R prevents the creation
of new objects if equivalent ones exist in the target. The equivalence criteria for
objects are given through keys. By setting an appropriate key for columns (see
line 3 in Listing 4) we avoid having repeated columns in tables. This is why the
enforce mode of the QVT-R transformation for the TopClasses strategy correctly
refines the ClassToRelational specification (whereas the ATL implementation
does not, as explained above).

Regarding performance, for the examples considered so far, solving times using
the USE Validator have not been an issue (within a few seconds for a default
search bound of 0..5 objects per class). It remains as future work to evaluate the
scalability on larger examples.

6 Related Work

To our knowledge, the only work addressing transformation refinement is [25]. Its
authors use Tracts to build transformation contracts. Tracts are OCL invariants
that can be used to specify preconditions, postconditions and transformation
invariants. The authors introduce the following notion of refinement: a Tract S ′

refines another one S if S ′ has weaker preconditions, but stronger invariants and
postconditions ((PreS ⇒ PreS′) ∧ (InvS′ ⇒ InvS) ∧ (PostS′ ⇒ PostS)). This
is a safe approximation to replaceability as in Def. 1, while our Prop. 1 exactly
characterizes this notion. Moreover, we also distinguish strong refinement.

Regarding refinement checking, in [25], refinement is checked by building a
suitable set of input test models and testing S′ against S’s pre/postconditions
and invariants. This approach has two drawbacks. First, it is based on testing
and on the manual creation of input test models. Secondly, it assumes that S′

is an executable implementation which can be used for testing. As we have seen
in this paper, S′ might be a non-executable specification.

Checking Model Transformation Refinement 171

Our checking procedure ensures correctness criteria for the refining transfor-
mation. In this respect, the work in [19] provides a means to verify a transforma-
tion against verification properties, assuming that both are given by patterns, in
the line of PaMoMo patterns. Verification properties are restricted to be posi-
tive. The checking implies generating all minimal glueings of the transformation
patterns, and checking them against the verification property. In such restricted
case, the verification is finitely terminating. We plan to investigate the glueing
minimality conditions to provide suitable search bounds for the solver.

The use of OCL to define transformation contracts was proposed in [9]. This
idea was extended in [4] with the aim to build transformationmodels as a declara-
tive means to capture the transformation semantics. Transformation models with
OCL constraints were used for transformation verification using model finders
in [2,6,7]. None of these works propose checking transformation refinement.

7 Conclusions and Future Work

In this paper, we have presented a methodology and tool support to check trans-
formation refinement. Refinement is useful to check whether an implementation
is correct with respect to a specification, to ensure replaceability of implementa-
tions (e.g. when migrating a transformation), and to apply step-wise refinement
techniques to transformation development.

Our methodology can be applied to check refinement between transformations
in any specification or implementation language for which a translation to an
OCL transformation model exists. To our knowledge, such translations exist for
PaMoMo, QVT-R, TGGs, and for a subset of ATL without imperative code
blocks. One limitation of the OCL contract-based approach is that recursive
rules cannot be generally mapped into OCL contracts, since OCL has no fix-point
operator. For example, the QVT-R-to-OCL translation in [7] would, for recursive
rules, yield recursive helper operations. For bounded verification, however, such
definitions can be still statically unfolded up to a given depth.

Our methodology is actually independent of OCL. For example, it would ap-
ply to transformations contracts specified in first order logic, too, like in [5].
That would open up further possibilities for symbolic reasoning. Our lightweight
methodology permits checking transformation correctness; however, as it relies
on bounded model finding, formally, our method can only disprove refinement.
Using wide enough bounds can provide high confidence in refinement, though.
Another possibility would be to prove implications from the invariants and post-
conditions of S′ to those of S; however, this would require the use of theorem
provers, with less automation. We will explore this path in future work. Finally,
we also plan to combine the constraints coming from the implementation and
the specification to derive models for testing, in the style of [11].

Acknowledgements. Research partially funded by the Nouvelles Équipes
Program of the Pays de la Loire Region (France), the EU project NESSoS

172 F. Büttner et al.

(FP7 256890), the Spanish Ministry of Economy and Competitivity (project
“Go Lite” TIN2011-24139), the R&D programme of the Madrid Region (project
“e-Madrid” S2009/TIC-1650).

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2010)

2. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
alloy. In: MODEVVA 2007 (2007)

3. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer, Berlin (1998)

4. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models! In: Wang, J., Whittle, J., Harel, D.,
Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer,
Heidelberg (2006)

5. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

6. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

7. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

8. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: ASE 2007, ACM (2007)

9. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: OCL Workshop, vol. 12, pp. 69–83 (2004)

10. Clavel, M., Egea, M., de Dios, M.A.G.: Checking Unsatisfiability for OCL
Constraints. Electronic Communications of the EASST 24, 1–13 (2009)

11. Guerra, E.: Specification-driven test generation for model transformations. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 40–55. Springer,
Heidelberg (2012)

12. Guerra, E., de Lara, J., Kolovos, D., Paige, R., dos Santos, O.: Engineering model
transformations with transML. Software and Systems Modeling (2012) (in press)

13. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A visual specification language
for model-to-model transformations. In: VL/HCC 2010, pp. 119–126. IEEE CS
(2010)

14. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. 20(1), 5–46 (2013)

15. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT (2012)
16. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation

tool. Sci. Comp. Pr. 72(1-2), 31–39 (2008)
17. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by

integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

18. OMG OCL Specification, version 2.3.1 (Document formal/2012-01-01) (2012)

Checking Model Transformation Refinement 173

19. Orejas, F., Wirsing, M.: On the specification and verification of model transfor-
mations. In: Palsberg, J. (ed.) Mosses Festschrift. LNCS, vol. 5700, pp. 140–161.
Springer, Heidelberg (2009)

20. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. TOSEM 21(2), 13 (2012)

21. QVT (2005), http://www.omg.org/spec/QVT/1.0/PDF/ (last accessed November
2010)

22. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

23. Spivey, J.M.: An introduction to Z and formal specifications. Softw. Eng. J. 4(1),
40–50 (1989)

24. Steel, J., Jézéquel, J.-M.: On model typing. SoSyM 6(4), 401–413 (2007)
25. Vallecillo, A., Gogolla, M.: Typing model transformations using Tracts. In: Hu, Z.,

de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 56–71. Springer, Heidelberg
(2012)

http://www.omg.org/spec/QVT/1.0/PDF/

Complete Specification Coverage

in Automatically Generated Conformance Test
Cases for TGG Implementations

Stephan Hildebrandt, Leen Lambers, and Holger Giese

Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
{stephan.hildebrandt,leen.lambers,holger.giese}@hpi.uni-potsdam.de

Abstract. Model transformations can be specified using an operational
or a relational approach. For a relational approach, an operationalization
must be derived from the transformation specification using approved
formal concepts, so that the operationalization conforms to the specifi-
cation. A conforming operationalization transforms a source model S to a
target model T , which is moreover related to S according to the relational
transformation specification. The conformance of an operationalization
with its relational specification must be tested since it is not certain that
the formal concepts have been correctly realized by the implementation.
Moreover, transformation implementations often perform optimizations,
which may violate conformance.

The Triple Graph Grammar (TGG) approach is an important repre-
sentative of relational model transformations. This paper presents an ex-
tension of an existing automatic conformance testing framework for TGG
implementations. This testing framework exploits the grammar charac-
ter of TGGs to automatically generate test input models together with
their expected result so that a complete oracle is obtained. The exten-
sion uses dependencies implicitly present in a TGG to generate minimal
test cases covering all rules and dependencies in the TGG specification
if the TGG is well-formed. In comparison to the previous random ap-
proach, this guided approach allows more efficient generation of higher
quality test cases and, therefore, more thorough conformance testing of
TGG implementations. The approach is evaluated using several TGGs,
including one stemming from an industrial case study.

1 Introduction

Model transformations are an important part of every MDE approach. Therefore,
their correctness has to be guaranteed. In a relational model transformation ap-
proach, errors may arise from faulty operationalizations, i.e. operationalizations
that do not conform to the transformation specification.Conformance means that
a source model S, which is transformed to a target model T by a transformation
implementation, is also related to T according to the relational specification (and
vice versa if the specification is bidirectional).

The Triple Graph Grammar [14] (TGG) approach is an important represen-
tative of relational model transformation approaches. To a certain extent, the

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 174–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Complete Specification Coverage 175

conformance of a TGG and a corresponding operationalization can be proven
by formal reasoning [14,9,5]. In general, though, it is not certain whether im-
plementations have realized each formal concept describing a conforming op-
erationalization correctly. Moreover, usually, TGG formalizations neither cover
every technicality that TGG implementations rely on, nor cover each additional
optimization that augments the efficiency of the model transformation execution.
Therefore, conformance testing of the implementation is required.

A framework for automatic conformance testing of TGG implementations was
already presented [10], which automatically generates and executes test cases.
A test case consists of a source (test input) and an expected target model (test
oracle). The testing framework generates random test cases, executes the TGG
implementation under test to transform the source model, and compares the
created target model with the expected target model. If a difference is detected,
a conformance error has been found. The framework’s test case generation ap-
proach makes use of the grammar character of TGGs. TGG rules are randomly
applied to create a source and expected target model simultaneously.

To assess the quality of a test case, the framework measures specification
coverage, which consists of rule coverage and rule dependency coverage. Rule
coverage is the percentage of TGG rules that were applied when building a
particular test case. Likewise, rule dependency coverage is the percentage of
covered produce-use dependencies between TGG rules. The aim of generating
test cases is to achieve complete specification coverage. However, when evaluating
the random generation approach [10] with several TGGs, complete specification
coverage could not be achieved for complex TGGs. If a TGG contains very
complex rules, the random generation approach is unlikely to generate test cases
covering such rules.

Therefore, this paper presents a different test case generation approach, which
generates test cases guided by dependencies between TGG rules. In practice,
these test cases also achieve complete specification coverage for complex TGGs.
Moreover, the test cases are as small as possible, which helps in finding the cause
of conformance errors.

This paper is structured as follows: First, Sec. 2 presents the basic principles of
TGGs and a running example. Sec. 3 briefly describes the existing conformance
testing framework. The new dependency-guided generation approach and its
completeness and minimality properties are explained in Sec. 4. An evaluation
of the approach follows in Sec. 5, related work is discussed in Sec. 6 and Sec. 7
concludes the paper.

2 Triple Graph Grammars in a Nutshell

Triple Graph Grammars are a relational approach to bidirectional model trans-
formation and model synchronization [14]. TGGs combine three conventional
graph grammars for the source, target and correspondence models. The corre-
spondence model explicitly stores correspondence relationships between source
and target model elements. Fig. 1 shows the metamodels of Block Diagrams,

176 S. Hildebrandt, L. Lambers, and H. Giese

BlockDiagram Block

SystemBlock

-name : string
ElementmodelElements UMLClassDiagram

-name : string
UMLElement

elements

UMLClass

-text : string
UMLStereotype

UMLAssoc

stereotypes

source

target

TGGNode EObject

CorrAxiom CorrBlock

CorrSystem

source

target

Block Diagram Metamodel Correspondence Metamodel Class Diagram Metamodel

Fig. 1. Example Metamodels

name : string = nameVar

bd1 : BlockDiagram ca1 : CorrAxiom

name : string = nameVar

cd1 : UMLClassDiagram
forward = bd1.name
reverse = cd1.name

nameVar : String
++ ++ ++

++
++

Axiom: BlockDiagram2ClassDiagram

bd2 : BlockDiagram ca2 : CorrAxiom cd2 : UMLClassDiagram

name : string = nameVar

sys : SystemBlock cs : CorrSystem

name : string = nameVar

cl2 : UMLClass

name : string = nameVar + '_stereotype'
text : string = 'system'

st2 : UMLStereotype

forward = sys.name
reverse = cl2.name

nameVar : String
++ ++ ++

++

ca3 : CorrAxiom cd3 : UMLClassDiagram

cb3 : CorrBlock

name : string = nameVar + '_assoc'

as : UMLAssoc

cl3 : UMLClass

name : string = nameVar

cl4 : UMLClass

name : string = nameVar + '_stereotype'
text : string = 'block'

st4 : UMLStereotype

cb4 : CorrBlock

bl3 : Block

name : string = nameVar

bl4 : Block

forward = bl4.name
reverse = cl4.name

nameVar : String

++ ++ ++

++
++

Rule 1: SystemBlock2Class

Rule 2: Block2Class

A: bd1.name = cd1.name

R1: sys.name = cl2.name
sys.name + ’_stereotype’ = st2.name

R2: bl4.name = cl4.name
bl4.name + ’_stereotype’ = st4.name
bl4.name + ’_assoc’ = as.name

CorrPca3(r2)

CorrPcb3(r2)

CorrPcb4(r2)

CorrPcs(r1)

CorrPca1(ax)

CorrPca2(r1)

Fig. 2. Example TGG relating Block Diagrams to Class Diagrams

Complete Specification Coverage 177

name : string = Axiom1
: BlockDiagram : CorrAxiom

name : string = Axiom1
: UMLClassDiagram

name : string = System2
: SystemBlock

name : string = Block3
: Block

: CorrSystem

: CorrBlock

name : string = System2
: UMLClass

name : string = System2_stereotype
text : string = system

: UMLStereotype

name : string = Block3_assoc
: UMLAssoc

name : string = Block3
: UMLClass

name : string = Block3_stereotype
text : string = block

: UMLStereotype

Axiom

Rule 1

Rule 2

Fig. 3. A Block Diagram and Class Diagram connected by a correspondence model

Class Diagrams and a correspondence metamodel. Fig. 2 shows a TGG specify-
ing a transformation between these languages.

A TGG consists of an axiom and several rules. Fig. 2 uses a shortened nota-
tion, which combines the Left-Hand-Side (LHS) and the Right-Hand-Side (RHS)
of a rule. Elements occurring on both sides are black, elements occurring only
on the RHS, i.e. which are created by the rule, are green and marked with ++1.
TGG rules never delete elements, therefore, the LHS is always a subset of the
RHS. In addition, attribute formulae (φi) are specified to ensure consistency of
attribute values.

The axiom in Fig. 2 transforms a BlockDiagram element to a UMLClassDia-
gram and a CorrAxiom node. Rule 1 transforms a SystemBlock to a UMLClass
and a UMLStereotype with the text “system”. Rule 2 transforms a Block to a
UMLAssoc, UMLClass and a UMLStereotype with the text “block”. Attribute
formulae ensure equality of element names. Fig. 3 depicts instances of the meta-
models resulting from the following rule sequence: Axiom, rule 1, rule 2.

A TGG rule can be applied on a host graph if there is an injective morphism
from the rule’s LHS to the host graph. In practice, type inheritance of the node
types must also be respected, i.e. the matched nodes in the host graph must have
the same type or a subtype of the node types in the rule. A graph morphism
respecting type inheritance is formally defined in [7]. In addition, the rule’s
attribute formulae must hold. A TGG rule sequence is a sequence of the axiom
and an arbitrary number of TGG rules. Each rule may appear multiple times in
a sequence. A rule sequence is applicable on a host graph if one rule after the
other is applicable starting with the host graph. This implies that all rules in the
sequence must only use elements in their LHSs that are available in the initial
host graph or are produced by previous rules. If the host graph is empty (as is
the case when using the TGG to generate models, cf. Sec. 3), an applicable rule
sequence must start with the axiom.

TGGs are relational model transformation specifications that cannot be exe-
cuted directly to transform a given source model to a target model. Instead, op-
erational rules have to be derived for each transformation direction: A forward/

1 For better readability, only nodes in Fig. 2 are marked with ++.

178 S. Hildebrandt, L. Lambers, and H. Giese

backward transformation takes a source/targetmodel (left/right domain in Fig. 2)
and creates the correspondence and target/source models. A model integration
creates the correspondence model for given source and target models.

MoTE2 is a TGG implementation supporting bidirectional model transfor-
mation and synchronization. Since the automatic operationalization of attribute
formulae is difficult[13] in general, the developer has to explicitly specify at-
tribute computations for each direction in MoTE. These computations must be
compatible with the attribute formulae. When TGG rules are applied directly, as
the conformance testing framework does (cf. Sec. 3), attribute values of created
elements have to be provided via rule parameters, nameVar in Fig. 2. For or-
dinary model transformations, forward and backward expressions are specified,
which compute a parameter’s value based on the respective input model.

MoTE’s algorithm has been formalized [6] and suitable criteria have been
defined3, which a TGG must satisfy so that MoTE can efficiently execute the
transformation and so that conformance is not lost. In addition, these criteria
play a crucial role in the random and dependency-guided test case generation
approaches (cf. Sec. 3 and Sec. 4). Among these criteria, the following subset is
especially important for the remainder of this paper:

1. Every TGG rule and the axiom create exactly one correspondence node.
2. Every TGG rule contains at least one correspondence node in its LHS.
3. Every model element in a TGG rule (a node or a link in the rule’s source or

target model domain) is connected to exactly one correspondence node via
one correspondence link.

4. Every TGG rule and the axiom always create correspondence links along
with their incident nodes.

These criteria have several implications: A single correspondence node in a TGG
rule, its outgoing correspondence links and the correspondence links’ model ele-
ments always form a pattern (criteria 3 and 4). The correspondence node can be
used as a representative of that pattern. This is referred to as a correspondence
pattern. It is denoted as CorrPc (r) when referring to the correspondence pattern
of correspondence node c in rule r. Moreover, every rule and the axiom create
exactly one correspondence pattern (criterion 1) and every rule contains at least
one correspondence pattern in its LHS (criterion 2). Rule 2 (cf. Fig. 2) consists
of three correspondence patterns: CorrPca3(r2), CorrPcb3(r2) and CorrPcb4(r2).

Furthermore, in an applicable TGG rule sequence, all correspondence patterns
used in the LHS of a rule must be produced by previous rules. In addition to
the aforementioned criteria and for the remainder of this paper, all TGGs are
assumed to be well-formed according to the following well-formedness criterion:

Definition 1 (Well-Formed TGG). A TGG is well-formed if each of its rules
satisfies criteria 1 to 4 and an applicable rule sequence exists, which contains that
rule.
2 http://www.mdelab.de/mote/
3 Note, that MoTE has been developed further since [6] was published. In particular,
link bookkeeping has been implemented. Therefore, all criteria demanding to always
treat a transformed link along with a transformed node can be relaxed.

http://www.mdelab.de/mote/

Complete Specification Coverage 179

TGG
Rules

?

TGG Editor

EMFCompare

create

generate

TGG
Implementation

Source
Model

CS

Target
Model

CT

Expected
Target
Model

CT

Conformance Testing
Framework

Spec.
Coverage

Test Case Generator
Random

Generation (Sec.3)

Dependency-
Guided (Sec. 4)

Fig. 4. Components of the automatic conformance testing framework for TGG
implementations

A TGG is not well-formed if, for example, one of its rules uses elements
that are not produced by any other rule. Such a TGG rule would obviously be
unnecessary, comparable to unreachable code in a program. Test cases for such
a TGG could never achieve complete specification coverage.

3 Automatic Conformance Testing with Random Model
Generation

As explained in Sec. 1, a framework for automatic conformance testing of TGG
implementations was already presented [10]. It is briefly explained in this section.

The testing framework is depicted in Fig. 4. The Test Case Generator gener-
ates pairs of a source and an expected target model, based on the TGG. This pair
forms a test case. It can either use the existing random generation approach or
the new dependency-guided generation presented in Sec. 4. The TGG Implemen-
tation under test transforms the source model to a second target model, which
EMFCompare compares to the expected target model. This kind of comparison
limits the framework to deterministic TGGs, i.e. there is only one target model
per source model.

The existing random approachgenerates randomapplicableTGG rule sequences
and applies them on the empty graph as follows: First, the TGG’s axiom is applied
to create the root nodes of the three models. The first correspondence node is put
into a set. After that, a TGG rule is selected randomly. A match must be provided
for each of the rule’s LHS correspondence nodes (cf. criterion 2), and, therefore,
for all required correspondence patterns. The nodes are selected randomly from
the set of previously created correspondence nodes. Then, an attempt is made to
apply the rule to extend all three models simultaneously. If this is successful, its
created correspondence node is added to the set of previously created correspon-
dence nodes (cf. criterion 1). If the attempt is not successful, another TGG rule is
selected randomly and attempted to be applied.

180 S. Hildebrandt, L. Lambers, and H. Giese

This process is repeated until a user-defined number of rules are applied,
which roughly corresponds to the sizes of the generated models. In addition to
the desired model sizes, the user has to specify how values of rule parameters
should be computed. For each rule parameter, the user can specify whether it
should get a fixed value, the value of a counter, or a concatenation of both. In
Fig. 3 the values of the nameVar rule parameters consist of a fixed string, which
corresponds to the name of the rules, and a counter value. The use of rule names
for parameter values allows easy retracing of which model element was created
by which rule in which order.

Furthermore, the Test Case Generator computes specification coverage, which
consists of rule coverage and rule dependency coverage. Rule coverage is the per-
centage of TGG rules that were applied when building a particular test case and
rule dependency coverage is the percentage of covered produce-use dependencies
between TGG rules. In general, a dependency exists between two rules if one
rule uses elements in its LHS that are produced by the other rule. Of course,
the coverage of a set of test cases should be as high as possible to ensure confi-
dence in the quality of the tested subject. Theoretically, the random approach
can achieve complete specification coverage for well-formed TGGs because all
existing rule sequences (up to the predefined size) can be generated. However,
complex TGG rules may appear only in a small fraction of all possible rule se-
quences. Therefore, generating such sequences and achieving complete coverage
for complex TGGs in practice is unlikely.

Another drawback of the random generation approach is that the test models
may become much larger than is actually necessary in order to achieve high
coverage. This complicates debugging if a conformance error is found.

4 Dependency-Guided Test Case Generation

To achieve complete specification coverage, in particular rule dependency cover-
age, test cases have to be generated to specifically target dependencies present
in a TGG. The presented approach analyzes the TGG and makes all depen-
dencies explicit as rule dependency graphs (Sec. 4.1). Based on these graphs,
test case descriptions, which are basically TGG rule sequences, are generated
and executed to yield a test case (Sec. 4.2). These test cases achieve complete
specification coverage and are minimal (Sec. 4.3).

4.1 Deriving Rule Dependencies from TGG Rules

The relevant dependencies are produce-use dependencies4 [12]. Therefore, “de-
pendency” will be used synonymously with this term in the remainder of this
paper. According to the common definition of produce-use dependencies [12],
a produce-use dependency exists if a rule produces an element that is used by
another rule. Due to the criteria imposed on TGG rules (Sec. 2), a produce-use
dependency between TGG rules can be defined as follows:

4 Other kinds of dependencies, e.g. delete-forbid dependencies, do not occur because
TGGs as presented in Sec. 2 do not delete any elements.

Complete Specification Coverage 181

bd2
:BD

ca2
:CA

cd2
:CD

cs
:CS

cl2
:CL

sys
:SB

st2
:ST

Rule 1: SystemBlock2Class

++

ca3
:CA

cd3
:CD

cb3
:CB

cl3
:CL

bl3
:BL

as
:AS

cb4
:CB

bl4
:BL cl4

:CL

st
:ST

Rule 2: Block2Class

++

II.

I.

I. produce-use dependency
II. shared context of I.

bd1
:BD

ca1
:CA

cd1
:CD

++
Axiom: BlockDiagram2ClassDiagram

r1

r0

r2

c1 c2'

c2

x
:X

x
:X

Fig. 5. Dependencies between TGG rules. Node types are omitted. The annotations
in italics match the variables used in Definition 2 and Definition 3. Correspondence
patterns with same backgrounds can be matched to each other.

Definition 2 (Produce-Use Dependencies between TGG Rules). A
produce-use dependency exists from a required TGG rule r1 to a dependent
rule r2, and in particular to a correspondence node c2 in the LHS of r2, if there
is an injective morphism respecting type inheritance between the correspondence
pattern of c2 and the correspondence pattern created by r1. It is denoted r1 → rc22 .

Definition 2 is more specific than the general definition of produce-use dependen-
cies, because a dependency only exists if the complete correspondence pattern
on the LHS of one TGG rule is created by another rule. The classical defini-
tion of produce-use dependencies also considers the case in which only particular
elements of the patterns are used, which would result in a large number of
rule dependencies. However, due to criteria 2 and 3 a correspondence pattern
is always created by a single rule so that Definition 2 filters out many, but not
all (see Sec. 5), dependencies resulting in non-applicable rule sequences. Note,
that a TGG rule may have a dependency to itself, e.g. in rule 2, the pattern
CorrPcb3(r2) matches CorrPcb4(r2) (Fig. 2).

Every TGG rule is applicable in a certain context. The context of a rule r2 is
a set of TGG rules (or the axiom), which contains one required TGG rule (or
axiom) ri for each correspondence node cj in the LHS of r2 so that ri → r

cj
2 .

A TGG rule may be applicable in multiple contexts. The context of rule 1 (cf.

182 S. Hildebrandt, L. Lambers, and H. Giese

Fig. 5, ignore dashed elements) is the axiom, the contexts of rule 2 are the axiom
and rule 1, as well as the axiom and rule 2.

If a rule has multiple correspondence nodes on its LHS, the rule’s context can
overlap with the context of one of its required rules, i.e. both rules depend on
some common rule. The pattern CorrPca3(r2) in rule 2 is also present in rule 1 as
CorrPca2(r1) (dashed backgrounds). Moreover, the combination of the patterns
CorrPca3(r2) and CorrPcb3(r2) (grey background) in rule 2 can be found in rule
1. Therefore, rule 2 can only be applied in the context of the axiom and rule
1 if CorrPca2(r1) and CorrPca3(r2) are matched to the same instance elements
when rule 1 and rule 2 are applied. If rule 2 matches CorrPca3(r2) to different
elements than CorrPca2(r1), it is not applicable. The class diagram matched to
cd3 would then not be the class diagram, to which rule 1 added the class cl2.
The link between cd3 and cl3 would not be found. This leads to the definition
of a shared context of a produce-use dependency.

Definition 3 (Shared Context of a Produce-Use Dependency). Given a
dependency r1 → rc22 according to Definition 2, a third rule r0 is a shared con-
text of this dependency if the following conditions are satisfied: (1) r2 contains

another correspondence node c′2 in its LHS, c2 �= c′2; (2) a dependency r0 → r
c′2
2

exists; (3) a dependency r0 → rc11 exists, where c1 belongs to the LHS of r1;
and (4) there is an injective morphism respecting type inheritance5 from the
restricted correspondence pattern CorrPResc′2↔c2(r2) to CorrPc1 (r1). The re-
stricted correspondence pattern CorrPResc′2↔c2(r2) is CorrPc′2 (r2) except those
nodes that are neither source nor target of a link in CorrPc2 (r2) and those links
whose source and target are not in CorrPc2 (r2).

The restricted pattern is necessary to handle cases like the following: Assume the
axiom creates an additional element x (drawn with a dashed line in Fig. 5) in
the class diagram, which also appears in CorrPca3(r2) but not in CorrPca2(r1).
Then, an injective morphism from CorrPca3(r2) to CorrPca2(r1) would not
exist, although the dependencies would still be the same. Therefore, all elements
in CorrPca3(r2) not directly connected to an element in CorrPcb3(r2) have to
be ignored in order to detect a shared context.

The dependencies and shared contexts of a TGG rule are made explicit in
Rule Dependency Graphs (RDG). For each TGG rule, one RDG is generated. It
contains all correspondence nodes on the LHS of that rule, denoted as rounded
rectangles in Fig. 6. All dependencies to these correspondence nodes are depicted
using solid arrows from circles representing rules that produce matches for these
correspondence nodes. Shared contexts are depicted using a dashed arrow from
the correspondence node in the required rule (c1 in Definition 3, denoted by a

5 As a consequence of the fact that both r1 and r2 have a dependency to r0, elements
created by r0 must match CorrPc1(r1) and CorrPc2(r2) at the same time. Therefore,
the morphism between CorrPc1(r1) and CorrPResc′

2
↔c2(r2) matches nodes if they

have the same type, one type is a subtype of the other, or both types have a common
subtype.

Complete Specification Coverage 183

RDG – Axiom

Axiom

RDG – Rule 1

ca2

Axiom

Rule
1

Rule
2

ca2

ca3

RDG – Rule 2

ca3

cb3

RDG – Rule 2 (a)

Axiom

Rule
1 ca2

ca3

cb3

RDG – Rule 2 (b)

Axiom

Rule
2 ca3

ca3

cb3

produce-use dependency
shared context

Fig. 6. Rule dependency graphs generated from the example TGG (Fig. 2)

rectangle) to the correspondence node in the current rule (c′2). The RDGs of the
example TGG are shown in the left half of Fig. 6.

Before generating test case descriptions from RDGs in the next step, the
RDGs are simplified, so that only one dependency, i.e. one outgoing edge, is
stored for each correspondence node. For example, RDG - Rule 2 contains two
dependencies for cb3. These are split to create RDG - Rule 2 (a) and (b). If there
are multiple correspondence nodes with more than one dependency, all combi-
nations have to be built and the number of simple RDGs increases accordingly.

4.2 Deriving Test Cases from Rule Dependencies

A Test Case Description (TCD) is a sequence of TGG rules that also specifies
the values of rule parameters and the bindings of LHS correspondence nodes to

TCD – Axiom

Axiom

Axiom1

nameVar

TCD – Rule 1

Axiom Rule
1

Axiom1

nameVar nameVar

System2

ca2 Axiom Rule
1

Axiom1

nameVar nameVar

System2

ca2 Rule
2

nameVar

Block3

cb3

ca3

TCD – Rule 2 (b)

Rule
2

nameVar

Block4

cb3

ca3

TCD – Rule 2 (a)

Axiom Rule
1

Axiom1

nameVar nameVar

System2

ca2 Rule
2

nameVar

Block3

cb3

ca3

TCD – Rule 2 (a) (intermediate version)

Axiom Rule
1

ca2 Rule
2

cb3

ca3

Axiom

Fig. 7. Test case descriptions generated from the rule dependency graphs (Fig. 6)

184 S. Hildebrandt, L. Lambers, and H. Giese

previously created correspondence nodes. TCDs can be generated from simple
RDGs in order to yield test cases with complete rule dependency coverage (cf.
Sec. 4.3). Fig. 7 shows the TCDs generated from the simple RDGs in Fig. 6. The
arrows denote the data flow of rule parameter values and created correspondence
nodes. This generation algorithm works as follows:

1 Set RDGs = {Set o f s imp l i f i e d r u l e dependency graphs}
2 Map TCDs = {} //maps TGG ru l e s to t h e i r TCDs
3
4 whi l e (RDGs i s not empty) {
5 rdg := remove an RDG from RDGs, where
6 a TCD ex i s t s a l ready f o r a l l r e qu i r ed r u l e s
7
8 tcd := c r e a t e new TCD, add ru l e o f rdg
9

10 f o r each (TGG ru l e r r e qu i r ed by rdg) {
11 c lone sho r t e s t TCD of r and i n s e r t i n to tcd
12 }
13 merge oc cu r r en c e s o f r u l e s accord ing to RDG
14
15 s o r t r u l e s by dependenc i es
16
17 add to TCDs
18 }
19
20 add value s o f p r im i t i v e parameters to a l l TCDs

First, all simple RDGs are put into a set (line 1). Also, a map is created, which
maps all TGG rules to their TCDs (line 2). Then, the TCDs are created in a
loop. An RDG is selected, so that a TCD exists for all its required TGG rules
(line 5).6 A new TCD is created, which contains only the rule of the RDG. Then,
rules have to be added to the TCD, which create the correspondence patterns
required by the rule of the current RDG (lines 10-12). This is done by picking the
shortest TCD from the map of already created TCDs and copying and inserting
it into the current TCD. If no TCD has been created yet for a required rule,
the TGG violates criterion 5 (cf. Sec. 2). After this step, the rules in the current
TCD may not adhere to the shared contexts specified in the RDGs. For example,
TCD - Rule 2 (a) (intermediate version) is the TCD generated from RDG - Rule
2 (a) after line 12. The axiom appears twice, once for rule 1 and once for rule
2, although both should use the result of a single axiom. Therefore, multiple
occurrences of rules (or the axiom) have to be merged (line 13). After that, the
rules have to be sorted by their dependencies, so that rules producing elements
required by other rules come first (line 15). Finally, the new TCD is added to
the map of TCDs. This process is repeated until all RDGs have been processed.
After all TCDs have been generated, they have to be extended with values for
rule parameters. Fig. 7 shows these final TCDs.

As a last step, the TCDs have to be executed. The rules in each TCD are
applied successively. Rule parameters and LHS correspondence nodes are bound
to the values specified in the TCDs. This produces sets of test cases to test a
model transformation implementation. For example, executing TCD - Rule 2(a)
produces the models shown in Fig. 3.

6 In the first loop iteration, this is only the case for the axiom’s RDG because it does
not require any rules.

Complete Specification Coverage 185

4.3 Completeness and Minimality of Test Cases

The test suite consisting of test cases specified by the TCDs generated from a
TGG as described in Sec. 4.1 and Sec. 4.2 is complete w.r.t. rule dependency cov-
erage. A test case covers a particular dependency r1 → rc22 if the rule sequence
that built the test case contains at least r1 and r2, and the created elements of r1
were bound to CorrPc2 (r2) when r2 was applied. Complete dependency cover-
age of generated test cases is ensured because the dependency analysis first finds
all produce-use dependencies without considering shared contexts. If TCDs were
then generated, all rule sequences with all possible rule dependencies would be
generated. TCD - Rule 2 (a) (intermediate version) (cf. Fig. 7) would already
be a final TCD. Then, all rules that occur multiple times would have to be
combined in all possible ways to generate additional TCDs, TCD - Rule 2 (a)
in the example. For more complex TGGs, a combinatorial explosion of the set
of generated TCDs could be observed, e.g. if TCD - Rule 2 (a) (intermediate
version) contains the axiom three times, this would result in four additional
combinations. However, many combinations would not be applicable. By consid-
ering shared contexts, most non-applicable rule combinations are filtered out. If
it is already known that a rule is only applicable in a certain context, all other
contexts can be discarded.

A direct consequence of complete rule dependency coverage is complete rule
coverage. If a test suite applies TGG rules so that all dependencies between rules
are covered, then all rules of the TGG have to be applied, too, because every
TGG rule depends on at least one other rule or the axiom (criterion 2).

Furthermore, each test case yielded from a generated TCD is minimal w.r.t.
the rules required to test a particular dependency. Minimal means that if any
rule except the last rule is removed from the TCD, the TCD would not be
applicable anymore. This is ensured by the way in which TCDs are generated.
Each TCD is generated for a rule and a particular context. Only those previously
generated TCDs are added to this TCD, which contribute to the rule’s context.

5 Evaluation

The presented algorithms for dependency analysis and test case generation have
been implemented in QVT Operational and Java. They are available from the
MDELab Update Site7.

The new dependency-guided test case generation approach was verified by
generating test cases for the same TGGs as in [10] and analyzing their spec-
ification coverage. The TGGs are: SDL2UML, which is slightly more complex
than the example TGG (cf. Fig. 2); Automata2PLC, which is a transformation
from automata models to a language for programmable logic controllers; and
SystemDesk2AUTOSAR, which is a transformation from a tool-specific meta-
model to AUTOSAR, a modeling standard from the automotive domain. Using
the random test case generation approach (cf. Sec. 3), complete rule and rule

7 http://www.mdelab.de/update-site

http://www.mdelab.de/update-site

186 S. Hildebrandt, L. Lambers, and H. Giese

dependency coverage were achieved only for the SDL2UML and Automata2PLC
TGGs. For SystemDesk2AUTOSAR, only 71% rule coverage and 19% rule de-
pendency coverage were achieved using test models with more than 1000 model
elements. With the new dependency-guided approach, complete rule and rule
dependency coverage was achieved for all TGGs. Some of these test cases also
uncovered previously unknown errors in the TGG.

Moreover, a weakness of the dependency analysis became visible. In the Sys-
temDesk2AUTOSAR TGG, elements in the LHS of a rule have types that were
too general. Several other rules produce elements that fit the correspondence pat-
tern, which contains this general type. The dependency analysis detected these
dependencies. However, due to the overall structure of the LHS of that rule, and
in particular the connections between correspondence patterns, the rule was only
applicable for particular subtypes. Not all dependencies detected by the depen-
dency analysis yield applicable rule sequences. Still, one can argue that this is
also an indication of a modeling error. Therefore, the rules were changed so that
more concrete types are used and the problem disappeared. Another cause for
non-executable test cases are OCL conditions, which are used to express struc-
tural application conditions or attribute constraints in a TGG rule. They may
restrict applicability of a TGG rule but are not considered by the dependency
analysis, yet. For these reasons, all non-applicable TCDs are also output by the
testing framework. This assists the user in finding the reason why they are not
executable.

Another advantage of the dependency-guided approach is that the gener-
ated test cases are minimal (cf Sec. 4.3). The largest test case for the Sys-
temDesk2AUTOSAR TGG consists of only nine rule applications. Moreover,
the rules are tested separately, i.e. there is a separate test case for each rule
and each context. This helps in debugging the TGG implementation if errors
are found. However, although the test cases themselves are usually small, the
total number of test cases can be very large for complex TGGs. For example, 99
test cases were generated for the SystemDesk2AUTOSAR TGG. Yet, many test
cases are already contained in others. In the example (cf. Fig. 7), TCD - Rule
2(b) contains all other TCDs. Therefore, it is possible to minimize the number
of test cases by eliminating those test cases that are subsumed by others. This is
done by a pairwise comparison of the generated test cases. The number of test
cases for the SystemDesk2AUTOSAR TGG could be reduced from 99 to 68.

6 Related Work

A number of conformance testing approaches exists, which rely on graph
transformation as a specification technique [2,8]. Instead of focusing on model
transformation specifications and implementations, they are rather concerned
with conformance testing of behavioral specifications w.r.t. (actual) behavior
in refined models or (generated) code. There are some testing approaches pro-
posed for model transformation implementations. Most black-box methods are
concerned with generating qualified test input models (e.g. [15,4]) taking the in-
put metamodel (and corresponding constraints) into consideration. For example,

Complete Specification Coverage 187

metamodel coverage is considered using data-partitioning techniques in [4]. It is
required, for example, that models must contain representatives of association
ends, which differ in their cardinalities. PaMoMo [1] is a high-level language for
the specification of inter-model relationships, which can be used to check va-
lidity of models, derive model transformations, e.g. TGG rules, or derive trans-
formation contracts for automated testing of transformation implementations.
In contrast, white-box criteria are proposed in [11] to qualify test input mod-
els. The TGG conformance testing framework[10] generates conformance test
cases using the model transformation specification as an “executable contract”
generating not only test input models, but also expected results obtaining a
complete oracle. In [3] the specification is used as partial oracle and no expected
results are generated. Moreover, it proposes a new uniform framework, whereas
the conformance testing framework [10] relies on TGGs as an existing model
transformation specification technique for which several tools are already
available.

Applicability criteria of graph transformation rule sequences are presented in
[12]. If certain criteria are satisfied by the rules of a rule sequence, it can be
decided statically whether the sequence is applicable or not. In general, though,
the TGG rule sequences in the test case descriptions do not satisfy these criteria
and, thus, their applicability cannot be checked statically using these results
alone. Maybe specialized definitions can be formulated, which take the specific
criteria of TGG rules (cf. Sec. 2) into account, but this is part of future work.

7 Conclusion

Model transformations play an important role in MDE. Triple graph gram-
mars are an important representative of relational model transformations. The
previously presented automatic conformance testing framework [10] can test
conformance of a TGG implementation with its specification by automatically
generating and executing test cases. Since this framework relies on a random
generation approach, it cannot, in practice, achieve complete specification cover-
age for complex TGGs. The dependency-guided generation approach presented
in this paper analyzes dependencies implicitly present in a TGG and generates
test cases targeting these dependencies so that complete specification coverage
is achievable in practice for well-formed TGGs. In addition, the generated test
cases are minimal, which helps in debugging. The improved framework can now
automatically generate high-quality test cases for conformance testing of TGG
implementations.

In future work, the dependency analysis may be extended to analyze depen-
dencies more thoroughly to cope with structural application conditions in TGG
rules or even OCL constraints on the source and target metamodels.

188 S. Hildebrandt, L. Lambers, and H. Giese

References

1. de Lara, J., Guerra, E.: Inter-modelling with graphical constraints: Foundations
and applications. EC-EASST 47 (2012)

2. Engels, G., Güldali, B., Lohmann, M.: Towards model-driven unit testing. In:
Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 182–192. Springer, Heidelberg
(2007)

3. Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A constructive approach
to testing model transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010.
LNCS, vol. 6142, pp. 77–92. Springer, Heidelberg (2010)

4. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: Proc. of MoDeVa 2004, pp. 29–40. IEEE Computer
Society Press (2004)

5. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging the gap between formal
semantics and implementation of triple graph grammars. Technical Report 37,
Hasso Plattner Institute at the University of Potsdam (2010)

6. Giese, H., Hildebrandt, S., Lambers, L.: Bridging the gap between formal semantics
and implementation of triple graph grammars. Software and Systems Modeling,
1–27 (2012)

7. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)

8. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In:
Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg
(2005)

9. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Proc. of MDI 2012, pp. 22–31. ACM (2012)

10. Hildebrandt, S., Lambers, L., Giese, H., Petrick, D., Richter, I.: Automatic Confor-
mance Testing of Optimized Triple Graph Grammar Implementations. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 238–253.
Springer, Heidelberg (2012)

11. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations – first ex-
periences using a white box approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

12. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient Criteria for Applicability and
Non-Applicability of Rule Sequences. In: de Lara, J., Ermel, C., Heckel, R. (eds.)
Proc. GT-VMT 2008, vol. 10, EC-EASST, Budapest (2008)

13. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute Handling for Bidirec-
tional Model Transformations: The Triple Graph Grammar Case. In: Proceedings
of BX 2012, vol. 49, pp. 1–16. EC-EASST (2012)

14. Schürr, A., Klar, F.: 15 years of triple graph grammars: research challenges,
new contributions, open problems. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg
(2008)

15. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for
model transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 148–164. Springer, Heidelberg (2009)

Partial Test Oracle
in Model Transformation Testing

Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and Christian Attiogbé

LUNAM Université,
LINA CNRS UMR 6241 - University of Nantes

2, rue de la Houssinière, F-44322 Nantes Cedex, France
firstname.lastname@univ-nantes.fr

Abstract. Writing test oracles for model transformations is a difficult
task. First, oracles must deal with models which are complex data. Sec-
ond, the tester cannot always predict the expected value of all the prop-
erties of the output model produced by a transformation. In this paper,
we propose an approach to create efficient oracles for validating part of
the produced output model.

In this approach we presume that output models can be divided into
two parts, a predictable part and a non-predictable one. After identifying
the latter, we use it to create a filter. Before providing a (partial) ver-
dict, the oracle compares actual output model with the expected output
model, returning a difference model, and uses the filter to discard the
differences related to the unpredictable part. The approach infers the
unpredictable part from the model transformation specification, or from
older output models, in the case of regression testing.

The approach is supported by a tool to build such partial oracles.
We run several experiments writing partial oracles to validate output
models returned by two model transformations. We validate our proposal
comparing the effectiveness and complexity of partial oracles with oracles
based on full model comparisons and contracts.

Keywords: Test, Partial Oracle, Model Comparison.

1 Introduction

Model transformations are among the key elements of Model Driven Engineer-
ing. Since a transformation is often implemented to be reused several times,
any implementation error impacts on all the produced models. Therefore, it is
important to ensure that the implementation is correct w.r.t. its specification.

Software testing is a well-known technique for ensuring the correctness of an
implementation. In the precise case of model transformations, a test consists of
a transformation under test (TUT), a test input model and a test oracle. The
role of the oracle is to ensure that the output model, produced by the TUT, is
correct w.r.t. the transformation specification. Two methods are mainly used to
implement the test oracle: (i) comparing the output with an Expected Model or
(ii) using constraints to verify Expected Properties on the output model.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 189–204, 2013.
© Springer-Verlag Berlin Heidelberg 2013

190 O. Finot et al.

The tester is often able to predict the expected value for part of the output
model only. For instance when part of the specification is very complex. In this
case, the tester can only predict the part corresponding to what she knows about
the specification. In other cases, the specification may allow several different, or
polymorphic, outputs for the same input model. Therefore, the tester can predict
the expected value of the output model’s part that does not change from one
variant to another. Finally if the TUT performs a model refactoring, then the
tester can predict the part that should not be modified by the transformation.
We are interested in using this predictable part with a partial test oracle to
partially validate the correctness of output models.

Several approaches exist to write oracles for model transformation testing [1].
Full model comparison requires the expected model to be comprehensive. Con-
tracts express constraints between any input and output models but considering
few properties each. Assertions or patterns are suited to individually validate
properties of one output model. However, we need to entirely validate the pre-
dictable part of the output model, not just a compilation of properties.

The contribution of this paper is an approach to implement test oracles issuing
partial verdicts when part of the output model is predictable. The approach relies
on filtered model comparison with partial expected models.

The partial expected model is compared with the output model generated
by the TUT. The observed differences are filtered in order to reject those con-
cerning the unpredictable part of the output model. To create the filter we need
to precisely identify the unpredictable part. Elements are considered as belong-
ing to the unpredictable part based on the meta-elements they are instance of.
Therefore, we propose to filter the comparison’s result with a pattern extracted
from the transformation’s output meta-model.

Along with this approach, we propose a tool that automatically produces
partial verdicts. The tool’s inputs are an output model, a partial expected model,
and patterns made of meta-model excerpts. We apply our approach to test two
model transformations with polymorphic outputs. We create 94 test models;
obtaining 94 partial verdicts with our partial oracles, detecting 4 bugs. We define
94 partial expected models with 2,632 elements, 70% less than for the classical
model comparison approach.

Section 2 discusses the control of part of an output model by an oracle. Sec-
tion 3 details our approach to define a partial oracle for part of the output model.
Section 4 presents our implementation of the approach. Section 5 presents the
experiments we ran on two case studies and discuss the results. Section 6
discusses existing contributions on the topic of the verification of model
transformations.

2 Test Oracle for Models Transformations

In this section, we discuss the situation where the tester is able to predict part
of an output model but she does not have any oracle function suited to use it.

Partial Test Oracle in Model Transformation Testing 191

2.1 Test Oracle for Model Transformations

Figure 1 depicts the process of model transformation testing. The input and
output data are models that conform to meta-models. The tester selects an
input model, then the TUT transforms it, obtaining an output model. Finally,
she writes test oracles aimed at validating the output model, ensuring that it is
correct w.r.t. the TUT’s specification.

A test oracle consists of two elements: oracle function and oracle data [1]. The
oracle function analyses the output model and uses the oracle data to produce
the verdict. For instance when comparing the actual result with the expected
one, the oracle function is the comparison and the oracle data is the expected
result. In previous work [1], we have defined several oracle functions to test model
transformation. These oracle functions use comparison with an expected model
or constraints expressed either between the input and output models or on the
output one only.

2.2 Partial Verdict for Model Transformation Testing

A test oracle may produce a partial verdict when only part of the specification
is considered or part of the output data is validated. In model transformation
testing, one may want to write partial oracles because the tester can only or easily
predict part of the expected output model in many situations. We distinguish
three such situations:

1. The transformation’s specification can be large and output models are com-
plex data. The tester could predict only the part for which she can handle
the complexity.

2. The transformation can be endogenous, modifying partially the input model,
e.g., model refactoring. Therefore, part of the input model remains un-
changed and could be used as oracle data to check that the transformation
is side-effect free.

3. The transformation can return polymorphic outputs: instead of a unique
output solution, several variants of the expected model exist. Most of the
time, those variants are semantically equivalent, but syntactically different.
This variability usually comes from the model transformation’s specifica-
tion. The tester cannot predict which variant should be produced by the
transformation’s implementation and she should consider them all.

Fig. 1. Model Transformation Testing

192 O. Finot et al.

The flattening of a state machine is an example of such a transformation. Its
input is a hierarchical state machine, the output is another state machine
expressing the same behavior without any composite state. The input model
presented in Figure 2 can be transformed into the output model presented
in Figure 3(a). With such state machines, the number of final states is not
limited to only one. Thus, the model presented in Figure 3(b) is also a correct
output for the transformation of the input presented in Figure 2.

In such situations, the tester is able to predict the expected value for part of the
output model with limited effort, while the remaining part is unpredictable or
too difficult to be predicted. We envisage being able to write a partial oracle,
using predictable part of the expected model as oracle data.

2.3 Existing Oracle Functions and Partial Verdict

Considering partial expected model as oracle data requires a suitable oracle func-
tion. Several oracle functions have been proposed for model transformation test-
ing [1], but are they suitable for partial verdict?

A first set of oracle functions considers model comparison. Testing frameworks
implement such approach: (i) Lin et al. developed a testing engine [2] based
on DSMDiff, a model comparison engine, (ii) EUnit [3] compares models with
EMFCompare (compliant with the principles exposed by Cicchetti et al. [4]).
They compare the output model with an expected model. The latter is obtained
manually by the tester, or from a reference transformation (e.g., previous version
or regression testing), or a reverse transformation returns an input model from
the output model to be compared with the test model (this last approach is
limited to injective transformations which are rare and require the existence of
such a transformation, which cannot be developed only for testing, especially
when the transformation returns polymorphic outputs).

Fig. 2. Example M in, of Hierarchical State Machine

(a) Variant Mout
1 with One Final
State

(b) Variant Mout
2 with Two Final

States

Fig. 3. Possible Results for the Flattening of M in

Partial Test Oracle in Model Transformation Testing 193

Hence, using such comparison approaches is not suited to get partial verdict
from part of an expected model. The comparison would identify differences con-
cerning the unpredictable part of the output model: (1) when this part is too
complex to be predicted by the tester, (2) when it concerns part transformed by
a refactoring, (3) when it is a polymorphic model with many variants.

Those differences should be manually analyzed to get the verdict of the test.
We face this issue considering the three situations where we want to use partial
expected models as oracle data. Such complete model comparison requires com-
prehensive expected models. Moreover, in case of polymorphic output models,
it requires all the variants to be compared with the output model because only
one of them could be equal to it. Therefore this oracle function is not effective
to write partial oracle.

A second set of oracle functions considers properties to be checked on the out-
put model. Contracts are constraints between input and output models. Cariou
et al. [5], verify model transformations using contracts. Their contracts are com-
posed of constraints (i) on the output model, (ii) on the evolutions of model
elements from the input model to the output model. Defining contracts between
input and output model is at least as complex as writing the transformation it-
self; thus they are as error prone as the transformation. Contracts are not suited
to provide the partial verdict we envisage. They are only appropriate to control
a few requirements of the specification: no output with composite states for in-
stance. Vallecillo et al. [6] reach the same conclusion and present Tracts, partial
contracts for this purpose.

A third set of oracle functions considers assertions or patterns (e.g., OCL
constraints on the output model of one test case). It would allow controlling
dedicated properties of one model. However a model is not just a big set con-
taining many properties, the organization of these properties, i.e., their structure,
is also important. Our goal is to globally control the predictable part and not a
compilation of properties, thus assertions are not suited to our needs.

To sum up, existing oracle functions are not suited to our needs: controlling
part of the output model using a partial expected model as oracle data.

3 Filtered Model Comparison for a Partial Verdict

We propose a new approach to obtain a partial verdict for the test of model
transformations. We define a partial oracle function considering part of the
output model, the one the tester can predict.

The obtained verdict is only partial but it is still a good piece of information
for the tester. Using this oracle function she is able to detect bugs in the trans-
formation under test. Furthermore, this partial verdict requires less effort to be
obtained and consumes less resources than a complete one.

3.1 Partial Oracle Data to Focus on Part of the Output Model

The oracle data, which is provided by the tester, consists of two elements: a
partial expected model and a set of patterns defining which part of the model is

194 O. Finot et al.

(a) A FinalState (b) A Transition targeting a FinalState

Fig. 4. Patterns defining the Unpredictable Part for our Flattening Transformation

not considered by the oracle. The partial expected model conforms to a relaxed
version of the meta-model as in [7]. It can be a comprehensive output model if the
tester can provide it. In particular, when the output model is polymorphic, she
may provide one comprehensive variant of the model; this is especially interesting
when such a variant is available (e.g. from a reference transformation).

The patterns define which elements of the output model are not considered in
the models to produce the partial verdict. Elements belong to the unpredictable
part based on the meta-elements (EClass, EAttribute, EReference) they are
instance of. Those meta-elements are extracted from the output meta-model,
thus our patterns are meta-model fragments.

In the example presented in Figure 3, several variants exist, expressing the
same semantics; the output model is polymorphic. In Figure 3(a), both transi-
tions have the same target, while in Figure 3(b) each one has a different target.
The final states as well as the transitions targeting them, change from one vari-
ant to another, they are not predictable. We express this unpredictable part in
a pattern presented in Figure 4. It combines two patterns to filter the instances
of FinalState and those of Transition targeting a FinalState1.

3.2 Comparison and Filtering to Control the Predictable Part

We define a partial oracle function by entirely comparing the output model with
one partial expected model, then filtering the result of this comparison. Model
comparison is already implemented by several tools (e.g. EMFCompare), our
proposal focuses on filtering the comparison’s result.

In our proposal, any observed difference concerning the unpredictable part
is taken off the comparison’s result. The verdict is “pass” if the filtered com-
parison’s result is empty, because in this case, there is no difference between
produced and expected models’ predictable part. Otherwise, the test fails and
reveals a fault in the model transformation.

This result is interesting because the tester detects faults with only a partial
expected model when the classical model comparison approach (see Section 2.3)
needs at least a comprehensive one before detecting any fault. The filtering pat-
terns, which are written once, are used for every test of a given transformation.
Additionally, they are built in a familiar way for a MDE tester, extracted from
meta-models. Thus, unlike using specific matching language like ECL (Epsilon
1 we also consider the guards, actions and events in the experimentation (Section 5).

Partial Test Oracle in Model Transformation Testing 195

Fig. 5. A synoptic of our Approach to Produce a Partial Verdict

Comparison Language) [8], or specializing the model comparison engine for each
transformation, she does not have to learn additional language.

Figure 5 summarizes our approach. The tester identifies the unpredictable
part, and writes patterns defining it. She provides partial expected models which
are compared with TUT’s output models. The result of this comparison is then
filtered using the patterns. The verdict is produced after observation of this
filtered comparison’s result.

Pattern could be empty to only check if the partial expected model is included
in the output model. However, such an oracle would not detect when elements
are wrongly generated in the predictable part of the model. For instance, a
wrong state "BC" erroneously linked to state "A" in Figure 3(a) would not be
detected. Using pattern to express unpredictable part, we completely validate
the predictable part.

4 Implementation

In this section, we describe the implementation of the proposed approach and
its application to the running example of the paper.

4.1 The Technical Framework

Technically, our oracle function allows testing transformations generating XMI2

models, as in the Eclipse Modeling Framework3. We choose EMF framework
because it is widely used and it has many tools.

We use EMFCompare4 to compare our models. For each comparison,
EMFCompare produces two result models: the Match model for the elements
matched between the two models, and the Diff model for the differences. In the
Diff model, an observed difference is defined as an instance of DiffElement. It
can concern an EClass, an EAttribute or an EReference.

For the filter activity (Figure 5), we perform pattern matching on the Diff
model returned by EMFCompare. We look for any difference concerning elements
of the unpredictable part and reject them. The test passes if the rest of the Diff
model concerning the predictable part is empty.
2 http://www.omg.org/spec/XMI/
3 http://www.eclipse.org/emf/
4 http://www.eclipse.org/emf/compare/

http://www.omg.org/spec/XMI/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/compare/

196 O. Finot et al.

The meta-model excerpts, written by the tester, are Ecore meta-model frag-
ments. Each fragment defines one meta-element (e.g. a final state Figure 4(a)).
Since, we do not necessarily want to filter all instances of a given meta-element,
we can add meta-elements in the excerpts to be more precise. For instance in
Figure 4(b) we filter on the instances of Transition which target is an instance
of FinalState. Our meta-model fragments are composed of instances of EClass,
EAttribute or EReference. There is at most one attribute in each fragment,
the one we want to filter. Therefore, we are able to filter any element that can
be concerned by a difference observed by EMFCompare.

The pattern matching engine used is EMF Incquery5. With Incquery, patterns
are written in a textual form. Thus, we transform our meta-model fragments
into Incquery patterns. We wrote a Java transformation, available on a public
repository [9], for this purpose. The transformation is integrated into the filter
(Figure 5). It takes as input the meta-model fragments defining the unpredictable
part of the output model, along with the name of the element the tester wants
to be filtered, as well as the root meta-class of the fragment. The root meta-
class is the one from which the transformation starts browsing the fragment. For
instance, in the fragment from Figure 4(b), Transition is the element the tester
wants to filter as well as the fragment’s root meta-class. It produces Incquery
rules that can be automatically applied on the result of the comparison to return
the differences concerning the predictable part only.

4.2 Automatic Treatment of the Patterns in Three Steps

First Step. Since we look for differences between two models, we need to define
how a difference is represented in the Diff model. This is the role of the pattern
isDifference. It basically matches any element for which a difference was observed
(an element referenced in a instance of DiffElement). This pattern is generic
and is generated independently from the TUT.

Second Step. In the second step, we generate the Incquery patterns corre-
sponding to the fragments defined by the tester, one pattern for each of the
fragments. For instance, the fragments of Figure 4 are transformed into the In-
query patterns presented in Listing 1.1. For each fragment, we create the header
of the pattern with its name (the fragment’s name) and its parameter (where
the matched elements are collected).

The instances of EClass are transformed into a rule to match in the model
those elements. For instance, the EClass FinalState in the pattern of the Fig-
ure 4(a) is transformed into the rule FinalState(F) to collect in the model the
instances of FinalState into the variable F. When the patterns express more
constraint, additional rules are generated in Inquery. For instance, the pattern
of the Figure 4(b) is transformed into the pattern finalTransition(T): (i) the
EClasses Transition and FinalState are transformed into rules Transition(T)

5 http://viatra.inf.mit.bme.hu/incquery

http://viatra.inf.mit.bme.hu/incquery

Partial Test Oracle in Model Transformation Testing 197

and FinalState(F) to collect in the model the instances of Transition and Final-
State into the variables T and F, (ii) in addition the EReference target linking
Transition and FinalState is transformed into the rule Transition.target(T,
F) to reject from T the transitions not targeting a final state.

// A F i n a l S t a t e F
pattern f i n a l S t a t e (F) = {

F i n a l S t a t e (F) ;
}

// A t r a n s i t i o n t a r g e t i n g a f i n a l S tate
pattern f i n a l T r a n s i t i o n (T) = {

T r a n s i t i o n (T) ;
F i n a l S t a t e (F) ;
T r a n s i t i o n . t a r g e t (T, F) ;

}

Listing 1.1. Expression of the Non Considered Part with Incquery

Third Step. In the third and last step, we generate the pattern that provides
the result of the filtered comparison. In the first step, we defined an element
about which a difference is observed. In the second step, we defined the un-
predictable part’s elements. In this final step, we are looking for any of the
unpredictable part’s elements about which a difference is observed. Therefore,
we need to combine the previous steps’ patterns into a new one. In Listing 1.2
we are looking for any elements for which a difference is observed but which
are not instance of FinalState or of Transition targeting a FinalState. This last
pattern finding nothing means that there is no difference in the predictable part:
the test passes.

/∗ A i s a D i f f e r e n c e which i s not about a F i n a l S ate
or a T r a n s i t i o n t a r g e t i n g one F i n a l S t a t e
I f the r e s u l t i s empty then the t e s t pass f o r the common part ∗/

pattern verdictPassI fAEmpty(A) = {
find i s D i f f e r e n c e (A) ;
neg find f i n a l S t a t e (A) ;
neg find f i n a l T r a n s i t i o n (A) ;

}

Listing 1.2. Pattern for the Verdict of the Considered Part

5 Experiments and Discussion

We validate our approach by running several experiments. We build partial test
oracles for two model transformations. After describing the case studies, we
detail the test protocol set up for these experiments. Afterwards, we discuss
the obtained experimental results and potential threats to the validity of our
experiments and approach.

198 O. Finot et al.

5.1 Case Studies

State Machine Flattening transformation. This transformation, which flat-
tens UML state machines to remove composite states, is used as an illustrative
example throughout this paper. It was implemented by Holt et al. [10] in Ker-
meta. We specify that input model is valid only with no orthogonal state, no
pseudostate other than initial state, no hyper-edge, and transitions leaving a
composite state containing a final state have no trigger.

UML Activity Diagram to CSP transformation. This transformation
transforms UML activity diagram into model of CSP6 program.

Part of the output models is unpredictable since models of CSP programs are
polymorphic. Indeed, from the specification proposed by Bisztray et al. [12], we
identify two elements, which can introduce variations in the output model:

– A decision node is transformed into an n-ary condition. In this situation, the
operands can be permuted and several links can be combined. According to
the authors, provided that the guards’ conditions are distinct, for the UML
norm, several syntactic combinations are semantically equivalent.

– A fork node becomes a combination of concurrency operators which are
commutative; changing the order of operands does not modify the program’s
semantics.

For instance, let us consider a fork node transformed into three parallel pro-
cesses (F1, F2, F3), they can be organized in twelve variants of the same poly-
morphic model. Firstly, they can be permuted in six different ways:

F1‖F2‖F3 F1‖F3‖F2 F2‖F1‖F3 F2‖F3‖F1 F3‖F1‖F2 F3‖F2‖F1

Secondly, the concurrency being a binary operator, to compose three processes,
one of the two operands is the composition of two processes:

– (Fi ‖ (Fj ‖ Fk)) – ((Fi ‖ Fj) ‖ Fk)

We have implemented this transformation in ATL7.
Writing partial oracles, the unpredictable part of these CSP models is com-

posed of the binary operators (conditions and concurrencies) and their operands.
Therefore, we create 3 patterns which are excerpts of the CSP meta-model. For
space reason they are available on [9].

5.2 Testing Protocol

In this experimental section, we want to answer several questions:
Question 1: Can a tester write partial expected models and patterns?
6 CSP = Communicating Sequential Processes [11].
7 http://www.eclipse.org/atl

http://www.eclipse.org/atl

Partial Test Oracle in Model Transformation Testing 199

Question 2: Do the patterns and part of expected models can be processed by
partial oracle function to produce partial verdict?
Question 3: Is the proposal more appropriate than other oracle functions to
produce partial verdict considering part of expected model?

Answering the first question, we produce a set of test models for our cases
studies, then we write corresponding partial expected models, and patterns.

Answering the second question, we transform the test input models with the
two TUT and we check that partial oracle return partial verdicts.

Answering the third question, we compare the size of the partial expected
models with comprehensive models that would have been written without our
proposal. Moreover, we check that it would be simpler to get the same partial
verdicts with our proposal than with contracts.

The test model creation method was introduced by Fleurey et al. [13] and
validated by Sen et al. [14][7], it relies on the partition of the input domain.
We define partitions of the values of each attribute and reference of the input
meta-model. Then, different strategies combine those partitions defining model
fragments. Finally, for each model fragment, at least one correct input model is
created.

We create 94 test models: 30 for the first transformation, 64 for the second.
For the first case study, we create 10 fragments using the IFClassΣ strategy,
then create 3 test models for each model fragment. For the second case study,
using IFCombΠ strategy we create 8 model fragments. We define all the possible
combinations, eliminate invalid ones, and produce the models.

5.3 Results

In this subsection, we present results answering the three previous questions.
We already answer partially Question 1 in Section 4.2 when we introduce the
patterns for one case study.

Part of the experiments’ results is shown in Table 1. For each partial expected
model, we present the number of its elements, the number of elements in the
complete expected model, the proportion of the predictable part in the model,
as well as the number of existing variants and the partial verdict of the test.

UML State Machine Flattening. The second result answering Question 1
is the writing of the partial expected models and the patterns for the filter reject-
ing unpredictable part of the models. This transformation returns polymorphic
models, therefore we can create comprehensive expected models but some of
them are only one variant among several possibility. Out of the 30 input models
created, 10 do not have any composite state to be transformed. Therefore, their
corresponding expected models are exactly the ones we expect. In the opposite,
each of the 20 other expected models is only one variant: for instance, we can
use the one of the Figure 3(b). Those models are available in [9].

Answering Question 2, four test cases produce a failure partial verdict, two
of them because of a missing transition in the output model. The other two failed
for a missing guard on a newly created transition; more precisely, the guard was
created but not linked to the transition.

200 O. Finot et al.

The three following paragraphs answer Question 3. While with most of our
test models the number of variants for the transformation is quite small (1, 2
or 5), we can see that one of the output models has 93 variants (model 9 in the
table). In this case without our approach, using the classical model comparison
approach would require 93 expected models (about 3,906 elements), along with
93 model comparisons to obtain a verdict.

One could argue that since the majority of the output model elements be-
long to the predictable part, the tester should just create one model with the
predictable part then copy it as much as needed, and then only add the unpre-
dictable part. However in this case with 93 variants, the tester still would have
to create 1,238 model elements (29 + (42 - 29) * 93) and 93 comparisons would
still be needed, before getting the least verdict.

Whereas the transformation is 500 lines, we write 510 lines worth of contracts.
Three of them concern the unpredictable part of the output model. With these
contracts we detect the same errors as with our approach. Even though the
contracts are more complex than the transformation, they do not cover the
whole output models’ predictable part. For instance, the transitions’ effects are
not controlled with the contracts. On the contrary, our approach permits to
entirely control the predictable part, which is present in our partial expected
models.

Activity Diagram to CSP. The experiment on this second transformation
answer the three questions again. Four test cases produce a failure partial
verdict, when two or more join nodes are present in the input model only the first
is correctly transformed. The maximum number of variants is 96 for 3 models.
Without our approach, the tester would have to create the 96 expected models:
4,800 elements or 715 elements (43 + (50 - 43) * 96) by copying the predictable
part elements.

Once again, we write contracts which are as complex as the transformation
(218 lines of contracts and 210 of transformation) and detect the same errors as
our approach , but do not entirely control the output models’ predictable part.
For instance they do not control the order in which the instances of ProcessAs-
signment are defined, when our partial expected models do. Two of the contracts
we write partially control the unpredictable part.

Discussion We obtain partial verdicts from the use of partial expected models
and patterns with our oracle function, thus answering Question 2. To obtain
partial verdicts we create only 94 partial expected models (2,632 elements) and
8 patterns (18 elements) and perform 94 model comparisons, instead of 835 mod-
els (36,184 elements or 8,677 elements by copying the predictable parts) and
835 model comparisons for the classical model comparison approach. The gain
here is of 93% in terms of model elements (70% if copy of the predictable part)
and of 89% in terms of model comparisons. Our case studies handle simple mod-
els with an average of 35 and 37 elements per model. The gain for the tester
would be greater with transformations handling more complex models. It would
be decisive if she would manually write those models’ variants.

Partial Test Oracle in Model Transformation Testing 201

Table 1. Observed Results for our Case Studies

(a) State Machine Flattening
ex

p
ec

te
d

m
od

el
#

co
ns

id
er

ed
pa

rt
el

em
en

ts
el

em
en

ts
in

a
co

m
pr

eh
en

si
ve

va
ri

an
t

%
co

ns
id

er
ed

pa
rt

#
va

ri
an

ts

pa
rt

ia
l

ve
rd

ic
t

1 32 36 89% 1 pass
4 35 42 83% 2 pass
5 31 35 89% 1 fail
7 32 42 76% 5 pass
8 32 39 82% 2 fail
9 29 42 69% 93 fail

14 12 17 71% 2 fail
17 18 25 72% 5 pass
...

avg 28 35 79% 6.71
sum 582 734 157

(b) UML To CSP

ex
p

ec
te

d
m

od
el

#
co

ns
id

er
ed

pa
rt

el
em

en
ts

el
em

en
ts

in
a

co
m

pr
eh

en
si

ve
va

ri
an

t
%

co
ns

id
er

ed
pa

rt

#
va

ri
an

ts

pa
rt

ia
l

ve
rd

ic
t

4 32 38 84% 2 pass
7 36 42 86% 4 fail
8 36 42 86% 4 fail
10 35 42 83% 6 pass
13 29 34 85% 12 pass
16 40 48 83% 24 fail
17 40 48 83% 24 fail
18 43 50 86% 96 pass
...

avg 32.03 37.3 87% 10.6
sum 2050 2338 678

We write incomplete contracts that are as complex as our transformations.
However, these contracts do not detect any error in the predictable part of the
output models that our approach has not already found. Also they do not en-
tirely control the predictable part. Contracts controlling a whole transformation
are at least as error-prone as the transformation’s implementation. Thus global
contracts are not suited for our needs. Answering the third question, we can
conclude that our proposal is more appropriate than the other oracle functions
to provide a partial verdict considering part of an output model.

One could argue that we do not control the correctness of the whole output
model. However, first, our partial oracles find errors in those transformations,
one of them not being ours [10]. Second, the predictable part is a significant part
of our output models (over 61%). Third and last, in both case studies, elements
in the predictable part are transformed. The transformations do not only act
on the unpredictable part of a model. In the first transformation, simple states
are not modified, but incoming or outgoing transitions of the composite states
are (relation between A and B in Figure 3). In our second transformation, we
transform from one language to another, the input and output meta-models are
different. So this partial verdict is a good piece of information for the tester.

Also to fill the gap of our only partial verdict, we could use contracts. While
global contracts are too complex, we could use smaller ones to control the un-
predictable part. This way we could benefit from our approach and add simple
contracts to obtain a complete verdict.

5.4 Threats to Validity

We have successfully applied our approach to build partial test oracles for two
model transformations. A major threat to the validity of our experiments is

202 O. Finot et al.

the question of the representativity of our case studies. While with our case
studies we do not cover the whole range of possibilities of model transformations,
they still are quite distinct from one another. One, a refactoring transformation,
modifies only part of the input model; the other transforms the input model into
a completely different one. Also the first one directly transforms UML models,
its inputs and outputs conform to the UML model.

Another threat, this time to the global usability of our approach is the problem
of the identification of the predictable part. Unfortunately this step is still man-
ual, with the tester having to understand the transformation’s specification. Yet
she can find clues, for instance elements that indicate possible polymorphism,
such as binary operators for polymorphic outputs, like in our second case study.
If part of the specification is too complex for her to handle, then she should be
able to describe it. When performing regression testing of a refactoring trans-
formation, the part of the meta-model appearing in the specification is the one
modified by the transformation, therefore this part is the unpredictable part.

6 Related Work

Model transformation testing has been studied several times.
Model transformations can be seen as graph transformations, Darabos et

al. [15] tested such transformations. They identified and classified most com-
mon faults in erroneous transformations.

In Section 2.3, we discussed the use of generic contracts for the oracle. Braga
et al. [16] [17], specify a transformation using a meta-model. In order to verify
a transformation they use contracts expressed as a transformation meta-model
along with a set of properties over it. Similarly, Büttner et al. [18] model an
ATL transformation for its validation. Cabot et al. [19] also build on this con-
cept of transformation model, to which they add an invariant. Guerra et al. [20]
developed transML, a family of modeling languages for the engineering of trans-
formations. They generate both test inputs and oracles, relying on a transML
specification of the TUT. This specification can be seen as contracts. As we al-
ready mentioned the main drawback of contracts is that they are as complex to
write as the transformations and thus as error prone.

Tiso et al. [21] are particularly interested in testing model to text transfor-
mations. They use assertions to check properties on the produced output. They
argue that the assertions’ writing should be white box, because they have to
know of some choice made by the developer. Several syntaxes exists for the same
semantics, this is a case of polymorphic outputs. As discussed in Section 2.1, the
oracle is strictly black box, thus their approach is not suited.

7 Conclusion and Future Work

In this paper, we presented an approach to write a partial oracle to validate a
part of output models. This approach produces a partial verdict by comparing

Partial Test Oracle in Model Transformation Testing 203

the output model with an expected one. Running experiments on two trans-
formations with polymorphic outputs, we measured our approach against two
classical oracle functions, global model comparison and contracts. These experi-
ments showed that our approach is more appropriate to produce a verdict when
considering part of the output model.

Our experiments are a first step towards the validation of our approach. We
plan to study case studies concerned with regression testing. Moreover, we plan
to evaluate the fault detecting effectiveness of such test oracles using mutation
testing. In the future we want to evaluate how we can assist the tester in the
identification of the unpredictable part.

References

1. Mottu, J.-M., Baudry, B., Le Traon, Y.: Model transformation testing: oracle issue.
In: MoDeVVa 2008 (2008)

2. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations.
Model-driven software development, 219–236 (2005)

3. García-Domínguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F., Medina-Bulo, I.:
EUnit: A unit testing framework for model management tasks. In: Whittle, J.,
Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 395–409. Springer,
Heidelberg (2011)

4. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach
to Difference Representation. JOT (2007)

5. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: Ocl contracts for the verification
of model transformations. ECEASST (2009)

6. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal
specification and testing of model transformations. In: Bernardo, M., Cortellessa,
V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer,
Heidelberg (2012)

7. Sen, S., Mottu, J.-M., Tisi, M., Cabot, J.: Using Models of Partial Knowledge to
Test Model Transformations. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS,
vol. 7307, pp. 24–39. Springer, Heidelberg (2012)

8. Kolovos, D.S.: Establishing correspondences between models with the epsilon com-
parison language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009)

9. Finot, O., Mottu, J.-M., Sunyé, G., Attiogbe, C.: Experimentation material,
https://sites.google.com/site/partialverdictmt/

10. Holt, N., Arisholm, E., Briand, L.: An eclipse plug-in for the flattening of
concurrency and hierarchy in uml state machines. Tech. Rep. (2009)

11. C. A. R. Hoare: Communicating sequential processes (1978)
12. Bisztray, D., Ehrig, K., Heckel, R.: Case study: Uml to csp transformation.

AGTIVE (2007)
13. Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Qualifying input test data for

model transformations. SOSYM (2009)
14. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for

model transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 148–164. Springer, Heidelberg (2009)

15. Darabos, A., Pataricza, A., Varró, D.: Towards testing the implementation of graph
transformations. ENTCS 211 (2008)

https://sites.google.com/site/partialverdictmt/

204 O. Finot et al.

16. Braga, C., Menezes, R., Comicio, T., Santos, C., Landim, E.: On the specification,
verification and implementation of model transformations with transformation
contracts. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021,
pp. 108–123. Springer, Heidelberg (2011)

17. de, C., Braga, O., Menezes, R., Comicio, T., Santos, C., Landim, E.: Transformation
contracts in practice. IET Software 6(1), 16–32 (2012)

18. Büttner, F., Cabot, J., Gogolla, M.: On validation of atl transformation rules by
transformation models. In: MoDeVVa (2011)

19. Cabot, J., Clarisó, R., Guerra, E., De Lara, J.: Verification and Validation of
Declarative Model-to-Model Transformations through Invariants. JSS 83 (2010)

20. Guerra, E.: Specification-Driven Test Generation for Model Transformations. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 40–55. Springer,
Heidelberg (2012)

21. Tiso, A., Reggio, G., Leotta, M.: Early experiences on model transformation
testing. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y.,
Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, Springer, Heidelberg (2012)

Systematic Testing of Graph Transformations:

A Practical Approach Based on Graph Patterns

Martin Wieber and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab,

Merckstraße 25, 64283 Darmstadt, Germany
{martin.wieber,andy.schuerr}@es.tu-darmstadt.de

Abstract. Correctness is an essential property of model transforma-
tions. Although testing is a well-accepted method for assuring software
quality in general, the properties of declarative transformation languages
often prevent a direct application of testing strategies from imperative
programming languages. A key challenge of transformation testing con-
cerns limiting the testing effort by a good stop criterion. In this work,
we tackle this issue for programmed graph transformations, and present
a practical methodology to derive sufficient test suites based on a new
coverage notion inspired by mutation analysis. We systematically gen-
erate requirement (graph) patterns from the transformation under test,
applying different requirement construction strategies, and analyze the
approach in terms of practicability, test suite quality and the ability to
guide and support test case construction.

Keywords: Testing, Coverage, Programmed Graph Transformations.

1 Introduction

One goal of software engineering is to develop high quality software. Testing
is widely accepted as a practical, effective, and efficient approach to ensure and
maintain software quality. It can help to find defects and to gain confidence in an
implementation. Model transformations (MT) are a core building block in MDE
[25], and thus must be tested like any other piece of software. Unfortunately, the
plethora of transformation languages in conjunction with their properties (e.g.
declarative, rule-based) hinder the direct application of well-established testing
techniques for programs written in general-purpose programming languages [5,6].

Testing is generally not able to prove the correctness of a program, since
exhaustive testing is not feasible. Methods are needed to derive a representative
test suite. Consequently, an important issue of MT testing is to restrict testing
effort by means of an objective stop criterion. This criterion must ensure that
a test suite comprises enough tests to stimulate the transformation sufficiently,
thus increasing chances of fault manifestation.

Existing literature on MT testing lists different coverage criteria, mainly for
specification-based (black-box) testing [16,18]. In this case, the abstract specifica-
tion (use-cases, typical input values etc.) is used to test for correctness in terms

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 205–220, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 M. Wieber and A. Schürr

of input-output-behavior. Such coverage criteria are relatively straightforward
to comprehend, existing techniques (e.g. input partitioning [1]) can be applied,
and the choice of implementation language does not matter.

We focus on structure-based (white-box) testing, because we want to develop a
specific technique for programmed graph transformations (PGT) which must be
able to consider and test pattern matching and control flow aspects thoroughly.
White-box coverage criteria are defined via properties of the implementation
structure (control flow, conditions, etc. [1]). For graph transformations (GT),
only few such approaches exist, and though very sophisticated, they cannot be
applied here (cf. Sec. 2). Mutation analysis, on the other hand, is a powerful
technique to evaluate the quality or (relative) adequacy of a test suite [12]: A
system under test is repeatedly modified/mutated whereby each resultingmutant
contains a typical fault. A test suite kills a mutant, if it unveils the corresponding
bug, and can be considered the better the more it unveils. Mutation testing is a
promising but expensive approach [1]. To the best of our knowledge, no one has
studied it for PGTs yet. Works have been published classifying typical program-
mer errors for MT [23] or GT [11], but mutation operators are inherently lan-
guage specific. Killing a mutated PGT would be tedious, since non-deterministic
pattern matching hinders reliable decisions, at least when using model-diffs as
oracle. Our approach (re)uses several mutation strategies for graph patterns.
The mutants are used differently than in mutation testing, though.

In this paper, we present a new white-box coverage notion based on mutated
graph patterns, called requirement pattern coverage. A tool is presented that can
automatically derive requirement patterns from a given transformation imple-
mentation (written in the transformation language of choice) and instrument
the original transformation under test to produce a coverage report. We evalu-
ate the approach w.r.t. properties of relevance for application and report on first
experiment results obtained during testing a real-world transformation in part.

The remainder of the paper is structured as follows: Section 2 reviews re-
lated work on model/graph transformation testing. We introduce and outline
the problem domain in Sect. 3. In Sect. 4, we describe how to derive and use
the test requirements, relating the used strategies to typical faults. Section 5
presents first evaluation results. Section 6 concludes the paper.

2 Related Work

Testing model transformations is a challenging task [5,6]. As for general MT
testing, prevalent approaches use specification-based coverage based on meta-
model coverage and input data partitioning, e.g. [16,7]. The main advantage of
black-box testing is general applicability due to language independence; the main
disadvantage is that the implementation is not exploited as a proper source of
information. Since our use case defines a language class as given, we want to use
such information. Some white-box coverage criteria for textual languages exist
[10,22]. [21] presents a white-box approach where the authors derive “metamodel
templates” (somehow resembling graph patterns) from concrete rules. Instanti-
ating the templates in such a way that the metamodel is covered, yields the

Systematic Testing of Graph Transformations 207

tests. Constraints and rule pairs are used to find additional tests. Covering the
metamodel is only one possible option, and programmed graph transformations
have explicit rule (resp. pattern) interdependence in our case.

Other approaches rely on constraints derived from the transformation to
generate test cases [9,18]. Automatically deriving tests is intriguing, and cover-
age can be used to guide the process and limit test suite size. Nevertheless, we do
not consider this for two reasons: (1) generation can be computationally hard and
resulting models limited in size, and (2) focus rests on the problem of deciding
whether a test suite can be considered complete. A similar goal is pursued in [23],
where mutation analysis [12] is applied to evaluate test suite adequacy [13]. We
adapt and reuse some of the described (generic) mutation operators in our setup,
but we choose not to base our coverage notion on mutation score (cf. [26]).

Graph transformation testing has also been examined. The authors of [11]
focus on testing the (code-based) implementation of a graph transformation.
They classify typical programmer faults in an effort to derive test data that is
sensitive enough to detect resulting flaws. They simulate the latter by mutating
patterns. We refer to this work later on (Sect. 4) when treating the classification
of faults. In [20], the language generating property of TGGs is used to address the
oracle and the test generation problem. Test suite size is limited by production
steps. Other groups reported on using graph transformations for model-based
testing, e.g. for testing optimizing code generators [4] or web services [19]. Tests
are derived by graph unfolding or input partitioning.

Closest to our scenario is [17]. The author reports on the testing of
SDM -transformations (cf. Sect. 3) among other things. Despite using the same
transformation language, and thus struggling with related problems, our testing
approaches share minor commonalities. [17] uses code coverage which is mapped
back to coverage of transformation level concepts, whereas we define coverage
on the modeling level.

3 Testing Programmed Graph Transformations

This section provides an overview of programmed graph transformations and the
concrete transformation language in use. Additionally, we describe an exemplary
transformation serving as a running example in the remainder. We also introduce
necessary testing terminology and discuss relevant testing challenges.

3.1 Programmed Graph Transformations

Graph transformations are a well-researched MT paradigm [24,14]. In this con-
text, a model (M) is represented by a graph (instance graph) which is typed,
meaning that each node and edge has a resp. type, over a type graph or meta-
model (MM). The core building blocks of a GT specification are rules consisting
of (graph) patterns (GP) and modifying rewrite operations. The semantics of
both follow from a stringent formal theory [14]. Rules comprise typed nodes
and edges to which we refer to as object variables and link variables, respec-
tively. The modifying operations usually follow from the GP specification: the

208 M. Wieber and A. Schürr

left hand side (LHS) of a rule represents the application condition (situation
before the rewriting step); the right hand side (RHS) represents the situation
after the modification. Model elements which are mapped to object and link
variables occurring only on the LHS are deleted; elements mapped to variables
which occur only on the RHS are created. The remaining variables, resp. the
model elements that are mapped to them, remain unchanged. Regularly, LHS
and RHS are combined in one single artifact for brevity of presentation.

Transforming a model by a GT involves the following steps: (1) select a GP,
(2) find (at least) one match in the model by solving the subgraph isomorphism
problem, (3) iff a match has been found and all preconditions are met, perform
the rewritings, (4) if required, restart from beginning, (5) quit. Selecting the
pattern in step (1) can be performed differently depending e.g. on the concrete
GT language (options: choose a pattern randomly, in a round robin fashion
or based on some dependency relation). In our case, we rely on a control flow
algorithm, thus programmed GT. Depending on the transformation language and
the used constructs, step (2) must find a single match or all existing matches
at the same time. Of course, this decision heavily influences step (3), where
manipulation is either performed on an isolated match, on several matches one
at a time, or on all matches in parallel. The decision in step (4) depends on some
arbitrary, potentially external condition.

In the remainder, we use the Story Driven Modeling (SDM) language [15]
as our prototypical representative for PGT languages. It is an integral part of
Fujaba (www.fujaba.de) and its spinoffs: one SDM dialect is part of our eMoflon
[2] tool suite. The language consists of a control flow part and a declarative graph
transformation part, whereby the concrete syntaxes are based on UML activity
diagrams and object diagrams respectively. A detailed tutorial to the language
and the toolkit can be obtained from the project homepage www.emoflon.org.

3.2 Exemplary Transformation

We use a slightly simplified excerpt of the flattening algorithm [3] for feature
models (FM) [8]. The reasons for choosing this example are availability of the
implementation and the intuitive semantics of simple feature models. The pur-
pose of the flattening algorithm is to optimize the structure of a given feature
model, by reducing the height of the rooted tree, without changing the semantics
of the FM. Figure 1a depicts the FM metamodel. A FeatureModel contains one
root Feature and an arbitrary number of child Features organized in a tree
hierarchy (cf. the containment relations). Each Feature references zero or more
child Dependency instances which themselves contain child Features (childF).
The opposite direction is modeled by the reference parentDep. The concrete
subclasses of Dependency model the different semantics of the relation types
between child and parent Features. Flattener is a helper class and comprises
the transformation logic in form of operations. Figure 1b depicts a simple FM
instance in concrete syntax (as used in [8]). A valid product (here: a concrete
mouse) comprises all required features, some or none optional features, exactly

http://www.fujaba.de/
http://www.emoflon.org/

Systematic Testing of Graph Transformations 209

«EClass»
FeatureModel

«EClass»
Feature

«EClass»
Dependency

«EClass»
SingleDependency

«EClass»
GroupDependency

«EClass»
Mandatory

«EClass»
Optional

«EClass»
Alternative

«EClass»
Or

0..1

+childF
1..*

0..1

+childF
1

+parentDep
1

+parentF
1

+childDep
0..*

1

+rootF
1

«EClass»
Flattener

+ traverseTree(FeatureModel,Feature):void
+ flatten(FeatureModel,Feature,Feature,Feature):EBoolean

…

(a) Metamodel (b) Exemplary FM

Fig. 1. Feature models – abstract and concrete syntax

one feature out of an alternative group of features, and at least one feature from
an Or group.

Figure 2 depicts one operation of the flattening algorithm. It serves as our
transformation under test for the remainder, and represents an ideal example for
testing pattern matching aspects, since it does not define any rewriting steps itself
(explicit testing of rewriting steps is not in focus here). One can distinguish four
different types of activity nodes: (1) start nodes which mark the resp. entry point
of the operation, (2) story nodes (all nodes except 4, 6, 9, and 10) which carry
GT rules, the latter may be hidden, indicated by the � symbol, (3) statement
nodes (gray background) which represent operation invocations, and (4) end
nodes which mark exit points of operations. Story nodes can be sub-divided in
terms of their semantics: (a) regular patterns (white background) that imply
normal searching for a match (e.g. “check flattening precondition A. . . ”), and
(b) for-each nodes (dotted background) that imply iterating through the list of
all distinct matches in the model, whereby each match results in a loop along
the outgoing “Each time” labeled edge; eventually control is returned to the
pattern again. For-each nodes are left via the “end” edge. Regular nodes can
be left via “success” (→match found), “failure” (→no match found) and
unlabeled (→don’t care) edges.

The basic idea of the provided operation is to find flattenable sub trees and
apply one of several well-defined graph rewritings to each of them. Repeatedly
used, those basic rewritings condense the original tree and the algorithm con-
verges. We removed most of the complexity from the example for the sake of
brevity. The operation comprises three main steps, namely to search for a flat-
tenable sub tree, performed as a top-down tree traversal, to delegate a sub tree
to the actual flattening operation (which is also implemented as SDM transfor-
mations but omitted here, cf. [3]), whereby the direction of the shrinking is from
leaves to root, and to re-evaluate the resulting tree after changes. All steps can be
identified in the operation shown in Fig. 2: Starting from a given (nodes featur-
ing a thick border are bound) feature curF, all its child Dependency objects are
processed. Depending on whether the object is of subtype SingleDependency or
GroupDependency the single child Feature or each of the group’s children gets
processed by a recursive call to this operation. In the left lower part of Fig. 2

210 M. Wieber and A. Schürr

Flattener::traverseTree (model: FeatureModel, curF: Feature): void

process child dependencies

curF: Feature

dep: Dependency

check if dep. is SingleDependency

retrieve child feature

singleDep: SingleDependency := dep

singleDep: SingleDependency

childF: Feature

process isolated child feature
this.traverseTree(model,childF)

this: Flattener

process GroupDependency

groupDep: GroupDependency := dep

childF: Feature

process group child features
this.traverseTree(model,childF)

check flattening precondition A for curF

check flattening precondition B for curF

re-visit curF after modifications
this.traverseTree(model,curF)

delegate to flattening
this.flatten(model,grandparentF,parentF,curF)

[Each Time]

+parentF
+childDep

[Each Time]

[Success]

+childF

[Failure]

[End]

[End]

[Success]

[Success]

[Success]

[Failure]

[Failure]

[Failure]

+childF

…

… +

curF: Feature

childDep: Dependency

parentDep: Dependency

parentF: Feature grandparentDep: Dependency

grandparentF: Feature

+parentDep

+parentF

+childDep

+parentF

+childDep

+parentDep

+parentF

+childDep

+

1

2

3

4

5

6

7

8

9

10

Fig. 2. Example SDM transformation (traversal of a feature tree, cf. [3])

two more complex patterns are located which check necessary conditions for the
rewriting. In case the rewriting functionality gets invoked, the result has to be
re-checked, indicated by the last recursive call before the stop node.

3.3 Testing SDMs

Dynamic testing means that one runs and observes the behavior of the trans-
formation under test with different and representative input data. The goal is
to provoke incorrect behavior that eventually hints to faults in the program.
As mentioned before, it is usually impossible to prove the absence of faults by
testing, because of the absurdly high number of required tests.

A test (case) (as defined by [1] and adapted to our case) is a tuple T =
(mi,mo, I, V, E), consisting of an input model mi, an expected output model
mo, a set I of prerequisite initial steps to prepare the system for the actual test,
a set V of post-processing verification steps, and a set E of exit/tear-down steps.
The sets I, V , and E can be empty. One can also replace mo by other artifacts,
or might even be able to neglect it completely, if other means than e.g. output
model comparison are available to reach a verdict on the test outcome. Consider,
for example, the case of models with a runtime semantics serving as inputs
and outputs for a refining, semantics preserving transformation. This allows for
comparing the output directly to the input in terms of bisimilarity. As in the case
of FMs as inputs and outputs and a semantics preserving transformation like in

Systematic Testing of Graph Transformations 211

our example, it is possible to compare the transformation output directly to the
input based on an equivalence relation. Thus we use the terms input model and
test interchangeably in the following.

A collection of test cases is called a test set/suite. The construction of a test
set is not done randomly but it is usually guided by a set of requirements. We
borrow two definitions from [1]: a test requirement is “[. . .]a specific element of a
software artifact that a test case must satisfy or cover.” and a coverage criterion
is a “rule or collection of rules” to derive such requirements. In the next section,
we will refine this generic test requirement notion to the notion of requirement
patterns. The algorithm for creating such requirement patterns from the given
transformation specification forms the basis of our coverage criterion for testing
programmed graph transformations.

Adequacy of Tests. A test suite can be considered fit for purpose, if it is able
to unveil faults. To be able to detect an existing fault, the test set must contain
at least one test that leads to a differing (incorrect) output of the program under
test compared to the solution deemed correct (cf. [13,12]). An adequate test suite
can, by definition, distinguish a correct program from any erroneous program
[13]. This represents a highly intractable requirement for any real test suite which
is why the notion of relative or mutation adequacy was introduced [12,13]. A test
suite for a program is called adequate relative to a finite set of other programs,
iff every incorrect version in the set can be detected by at least one test. This
requirement is at the basis of mutation analysis and mutation testing.

Patterns as Basic Units. When testing an SDM transformation, one first
needs to think about the scope of the tests. Testing a complete transformation
is too coarse-grained, and would only fit a black-box approach. At a first glance,
a complete operation seems to be a natural candidate for a unit under test. It
corresponds to a single method in the generated code and comprises all “state-
ments” (=activity nodes) that belong together to perform a basic functionality.
On the other hand, these “statements” encapsulate pattern matching and rewrit-
ing steps, both complex and non-atomic at a technical level. Implementing the
pattern matching itself is an error-prone task and demands for dedicated testing
[11,27]. This rationale fosters the interpretation that testing a complete SDM
operation shares more commonalities with the task of classical systems or in-
tegration testing rather than unit testing. The fact that story nodes (partially)
depend on each other – subsequent nodes depend on preceding ones – supports
this finding even further. It implies that story nodes are the basic units for test-
ing and that a sound testing approach should respect this by defining coverage
on a per pattern basis. Nevertheless, preference should be given to testing pat-
terns in their actual context over testing them in isolation (which could be done
in addition). The reason for this is twofold: (1) the control flow can have a strong
influence on the result, and (2) thorough pattern testing can yield certain forms
of structural coverage as by-product as explained later.

212 M. Wieber and A. Schürr

Analyze
SDMs

Create RPs
for story
patterns

Filter out
invalid RPs

RPs

Instrument
original

SDMs

SDM

Generate code
RPs

SDM

code

Write tests
tests Run tests

code

tests Calculate
coverage

coverage

Failed tests?

Coverage threshold
reached?

Define
threshold

threshold

start

Implement
transformation

fix

end

Develop fix

fix

[yes]

[no]

[no]

[yes]

Identify
invariants

1 2 3 4

5

6
7

8

Fig. 3. Development and test process based on requirement patterns

4 Requirement Patterns and Coverage

In this section, we will provide an overview of the development and test pro-
cess, discuss typical implementation errors that are likely to occur during the
development, and define our new coverage notion.

4.1 Architectural Overview

Figure 3 provides an overview of our proposed development and testing process
incl. relevant artifacts in standard UML activity diagram notation (cf. [1] for
a general mutation testing process). The process comprises two intertwined cy-
cles which could be characterized as “code-test-fix” and “test-measure-optimize”.
The gray, highlighted actions represent steps that can be automated; the other
tasks require user interaction. The four specially outlined actions form the core
functionality: in step 1 all the graph patterns are collected from the transforma-
tion. In step 2 requirement (graph) patterns (RPs) are created by a component
named RP-licator which builds on the metamodel and the relevant patterns (in-
feasible cases can be avoided proactively). The generated patterns can be further
analyzed and filtered in step 3, before handed to the code generator of eMoflon.
Step 4 takes care of instrumenting the original transformation. This ensures that
RPs are evaluated during run-time.

The code generation then yields two code fractions: (a) code representing the
original instrumented transformation incl. code for the metamodel, and (b) code
derived from the requirement patterns and a simple container metamodel used
for coverage measuring. To run a test means to execute code set of (a) stimulated
by the test inputs which invokes the code of set (b). The task of writing actual
tests can be challenging. Nevertheless, further details are problem specific and
thus omitted. It should be noted that the obtained coverage information can be
used to guide this task, although feedback is restricted to non-covered require-
ments. If a test fails, it is reasonable to fix the bug before writing further tests.
The rationale is that altering the transformation will likely lead to a modified
set of coverage items. If testing does not discover unexpected behavior, one has
to compare measured coverage to a predefined threshold (cf. steps 5, 6, and 7).

Systematic Testing of Graph Transformations 213

(a) RP derivation and SDM instrumentation (b) Mut. adequacy

Fig. 4. Derivation of RPs and their application

Figure 4a sketches the RP derivation process complementing the description of
the outlined actions depicted in Fig. 3. Based on a pattern P , the RP-licator
component uses the pattern’s LHS, PLHS, to derive a collection of RPs (RP1, . . .)
by exhaustively applying parameterized mutating operators to PLHS, cf. step 1.
Each generated RP is embedded into an evaluation operation in step 2. The
operation’s parameters correspond to the set of bound object variables whose
values are forwarded to the helper operation. This set needs to be deduced from
the preceding patterns of P and the parameters of the original operation. A
return value of true indicates that the pattern has matched; otherwise false is
returned. To include the evaluation of the generated patterns into the original
control flow, a new evaluation node gets created in (3). It is embedded into the
flow of control in (4), and its purpose is to invoke the operation and to update
the statistics. Step 4 includes inserting one new edge from the evaluation node
to P , and changing all incoming edges of P to point to the new predecessor.
Note that “for-each” nodes require a second copy of the evaluation node, since
the set of entering edges of the former nodes can be partitioned depending on
whether an edge is part of a corresponding “each-time” loop, or not.

4.2 Typical Faults

We now analyze typical errors in SDMs. Results are similar to [11] in that several
of our error types coincide with their fault classes, although focus of testing and
languages differ. Another fault model is [21], but parallels are rather small.

Type-related errors. A common error is to choose wrong node or edge types.
Such errors are likely to occur, if the type hierarchy is complex (many inheritance
relations, great type count) or many different edge types exist. There are three
possibilities to err when choosing a node type: (1) choose a superclass over of
a subclass (2) select a subclass instead of a superclass (3) choose a completely
unrelated (w.r.t. inheritance) class. In case of pattern matching (and despite of
the concrete semantics), case (1) results in a less restrictive pattern, potentially
matching too often, case (2) restricts the pattern, potentially excluding relevant
matches. Case (3) might either lead to a higher or lower number of matches but
most certainly results in totally wrong behavior which makes it less likely for such

214 M. Wieber and A. Schürr

errors to remain unnoticed. Static consideration like the set of compatible edge
types would probably also lead to such faults being noticed. Choosing wrong
edge types is another possibility, but is often hindered by incompatible node
types and multiplicities constraints at the respective ends. Typing errors can
occur in the pattern matching as well as in the rewriting step. Such errors fall
into categories 1 or 3 of [21] or “interchange faults” of [11].

Multiplicity-related errors. Association ends comprise definitions for upper
and lower bounds constraining cardinalities of corresponding collections. Unfor-
tunately, such constraints seldom suffice to restrict a metamodel. Additionally,
enforcement of constraints is often not guaranteed by the underlying modeling
layer. EMF (Eclipse Modeling Framework) is one popular example where code
generation considers only upper limits and distinguishes two cases (upper bound
“=1” and “>1”). Thus, programs based on an EMF repository, like our trans-
formation, might be prone to multiplicity-related errors. For example, too many
elements might get added to a container, or a developer might expect that multi-
plicity preconditions are always met, even when they are not. Errors concerning
multiplicities might result in “omission” and “side effect faults” as in [11].

Graph isomorphism errors. One of the more subtle sources of faults is re-
lated to the way how object variables are bound to nodes in the model. Graph
pattern matching semantics usually prevents that two variables of a pattern and
of compatible type are bound to exactly the same node in the model (unless in-
structed to do so). Certain cases might require disabling isomorphic bindings for
some object variables. Failing to do so might result in missed matches. On the
other hand, enabling non-isomorphic bindings can also be erroneous and result
in undesired matches. [11] refers to such faults as “violation of injectivity”.

Errors related to the context of a match. A graph pattern should neither
contain superfluous (context) elements potentially leading to a too restrictive
pattern, nor omit necessary (context) elements potentially resulting in a too
liberal pattern. Several pattern variants differing in element count exhibiting
similar functionality for most cases might exist, making it easy to overshoot in
both directions. Again, cf. “omission” and “side effect faults” of [11].

Control-flow errors. The control flow of SDMs is prone to typical bugs in that
regard (unreachable activity nodes, wrong interconnections, or loop and branch-
ing errors), although the code generator can detect some problems statically.
Similarities to traditional control flow testing are apparent. Obviously, the in-
terdependency among story nodes prevents this language part to be completely
neglected even when testing the pattern matching.

4.3 Test Requirements

Our approach is based on the derivation of requirement patterns from the LHS
of the resp. original patterns. We use a set of mutation operations, comparable
to the ones in [23] but adapted to the SDM language, to derive mutated patterns
as in mutation analysis [12]. If combined correctly with the original patterns, as

Systematic Testing of Graph Transformations 215

in Fig. 4b, RPs can also be used to evaluate a test suite’s adequacy. A test can
be considered adequate, if it discriminates the mutated pattern (RP1) from the
original pattern (PLHS) w.r.t. matching behavior. Nevertheless, we do not strive
to perform a mutation analysis here, but to develop a variable test suite to
observe untested situations. Also, concerning entire operations, mutation anal-
ysis can even exhibit practical problems (equivalent mutants, non-deterministic
pattern matching, etc.). It represents an adaption of a best practice (negative
testing) to construct a test suite which trigger both cases of “match” and “no
match” w.r.t. a pattern (cf. e.g. the “closed” criteria of [18], or [27]). We think
this principle which can also be interpreted as a form of predicate coverage from
logic coverage (cf. [1]) should be applied to the requirement patterns as well. On
the level of testing isolated patterns, mutation testing can not guarantee this
sort of coverage either.

Deriving meaningful Coverage Items. In general, one could derive cover-
age items in form of RPs based on any available information, e.g. specification
documents, a tester’s intuition/experience, or input value partitioning. Here, we
advocate the automatic derivation of RPs from the SDMs and the metamodel.

The RP-generating algorithm takes a given metamodel mm and the relevant
SDM transformation under test as input. The latter, though actually being mod-
els conforming to the SDM metamodel on their own, can be interpreted as being
part of mm, both in a technical way, since they are actually filed within in the
metamodel serialization, and a conceptual way, since they define the dynamic
semantics of the modeled language. The algorithm thus outputs mm′ which dif-
fers from mm only in that the comprised SDM transformations under test are
instrumented according to steps 3 and 4 of Fig. 4a. Additionally, the algorithm
outputs a second metamodel mmtest, representing the testing infrastructure. It
comprises classes to store the coverage data and the generated operations resp.
the SDMs containing the derived RPs as story patterns (cf. step 2 in Fig. 4a).

We continue by sketching the functioning of the algorithm which is as follows:
iterate over all packages, classes, and operations in mm. For each class c in mm
that defines at least on operation, two classes in mmtest are created: a statistics
carrying counterpart c′stat, with one Boolean variable for each coverage item, and
a class c′test. For each operation o of c retrieve the corresponding SDM – note that
in our case an operation “comprises” the SDM implementation – and iterate over
all contained graph patterns, to create (1) the set of requirement patterns, (2) the
RP-wrapping evaluation SDMs and operations which are contained by c′test, (3)
the operations to update the coverage statistics (members of c′stat), and (4) the
instrumentation statements which are added to o. Step 1 modifies copies of LHSs,
PLHS,x, for each pattern Px and applies the following generation strategies:

(a) Unmodified copy - UC. The unmodified PLHS is used as a requirement
pattern. Meeting this requirement which means that the RP does and does not
match at least once and implies that the control flow reaches the original pattern.
Additionally, it implies that all outgoing control flow edges leaving the story node
to another story node are traversed, yielding a form of weak edge coverage which

216 M. Wieber and A. Schürr

subsumes a form of node coverage. This notion of edge coverage is weak, because
statement nodes which might branch the control flow are neglected here.

(b) Require all NAC elements - RAN. NAC elements of P are converted
to mandatory elements. This requires one test where the NAC prevents P from
matching. An example would be childDep:Dependency in pattern 7, Fig. 2.

(c) Require an optional element - RO. One optional element of P is con-
verted to be mandatory. When met, at least one test exists where the optional
element is present in the model.

(d) Exclude a mandatory object - EO. This strategy converts mandatory
object variables to a NAC element (one per mutant). Each conversion is con-
strained by connectivity considerations, ensuring connectivity of the resulting
pattern graph (w/o the new NAC element and adjacent edges). If met, the re-
quirement guarantees that test models comprise situations where single nodes are
missing to form a complete match. In our example (P7, Fig. 2): grandparentF
is the only variable that can be converted in such a way.

(e) Change object variable types - COT. The strategy requires that original
types of each and every unbound object variable are changed in every possible
manner. Each type substitution yields a new requirement pattern (only one
substitution per mutant). But types can only be changed if requirements due to
adjacent edges are not violated. Substituting with sub-types is without problems.
But super-types are partitioned into compatible and incompatible types. The
rationale behind the strategy is to test for wrong type decisions. In terms of our
example a variable of type SingleDependecy could be altered to be a variable
of type Optional. The type Dependency could not be chosen, if a childF-edge
is an adjacent edge.

(f) Change link variable type (simple) - CLTS. Comparable to the previ-
ous strategy, this strategy alters PLHS by replacing a link by a differently typed
link. The link type can only be changed within the boundaries determined by
the object variable types. (Note that link type refers the type of the link rather
than the reference/object variable type). Additionally, the originally typed link
is retained in NAC-form. When the corresponding requirements are met, poten-
tial linkage errors should become apparent. In our example (P3, Fig. 2): connect
singleDep and childF via parentDep-edge instead of childF-edge.

(g) Change link variable (complex) - CLTC. This strategy differs from
the previous one in that not only the link variable type gets altered, but also
the object variable type at one end of the link is changed as well. This implies
rather complex checks on legal node types due to limitations implied by other,
indirectly involved edges.

4.4 Requirement Pattern Coverage

Let p ∈ P be one pattern out of the set P of all patterns selected for testing,
and S = {t1, . . . , tn} be a test suite (comprising n tests) out of the set S of

Systematic Testing of Graph Transformations 217

all possible test suites. Additionally, R denotes the complete set of requirement
patterns generated for the transformation under test, and Rp refers to the set of
requirement patterns due to p, whereby

⋃
∀p∈P Rp is a partition of R (neglecting

the case ∃p ∈ P : Rp = ∅).
We define a function f : R × S → N0 that maps a pattern-test-suite-pair

onto the number of satisfied requirement patterns after testing with a test suite.
“Satisfied” means that there exists at least one situation during testing, where
the requirement pattern check evaluates to true. Analogously we can define
function g that counts the number of unsatisfied requirement patterns, being
those RPs that never match during testing (evaluation operation always returns
false).
Now we can define the positive (c+) and the negative (c−) and combined (c)
RP-coverage (RPC) for a pattern and a test suite as follows:

c+(p, S) :=
f(Rp, S)

|Rp| , c−(p, S) :=
g(Rp, S)

|Rp| , c(p, S) :=
f(.) + g(.)

2 |Rp| (1)

Equation 2 extends this to the RPC of an operation o comprising a set Po of
patterns. And Eq. 3 defines the RPC of a transformation t, comprising a set Ot

of operations. Respective negative and combined cases are omitted for brevity.

c+(o, S) :=

∑
∀p∈Po

f(s,Rp)

∑
∀p∈Po

|Rp| (2) c+(t, S) :=

∑
∀o∈Ot

∑
∀p∈Po

f(s,Rp)

∑
∀o∈Ot

∑
∀p∈Po

|Rp| (3)

5 Evaluation and First Results

We conclude our contribution by providing some details on our prototypical tool,
and present important first findings during its practical proving.

5.1 Implementation

Creating the RPs manually is practically infeasible, esp. when experimenting with
different strategies to derive them. This coincides with the statement of Ammann
et al. that “[. . .]mutation yields more test requirements than any other test crite-
rion” (cf. [1, p. 175]). Consequently, we implemented the outlined steps of Fig. 3
and Fig. 4a in a prototypical tool written in Java. Although possible, we refrained
from using higher order transformations (building and manipulating SDM mod-
els by means of transformations specified in the SDM language) to exploit agility
due to more elaborated Java editors. Most of the implementation effort was spent
on static analysis (to prevent the generator from creating obviously unsatisfiable
requirements), and on general automation of the process. The output of the pro-
totype serves as input for our code-generation toolchain eMoflon. The generated
code was then incorporated into an existing test-bench, and a rudimentary visu-
alization view was used to analyze the resulting coverage reports. Currently, the
prototype considers only structural constraints of the metamodel, OCL and at-
tribute constraints within the patterns are not considered yet.

218 M. Wieber and A. Schürr

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

c
+

c
−

c

(a) Coverage over test suite size

0 10 20 30 40 50

c+

c−

(b) Cov. of isolated tests

1 2 3 5 7 8
UC 1 1 1 1 1 1 6
RAN 0 0 0 0 1 0 1
RO 0 0 0 0 0 0 0
EO 1 0 1 1 1 1 5
COT 6 0 0 0 18 6 30
CLTS 1 0 2 2 0 2 7
CLTC 6 0 0 0 4 2 12
All 15 1 4 4 25 12 61

Pattern
Type

(c) RP types

Fig. 5. Test

5.2 Evaluation Results

We used the described transformation of Sect. 3 to evaluate the general appli-
cability of our approach and to collect first impressions during its application.
A first finding is that the approach can be applied to the real-world example
without further adaptions. The time required for deriving the RPs for the full
transformation (including not presented parts) and the generation of the test-
ing infrastructure model amounts to approx. 400ms (Intel Core2Duo @2.4GHz).
Code generation for the instrumented version of the transformation required
virtually no additional time compared to the not-instrumented version. It is
considerably exceeded by the time required for generating the code for the test-
ing infrastructure model (which is of the order of tens of seconds). Nevertheless,
these time penalties occur only once every time code needs to be regenerated.
Unfortunately, we did not evaluate the run-time overhead due to instrumenta-
tion in detail, but we deemed it negligible during testing, also because of the
rather small input models used during testing.

For the given transformation the RP-licator produced a total of 61 RPs yield-
ing a total of 122 coverage items. We incrementally constructed a test suite
for the given operation comprising 27 tests; each test comprises a single input
model. It took us approx. half to one person day to derive the test suite, and
the required effort (time, model complexity) necessary to increase coverage rose
over time. The resulting test suite leads to near optimal results: a c+-value of
0.97 and a c−-value of 0.98. Figure 5a depicts corresponding coverage plots for
the operation over test suit size (tests were combined in the order of appearing
during the test creation). Figure 5b depicts two box plots for the number of
covered (positive/negative) requirements by single tests. Obviously, it is easier
to satisfy a higher number of requirements that demand patterns to not match.
Figure 5c lists the numbers of RPs by type for the story patterns of Fig. 2.

The test suite helped to uncover an imperfection concerning pattern 3: there is
no distinction between match and no match (cf. missing edge guards). Although
not obvious from the metamodel, it is possible that singleDep does not reference
a childF in which case the transformation can end up in a (non-obvious) infinite
loop. Fixing the issue resulted in a drop of coverage (0.63 for c+ and 0.97 for
c−) due to the changed control flow. The example led to further findings: (1)
it is possible to achieve high coverage for our example which means that we
mostly generate satisfiable RPs (3 out of 122 item were infeasible), (2) pattern

Systematic Testing of Graph Transformations 219

interdependency rendered the items infeasible which hints to a general issue,
(3) some requirements led to rather artificial test inputs which do not match
intuition (but are valid due to missing constraints or at least possible due to
missing checks), (4) all in all the approach is able to produce test suites with
higher diversity. The iterative nature of the process can be motivational to a
tester. The approach requires a certain insight in the transformation, but also
guides the tester to untested section. RPs that cannot be covered can help to
clarify the specification or unveil overlook constraints.

6 Conclusion

We have presented an approach to systematic testing of programmed graph
transformations based on the new RPC coverage notion defined over graph (re-
quirement) patterns. We showed that the approach is practical, and vital parts
of a corresponding testing process can be automated. We also reported on ap-
plying our approach to a real world transformation, where it helped in finding
a potential flaw. Important aspects like generalizability and test adequacy were
evaluated. Future work includes the development of additional coverage require-
ment generation strategies, researching intelligent ways to combine the generated
patterns, and an expansion of tooling. Test data generation and its interplay with
the presented approach is another interesting option for future work.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: Leveraging EMF and
Professional CASE Tools. In: INFORMATIK 2011. LNI, vol. 192, p. 281. GI (2011)

3. Anjorin, A., Oster, S., Zorcic, I., Schürr, A.: Optimizing Model-Based Software
Product Line Testing with Graph Transformations. In: Margaria, T., Padberg, J.,
Taentzer, G. (eds.) Proc. GT-VMT 2012. Electr. Comms. of the EASST, vol. 47,
EASST (2012)

4. Baldan, P., König, B., Stürmer, I.: Generating Test Cases for Code Genera-
tors by Unfolding Graph Transformation Systems. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 194–209.
Springer, Heidelberg (2004)

5. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R.,
Ghosh, S., Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In:
Proc. ECMDA workshop on Integration of MDD and MDT, Bilbao, Spain (2006)

6. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.:
Barriers to Systematic Model Transformation Testing. Commun. ACM 53(6),
139–143 (2010)

7. Bauer, E., Küster, J.M., Engels, G.: Test Suite Quality for Model Transformation
Chains. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol. 6705,
pp. 3–19. Springer, Heidelberg (2011)

8. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

220 M. Wieber and A. Schürr

9. Cabot, J., Claris, R., Guerra, E., de Lara, J.: A UML/OCL framework for the
analysis of graph transformation rules. SoSyM 9, 335–357 (2010)

10. Ciancone, A., Filieri, A., Mirandola, R.: MANTra: Towards Model Transformation
Testing. In: QUATIC 2010, pp. 97–105. IEEE (2010)

11. Darabos, A., Pataricza, A., Varró, D.: Towards Testing the Implementation of
Graph Transformations. ENTCS 211, 75–85 (2008)

12. DeMillo, R., Lipton, R., Sayward, F.: Hints on Test Data Selection: Help for the
Practicing Programmer. Computer 11(4), 34–41 (1978)

13. DeMillo, R., Offutt, J.: Constraint-based Automatic Test Data Generation.
Software Engineering, IEEE Transactions on 17(9), 900–910 (1991)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

15. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

16. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.: Qualifying input test data for
model transformations. SoSyM 8, 185–203 (2009)

17. Geiger, L.: Fehlersuche im Modell – Modellbasiertes Testen und Debuggen. Ph.D.
thesis, Universität Kassel (2011)

18. Guerra, E.: Specification-driven test generation for model transformations. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 40–55. Springer,
Heidelberg (2012)

19. Heckel, R., Mariani, L.: Automatic Conformance Testing of Web Services. In:
Cerioli, M. (ed.) FASE2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

20. Hildebrandt, S., Lambers, L., Giese, H., Petrick, D., Richter, I.: Automatic Confor-
mance Testing of Optimized Triple Graph Grammar Implementations. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 238–253.
Springer, Heidelberg (2012)

21. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations – First
Experiences Using a White Box Approach. In: Kühne, T. (ed.) MoDELS 2006.
LNCS, vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

22. McQuillan, J., Power, J.: White-Box Coverage Criteria for Model Transformations.
In (prel.) Proc. MtATL 2009, pp. 63–77. AtlanMod INRIA & EMN (2009)

23. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation Analysis Testing for Model
Transformations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS,
vol. 4066, pp. 376–390. Springer, Heidelberg (2006)

24. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph
transformation: volume I. foundations. World Scientific, River Edge (1997)

25. Schmidt, D.: Guest Editor’s Introduction: Model-Driven Engineering.
IEEE Computer Society Computer 39(2), 25–31 (2006)

26. Sen, S., Baudry, B., Mottu, J.-M.: Automatic Model Generation Strategies for
Model Transformation Testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 148–164. Springer, Heidelberg (2009)

27. Wieber, M., Schürr, A.: Gray Box Coverage Criteria for Testing Graph Pattern
Matching. In: Krause, C., Westfechtel, B. (eds.) Proc. GraBaTs 2012. Electronic
Communications of the EASST, vol. 54, EASST (2012)

Author Index

Attiogbé, Christian 189

Bagge, Anya Helene 33
Barais, Olivier 108
Boukadoum, Mounir 17
Braatz, Benjamin 50
Büttner, Fabian 158

Deckwerth, Frederik 125
de Lara, Juan 1, 158
Di Ruscio, Davide 60
Dyck, Johannes 76

Egea, Marina 158
Ekker, Heinz 52
Engel, Thomas 50

Faunes, Martin 17
Finot, Olivier 189
Flamm, Christoph 52

Giese, Holger 76, 174
Gottmann, Susann 50
Guerra, Esther 158

Happe, Lucia 141
Hermann, Frank 50
Hildebrandt, Stephan 174
Horn, Tassilo 56
Hoyos, Horacio 58

Iovino, Ludovico 60

Jézéquel, Jean-Marc 108

Kienzle, Jörg 108
Klein, Jacques 108
Kolovos, Dimitris 58

Kramer, Max E. 108
Krause, Christian 76

Lambers, Leen 174
Lämmel, Ralf 33
Lepper, Markus 54

Mann, Martin 52
Morelli, Gianluigi 50
Morin, Brice 108
Mottu, Jean-Marie 189

Nachtigall, Nico 50
Noorshams, Qais 141

Pierantonio, Alfonso 60
Pierre, Alain 50

Rentschler, Andreas 141
Reussner, Ralf 141

Sahraoui, Houari 17
Sánchez Cuadrado, Jesús 1
Schürr, Andy 205
Steel, Jim R.H. 92, 108
Sunyé, Gerson 189
Süß, Jörn Guy 92

Trancón y Widemann, Baltasar 54

van Rest, Oskar 92
Varró, Gergely 125
Visser, Eelco 92

Wachsmuth, Guido 92
Wieber, Martin 205
Willink, Edward 58

	Preface
	Organization
	Table of Contents
	New Programming Models
	Streaming Model Transformations:
Scenarios, Challenges and Initial Solutions
	1 Introduction
	2 Motivating Scenarios
	3 Running Example and Challenges
	3.1 Challenges

	4 Specifiying Model Streams
	5 Transformation Scheduling
	5.1 Feeding Transformation Rules
	5.2 Resolving Source-Target Relationships
	5.3 Evaluating Expressions

	6 Infinite Models
	6.1 Reducing Memory Footprint
	6.2 Collection Operations

	7 First Results and Evaluation
	8 Related Work
	9 Conclusions and Future Work
	References

	Genetic-Programming Approach to Learn Model
Transformation Rules from Examples
	1 Introduction
	2 Learning Rules from Examples
	2.1 Rule Derivation as an Evolutionary Process
	2.2 Encoding Rule Sets
	2.3 Creating Rule Sets
	2.4 Deriving New Rule Sets
	2.5 Evaluating Rule Sets

	3 Evaluation
	3.1 Quantitative Results
	3.2 Qualitative Results
	3.3 Discussion

	4 Related Work
	5 Conclusion
	References

	Walk Your Tree Any Way You Want
	1 Introduction
	2 The Notion of Walks
	2.1 Trees
	2.2 Branches
	2.3 Paths
	2.4 Join points
	2.5 Mutation

	3 A Language for Walks
	3.1 Syntax Summary
	3.2 The Default Walk
	3.3 Diversion from the Default Path
	3.4 Derived Walks
	3.5 Stateful Walks
	3.6 Flexible Point-Cuts
	3.7 Walks with ‘In Place’ Rewriting
	3.8 Parameterized Walks
	3.9 Nested Walks
	3.10 Termination of Walks
	3.11 Walks Building Terms

	4 WalkinginJava
	4.1 Basic Interfaces
	4.2 Extra State
	4.3 Combinator Style
	4.4 Tool Integration
	4.5 Performance

	5 Related Work
	6 Concluding Remarks
	References

	Tools and Applications (Extended Abstracts)
	On an Automated Translation of Satellite
Procedures Using Triple Graph Grammars
	References

	The Graph Grammar Library - A Generic
Framework for Chemical Graph Rewrite Systems
	References

	Fragmented Validation: A Simple and Efficient Contribution
to XSLT Checking
	Model Querying with FunnyQT
	References

	Yet Another Three QVT Languages
	References

	Evolution and Synchronisation
	A Methodological Approach for the Coupled Evolution
of Metamodels and ATL Transformations
	1 Introduction
	2 Motivating Scenario
	3 Metamodel Changes and Transformation Adaptations
	4 Adaptation of ATL Transformations
	4.1 Overview of the Methodology Activities
	4.2 Evaluating the Adaptation Cost of Model Transformations
	4.3 Transformation Adaptation with EMFMigrate

	5 Related Work
	6 Conclusions and Future Work
	References

	Metamodel-Specific Coupled Evolution Based
on Dynamically Typed Graph Transformations
	1 Introduction
	2 Preliminaries
	3 Wrapping EMF Instance Models
	3.1 The Wrap Metamodel
	3.2 Usage
	3.3 Compliance and Consistency

	4 Coupled Metamodel and Model Evolution
	4.1 Evolution Scenario
	4.2 Solution

	5 Ensuring Consistency
	5.1 Static Consistency
	5.2 Run-Time Consistency

	6 Decoupled Execution of Model Migrations
	6.1 Metamodel Evolution
	6.2 Model Migration

	7 Related Work
	8 Conclusions and Future Work
	References

	Robust Real-Time Synchronization
between Textual and Graphical Editors
	1 Introduction
	2 Tree-to-Model and Model-to-Tree Transformations
	2.1 Mapping Textual Syntax Definition to Metamodel
	2.2 Bidirectional Mapping between Trees and Models
	2.3 Connecting Spoofax and EMF

	3 Error Recovery
	4 Layout Preservation
	5 Case Study: Behavior Trees
	6 Discussion
	7 Conclusion
	References

	Transformation Engineering

	Achieving Practical Genericity in Model
Weaving through Extensibility
	1 Introduction and Motivation
	2 Foundations
	2.1 Model Weaving and Aspect-Oriented Modelling
	2.2 Building Information Modelling

	3 Overview
	3.1 Key Characteristics
	3.2 Weaving Phases

	4 Genericity and Extensibility
	4.1 Genericity
	4.2 Extensibility

	5 Customizing GeKo to Support BIM Weaving
	6 Composition: Duplication, Merge and Removal
	6.1 Weaving Formalisation
	6.2 Duplication
	6.3 Merge
	6.4 Removal

	7 Related Work
	8 Conclusions and Future Work
	References

	A Rete Network Construction Algorithm
for Incremental Pattern Matching
	1 Introduction
	2 Metamodel, Model and Pattern Specification
	2.1 Metamodels and Models
	2.2 Pattern Specification

	3 Incremental Pattern Matching Process
	3.1 Rete Network
	3.2 Incremental Pattern Matching at Runtime with Rete Network

	4 Dynamic Programming Based Network Construction
	4.1 Skeleton Pattern Delta Calculation
	4.2 Next State Calculation

	5 Measurement Results
	6 Related Work
	7 Conclusion
	References

	Interactive Visual Analytics
for Efficient Maintenance of Model Transformations
	1 Introduction
	2 Motivating Example
	3 Methodology Overview
	4 Dependency Graph Model
	5 Task-Oriented Filtering
	6 Empirical Evaluation
	6.1 Design
	6.2 Execution
	6.3 Analysis
	6.4 Discussion
	6.5 Threats to Validity

	7 Related Work
	8 Conclusions and Outlook
	References

	Checking Model Transformation Refinement
	1 Introduction
	2 A Motivating Example
	3 Model Transformation Refinement
	4 Checking Refinement Using OCL Model Finders
	4.1 Running Example
	4.2 Tool Support

	5 Further Examples
	6 Related Work
	7 Conclusions and Future Work
	References

	Testing

	Complete Specification Coverage in Automatically Generated Conformance Test
Cases for TGG Implementations
	1 Introduction
	2 Triple Graph Grammars in a Nutshell
	3 Automatic Conformance Testing with Random Model Generation
	4 Dependency-Guided Test Case Generation
	4.1 Deriving Rule Dependencies from TGG Rules
	4.2 Deriving Test Cases from Rule Dependencies
	4.3 Completeness and Minimality of Test Cases

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Partial Test Oracle
in Model Transformation Testing
	1 Introduction
	2 Test Oracle for Models Transformations
	2.1 Test Oracle for Model Transformations
	2.2 Partial Verdict for Model Transformation Testing
	2.3 Existing Oracle Functions and Partial Verdict

	3 Filtered Model Comparison for a Partial Verdict
	3.1 Partial Oracle Data to Focus on Part of the Output Model
	3.2 Comparison and Filtering to Control the Predictable Part

	4 Implementation
	4.1 The Technical Framework
	4.2 Automatic Treatment of the Patterns in Three Steps

	5 Experiments and Discussion
	5.1 Case Studies
	5.2 Testing Protocol
	5.3 Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	Systematic Testing of Graph Transformations:
A Practical Approach Based on Graph Patterns
	1 Introduction
	2 Related Work
	3 Testing Programmed Graph Transformations
	3.1 Programmed Graph Transformations
	3.2 Exemplary Transformation
	3.3 Testing SDMs

	4 Requirement Patterns and Coverage
	4.1 Architectural Overview
	4.2 Typical Faults
	4.3 Test Requirements
	4.4 Requirement Pattern Coverage

	5 Evaluation and First Results
	5.1 Implementation
	5.2 Evaluation Results

	6 Conclusion
	References

	Author Index

