Keith Duddy
Gerti Kappel (Eds.)

Theory and Practice
of Model Transformations

6th International Conference, ICMT 2013
Budapest, Hungary, June 2013
Proceedings

LNCS 7909

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7909

Keith Duddy Gerti Kappel (Eds.)

Theory and Practice
of Model Transformations

6th International Conference, ICMT 2013
Budapest, Hungary, June 18-19, 2013
Proceedings

@ Springer

Volume Editors

Keith Duddy

Queensland University of Technology
4000 Brisbane, QLD, Australia
E-mail: keith.duddy @qut.edu.au

Gerti Kappel

Vienna University of Technology
1040 Vienna, Austria

E-mail: gerti@big.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-38882-8 e-ISBN 978-3-642-38883-5
DOI 10.1007/978-3-642-38883-5

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939603
CR Subject Classification (1998): D.2, F.3, D.3, K.6

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the International Conference on
Model Transformation (ICMT 2013), the sixth conference in the series, and the
first to be held at the new parent event “Software Technologies: Applications and
Foundations” (STAF Conferences, www.stafconferences.info). STAF was formed
after the end of the successful precursor event, TOOLS federated conferences.
This year’s STAF event covered the conferences TAP (International Conference
on Tests and Proof) and SC (International Conference on Software Composition)
next to ICMT and the three workshops BIGMDE (International Workshop on
Big MDE), VOLT (International Workshop on the Verification of Model Trans-
formations), and TTC (Transformation Tool Contest). ICMT 2013 and all other
STAF 2013 events were graciously hosted at Budapest University of Technol-
ogy and Economics during June 17-20, 2013, and we thank the General Chair,
Déniel Varrd, and his team for their organizational skills and great hospitality
in Hungary.

ICMT is the premier forum for contributions advancing the state of the art
in the field of model transformation and aims to bring together researchers and
practitioners alike from all areas of model transformation. Model transforma-
tion encompasses a variety of technical spaces, including modelware, grammar-
ware, dataware, and ontoware, a variety of model representations, e.g., based
on different types of graphs, and a variety of transformation paradigms includ-
ing rule-based transformations, term rewriting, and manipulations of objects in
general-purpose programming languages, to mention just a few.

The study of model transformation includes foundations, structuring mecha-
nisms, and properties, such as modularity, composability, and parameterization
of transformations, transformation languages, techniques, and tools. An impor-
tant goal of the field is the development of high-level model transformation
languages, providing transformations that are amenable to higher-order model
transformations or tailored to specific transformation problems. To have an im-
pact on software engineering in general, methodologies and tools are required
to integrate model transformation into existing development environments and
processes.

This year’s program consisted of 13 full papers and five tool and applica-
tion demonstrations, the latter being supported by an extended abstract in the
proceedings. Since ICMT 2013 could attract 58 full submissions this implies an
acceptance rate of 22%. The papers covered the spectrum of approaches and
technologies mentioned above, and were presented in five sessions that repre-
sent the broad scope of ICMT: (a) New Programming Models, (b) Tools and
Applications, (¢) Transformation Engineering, (d) Testing, and (e) Evolution
and Synchronization. We were also fortunate to have a keynote talk by Andreas
Zeller (Saarland University) on “Mining Models from Generated System Tests.”

VI Preface

And after the traditional conference format, we were pleased to see at our sister
event, the Transformation Tool Contest, the diverse tools and approaches in our
field in action.

ICMT 2013 was made possible by the collaboration of many people. We
were supported by a great team, most notably Publication Chair and EasyChair
manager par excellence Manuel Wimmer, Publicity Chair Philip Langer, who
got the message out to the transformation community, and Ludovico Iovino,
who kept our website up to date. The Steering Committee was very helpful and
provided advice when we needed it. We would like to thank all the members of
the ICMT 2013 Program Committee for the tremendous effort they put into their
reviews and deliberations, and all the additional reviewers for their invaluable
contributions. Finally, special thanks go to all the researchers and students who
contributed with their work and participated in the conference — without them,
ICMT 2013 would not have taken place. We hope that you find the papers in
these proceedings as stimulating as we did.

April 2013 Keith Duddy
Gerti Kappel

General Chair

Daéniel Varré

Program Chairs

Keith Duddy

Gerti Kappel

Publication Chair

Manuel Wimmer

Publicity Chair

Philip Langer

Web Chair

Ludovico Iovino

Steering Committee

Jean Bézivin
Jordi Cabot
Martin Gogolla
Jeft Gray
Zhenjiang Hu
Juan de Lara
Richard Paige
Alfonso Pierantonio (Chair)
Laurence Tratt
Antonio Vallecillo
Eelco Visser

Organization

Budapest University of Technology and
Economics (Hungary)

Queensland University of Technology
(Australia)
Vienna University of Technology (Austria)

Vienna University of Technology (Austria)

Vienna University of Technology (Austria)

Universita degli Studi dell’Aquila (Italy)

University of Nantes (France)
INRIA-Ecole des Mines de Nantes (France)
University of Bremen (Germany)
University of Alabama (USA)
National Institute of Informatics Tokyo (Japan)
Universidad Auténoma de Madrid (Spain)
University of York (UK)
Universita degli Studi dell’Aquila (Italy)
King’s College London (UK)
University of Médlaga (Spain)
Delft University of Technology

(The Netherlands)

VIII Organization

Program Committee

Jordi Cabot
Antonio Cicchetti
Tony Clark

Benoit Combemale
Krzysztof Czarnecki
Juan de Lara
Davide Di Ruscio
Jiirgen Ebert
Alexander Egyed
Gregor Engels
Claudia Ermel
Robert France
Jesus Garcia-Molina
Dragan Gasevic
Martin Gogolla

Jeff Gray

Esther Guerra
Reiko Heckel
Zhenjiang Hu
Marouane Kessentini

Dimitris Kolovos
Jochen Kuester
Ivan Kurtev
Thomas Kiihne

Leen Lambers

Tihamer Levendovszky
Ralf Lammel

Richard Paige

Alfonso Pierantonio
Ivan Porres

Werner Retschitzegger
Bernhard Rumpe
Andy Schiirr

INRIA-Ecole des Mines de Nantes (France)
Milardalen University (Sweden)
Middlesex University (UK)
IRISA, Université de Rennes 1 (France)
University of Waterloo (Canada)
Universidad Auténoma de Madrid (Spain)
Universita degli Studi dell’Aquila (Ttaly)
University of Koblenz-Landau (Germany)
Johannes Kepler University Linz (Austria)
University of Paderborn (Germany)
Technische Universitit Berlin (Germany)
Colorado State University (USA)
Universidad de Murcia (Spain)
Athabasca University (Canada)
University of Bremen (Germany)
University of Alabama (USA)
Universidad Auténoma de Madrid (Spain)
University of Leicester (UK)
National Institute of Informatics Tokyo (Japan)
Missouri University of Science and
Technology (USA)
University of York (UK)
IBM Research Zurich (Switzerland)
University of Twente (The Netherlands)
Victoria University of Wellington
(New Zealand)
Hasso-Plattner-Institut, Universitdt Potsdam
(Germany)
Vanderbilt University (USA)
University of Koblenz-Landau
(Germany)
University of York (UK)
Universita degli Studi dell’Aquila (Italy)
Abo Akademi University (Finland)
Johannes Kepler University Linz (Austria)
RWTH Aachen University (Germany)
Darmstadt University of Technology
(Germany)

Steffen Staab

Jim Steel

Perdita Stevens
Markus Stumptner
Eugene Syriani

Jests Sanchez Cuadrado
Gabriele Taentzer
James Terwilliger
Massimo Tisi
Laurence Tratt

Mark Van Den Brand

Pieter Van Gorp
Hans Vangheluwe
Eelco Visser

Janis Voigtlander
Hironori Washizaki
Haiyan Zhao
Albert Ziindorf

Additional Reviewers

Al-Refai, Mohammed
Anjorin, Anthony
Arendt, Thorsten
Asadi, Mohsen
Bak, Kacper
Blouin, Arnaud
Bosnacki, Dragan
Branco, Moises
Brosch, Petra
Briiseke, Frank
Burgueno, Loli
Corley, Jonathan
Cosentino, Valerio
Dajsuren, Yanja
Dang, Duc-Hanh
Demuth, Andreas
Diskin, Zinovy
Dyck, Johannes
Ehrig, Hartmut

Organization

University of Koblenz-Landau (Germany)
University of Queensland (Australia)
University of Edinburgh (UK)
University of South Australia (Australia)
University of Alabama (USA)
Universidad Auténoma de Madrid (Spain)
Philipps-Universitdt Marburg (Germany)
Microsoft Corporation (USA)
INRIA-Ecole des Mines de Nantes (France)
King’s College London (UK)
Eindhoven University of Technology
(The Netherlands)
Eindhoven University of Technology
(The Netherlands)
University of Antwerp (Belgium) and
McGill University (Canada)
Delft University of Technology
(The Netherlands)
University of Bonn (Germany)
Waseda University Tokyo (Japan)
Peking University (China)
Kassel University (Germany)

Engelen, Luc

Feuser, Johannes
George, Tobias
Golas, Ulrike

Groner, Gerd
Hermann, Frank
Hildebrandt, Stephan
Holldobler, Katrin
Horn, Tassilo

Tovino, Ludovico
Koch, Andreas
Lauder, Marius
Lindel, Stefan
Martens, Wim
Navarro Perez, Antonio
Rajan, Ajitha

Reder, Alexander
Scharf, Andreas
Scholzel, Hanna

IX

X Organization

Schulze, Christoph
Seidl, Martina
Soltenborn, Christian
Sun, Wuliang
Truscan, Dragos

Varanovich, Andrei
Varré, Gergely
Wachsmuth, Guido
Wieber, Martin

Mining Models from Generated System Tests

Andreas Zeller

Saarland University
Saarbriicken, Germany
zeller@cs.uni-saarland.de
http://www.st.cs.uni-saarland.de

Abstract. Modern Analysis and Verification techniques can easily check
advanced properties in complex software systems. Specifying these mod-
els and properties is as hard as ever, though. I present techniques to
extract models from legacy systems based on dynamic analysis of auto-
matically generated system tests — models that are real by construction,
and sufficiently complete and precise to serve as specifications for testing,
maintenance, and proofs.

Table of Contents

New Programming Models

Streaming Model Transformations: Scenarios, Challenges and Initial
SOlUtions
Jesus Sdnchez Cuadrado and Juan de Lara

Genetic-Programming Approach to Learn Model Transformation Rules
from Examples
Martin Faunes, Houari Sahraoui, and Mounir Boukadoum

Walk Your Tree Any Way You Want oo,
Anya Helene Bagge and Ralf Lammel

Tools and Applications (Extended Abstracts)

On an Automated Translation of Satellite Procedures Using Triple
Graph GramInarsttt e et et
Frank Hermann, Susann Gottmann, Nico Nachtigall,
Benjamin Braatz, Gianluigi Morelli, Alain Pierre, and
Thomas Engel

The Graph Grammar Library - A Generic Framework for Chemical
Graph Rewrite Systems i
Martin Mann, Heinz Ekker, and Christoph Flamm

Fragmented Validation: A Simple and Efficient Contribution to XSLT
Checking (Extended Abstract) i i i

Markus Lepper and Baltasar Trancon y Widemann

Model Querying with FunnyQT (Extended Abstract)
Tassilo Horn

Yet Another Three QVT Languagesot ..
Edward Willink, Horacio Hoyos, and Dimitris Kolovos

Evolution and Synchronisation

A Methodological Approach for the Coupled Evolution of Metamodels
and ATL Transformations............o ..
Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio

Metamodel-Specific Coupled Evolution Based on Dynamically Typed
Graph Transformations
Christian Krause, Johannes Dyck, and Holger Giese

17

33

50

52

54

56

58

60

76

X1V Table of Contents

Robust Real-Time Synchronization between Textual and Graphical

Editors . .o 92
Oskar van Rest, Guido Wachsmuth, Jim R.H. Steel, Jorn Guy Suf,
and FEelco Visser

Transformation Engineering

Achieving Practical Genericity in Model Weaving through

Extensibility 108
Max E. Kramer, Jacques Klein, Jim R.H. Steel, Brice Morin,
Jorg Kienzle, Olivier Barais, and Jean-Marc Jézéquel

A Rete Network Construction Algorithm for Incremental Pattern
Matchingo 125
Gergely Varré and Frederik Deckwerth

Interactive Visual Analytics for Efficient Maintenance of Model
Transformationst e 141

Andreas Rentschler, Qais Noorshams, Lucia Happe, and
Ralf Reussner

Checking Model Transformation Refinement 158
Fabian Buttner, Marina Egea, Esther Guerra, and Juan de Lara

Testing

Complete Specification Coverage in Automatically Generated
Conformance Test Cases for TGG Implementations 174
Stephan Hildebrandt, Leen Lambers, and Holger Giese

Partial Test Oracle in Model Transformation Testing 189
Olivier Finot, Jean-Marie Mottu, Gerson Sunyé, and
Christian Attioghé

Systematic Testing of Graph Transformations: A Practical Approach
Based on Graph Patterns 205
Martin Wieber and Andy Schiirr

Author Index 221

Streaming Model Transformations:
Scenarios, Challenges and Initial Solutions

Jests Sdnchez Cuadrado and Juan de Lara

Universidad Auténoma de Madrid, Spain
{Jesus .Sanchez.Cuadrado,Juan. deLara}@uam .es

Abstract. Several styles of model transformations are well-known and
widely used, such as batch, live, incremental and lazy transformations.
While they permit tackling advanced scenarios, some applications deal
with models that are only available as a possibly infinite stream of ele-
ments. Hence, in streaming transformations, source model elements are
continuously produced by some process, or very large models are frag-
mented and fed into the transformation engine. This poses a series of
issues that cannot be tackled using current transformation engines. In
this paper we motivate the applicability of this kind of transformations,
explore the elements involved, and review several strategies to deal with
them. We also propose a concrete approach, built on top of the Eclectic
transformation tool.

Keywords: Model transformations, Streaming transformations,
Transformation engines, Scalability.

1 Introduction

Model-Driven Engineering (MDE) is increasingly being used to tackle problems
of raising complexity, in scenarios for which current model transformation tech-
nology was not originally conceived [6J27]. One such scenario is transforming
models that are only available as a stream of model elements. While data stream
processing has been investigated in the databases [IJ20] and XML [I5] technical
spaces, its application to MDE has been little investigated so far [10].

A streaming model transformation is special kind of transformation in which
the whole input model is not completely available at the beginning of the trans-
formation, but it is continously generated. Hence, it must be processed incremen-
tally, as elements arrive to the transformation process. For instance, if we aim at
processing tweets from Twitter, we can see tweets, users, hashtags, etc, as model
elements that are processed as they are generated by the Twitter users. This
model is indeed potentially infinite, and cannot be queried, matched or trans-
formed at once. Nevertheless, a streaming transformation is not only useful for
those cases in which the input model is inherently streamed and infinite, but it is
also a way to deal with large models by feeding a transformation process incre-
mentally, for instance to distribute a transformation, pipeline a transformation
chain, or to avoid overflowing the memory of a machine.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 1-{[6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 J.S. Cuadrado and J. de Lara

In this paper we report our findings on the elements and challenges involved
in streaming model transformations. We have looked into which features make
streaming transformations different from other types of transformations, and we
have identifed several challenges that must be tackled. Then we have explored
several strategies that can be used to deal with such challenges, and we have
implemented a concrete proposal into the Eclectic transformation tool [12]. The
paper is motivated and illustrated by means of a selected example that showcases
most of the elements of streaming transformations.

Organization. In Section [2, we analyse applicability scenarios for streaming
transformations. Section [3l introduces a running example, identifying challenges
to be tackled by streaming transformation engines. Section [deals with model el-
ement streams, Section [§] with transformation scheduling, and Section [6]l with ar-
bitrarily large models and collections. Section [evaluates the proposal.
Section [§] reviews related research and Section [concludes.

2 DMotivating Scenarios

The problems involved in data stream processing have been investigated in the
context of databases [120], XML [I5] and the semantic web [2124], where the
main applications are directed to querying, filtering and aggregating streamed
(sometimes unstructured) data. In contrast, model transformation techniques
unfold their potential when applied to scenarios in which there is a transfor-
mation problem involved, either to convert already structured data or to give a
model structure to unstructured data.

This difference in the applicability field implies that there is currently a lack
of concrete examples and usage scenarios for streaming model transformation,
which are needed to assess the potential of this new technique. For this reason
we begin by introducing some possible scenarios and concrete examples.

Processing natural streams. Some systems naturally generate data continously,
which might need to be transformed, e.g., for analysis or visualization. We dis-
tinguish two kinds of systems: (1) those which natively generate stream models
(data conforming to a meta-model) and (2) when the data does not conform to
a meta-model, but must be first converted to a model-based representation.

An example of (1) is the monitoring of a running system by generating model-
based traces of its execution. This will be used as our running example.

An example of (2) is applying streaming transformations to semantic sensor
web technologies [26]. This may include transforming native sensor data (e.g.,
temperature, precipitation) to the RDF format relating elements by Linked Data
URIs, then further manipulating it, for instance to add information coming from
other sources (e.g., amount of cars in a road segment) and to transform it to
some other formalism to perform predictions (e.g., traffic jams depending on the
weather conditions for certain road segments). As suggested in [25], data from
physical sensors can be enriched with data from social sensors, like tweets, taking

Streaming Model Transformations 3

advantage of their attached spatial and temporal information and some defined
microsyntax (like #hashtags, Qusernames, subtags, or relations from predefined
vocabularies, like e.g., for weather or emergency conditions).

The usefulness of model transformations in this scenario is to facilitate the
implementation of stream-based applications in which there are an explicit or
implicit transformation task involved. The next scenarios apply the notion of
streaming data to solve problems in the model transformation domain.

Dealing with large models. An scalable solution to transform large models, is
to incrementally feed the transformation process with model fragments. As sug-
gested by [19], instead of loading a large model in memory and then transform
it all at once, the model is first split into meaningful parts, which are sent to
a stream. The transformation process deals with the elements of the stream in-
crementally, releasing resources as parts of the source model are transformed. In
some way, this imitates lazy transformations [27], but using a push approach.

As a concrete example, let us assume we are reverse engineering a Java model
into a KDM model [22]. The Java model would be available in some model
repository, and the abstract syntax model of each Java class could be streamed
separately (using lazy loading techniques [14]) to the transformation engine. The
engine would transform each class individually, discarding all source elements
and trace links no longer needed for transforming other classes (e.g., once a Java
expression has been transformed to KDM it can be discarded).

Distributed transformations. The idea of streaming transformation can be used
as a foundation to build distributed transformations. This is especially important
to integrate MDE services in the Cloud [6l/7] since a large transformation could
use different physical resources depending on their availability. The underlying
idea is to replicate the same transformation in several execution nodes. Load
balancing techniques would then be used to stream disjoint parts of the input
model to such nodes. A shared repository could be used to store trace links and
the output models, although other advanced techniques of distributed systems
needs to be studied to improve scalability. Although this scenario is not addressed
in this paper, we believe that the techniques explained here are complementary
for developing distributed model transformations in practice.

Pipelining transformations. This scenario exploits the possibility of starting a
transformation (within a transformation chain) as soon as target elements are
generated by the previous transformation, in a similar way as Unix pipes. This
permits taking advantage of multi-core architectures, by scheduling the first
transformation in one core, and the subsequent transformations in different cores.

As an example, consider a parser that generates a concrete syntax model of
a Java system (i.e., a low-level Java model), which is then transformed into an
abstract syntax model (e.g., references between type definitions and type uses
are resolved), and then into KDM. Using streams, each transformation can begin
as soon as the previous one has finished processing a single Java class.

J.S. Cuadrado and J. de Lara
3 Running Example and Challenges

Assume we are interested in the reverse engineering of sequence diagrams from
the execution traces of a running object-oriented program. The example is an
adaptation of the one in [5], in which the actual transformation used to process
the execution traces and create the sequence diagrams is done off-line, after
having generated all the traces in a text file. In our case, the transformation
is on-line, that is, the sequence diagram is built as the execution traces are
generated, by means of a streaming transformation. This enables the run-time
monitoring of the system, and dealing with non-terminating systems.

caller|0..1

MethodExecution

nodeld : Int
timestamp : Int

l Class]
l

l
l

Class

name : String

name : String

% 1 ‘ Instance

1 class

receptor 1

Instance

objectld : Integer

source 1

target

nodeld : Integer

name : String
callee * ’X

{ordered}

g
*

RemoteMethod
Execution

. followingMessages
Local Remote | | clientNodeld : Int i g(ordertged)
Execution call clientTimestamp : Int

(b)

Fig.1. (a) Trace meta-model (b) Sequence diagram meta-model (simplified)

The meta-models involved in the example are shown in Fig. [l The trace
meta-model represents the execution of methods (MethodExecution), including
the information of which method performed the invocation, and the sequence of
future method executions performed by itself (caller and callee references). Also,
a method execution has a reference to the receptor instance. The meta-model is
directed to distributed applications (e.g., Java RMI applications), hence there
are three kinds of method executions: LocalExecution, normal method executions;
RemoteCall, for invocations in the client side (e.g., over a proxy obtained using
RMI); and RemoteExecution for the remote executions. Executions are identifed by
the nodeld and timestamp attributes. A remote execution records the clientNodeld
and clientTimestamp in order to identify the caller.

The sequence diagram meta-model represents messages from a source instance
to a target instance (note that the source and target are explicitly represented
by references, instead of by ids), and the sequence of messages that follows each
Message (reference followingMsgs).

Our aim is to specify streaming transformations using regular constructs of
rule-based model transformation languages. To illustrate the paper we have used
the Eclectic transformation tool [I2]. In particular, we use the mapping language
which also allows attaching methods to metaclasses (helpers). The language can
be seen as a simplified version of ATL [I7]. Fig. [shows the corresponding
transformation. Each LocalExecution is mapped to an Operation (lines 4-10). The
source and target instances of the message are obtained from the local context of
the call (i.e., the object in which the call is performed, a helper in lines 29-31)

Streaming Model Transformations 5

1 mapping trace2seqdiagram(trc) —> (seq) 23

2 trc: 'platform:/resource/example/trc.stream’ 24 from src : trc!Class to seq!Class

3 25 tgt.class <— src.class

4 from exec : trc!LocalExecution 26 end

5 to msg : seq!Operation 27

6 28 // Start of helper methods

7 msg.source <— exec.local_context 29 def trc!MethodExecution.local_context

8 msg.target <— exec.receptor 30 self.caller.receptor

9 msg.followingMsgs < — exec.next_executions 31 end

10 end 32

11 33 def trc!MethodExecution.remote_context

12 from exec : trc!RemoteMethodExecution 34 self.caller.caller.receptor

13 to msg : seq!Operation 35 end

14 36

15 msg.source < — exec.remote_context 37 // Find those executions that happen in the context
16 msg.target <— exec.receptor 38 // of the current execution, but not before (excerpt)
17 msg.followingMsgs < — exec.next_executions 39 def trc!MethodExecution.next_executions

18 end 40 trc!LocalExecution.alllnstances.select { |me|
19 41 me.caller == self &&
20 from src : trcllnstance to tgt : seq!lnstance 42 me.timestamp > self.timestamp
21 tgt.class <— src.class 43 }.union(...)
22 end 44 end

Fig. 2. Transforming traces to simplified sequence diagrams

and the receptor object. These bindings require rules that resolve the source in-
stance to target instances, which is done in lines 20-22. Classes are also mapped
(lines 24-26). Finally, the followingMsgs reference is filled by resolving those mes-
sages that correspond to the method executions calculated by the next executions
helper (lines 39-44), which basically retrieves all executions performed as part
of the execution of the current method (for simplicity only local executions are
considered here). A RemoteMethodExecution is mapped similarly (lines 12-18),
except that the source is obtained from remote context which access the actual
receptor object in the server side, and thus the client stub, which corresponds
to the first caller, must be skipped.

3.1 Challenges

From the transformation engine point of view, this is a simple transformation,
when applied in batch mode. However, it poses several challenges when the
source model is processed in streaming. We next review these challenges, using
the execution example shown in Fig. Bl The events are numbered in the order in
which they are received by the streaming transformation.

— Infinite model. The input model is potentially infinite, as a program may
be in execution indefinitely. The notion of infinite model has been studied
n [I0]. Similarly, the trace model that keeps the correspondences between
source and target elements could also be infinite.
In the example, each time a method is invoked over a local instance, Meth-
odExecution, Instance and Class elements are created. They need to be trans-
formed as they arrive from the stream, generating the corresponding trace
links to allow bindings to be resolved (e.g., msg.target < exec.receptor). As
the program generating the execution traces may be in execution for a long

6 J.S. Cuadrado and J. de Lara
event #1 call :MethodExec \J :Instance l \J :Class]
class Company { r2lname="hire" receptor/] objectld=1]class/] name="Company"]
@Remote } I\caller
PersistenceCtx ctx; event #2 | :MethodExec :Instance N :Class |
void hire(Employee ¢) { i name="setSalary" | receptof | objectld=2 class” [name="Employee
e.setSalary(1000); |
ctx.save(e); event #4 7 :RemoteCall
} name="save"
} nodeld=1
timestamp=3
class Employee
void setgaliry(éouble i); /‘\ caller
void setCompany(Company ¢); oyent #3 :RemoteMethodExec
} name="save :Instance \J :Class]
nodeld=2 receptor | objectld=1 class” | name="Persist..."
clientNodeld=1

clientTimestamp=3

Fig. 3. Execution example

time, strategies to reduce the amount of model elements and trace links are
needed to avoid overflowing the memory of the machine.

Model element identity. Transformation engines rely on the object iden-
tities, e.g. to compare two objects for equality. In our case, fragments of
models can be streamed, and two or more fragments may contain the same
element, but with different in-memory object identity.

In the example, the processes generating the stream may create different Class
elements to represent the same class in the program being analysed (i.e., in
a distributed enviroment the same code is running in different machines).
This implies that object identity may be lost. Additionally, in a distributed
setting, a mechanism to serialize and deserialize fragments is needed.
Dealing with references. A model fragment that is streamed may refer to
other fragments that have already been streamed or that may be streamed in
the future. Both cases are shown in the figure by the dashed arrows. Fragment
event #2 refers to fragment event #1 through the caller reference (same for
events #3 and #4). However, we do not want to emit all the elements of the
referenced fragment again, but just to refer to a particular element. Hence,
a mechanism to refer to elements in other fragments is needed.
Transformation scheduling. In the example, obtaining the remote con-
text (through expression self.caller.caller.receptor, line 34), may be a blocking
operation since the caller may not be available when the rule is being pro-
cessed (see reference from event #3 to #4). Some mechanism is needed to
avoid stopping the execution of the whole transformation, and to resume the
rule execution when the expected element arrives.

In addition, rules must be executed as elements arrive, but the order is
unknown. Thus, a flexible rule scheduling mechanism is needed.

Features with different semantics. Some features normally available in
model transformation languages are no longer adequate or their semantics
has to be changed. An example is “all instances of”, whose usual semantics
is not valid in this context. This is so as all objects of a certain class cannot
be generally available at a certain moment, either because they still need to

Streaming Model Transformations 7

arrive, or perhaps they have been discarded. Other features such as iterators
on collections like select also need to be adapted, as proposed in [10].

In the example, to obtain the executions that follows the current one (lines
40-43), the alllnstances construct must be used. In both cases, a mechanism to
process the elements as they appear are needed. In the case of alllnstances an
strategy to avoid dealing with a possibly infinite collection is also necessary.

As can be observed, streaming model transformations are an essentially differ-
ent problem from other scenarios, such as live/change-driven [4] and incremental
transformations [I8T6], in which the aim is to change the model (source model
for in-place transformations, or target model for model-to-model transforma-
tions) as a response to changes in the source model. In our case the only change
is the generation of new elements, but the source model can be infinite.

4 Specifiying Model Streams

A streaming transformation deals with model fragments that are continously
made available. Hence, it is necessary to describe their characteristics so that
the transformation engine can deal with them transparently.

In our approach, the streaming unit is the model fragment, made of one or more
model elements which may have intra-fragment references (both containment and
non-containment) and inter-fragment references (only non-containment, because
the ultimate goal of them is to refer to an element not defined in this fragment).

Model fragments may need to be serialized if they are to be sent to the machine
where the transformation is being executed. Thus, when creating and receiving
a fragment, there are two main elements to take into account: model element
identity and references. We have defined a small DSL to specify these features,
among others. The stream description for the running example is shown in the
following listing.

1 stream "dynamic trace.ecore” 7 // inter—references

2 // Defining keys: simple, multiple, custom 8 ref(MethodExecution.caller)

3 key(Class) = name o // Sliding windows

4 key(Instance) = objectld, nodeld 10 sliding for MethodExecution = 200 secs
key(MethodExecution) = { self.name + " " + 11 sliding for Instance = 1000 elements

o«

self.nodeld 4+ " " + self.timestamp }

Model element identity. In the general case we cannot rely on plain object iden-
tity to compare model elements, as the elements of the stream may have been
generated by a machine different from where the transformation is executed, as
it is the case of the running example. This requires using the properties of the
model elements to identify the objects (i.e., rely on value identity), similar to
keys in the case of QVT-Relations [23]

Hence, we allow the key of an element to be specified in the stream description.
Keys can be either simple, or composed of several attributes, or generated by an
expression (lines 4, 5 and 6-7 respectively). Each time two elements of the same
type are compared, the key value is used if a key has been specified. If the whole
stream is generated in a single machine, the object identifier in this machine can
be attached to each object prior to serialization.

8 J.S. Cuadrado and J. de Lara

Inter-fragment references. Our approach for inter-fragment references is based
on creating a proxy per each referenced element. We do not rely on any par-
ticular technology, but we just create a new element (the proxy), of the same
type as the referenced element, setting its key attributes (or attaching a “Mem-
oryld” annotation). The advantage is that, from the serialization point of view,
inter-fragment references are not cross-references but just an annotation indi-
cating that an element is a proxy, making it straightforward to implement and
meta-modeling framework agnostic.

Upon arrival, our transformation engine replaces the proxy with the actual
element if it was streamed before. To this end, the engine internally uses an
associative table to keep the relationship between keys and actual elements. The
case in which the actual element arrives after a proxy needs a special treatment,
as discussed in Section [£.3

In the DSL we allow specifying which references may hold a proxy (line 8).
While this is not compulsory, we use this information to optimize the lookup
and the replacement of proxies for the actual elements.

5 Transformation Scheduling

Our approach to schedule streaming transformations builds on our previous work
using continuations to schedule batch model transformations [ITI12], extended to
consider the streaming setting, that is, rules fed incrementally by stream events
and partial execution of navigation expressions. Our Eclectic transformation tool
relies on an intermediate language, called IDC (Intermediate Dependency Code),
to which high-level languages are compiled to.

IDC is a simple, low-level language composed of a few instructions, some of
them specialized for model manipulation and transformation scheduling. IDC is
compiled to the Java Virtual Machine (JVM). Fig. (a) shows an excerpt of its
meta-model. Every instruction inherits from the Instruction abstract metaclass.
Since most instructions produce a result, they also inherit from Variable (via
InstructionWithResult) so that the produced result can be referenced as a variable.

The IDC language provides instructions to create closures, invoke methods,
create model elements and set and get properties (Set and Get in Figure [,
among others. In IDC, there is no notion of rule, but the language provides a
more general mechanism based on queues. Compilers for high-level languages
are in charge of mapping actual rules to queues. A Queue holds objects of some
type, typically source model elements and trace links. The ForAlllterator receives
notifications of new elements in a queue, and executes the corresponding instruc-
tions. There are two special instructions to deal with queues: Emit puts a new
object into a queue, while Match retrieves an element of a queue that satisfies
a given predicate. If such an element is not readily available, the execution of
this piece of code is suspended into a continuation [9] until another part of the
transformation provides the required value via an Emit.

In the following we discuss, in the context of IDC, the elements involved to
schedule a streaming model transformation.

Streaming Model Transformations 9

from trc!RemoteMethodExecution
to seq!Message

ModelQueue Suspended

proxies

1. Queue q1 : trc!RemoteMethodExec
2. ForAll exec in g1
1) 2.1 create msg : seq!Message
2.2 create Ink : Link(src=exec, tgt=msg)

Instruction
WithResult

exists Ink / Ink.src = o
. set tgt, "class", Ink.tgt

11 Variable 2.3 emit Ink to TraceQueue
Instruction name : Strin |
ForAll " ‘ ‘ 9 ‘ | msg.target <-exec.receptor
Iterator Z% |
| 1. o = get exec, "receptor”
Set I2) 2. match TraceQueue
I
|

property : String
receptor: Variable
value : Variable

w

value : Variable

self.caller.caller.receptor
Get

property : String 1. tmp1 = get self, "caller"
receptor: Variable 3) 2. tmp2 = get tmp1, "caller"
3. get tmp2, "receptor"

Match
‘ pred : Predicate

a) IDC meta-model b) Compilation example

Fig.4. (a) Excerpt of the IDC meta-model, (b) Compilation example between the
Eclectic mapping language and IDC

5.1 Feeding Transformation Rules

Each time a new model fragment arrives, the source pattern of the transforma-
tion rules must be evaluated to trigger a rule if there is a match. Figure [d{(b.1)
shows how the rule to transform RemoteMethodExecutions is compiled to IDC.
We create one queue per each type in the source pattern, and a ForAlllterator
instruction which acts as a closure that is invoked each time a new element in
the queue appears. In the example, a new Message element is created, as well as
the corresponding trace link which is sent (via the emit instruction) to a default
queue which is in charge of processing trace links (TraceQueue).

This mechanism permits the execution of rules on demand, as queues are
filled. ForAlllterator instructions can be nested allowing complex patterns to be
detected, and, as we will see in Section Bl our queues have “memory” (they
have a sliding window), which is needed to allow the nesting of iterators.

In contrast to batch transformations, we needed to check that the rule has not
been applied before for the current element, since an element with the same key
may have arrived before. To this end we have an index with the received model
elements, which is checked before feeding a queue. As explained in Section [B]
this is the case with Class elements.

5.2 Resolving Source-Target Relationships

A common operation in model-to-model transformations is to retrieve a target
element from a source one already transformed by some rule. In the example
this is achieved using a binding construct, such as msg.target < exec.receptor.
We compile a binding as shown in Figure B{(b.2). (1) The expression to the
right is compiled using regular model manipulation instructions, a Get in this
case. Then, (2) the source element resulting from evaluating the expression, o,
is used to match a trace link in the TraceQueue whose source is precisely o. If
such trace already exists (i.e., it has been previously added with an Emit, as in
Figure @{(b.1)), it is immediately retrieved. If not, the execution of the rule is

10 J.S. Cuadrado and J. de Lara

stopped, and a request is placed in the queue so that the rule is resumed when
some Emit instruction generates the trace link satisfying the request.

This approach has the advantage of its flexibility, since rules can be matched
and applied in any order. In a streaming setting, rules can be matched and
executed as elements arrive: if a binding needs a source element that has not
been processed yet, the rule will wait, letting other rules start their execution.

5.3 Evaluating Expressions

When evaluating a navigation expression over a streamed model it may happen
that part of the navigation path is not available yet. In our approach this can
be detected because the result of getting a property is a proxy object. Thus, the
evaluation of the expression must be suspended until the real object arrives. This
may in turn suspend the rule that depends on the evaluation of the expression.

We use a similar approach as for resolving trace links, applied to change the
semantics of the Get instruction to deal with incomplete models. It is worth not-
ing that this design is transparent to the high-level language, which see property
access as a regular Get, as illustrated in the compilation example of Figure @(b.3).

The process is as follows. Given an instruction such as get self, “caller” we check
whether the receptor object or the result of the instruction is a proxy, and we
try to resolve the proxy with one of the already streamed elements. If not, the
evaluation of the expression is suspended into a continuation, placing a request
in a queue (Suspended proxies). Later, as new objects arrive they are passed
to this queue, to check if some of them satisfies one or more of the enqueued
requests, in order to resume the suspended Get instruction.

6 Infinite Models

Streaming model transformations deal with possibly very large models, whose
size is unknown. This requires strategies to reduce the memory footprint of the
transformation process. Besides, the fact that the whole model is unknown from
the beginning implies that some collection operations must be adapted to the
new setting. In this section we present our approach to both issues.

6.1 Reducing Memory Footprint

Model transformation engines typically keep the source model, the target model
and the traceability links in main memory. In many practical scenarios this is
the best alternative, but when the source model is expected to be very large,
alternative strategies to reduce the memory footprint are needed. So far, we have
considered two approaches: sliding windows and using secondary storage.

Sliding windows. A direct mechanism to deal with an infinite data stream is
to use a sliding window. In our setting, both source elements and trace links
outside the window will be discarded. As noted in [1], this is an approximation

Streaming Model Transformations 11

mechanism that may produce an incomplete target model, although in some
scenarios it is acceptable to assume this limitation.

In our approach sliding windows are specified with the DSL (see lines 10-11
in the example). There are two types: windows based on time (e.g., 200 seconds)
and on a number of elements of a given type (e.g., 1000 elements). A sliding
window works in a “first-in, first-out fashion”, so that the first element that
arrived is the first element to be discarded when the window must be “moved”.
When a source element is discarded, any other data structure that refers to it
must be discarded as well. In our case, they are the trace links, the continuations
created with a Match that expects a trace link with such source element, and the
index keeping the already streamed objects by key.

Please note that, when defining the windows, it is important to consider the
expected amount of data for each type. In the example we decided never discard
Class objects, as the number of classes in a system is limited.

Using secondary storage. If we want to guarantee that all bindings and proxies
are resolved (provided the corresponding elements are eventually streamed), a
solution would be to resort on a model repository, such as Morsa [I4], to store all
or part of them. The main problem is that accessing the repository may slowdown
the transformation execution. Hence, this strategy may be practical depending
on the pace of stream, and therefore it will be best suited for a distributed
scenario in which load balancing is possible (see Section [).

As an optimization we would like to use asynchronous I/0 for accessing sec-
ondary storage. This approach fits naturally in our continuation-based schedul-
ing algorithm, since the access to the repository can be scheduled in a different
thread, storing the rule execution into a continuation, and so other elements in
the stream can be processed. When the repository provides the result, the rule
is seamlessly resumed.

6.2 Collection Operations

The implementation of collection operations such as select, collect, or alllnstances
need to be adapted to take into account that the source model is not completely
available from the beginning. In our setting, this problem can be seen as a
simplification of the incremental evaluation of OCL expressions, in which there
are only addition events (elements are not deleted).

There are several approaches proposed in the literature [I8/T64], but we have
adapted and implemented the active collection operations proposed in [3] into
our transformation engine. For space reasons we just outline some of its elements.
Fig. Bl shows the API of our implementation.

We have added two extensions to the original ImmutableList type of IDC:
ActiveGenerator and ActiveOperation. The former is a collection in which elements
are initially injected from the stream. The ActiveAlllnstances is connected to a
model queue that provides elements of the corresponding types as they arrive
(e.g., MethodExecution.alllnstances), whereas ActiveGet is used to retrieve elements
from a multiple-valued feature (e.g., self.callee).

12 J.S. Cuadrado and J. de Lara

ImmutableList O
add(Object o) : ImmutableList ActiveSource
select(Closure cond) : ImmutableList register(ActiveOperation op)
union(ImmutableList) : ImmutableList unregister(ActiveOperation op)

‘ ModelQueue ‘ ‘Actr’veGenerator‘

queue

Active ActiveGet Active Active ActiveSet
Alllnstances receptor : Object| [_Select | | Union receptor : Object

feature : String feature : String

Fig. 5. Excerpt of the API of our active collection operations implementation

The second extension reifies collection operations as classes (ActiveOperation
and operation subclasses such as ActiveSelect and ActiveCollect), so that an oper-
ation is kept active as an object that receives events through a source. A source
is represented by the ActiveSource interface, which permits registering and dereg-
istering an ActiveOperation. Given an expression such as the one in lines 39-44 in
Fig.[2 a tree of active operations is constructed. When an element arrives, it is
propagated from an active generator to the root.

Currently, we do not permit operations such as size or indexOf, as their
semantics cannot be naturally aligned to a streaming setting. Finding out an
aproppriate semantics for these operations is left for future work.

7 First Results and Evaluation

We have implemented a proof of concept streaming model transformation engine
on top of the Eclectic transformation tooll [12], using the techniques presented
in the previous sections. To evaluate our approach we carried out three initial
experiments , which stress different elements of our approach (corresponding to
three scenarios explained in Section [2).

Natural streaming. We used the running example to test the first versions of
our implementation. Then, we built a simulator to generate execution traces
indefinitely, to feed the transformation. The mechanisms proposed in the paper
allowed us to keep the simulator running for some time, using different sizes
of sliding windows and available memory (from 24 MB to 256 GB, generating
between 10.000 and 100.000 execution traces).

Dealing with large models. We injected into the Morsa repository [14] the models
provided in the Grabats 2009 contest B. They represent Java projects (conforming
to the Eclipse JDT meta-model) ranging from 70,000 to 500,000 elements (only
injecting the largest model requires a setting with 3 GB RAM). To test the

! Source code and examples are at http://sanchezcuadrado.es/projects/eclectic

2 We have run the tests in an Intel i7 Quad Core, with 8 GB RAM, configuring the
JVM with different heap sizes (up to 2GB).

3http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study

http://sanchezcuadrado.es/projects/eclectic
http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study

Streaming Model Transformations 13

possibility of dealing with such large models, we implemented a transformation
from JDT models to KDM. It transforms classes, methods, fields and resolve
types, and therefore only parts of the source model needs to be in memory at
a given time. We used the load-on-demand facility of Morsa to incrementally
feed the transformation, which allowed us to transform even the largest model
(requiring 2 GB RAM, taking 16 minutes).

Pipelining transformations. We implemented a simple pipeline with two pro-
cesses. The first process was in charge of parsing individual Java files into an
AST (using the JDK’s parser). The AST representing each class was then trans-
formed into the MoDisco Java meta-model. In this case we have considered
compilation units, classes and methods, and the inheritance reference between
classes. We compared the execution time of performing the transformation in
batch mode (parsing all models at once and then transforming) against schedul-
ing the transformation two threads: parsing and transforming. Our streaming
approach premits that, as soon as the parsing thread generates the AST of a
file, it is passed to the transformation thread. We have tested with projects be-
tween 2,000 and 15,000 Java files (roughly 30,000 and 300,000 objects), and our
results showed an speedup between 10% and 15% for the threaded approach.
Even more, if we manually release resources not needed for subsequent execu-
tions (compilation units and method declarations in this case), speedup increases
upto 10%, and memory footprint decreases 25%. As future work we aim at au-
tomatically identifying in which case resources can be safely released.

All in all, this initial evaluation shows the feasability of the approach, but
more work is still required. For instance, this experience taught us that we had
a few memory leaks which become very relevant in this setting, and that a
mechanism to discard parts of the target model or to incrementally store it in a
model repository is needed if the target model grows too large. Another future
line of work is to evaluate how Event Stream Processing engines, such as Esperﬁ,
could be used as a backend for the transformation engine.

8 Related Work

Data stream processing has been investigated in the database community,
proposing extensions for SQL and mechanisms for sliding windows, sampling and
summarization [I]. Adapting query language designs and sliding windows
implementation techniques is particularly interesting for our case [20/21].

Works dealing with the processing of XML are also focussed on providing query
facilities [I5] or in the case of XLST, simple transformations (in-place substitu-
tion). Notably, STX is a variant of XSLT intended for streaming transformations
of XML documents, based on SAX events instead of DOM [§]. These approaches
could be used to complement our work, in the pattern matching phase, which we
have currently implemented just by nesting forall iterators.

4Thttp://esper.codehaus.org/

http://esper.codehaus.org/

14 J.S. Cuadrado and J. de Lara

Proposals such as the semantic sensor web technologies [26] requires processing
streamed semantic data, typically in the form of RDF triples, which can be
queried with SPARQL extensions [I3]. As noted in Section [2 our approach could
be applicable to this context to data format transformations and to integrate
data from heterogenous sources.

In [10] the authors provide a formal foundation for infinite models, as well as a
redefinition of some OCL operators to tackle infinite collections using coalgebra.
They identify transformations of such infinite models as a challenge. Lazy model
transformations [27] somehow deal with the converse scenario we tackle here:
on-demand generation of the target model. This scenario is useful if only some
part of the generated model is needed, which is produced on-demand. That
is, target elements are only produced when they are accessed. Change-driven
transformations [4], incorporate the notion of change (in the source model) as
a first-class concept in transformation languages. While this approach can be
used to implement, e.g., incremental transformations, our approach enables the
uniform specification of transformations, as if they were designed for a batch
scenario, but are applicable for streaming data.

Techniques for incremental transformations are closely related [I6JIS], but
taking into account that in our case just additions need to be considered. Thus,
we have used continuations to schedule the transformation execution [I1J12] and
active collection operations [3] to implement infinite collections.

9 Conclusions and Future Work

In this paper we have presented our approach to streaming model transforma-
tions. We have motivated the problem by presenting four applicability scenarios,
and providing a complete example. From the example we have derived the set of
challenges that has driven our proposal, which includes mechanisms for specify-
ing model fragments, transformation scheduling and dealing with infinite mod-
els. Our first experiments show promising results, not only to deal with natural
streams, but also to deal with large models and to take advantage of multi-
core architectures. Additionally, we contribute a prototype implementation for
the Eclectic transformation tool. To the best of our knowledge, this is the first
model transformation engine with this capability.

As future work, we plan to perform further experiments, and to improve our
implementation, for instance to allow the incremental store of the target model in
a model repository and to take advantage of asynchronous I/0O. Finally, we aim
at using streaming transformations to implement distributed transformations.

Acknowledgements. This work was funded by the Spanish Ministry of
Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D
programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).

Streaming Model Transformations 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS, pp. 1-16. ACM (2002)

Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Record 39(1), 20-26 (2010)

Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.-M.: Active operations on
collections. In: Petriu, D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 91-105. Springer, Heidelberg (2010)

Bergmann, G., Réath, 1., Varré, G., Varrd, D.: Change-driven model transformations
- change (in) the rule to rule the change. SoSyM 11(3), 431-461 (2012)

Briand, L., Labiche, Y., Leduc, J.: Toward the reverse engineering of uml sequence
diagrams for distributed java software. IEEE T'SE 32(9), 642-663 (2006)
Bruneliere, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: MDA4ServiceCloud 2010 Workshop at ECMFA 2010 (2010)
Caué Clasen, M.T.: Marcos Didonet Del Fabro. Transforming very large models in
the cloud: a research roadmap. In: Workshop on MDE on and for the Cloud (2012)
Cimprich, P.: Streaming transformations for xml (stx) version 1.0 working draft
(2004), http://stx.sourceforge.net/documents/spec-stx-2004070.html
Clinger, W.D., Hartheimer, A., Ost, E.: Implementation strategies for first-class
continuations. Higher-Order and Symbolic Computation 12(1), 7-45 (1999)
Combemale, B., Thirioux, X., Baudry, B.: Formally defining and iterating infinite
models. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 119-133. Springer, Heidelberg (2012)

Cuadrado, J.S.: Compiling ATL with Continuations. In: Proc. of 3rd Int. Workshop
on Model Transformation with ATL, pp. 10-19. CEUR-WS (2011)

Sanchez Cuadrado, J.: Towards a family of model transformation languages. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 176-191. Springer,
Heidelberg (2012)

Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Int. Sys. 24(6), 83-89 (2009)
Espinazo Pagédn, J., Sdnchez Cuadrado, J., Garcia Molina, J.: Morsa: A scalable
approach for persisting and accessing large models. In: Whittle, J., Clark, T.,
Kiihne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 77-92. Springer, Heidelberg
(2011)

Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst. 29(4), 752-788 (2004)

Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Wang, J., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321-335. Springer, Heidelberg (2006)
Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1), 31-39 (2008)

Jouault, F., Tisi, M.: Towards incremental execution of atl transformations. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 123-137. Springer,
Heidelberg (2010)

Kolovos, D.S., Paige, R.F., Polack, F.: The grand challenge of scalability for model
driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421,
pp. 48-53. Springer, Heidelberg (2009)

http://stx.sourceforge.net/documents/spec-stx-2004070.html

16

20.

21.

22.

23.

24.

25.

26.

27.

J.S. Cuadrado and J. de Lara

Kramer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Trans. Database Syst. 34(1) (2009)

Law, Y.-N., Wang, H., Zaniolo, C.: Relational languages and data models for
continuous queries on sequences and data streams. ACM Trans. Database
Syst. 36(2), 8 (2011)

KDM, v1.0, http://omg.org/spec/KDM/1.0

OMG. QVT, v1.1 (2011), http://vwww.omg.org/spec/QVT/1.1/

Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data processing.
In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487,
pp. 245-289. Springer, Heidelberg (2012)

Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: WWW, pp. 851-860. ACM (2010)

Sheth, A.P., Henson, C.A., Sahoo, S.S.: Semantic sensor web. IEEE Internet
Computing 12(4), 78-83 (2008)

Tisi, M., Martinez, S., Jouault, F., Cabot, J.: Lazy execution of model-to-model
transformations. In: Whittle, J., Clark, T., Kiihne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 32-46. Springer, Heidelberg (2011)

http://omg.org/spec/KDM/1.0
http://www.omg.org/spec/QVT/1.1/

Genetic-Programming Approach to Learn Model
Transformation Rules from Examples

Martin Faunes', Houari Sahraoui', and Mounir Boukadoum?

! DIRO, Université de Montréal, Canada
2 Université du Québec & Montréal, Canada

Abstract. We propose a genetic programming-based approach to
automatically learn model transformation rules from prior transforma-
tion pairs of source-target models used as examples. Unlike current
approaches, ours does not need fine-grained transformation traces to pro-
duce many-to-many rules. This makes it applicable to a wider spectrum
of transformation problems. Since the learned rules are produced directly
in an actual transformation language, they can be easily tested, improved
and reused. The proposed approach was successfully evaluated on well-
known transformation problems that highlight three modeling aspects:
structure, time constraints, and nesting.

1 Introduction

The adoption of new technologies generally follows a recurrent cycle described
by Moore in [16]. In this cycle, user categories adopt a technology at different
moments depending on their profiles and the technology’s maturity. Moore iden-
tified the move from the early adopters category to the early majority category
as the gap that is the most difficult to cross and in which many technologies
spend a long time or just fail. Model Driven Engineering (MDE), as a new tech-
nology that changes considerably the way we develop software, does not escape
this observation. MDE received much attention in recent years due to its promise
to reduce the complexity of the development and maintenance of software appli-
cations. However, and notwithstanding the success stories reported in the past
decade, MDE is still at the early-adopters stage [15]. As mentioned by Seli, in
addition to the economic and cultural factors, the technical factors, particularly
the difficulty of automation, represent major obstacles for MDE’s adoption.
Automation is a keystone and a founding principle of the MDE paradigm.
According to Schmidt, MDE technologies combine domain-specific modeling lan-
guages with transformation engines and generators to produce various software
artifacts [2I]. By automating model-to-model and model-to-code transforma-
tions, MDE fills the conceptual gap between source code and models, and en-
sures that models are up to date with regards to the code and other models. In
recent years, considerable advances have been made in modeling environments

! Bran Selic, “The Embarrassing Truth About Software and Automation and What
Should be Done About It”, Keynote talk, ASE 2007.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 17-B2Z] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

18 M. Faunes, H. Sahraoui, and M. Boukadoum

and tools. However, in practice, automated model transformation and code gen-
eration has been restricted to niche areas such as database mapping and data-
intensive-application generation [I5]. To address this limitation, a large effort has
been made to define languages for expressing transformation rules (e.g., ATL [9])
to make the writing of transformation programs easier.

Having a good transformation language is only one part of the solution; the
most important part is to define/gather knowledge about how to transform
any model conforming to a particular metamodel into a model conforming to
another metamodel. For many problems, this knowledge is incomplete or not
available. The difficulty of writing transformation rules is the main motivation
behind the research on learning transformation rules from examples. Although
the idea goes back to the early nineties, the first concrete work on Model Trans-
formation by Example (MTBE) was proposed by Varro in 2006 [24]. MTBE’s
objective was to derive transformation programs by generalizing concrete trans-
formations found in a set of prototypical examples of source and target models.
Since then, many approaches have been proposed to derive the transformation
rules (e.g., [220TJ6I4IT2120]) or to transform a model by analogy with transformed
examples [10].

Still, the existing MTBE approaches only solve the problem of rule deriva-
tion partially. Most of them require detailed mappings (transformation traces)
between the source and target model examples [I], which are difficult to pro-
vide in some situations; others cannot derive rules that test many constructs in
the source model and/or produce many construct in the target model, many-
to-many rules [22], a requirement in complex transformation problems. A third
limitation is the inability of some approaches to automatically produce complex
rule conditions to define precise patterns to search for in the source model [20].
Finally, some approaches produce abstract, non-executable rules that have to be
completed and mapped manually to an executable language [4].

In a previous work [5], we proposed a preliminary approach for the derivation
of complex and executable rules from examples without the need of transfor-
mation traces. The approach was inspired from genetic programming (GP) and
exploits GP’s ability to evolve programs in order to improve their capacity to
approximate a behavior defined by a set of valid pairs of inputs/outputs. The ap-
proach was quantitatively evaluated on the transformation of class diagrams to
relational schemas. Although 75% of the model constructs were correctly trans-
formed, many key transformation rules were not derived or only derived partially.
In this paper, we propose an improved version of the algorithm with new ways
of solution initialization, new program derivation from existing ones, and pro-
gram evaluation. This new version is evaluated on two transformation problems
that cover three important software modeling characteristics: structure, time
constraints, and nesting. In the first problem, the transformation of class dia-
grams to relational schemas, we test the ability of our approach to handle the
transformation of structural models. Time-constrained-model transformation is
considered in the second case study through the problem of sequence diagrams
to state charts. In this problem, the derived transformation should preserve the

Genetic-Programming Approach to Learn Model Transformation Rules 19

time constraints between the constructs. Our second case study also handles the
complex problem of nested-sequence-diagrams to state-charts transformation. In
this case, the transformation control is non trivial as the rules should transform
the nested elements before those that contain them. The obtained quantitative
and qualitative results show that our approach allows the derivation the correct
transformation rules for both problems.

2 Learning Rules from Examples

Our goal is to define a transformation-rule derivation process that may apply
to a wide range of transformation problems. To this end, our approach should
work even if fine-grained transformation traces are not available. Additionally,
constraints on the shape or size of the rules should be as limited as possible.
This includes the numbers of source and target-construct types and the nature
of rule conditions. Finally, the produced rule sets must be executable without a
manual refinement step.

2.1 Rule Derivation as an Evolutionary Process

Transformation rules are programs that analyze certain aspects of source models
given as input and synthesize the corresponding target models as output [21].
Learning complex and dynamic structures such as programs is not an easy
task [2]. Of the possible tools that can be used for automatic programs gen-
eration, Genetic Programming (GP) [I3] is a strong contender for supremacy
as it was originally created for the purpose. This motivated our investigation
of GP to automatically derive rule sets, i.e., declarative programs, using exam-
ples of models transformations, i.e., complex inputs/outputs. GP draws inspira-
tion from Darwinian evolution and aims to automatically derive a program to
solve a given problem, starting from some indications about how the problem
should be solved. These usually take the form of input and output examples, and
the derivation process is done by iteratively improving an initial population of
randomly-created programs, i.e., by keeping the fittest programs for reproduc-
tion at each step, the reproduction being made by means of genetic operators
similar to those observed in nature. The typical GP cycle is sketched in Figure[dl

Before, starting the evolution process, the user must have a set of example
pairs describing the expected program behavior in the form of <input, output>.
The user must also define a way to encode and create the initial population of
random programs. Finally, a mechanism is needed to run the programs on the
provided inputs and compare the execution results with the expected outputs.
This is typically done by defining a fitness function that evaluates the closeness
between the produced and expected outputs.

To apply GP to the MTBE problem, we have to consider two issues. First,
transformation rules are not imperative programs and cannot be encoded as trees
as usually done in GP [13]; second, the outputs of transformations are models
(usually graphs) that are not easy to compare for evaluating the correctness of

20 M. Faunes, H. Sahraoui, and M. Boukadoum

3) Terminatio
critreria?

No

(2) Execute programs and
evaluate their fitness

(1) Create an initial
population of programs

(5) Replace the current (4) Create new programs
population by the new one using genetic operators

(6) Return the
best program

Fig. 1. A typical GP cycle

a program. In the following subsections, we detail our adaptation of the GP
algorithm to the specific problem of MTBE. Note that, for our investigation,
we decided to use a simple metamodeling language to describe the metamod-
els and a generic rule language/engine JESS [8] for the writing and execution
of transformation rules. This decision was made to separate, in a first phase
of this research project, the intrinsic complexity of MTBE from the acciden-
tal complexity of conformance to standards and interoperability concerns. The
mapping between JESS and a transformation language such as ATL is pretty
easy to perform since both languages offer similar features such as declarative
and imperative structures as well as control mechanisms.

2.2 Encoding Rule Sets

Typical transformation problems require a set of transformation rules to cover all
the patterns in the source models. A program p is accordingly encoded as a set
of transformation rules, p = {ry, ra, ..., 7, }. Each transformation rule r; is in turn
encoded asa pair r; = (SP, T P), where S P is the pattern to search for in the source
model and TP is the pattern to instantiate when producing the target model.

Source Pattern. A source pattern SP is a pair SP = (SGC, @), in which SGC'is
a set of generic source constructs and G is a guard. A generic source construct is
the specification of an instance of a construct type that has to be matched with
concrete constructs in the source model. For example, in the rule of Listing [[.T]
SGC ={C, A, S}, where C, A and S represent respectively a class, an attribute,
and an association. SGC' could include more than one generic construct from the
same construct type, e.g., two classes and an association. Each generic construct
has the properties of its construct type in the source metamodel. When matched
with a concrete construct from the source model, these properties take the values
of the latter. For instance, an attribute A has its name (descriptive property)
and the name of the class it belongs to (join property) as properties. During
execution, the value of a property can be accessed as shown in Listing [L1] e.g.,
A.name and A.class.

The guard G contains two types of conditions: join conditions and state con-
ditions. Join properties are used to define the set of join conditions, which al-
low to specify a source pattern as a model fragment, i.e., a set of interrelated
constructs according to the metamodel. For example, in the rule of Listing [T}
the join condition A.class = C.name states that A should be an attribute of

Genetic-Programming Approach to Learn Model Transformation Rules 21

class C' whereas S.classFrom = C.name restricts the pattern to only classes
that are at the origin of associations.

Listing 1.1. Rule encoding example

Source pattern:
// Generic source element
Class C, Attribute A, Association S
// Guard: Join condition
(and (A.class = C.name) (S.classFrom = C.name))
// Guard: State condition
(and (S.maxCardFrom < 1) (S.maxCardTo > 1))
Target pattern:
// Generic target element
Table T, Column O
// Bindings
T.name := C.name
O.name := A.name
// Join-statement
0.table = T.name

State conditions involve the properties of the generic source constructs (both
join and descriptive ones). They are encoded as a binary tree containing elements
from terminal (T) and primitive (I) sets. T' is the union of the properties of the
constructs in SGC' and a set of constants C. For the rule of Listing[[.T] the prop-
erties are C.name, A.name, A.class, S.classEFrom, S.classTo, S.MaxCardFr,
S.MaxCardTo, etc. As the properties are numbers and strings, numeric and
string constants such as {0, 1, Empty, ...} are added to the terminals. As condi-
tions are manipulated, the Boolean constants true and false are also added. The
set of primitives I is composed minimally of logical operators and comparators
(I = {and,or,not,=,>,<,...}). Other operators, such as arithmetic or string
operators, could be added to test values derived from the basic properties. Since
this work uses the concrete rule language JESS [g], the conceptual distinction
between join and state conditions is not reflected in the actual code. Both types
of conditions form the condition tree with terminals as leaf nodes and primitives
as the other nodes. A rule without any condition will be represented by a tree
with the single node “true”. A rule is fired for any combination of instances for
which the condition tree is true.

Target Pattern. The target pattern TP is a triple TP = (T'GC, B,T.J), where
TGC, B and T'J represent respectively a set of generic target constructs, a set of
binding statements, and a set of join statements. A generic target construct spec-
ifies a concrete construct to create in the target model when the rule is fired. In
the example of Listing [T} two constructs are created: a table T and a column
O. The set of bindings B determines how to set the property values of the cre-
ated constructs with the property values of the constructs that match the source
pattern. In Listing [[LT] the created table and column will respectively have the
same names as the selected class and attribute. Finally, the join statements T'J
allow to connect the created constructs to form a fragment in the target model.

22 M. Faunes, H. Sahraoui, and M. Boukadoum

In the example provided, column O is assigned to table T'. The join statements
must conform to the target metamodel.

2.3 Creating Rule Sets

As stated in Section 2] deriving transformation rules using genetic program-
ming requires the creation of an initial population of random rule sets. Each
rule set has to be syntactically correct with respect to the rule language (JESS
in this work). Moreover, a rule set should be consistent with the source and
target metamodels. In this respect, rules should describe valid source and target
patterns. For the initial population, a number of rule sets nrs is created (nrs is
a parameter of the approach). The number of rules to create for each rule set is
selected randomly from a given interval. For each rule, we use a random com-
bination of elementary model fragments (building blocks) to create the source
and target patterns. The random combination of building blocks is intended to
reduce the size of the search space by considering connected model fragments
rather than arbitrary subsets of constructs. For each rule, two combinations are
performed respectively over the graphs of the source and target metamodels to
create the source and target patterns of the rule, SP and T P.

A building block is a minimal model fragment which is self-contained, i.e., its
existence does not depend upon the existence of other constructs. For example,
in a UML class diagram, a single class could form a building block. However, an
attribute should be associated to its class to form a block. Similarly, an inher-
itance relationship forms with two classes (superclass and subclass) a building
block. The determination of the building block for a given metamodel depends
only on this latter and not on the transformation of its models.

To create random patterns (source or target), a maximal number of generic
constructs nc is first determined randomly. Then, a first building block is ran-
domly selected and included within the pattern. If nc is not reached yet, another
building block is selected among those that could be connected to the blocks in
the current fragment. Two blocks could be connected if they share at least one
generic construct. The connection is made by considering both constructs to con-
nect as the same generic construct. The procedure is repeated until nc is reached.
To illustrate the pattern creation procedure, consider the following example.
Imagine that the maximum number of constructs is set to four. A first random
selection could add to the pattern the block (ClassCy, AttributAy, A;.class =
Cy.name) containing two connected generic constructs C; and A;. As the size
of the pattern is less than four, another random selection could add an inher-
itance block with constructs Inheritancel;, ClassCs, and ClassCy, and links
I .class = C3.name and I;.super = Cy.name. One of the two possibilities of
connections ((C1,C3) or (Cy,Cy)) is selected, let us say (Cq,Cy4). Cy is then
replaced by C; in the pattern including the links.

The last step toward the pattern creation is the random generation of the
state conditions (for a source pattern) or the binding statements (for a target
pattern). For a source pattern, a tree is created by randomly mixing elements
from the terminal set T, i.e., properties of the selected constructs and constants

Genetic-Programming Approach to Learn Model Transformation Rules 23

consistent with their types, and elements from the primitive set P of operators.
The creation of the tree is done using a variation of the“grow” method defined
in [I3]. In the case of a target pattern, the binding statements are generated by
randomly assigning elements in the terminal set T' of the source pattern to the
properties of the generic constructs of the target pattern that were not set by
the join statements (links). The random property-value assignments are done
according to the property types.

2.4 Deriving New Rule Sets

In GP, a population of programs is evolved and improved by applying genetic
operators (mutation and crossover). These operators are specific to the problem
to solve. As with the initial-population creation, the genetic operators should
guarantee that the derived programs are syntactically and semantically valid.
Before applying the genetic operators to produce new programs, programs from
the current generation are selected for reproduction depending on their fitness
values. For the derivation of transformation rule sets, roulette-wheel selection
is used. This technique assigns to each rule set a probability of being selected
that is proportional to its fitness. This selection strategy favors the fittest rule
sets while still giving a chance of being selected to the others. Note that some
program could be included directly into the new population, i.e., elitist strategy.

Crossover. The crossover operation consists of producing new rule sets by com-
bining the existing genetic material. It is applied with a given probability to each
pair of selected rule sets. After selecting two-parent rule sets for reproduction,
two new rule sets are created by exchanging parts of the parents, i.e., subsets
of rules. For instance, consider the two rule sets p1 = {r11, 712,713,714} hav-
ing four rules and ps = {ro1, 792,723, 24, 725} with five rules. If two cut-points
are randomly set to 2 for p; and 3 for po, the offspring obtained are rule sets
01 = {r11,7m12,7r24,725} and 02 = {721,722, 123,713, 714 }. Because each rule is syn-
tactically and semantically correct before the crossover, this correctness is not
altered for the offspring.

Mutation. After the crossover, the obtained offspring could be mutated with
a given probability. Mutation allows the introduction of new genetic material
while the population evolves. This is done by randomly altering existing rules
or adding newly-generated ones. Mutation could occur at the rule set level or at
the single rule level. Each time, a rule set is randomly selected for mutation, a
mutation strategy is also randomly selected. Two mutation strategies are defined
at the rule-set level: (1) adding a randomly-created rule to the rule set and (2)
deleting a randomly-selected rule. To avoid empty rule sets, deletion could not
be performed if the rule set has only one rule.

At the rule level, many strategies are possible. For a randomly-selected rule,
one could replace the target pattern by a new one, randomly created. One could
also rebind one or more target pattern properties by picking a random number
of properties in the target pattern and randomly bind them to properties in the

24 M. Faunes, H. Sahraoui, and M. Boukadoum

source pattern and constants. These modifications, when done as in Section 2.2]
preserve the rule’s validity, both syntactically and semantically. For the source
pattern, it is also possible to introduce random modifications as for the target
pattern. However, the target pattern has to be modified accordingly to avoid
semantical and syntactical errors.

2.5 Evaluating Rule Sets

For the initial population and during the evolution, each generated rule set is
evaluated to assess its ability to perform correct transformations. This evalua-
tion is performed in two steps: (1) rule set execution on the examples and (2)
comparison of produced vs. expected target models. Rule sets are translated into
the JESS, and executed on the examples using the JESS rule engine. Metamodels
are represented as sets of fact templates and models as fact sets. The rule trans-
lation is straightforward with the particularities that generic-target-construct
declaration, join statements and bindings are merged into fact-assertion clauses.
Listing [[L2 shows the JESS translation of the rule in Listing [[11

Listing 1.2. An example of a JESS Rule
(defrule RuleListingl
(class (name 7?7C1))
(attribute (name 7A1) (class 7A2))
(association (maxCardFrom ?7S1) (maxCardTo ?7S2)(classFrom 7S3))
(test (and (and (eq ?A2 ?7C1)(eq 7S3 ?7C1))
(and (< ?7S1 1)(> 782 1))))
=>
(assert (table(name ?7C1)))
(assert (column(name ?7A1)(table ?7C1))))

Our fitness function measures the similarity between the target models pro-
duced by a rule set and the expected ones as given in the example model pairs.
Consider E the set of examples e; composed each of a pair of a source and a
target model (ms;, mt;). The fitness F(F,p) of a rule set p is defined as the
average of the transformation correctness f(mt;, p(ms;)) of all examples e;. The
transformation correctness f(mt;, p(ms;)) measures to which extent the target
model p(ms;), obtained by executing p on the source model ms;, is similar to
the expected target model mt; of e;.

Comparing two models, i.e., two graphs with typed nodes, is a difficult prob-
lem (graph isomorphism). Considering that in the proposed GP-based rule deriva-
tion, the fitness function is evaluated for each rule set, on each example, and at
each iteration, this cannot afford exhaustive graph comparisons. Instead, a quick
an efficient graph kernel f is used. f, which is a model similarity measure, calcu-
lates the weighted average of the transformation correctness per construct type
t € Ty, in the expected model mt;. This is done to give the same importance
to all construct types regardless of their frequencies. Formally:

Z ft mtzap ms;)) (1)

mt; ms
f(19 p ‘antl ‘

t€Tme;

Genetic-Programming Approach to Learn Model Transformation Rules 25

ft is defined as the weighted sum of percentages of the constructs of type ¢ that
are respectively fully (fm;), partially (pm¢), or non(nm;) matched:

Ft(mt;, p(msy)) = afmy + Bpmy +ymmy, a+ B+ = 1 (2)

For each construct of type t in the expected model, we first determine if it is fully
matched by a construct in the produced model, i.e., it exists in the produced
model a construct of the same type that have the same property values. For the
constructs in the expected model that are not matched yet, we determine, in a
second step, if they can be partially matched. A construct is partially matched
if it exists in the produced model a construct of the same type that was not
matched in the first step. Finally, the last step is to classify all the remaining
constructs as not matched.

Coefficients «, 3, and = have each a different impact on the derivation process
during the evolution. «, which should be set to a high value (typically 0.6), is
used to favor rules that correctly produce the expected constructs. As mentioned
earlier, 8, with an average value (= 0.3), allows to give more chances to rules
producing the right types of the expected constructs and helps converging to-
wards the optimal solution. Finally, v has to be set to a small value (= 0.1). The
idea of giving a small weight to the not-matched constructs seems counterintu-
itive. However, our experience shows that this promotes diversity, particularly
during the early generations, and this helps avoid local solution optima.

The calculation of the transformation correctness assesses whether the con-
structs of the expected model are present in the produced model. As a conse-
quence, a good solution could include the correct rules that generate the right
constructs, but it could also contain redundant rules or rules that generate un-
necessary constructs. To handle this situation, we consider the size of the rule
set when selecting the best solution. Consequently, even if an optimal solution
is found in terms of correctness, the evolution process continues to search for
equally-optimal solutions, but with fewer rules.

3 Evaluation

We evaluate our approach from two perspectives. First, a quantitative evaluation
allows to answer the question: To which extent our approach generates rules that
correctly transform the set of provided examples? In a second phase, a qualita-
tive evaluation will help answering the question: If the examples are correctly
transformed, are the produced rules those that are expected? In this context,
we constructed a semi-real environment where the transformation solutions are
known and where the examples models are simulated by creating prototypical
source models and by deriving the corresponding target models using the known
transformations. We were aware of the limitations of this setting, but it helps
investigate more problems and it clearly defines the reference rule sets that the
approach should derive. Additionally, it reasonably simulates situations where
the examples have been manually created over a long period of time by experts.

26 M. Faunes, H. Sahraoui, and M. Boukadoum

The preliminary version of our approach was evaluated on the transforma-
tion of class diagrams to relational schemas [B]. This transformation, call it case
A, illustrates well the problem of transforming structural models. Its complexity
resides, among others, in the multiple possibilities of transforming the same con-
struct according to the values of its properties. In the evaluation of the improved
version presented in this paper, we also studied the transformation of UML2 se-
quence diagrams to state machines (Case B1 for basic sequence diagrams and
Case B2 for advanced ones). Such a transformation is difficult because, in addi-
tion to considering the transformation of single model fragments and ensuring
the structural coherence, it introduces two important modelling characteristics:
time constraints and nesting. In this transformation, the coherence in terms of
time constraints and weak sequencing should be guaranteed. On the other hand,
nesting is tested because this transformation have to deal with combined frag-
ments (alternatives, loops, and sequences) that can be nested at different levels,
and thus, this transformation has to manage the recursive compositions in ad-
dition to handling the structural and time coherence. For case A, we used the
transformation described in [3], whereas for cases Bl and B2, we rewrote, as
rules, the graph-based transformations given in [7]. As GP-based algorithms are
probabilistic in nature, five runs were performed in parallel for each case. For
each run, we set the number of iterations to 3000, the population size to 200
and elitism to 20 programs. Crossover probability was set to 0.9 and mutation
probability to 0.9. Unlike classical genetic algorithms, having a high mutation
probability is not unusual for GP algorithms (e.g. [I8]). The weighs (a, 8,7) of
the fitness function were set to (0.6,0.3,0.1), as explained in Section 25

3.1 Quantitative Results

For each case, an optimal solution was found in at least one of the five runs. This
is an indication that the search process has a good probability of convergence.
The charts with sampled data that are shown in figures 2] and [illustrate the
evolution of a successful run for cases A and BH. Three curves are displayed
in each plot: the fitness function value (F') and the proportion of full matches
(FM) (vertical axis on the left), and the rule set size (P.S) (vertical axis on the
right). The curves correspond to the fittest rule set at each generation (iteration)
identified in the horizontal axis.

The solution evolutions for both cases follow the same pattern and differ
only in the number of generations needed to converge toward a solution and to
reach a minimal rule-set size. As expected, case A, with structural constraints
only, is the one with the fastest convergence. At the initial generation, which
is considered as a random transformation generation, half of the constructs are
correctly transformed (FM = 0.5). These are simple one-to-one transformations
(class-to-table or attribute-to-column) that have high chances of being generated
randomly. The optimal solution in terms of FM is found at the 59" generation

2 The complete data can be downloaded at
http://geodes.iro.umontreal.ca/en/projects/MOTOE/ICMT13

http://geodes.iro.umontreal.ca/en/projects/MOTOE/ICMT13

Genetic-Programming Approach to Learn Model Transformation Rules 27

200
400
600
800
1000
o 1200
2000
2200
2400
2600
2800
3000

Fig. 2. Search evolution for case A Fig. 3. Search evolution for case B2

with 10 rules. Once a solution with FM = 1 is found, the search process con-
tinues so that the current solution is replaced if another one with fewer rules
is found. This happened three times for case A, with the last occurrence at the
129" generation where the number of rules dropped to 7. No further improve-
ment was observed during the rest of the evolution in terms of number of rules.
Compared to the results obtained on this case with our previous work [5], a
significant improvement was observed (100% vs. 75% for FM).

Case B2, for which structural, time and nesting constraints are involved, took
many more generations (991) to converge to 100% of full match, with minimal
rules achieved at generation 2280. The complexity of the transformation and the
increase in the size of the search space also reduced the proportion of correct
transformations obtained randomly in the initial population (FM = 0.4 for the
initial generation compared to FM = 0.5 in case A). Case B1 has similar results
as B2, but with a faster convergence curve. From the computational perspective,
the parallel five runs took collectively between one hour for case A and three
hours for case B2 on a standard workstation (CPU @ 3.40GHz with 16 Go of
RAM). Although this time could be reduced by optimizing the code, it is not
considered excessive knowing that the process of learning new transformations
is not intended to be executed frequently.

3.2 Qualitative Results

Obtaining 100% correct transformations of examples does not necessarily mean
that we have derived the expected rules. In theory, for a limited sample of test
cases, the same output values could be produced by different programs. Thus,
to assess our results qualitatively, we need to compare the produced rules with
those used to generate the examples (expected ones).

For cases A, we were searching for rules to transform classes, associations
with various cardinalities and inheritance relationships. The expected rule set
was found with a slight difference in one rule. Indeed, as all the classes in our
examples contain at least one attribute, the rule that creates a table from a
class has an unnecessary condition on the presence of an attribute. This kind of
situations cannot be detected automatically because there is no counterexample.
In the case of B1, the expected rules to create a state machine for every object in
the sequence diagram, considering messages as events, were perfectly recovered.

28 M. Faunes, H. Sahraoui, and M. Boukadoum

Finally for B2, rules have to be found for every combined fragment (sequences,
loops, and alts) and for managing the nesting at different levels. Here again,
the best solution contains all the expected rules with an additional one. The
extra rule is subsumed by a correct rule that creates a start state from the
initial message of a combined fragment. Both rules have the same target pattern,
whereas the extra rule has additional conditions. This situation (subsumption)
could be easily detected by an automatic rule-set cleaning phase.

3.3 Discussion

During the development and evaluation of our approach, we faced several chal-
lenges to address or circumvent. This section discusses the most important ones.

Rule Execution Control. In the existing MTBE approaches, including ours,
rules are defined to search for model fragments in the source model following
a source pattern, and instantiate corresponding model fragments in the target
model according to a target pattern. The target model fragments are usually not
independent and have to be properly connected to form a coherent target model.
Connecting target model fragments is difficult because, in most transformation
languages, rules cannot check if a construct is present in the target model to
connect to the produced fragment. In most MTBE approaches, the connection
is achieved implicitly by using the same naming space both for source and target
models. In our work, we circumvent partially the connection problem by recre-
ating the target constructs. This technique was sufficient to handle the studied
transformation cases, but it may be of limited use for other complex transfor-
mation problems. A good solution to handle the connection problem may be an
explicit approach that uses global variables and meta-rules (execution control)
as explained in [I7]. In such an approach, the derivation process would learn the
control separately or along with the transformation rules. We plan to explore
this idea in a future work.

Complex Value Derivation. In our experimental setting, rule conditions and
binding statements consider property values as data elements that cannot be
combined to create new data elements. For example, for a construct C7 in the
source model with two numeric properties p; and ps and a string property ps, a
condition like Cy.p; + C1.p2 < 2 could not be created. Similarly, for a construct
Cs to create in the target model with a string property p4, we cannot derive the
binding statement C5.p4 = “Der —” 4+ C1.p3. In our approach, such conditions
and binding statements could be recovered by adding value-derivation operators
such as arithmetic and string operators in the primitive set I (see Section 22)).
However, this can be done only at the cost of increasing the search-space size,
with an impact on convergence. We plan to consider these new operators in
the future after a code optimization phase to handle the extra computational
cost.

Transformation Examples. In the evaluation of our initial approach [5], we
used examples collected from the literature, whereas in the evaluation of the

Genetic-Programming Approach to Learn Model Transformation Rules 29

improved version, we used prototypical examples. Using prototypical examples
helped to find the correct solution faster, because a reduced number of examples
was necessary to cover the modeling space. However, these could be difficult to
define in real situations. The choice of using prototypical or existing examples
depend on the context: availability of expertise vs. availability of examples.

Model Comparison. The search for a solution is guided by the transforma-
tion correctness (fitness function). As mentioned in Section 25, an exhaustive
comparison between the produced and expected models is costly. A trade-off is
necessary between the comparison precision and the computational constraints.
From our experience, sophisticated comparisons such as the one described in [5]
do not impact the search much, when contrasted against the simple comparison
described in this paper. We plan to conduct a rigorous cost benefit study to
compare different alternatives of model-comparison functions.

4 Related Work

Learning transformations from examples takes inspiration from other domains
such as programming by example [I9]. Existing work could be grouped into
two categories model transformation by example and model transformation by
demonstration. In the first categories, the majority of approaches takes as input
a set of pairs of source and target models. Models in each pair are generally
manually aligned through fine-grained mapping between constructs of the two
models [22]. Rule derivation is performed using Ad hoc algorithms [6122], ma-
chine learning such as inductive logic programming in [I], or association rule
mining with formal concept analysis [4]. In our approach, we use a different cat-
egory of derivation algorithm, i.e., genetic programming. In this algorithm, can-
didate transformation programs are evolved with the objective of better match-
ing the provided transformation examples. The derivation does not require the
user alignment/mapping of models that could be difficult to formalize in many
cases. Indeed, once a candidate program is derived, it is executed on the example
source models and its output is compared to the example target models. One
positive side effect of our approach is that the obtained rules are executed and
tested during the derivation process, which helps assessing each rule individu-
ally and the rule set globally. In some of the above-mentioned approached, the
rules are not executable or are mapped in a subsequent step to an executable
language. For example, the work in [4] is extended by mapping the derived
association rules into executable ones in JESS [20]. In the same category of con-
tributions, the work by Kessentini et al. [I1] brings a different perspective to the
MTBE problem. Rather than deriving a reusable transformation program, it
defines a technique that automatically transforms a source model by analogy
with existing transformation examples. Although this could be useful for some
situations, the inability to derive transformation rules/knowledge could be seen
as a limitation.

The second category of contributions in transformation rule learning is the
model transformation by demonstration (MTBD). The goal here is to derive

30 M. Faunes, H. Sahraoui, and M. Boukadoum

transformation patterns starting from step by step recorded actions on past
transformations. In [23], Sun et al. propose an approach to generalize model
editing actions (e.g., add, delete, update) that a user performs to refactor a
model. The user editing actions are recorded and serve as patterns that can be
later applied on a similar model by performing a pattern-matching process. This
approach is intended to perform endogenous transformations (refactoring) and
its generalization to exogenous transformation is not trivial. in [I4], Langer et
al. proposes an MTBD approach, very similar to the previous one, with the im-
provement of handling exogenous transformations. MTBD solves many problems
of MTBE, as complex transformation could be abstracted. However, transfor-
mation patterns are derived individually and there is no guarantee that patterns
could be applied together to derive consistent target models. In our case, the fact
that rule sets are evaluated by executing them on the example source models,
helps assessing the consistency of the produced models.

In addition to the differences highlighted in the previous paragraphs, our ap-
proach allows generating many-to-many rules that search for non trivial patterns
in the source models and instantiate non trivial patterns in the target models. In
contrast with the state-of-the-art approaches, we do not try to derive patterns
by explicitly generalizing situations found among the examples. We instead use
an evolutionary approach that evolves transformation programs, guided by their
ability to correctly transform the example at hand. Finally, it is difficult to com-
pare quantitatively and qualitatively with the other approaches. The validations
of most of these are not or only partially reported.

5 Conclusion

Prior work has demonstrated that model transformation rules could be derived
from examples. However, these contributions require fine-grained examples of
model mapping or need a manual refinement phase to produce operational rules.
In this paper, we propose a novel approach based on genetic programming to
learn operational rules from pairs of unrelated models, given as examples. This
approach was evaluated on structural and time-constrained model transforma-
tions. We found that in virtually all the cases, the produced rule sets are opera-
tional and correct. Our approach is a new stone in the resolution of the MTBE
problem, and our evaluation provides a compelling evidence that MTBE could
be an efficient solution to many transformation problems. However, some limi-
tations are worth noting. Although the approach worked well for the addressed
problem, the evaluation showed that convergence is difficult to reach for complex
transformations. Future work should therefore include the explicit reasoning on
rule execution control to simplify the transformation rules. It should also better
consider transformations with complex conditions and bindings. In particular,
we consider dealing with source and target models that do not share the same
naming space using natural-language processing techniques.

Genetic-Programming Approach to Learn Model Transformation Rules 31

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.

20.

Balogh, Z., Varro, D.: Model transformation by example using inductive logic
programming. Soft. and Syst. Modeling 8 (2009)

Banzhaf, W.: Genetic Programming: An Introduction on the Automatic Evolution
of Computer Programs and Its Applications. Morgan Kaufmann Publishers (1998)
Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45(3) (2006)

Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules
from transformation examples: An approach based on relational concept analysis.
In: Int. Enterprise Distributed Object Computing Workshops (2010)

Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation rules
from examples using an evolutionary algorithm. In: Aut. Soft. Engineering (ASE)
(2012)

Garcia-Magarino, 1., Gémez-Sanz, J.J., Fuentes-Ferndndez, R.: Model transforma-
tion by-example: An algorithm for generating many-to-many transformation rules
in several model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 52-66. Springer, Heidelberg (2009)

Grgnmo, R., Mgller-Pedersen, B.: From UML 2 sequence diagrams to state
machines by graph transformation. Journal of Object Technology 10 (2011)

Hill, E.F.: Jess in Action: Java Rule-Based Systems (2003)

Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128-138. Springer, Heidelberg (2006)
Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an
optimization problem. In: Czarnecki, K., Ober, 1., Bruel, J.-M., Uhl, A., Vilter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159-173. Springer, Heidelberg (2008)
Kessentini, M., Sahraoui, H.A., Boukadoum, M., Omar, O.B.: Search-based model
transformation by example. Soft. and Syst. Modeling 11(2) (2012)

Kessentini, M., Wimmer, M., Sahraoui, H., Boukadoum, M.: Generating transfor-
mation rules from examples for behavioral models. In: Proc. of the 2nd Int. WS
on Behaviour Modelling: Foundation and Applications (2010)

Koza, J., Poli, R.: Genetic programming. In: Search Methodologies (2005)
Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by
demonstration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 153-167. Springer, Heidelberg (2010)

Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. In: Empirical Software Engineering

Moore, G.: Crossing the Chasm: Marketing and Selling Disruptive Products to
Mainstream Customers. HarperCollins (2002)

Pachet, F., Perrot, J.: Rule firing with metarules. In: SEKE (1994)

Ratcliff, S., White, D.R., Clark, J.A.: Searching for invariants using genetic
programming and mutation testing. In: GECCO (2011)

Repenning, A., Perrone, C.: Programming by example: programming by analogous
examples. Commun. ACM 43(3) (2000)

Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.: Generation of
operational transformation rules from examples of model transformations. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 546-561. Springer, Heidelberg (2012)

32

21.
22.

23.

24.

M. Faunes, H. Sahraoui, and M. Boukadoum

Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
Strommer, M., Wimmer, M.: A framework for model transformation by-example:
Concepts and tool support. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE
2008. LNBIP, vol. 11, pp. 372-391. Springer, Heidelberg (2008)

Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In:
Schiirr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712-726. Springer,
Heidelberg (2009)

Varré, D.: Model transformation by example. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410-424. Springer,
Heidelberg (2006)

Walk Your Tree Any Way You Want

Anya Helene Bagge! and Ralf Limmel?

! Bergen Language Design Laboratory
Dept. of Informatics, University of Bergen, Norway
2 Software Languages Team
University of Koblenz-Landau, Germany

Abstract. Software transformations in the NUTHATCH style are descri-
bed as walks over trees (possibly graphs) that proceed in programmer-
defined steps which may observe join points of the walk, may observe and
affect state associated with the walk, may rewrite the walked tree, may
contribute to a built tree, and must walk somewhere, typically along one
branch or another. The approach blends well with OO programming. We
have implemented the approach in the NUTHATCH/J library for Java.

1 Introduction

Software transformations rely fundamentally on traversing tree or graph struc-
tures, applying rules or computations to individual scopes, and composing in-
termediate results. This is equally true for model transformation (in the narrow
sense), e.g., based on ATL [9] and for program transformation (including pro-
gram generation and analysis), e.g., based on Rascal [13], Stratego [4], Tom [2],
and TXL [6] as well as for less domain-specific programming models such as
adaptive (OO) programming [19], generic (functional) programming [I5], or OO
programming with visitor combinators [30].

Transformation languages and programming models differ in how traversal is
specified and controlled. For instance, in plain term rewriting with a hardwired
normalization strategy such as innermost, traversal must be encoded in rewrite
rules tangled up with the more interesting rules for primitive steps of transfor-
mation. By contrast, in Stratego-style programming [29J30J/I8] and some forms
of generic functional programming [I8T5], schemes of traversal are programmer-
definable abstractions that are parameterized in the rules or computations to
be applied along the traversal, possibly tailored to specific nodes. For instance,
consider this Stratego fragment for simplifying arithmetic expressions:
strategies

simplify = bottomup (try(UnitLawAdd <+ ZeroLawMult))
rules

UnitLawAdd : Add(x,0) -> x

ZeroLawMult : Mult(x,0) -> O

The library-defined traversal scheme bottomup is applied to rewrite rules for
some laws of addition and multiplication. The programmer can reuse traversal
schemes or define problem-specific ones, if needed.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 33 @ 2013.
© Springer-Verlag Berlin Heidelberg 2013

34 A.H. Bagge and R. Lammel

In this paper, we describe a new transformation approach and a corresponding
transformation language NUTHATCHE which focuses programmer attention on
the step-wise, possible state-accessing progression of a traversal, in fact, a walk,
as opposed to the commitment to a traversal scheme and its application to rules.
As an illustration, consider the following NUTHATCH fragment which matches
the earlier Stratego example:

1 walk simplify {

2 if up then {

3 if ?7Add(x, 0) then !x;
4 if ?Mult(x, 0) then !0;
5}

¢ walk to next;

7}

The defined walk abstraction defines a complete walk over a tree. A walk starts
at the root of the input term and (usually) ends there as well. In each step of
the walk, a conditional statement is considered (line 2); it constrains rewrite
rules (lines 3-4) to be applied when the walk goes up to the parent of the current
node. Each rewrite rule consists of a match condition (see ‘?’) and a replacement
action (see ‘!’). The step is completed with a walk to statement (line 6) which
defines the continuation of the walk. That is, the walk continues to the next
node according to a default path for a comprehensive traversal.

Contributions

— We describe a notion of walks that proceed in programmer-defined steps
which may observe join points of the walk, may access state associated with
the walk, may rewrite the walked tree, may contribute to building a tree,
and must walk somewhere, typically along one branch or another.

— Wedescribe the realization of walks in the transformation language NUTHATCH.
Conceptually, NUTHATCH draws insights from the concepts of tree automata [5],
tree walking automata [I], continuations [24], and zippers [§]. Importantly,
NUTHATCH incorporates state and supports OO-like reuse.

— We sketch NUTHATCH/J, an open-source library for walks in Javald

The paper and accompanying material are available onlineld

Road-map

Pldevelops the basic notion of walks. §3describes the NUTHATCH transformation
language. 4] sketches the library-based implementation of NUTHATCH in Java.
§8l discusses related work. §6] concludes the paper.

! Named after the nuthatch (Sitta spp.), a small passerine bird known for its ability
to walk head-first towards the root of a tree, and on the underside of branches.

2 http://nuthatchery.org/

3 http://nuthatchery.org/icmt13/

http://nuthatchery.org/
http://nuthatchery.org/icmt13/

Walk Your Tree Any Way You Want 35

2 The Notion of Walks

Walks walk along trees. Walks select branches. Walks complete paths. The default
path is the starting point for all paths. Tree mutation may happen along the way.

2.1 Trees

In this paper, we mainly walk trees; graphs can also be walked as long as some
distinguished entry node can replace the role of a root to reach all other nodes,
also subject to precautions discussed in §3.10l In fact, we commit to ordered
trees, i.e., trees with an ordering specified for the children. Ordered trees may
be defined in two common ways, i.e., recursively (like terms of a term algebra)
and graph-theoretically (with a designated root node and further constraints
on nodes and edges for ordered trees as opposed to more general graphs). The
graph-theoretical view is more helpful for intuitive understanding of walks.

We assume ‘rich’ trees in that nodes may be annotated with constructors
and types (as needed for common term representations); leaves may carry some
data (as needed for literals); edges (or ‘branches’, as we will call them) may be
annotated with labels (as needed for records, for example).

Thus, any node n of a tree t can be observed as follows:

— n.arity: The arity > 0 of ’s subtree rooted by n.

— n.root: Test for n being the root of ¢.

— n.leaf: Test for n being a leaf of ¢, i.e., n.arity = 0.

— n.name: The constructor name, if any, of n.

— n.type: The type, if any, of n.

— n.data: The data, if any, of n.

— n.parent: The parent node of n for n.root = false.

— n.child[i]: The é-th child of n for 1 <14 < n.arity.

— n.label[i]: The label, if any, of the i-th child of n for 1 <i < n.arity.

2.2 Branches

We limit ourselves to walks along the branches of trees as opposed to ‘jumps’,
which would be possible in principle. This limitation seems to imply a more
‘structured’ programming technique. No need for jumps has arisen from our
applications so far.
It is convenient to use natural numbers for referring to branches because 1,
.., n.arity readily refer to the children of n, leaving 0 for the parent. Hence,
it makes sense to use branch numbers to say that we walk to the parent or
to a specific child. We may also use branches to track where we came from by
referring to the ‘previous node’ with the corresponding branch number.

2.3 Paths

If we assume immutable trees for a moment, then the walk over a tree may be
described as a path, i.e., sequence of nodes as they are encountered by the walk.

36 A.H. Bagge and R. Lammel

The edge labels denote the order of walking along
branches. The default walk combines pre-, in-, and
post-order in that we walk down from the parent in
a depth-first manner, and we return to the parent
after each subtree.

Fig. 1. Illustration of the default path for an arithmetic expression

Paths always start at the root of a tree. In the regular case, paths also end at the
root. Paths for walks along branches can be effectively represented as sequences
of natural numbers.

We refer to the default path as the path which goes along each edge in the
tree in both directions (i.e., along each branch) to achieve depth-first, left-to-
right visiting order. Notably, a parent is visited before and after each child; see
Fig. @ for an illustration. The visiting order of the default path can be described
by defining uniformly the next node (in fact, branch) relative to the current
node and one of its branches, from:

from + 1,if current.arity > from
next — .
0, otherwise

We think of from as referring back to the node from which we walked to the
current node. This is the information that needs to be tracked by a walk. That
is, if we entered the current node from its parent (i.e., branch 0), then we walk
to the first child; if we (re-) entered the current node from its i-th child, then we
walk to the ¢ + 1-th child, if there is a next child, and to the parent otherwise.

The definition of next is powerful in so far as it is also usefully describes
continuation in ‘default order’, even for walks that diverted from the default
path. This follows from the fact that the definition only looks at the branch to
the immediately preceding node in the walk.

2.4 Join points

Walks (according to the default path or otherwise) expose ‘join points’ for trans-
formations, i.e., the join points corresponding to the encounter of nodes along
certain branches. Two important join points are described by these conditions
on current and from:

— down = from =0
— up = current.leaf H from = current.arity

The down join point captures whether current was just entered from its parent.
The up join point captures whether the walk is about to return to the parent of

Walk Your Tree Any Way You Want 37

current. In §3 (see §3.6] specifically), we will see additional join points at work.
Programmers quantify join points combined with other conditions on the tree
and custom state to control the walk and to select stateful behavior.

2.5 Mutation

Let us consider walks on mutable trees. Thus, the steps of a walk may add
and remove nodes and edges before they pick any branch. While a walk on an
immutable tree is simply characterized by a sequence of contiguous branches, a
walk on a mutable tree is characterized by a sequence of states. A state s has
the following components:

— s.tree: The tree as seen in state s.
— s.current: The walk’s current node in s.tree.
— s.from: The branch referring back to the node prior to s.current.

We assume that state transition breaks down into two components: the mutation
of the tree and the actual step to advance current. Clearly, if we were to allow
arbitrary mutation, the semantics of walking becomes totally operational and
properties such as termination are no longer attainable.

We are specifically interested in the case that mutation replaces current and
its subtree, as in the application of a rewrite rule. When replacing current,
though, the associated from may no longer be meaningful. Consider these cases:

— If from = 0, prior to mutation, then the first child, if any, of current was set up
to be next. In this case, from shall be retained so that the first child, if any, of
current is also set up to be next past mutation.

— If current.arity > 0 A from = current.arity, prior to mutation, then the parent
of current was set up to be next. Thus, from shall be assigned current.arity, as
seen past mutation, so that again the parent of current is set up to be next.

These two cases cover rewrite rules on the down and up join points; for now, we
take the view that current should not be replaced otherwise.

3 A Language for Walks

The NUTHATCH transformation language supports walks, as described in the
previous section, on the grounds of an abstraction form for organizing walks in
steps along branches. NUTHATCH can be mapped to an OO language such as
Java, as discussed briefly in §dl

At runtime, a walk encapsulates basic state, as described in §2.5 extra state to
be declared, and it provides a step action to be invoked repeatedly. (We assume
that walks are under the control of a main program which can start walks on trees,
observe results after a walk is complete, and possibly restart suspended walks.)

38 A.H. Bagge and R. Lammel

3.1 Syntax Summary

A walk abstraction has a name (an id), an optional declaration part for extra
state associated with the walk and a statements part describing a step in terms
of observing, matching, and rewriting the tree, accessing the walk’s state and
identifying the branch to follow. Walks may be parameterized, as discussed in

3.8 Thusfl

walk : ’walk’ closure

closure : id paras? ’{’ (’state’ declaration)* statement+ ’}’

paras : ’(’ id (’,? id)*)’

There are Java-like variable declarations, but with an optional type and a re-
quired initializer:

declaration : type? id ’=’ expression ’;’ ;

These are the available statement forms:

statement : ’{’> statement+ ’}’
| ’if’> expression ’then’ statement (’else’ statement)?
| declaration | id ’=’ expression ’;’ | expression ’;’
| ’return’ expression ’;’
| ’walk’ ’to’ expression ’;’ | ’stop’ ’;’ | ’suspend’ ’;’
| 212 term ’;°

Statement grouping, if-then-else with dangling else, (local) variable declarations,
assignments, and expressions are Java-like. ‘returns’ are needed for functions;
see below. There are special statement forms to specify what branch to walk to,
to stop or suspend a walk. There is another special statement form to replace
the current term (see ‘!’).

In addition to Java-like expression forms, there are these special forms:

expression : ... | ’?’ term | getter | ’7’ id paras? ;

That is, there is a special expression form for matching the current term (see
‘?’) in a condition that also binds variables. Further, there are ‘getters’ for trees
(arity, root, etc.), the basic walk state (tree, current, from), join points (down,
up), and next, as we set them up in §2l Tree observers are applied to the current
term if not specified otherwise. The last expression form (see “’) deals with
nested walks, as discussed in §3.91

NUTHATCH also offers a simple abstraction form for actions which do not
walk anywhere. Other than that, they can maintain state and observe the basic
state of a walk in which they participate, if any. Likewise, there are functions
for expression abstraction. Thus:
action : ’action’ closure ;
function : ’function’ closure ;

Actions and functions are illustrated in §3.8

* We use ANTLR (http://antlr.org/) grammar notation.

http://antlr.org/

Walk Your Tree Any Way You Want 39
3.2 The Default Walk

The following NUTHATCH walk captures the default path of §2.3

walk default {
walk to next;

}

Each control-flow path of a NUTHATCH action must end in a walk-to statement
which identifies the branch to walk to. The obvious options are next, parent
(overloaded to refer to branch 0), child[i] (overloaded to refer to branch ¢), first
(assumed to represent the branch 1 for the first child), and last (assumed to
represent the branch for the last child).

3.3 Diversion from the Default Path

The following example shows how a walk can be diverted depending on the
current node; in this case, to avoid traversing Expr subtrees. To this end, we
observe the type of the current node; we assume that Expr is one of the types of
terms that are walked:

walk skipExpr {

walk to (if type==Expr then parent else next);
}

(We use expression-level if-then-else.)

3.4 Derived Walks

New walks can be derived from existing walks. To this end, walk abstractions
are referred to in statements. The underlying semantics is that the referenced
walk’s step action is inlined. For instance:

walk skipExpr {
if type==Expr then walk to parent;
default;

}

If the referenced walk includes extra state (which is not the case in the above ex-

ample), then such state would be included into the referring walk automatically.
Because the default path is so prevailing, we assume that any walk abstraction

derives implicitly from default such that default’s action is appended at the end

of the step action. Accordingly, we shorten skipExpr:

walk skipExpr {

if type==Expr then walk to parent;
}

We note that this implicit derivation occurs only at the top level, not when a
walk is used to create a derived walk.

40 A.H. Bagge and R. Lammel

3.5 Stateful Walks

A walk may carry state. Actions may hence read and write such state. For
instance, the following walk abstraction counts nodes; it takes advantage of the
implicit derivation from default, as just explained above:

walk countNodes {
state count = 0;
if down then count++;

}

That is, we declare a variable count to maintain the node count, which we initialize
to 0 and increment for each node, but only along the down join point—so that we
do not count nodes multiple times. (We could also use up as a condition here.)

3.6 Flexible Point-Cuts

We have started to invoke the AOP-like terminology of join points. Accordingly,
walks may quantify the join points of interest; in AOP speak: walks need to
express point-cuts. Consider the following walk abstraction which converts a
tree into a string, using a term-like representation with prefix operators and
comma-separated arguments as in “add(add(x,y),0)”:

walk toString {
state s = "";
if leaf
then s += data;
else {
if down then s += name + "(";
if up then s += ")";
if from>=first && from<last then s += ", ";
}
}

In the code, we carefully observe the position along the walk to correctly paren-
thesize and place commas where appropriate. For instance, “(* belongs before
the first child; thus the condition down, i.e., from==parent. This simple example
clearly demonstrates how NUTHATCH style does not explicitly recurse / tra-
verse into compound structures, as is the case with functional programming or
Stratego-like traversal schemes. Instead, NUTHATCH style entails observation of
the branch on which the current node was entered and possibly other data.

3.7 Walks with ‘In Place’ Rewriting

Rewriting is straightforward; it relies on a special condition form for use in an
if-then-else statement to match (‘?’) a term pattern with the current term and
to bind variables for use in the replace (‘!’) statement within the then-branch.
We also say ‘in place’ rewriting to emphasize the fact that the tree is modified.

Let us revisit the example from the introduction (§II). The example follows
the default path. When applied to the sample tree of Fig. [[l the result is ‘5.

Walk Your Tree Any Way You Want 41

For what it matters, we mention that simplification would not be complete, if
we were using the down instead of the up join point in the example. (The unit
law of addition would not be applicable in the example on the way down.)

‘In place’ rewriting is suitable for endogenous transformations [20] and specif-
ically transformations that are meant to preserve many nodes and edges, as in
the case of ‘refining models’ according to [26], but see §8.11] for a discussion of
exogenous transformations [20].

3.8 Parameterized Walks

Common Stratego-like traversal schemes can be easily expressed by parameter-
izing walk abstractions, e.g.:

walk bottomup(s) { if up then s; }

The parameter s may abstract over actions such as rewrite rules. Let us revisit
the example from the introduction (§II); we capture these actions (as of §3.1)):
action UnitLawAdd { if ?Add(x, 0) then !'x; }

action ZeroLawMult { if ?Mult(x, O) then !'0; }

action BothLaws { UnitLawAdd; ZeroLawMult; }

Thus, bottom-up traversal for simplification can be recomposed as follows:
bottomup (BothLaws)

Here is a more problem-specific, still language-parametric example of a parame-
terized walk which deals with state-based scope-tracking as opposed to Stratego-
like traversal; such tracking is needed in various transformations, e.g., for the
purpose of hosting new abstractions in the same context as the current scope or
be it just for generating error messages.
walk scopeTracker (isDeclaration) {

state scopes = new Stack[Node] ();

if down && isDeclaration then scopes.push(current);

if up && current==scopes.top() then scopes.pop();

}

In the context of a transformation for Java, isDeclaration may be a condition
(a function as of §8.1)) that tests for a Java class declaration:

function isClassDec { return ?ClassDec(ClassDecHead(_,name,_,_,_),_); }

3.9 Nested Walks

Consider again the definition of bottomup, as given above. Now imagine that the
argument s is not a plain action, such as rewrite rule, but it is meant to be a walk
in itself. The existing definition would inline that walk according to the deriva-
tion semantics of §3.4] thereby disrupting the bottomup traversal. Instead, the
argument walk should be performed atomically, as part of the referring step’s ac-
tion, as opposed to participating in the enclosing walk. References to arguments
(which may be walks) can be accordingly marked as nested walks by

42 A.H. Bagge and R. Lammel

walk topdown(s) { if down then “s; }
walk bottomup(s) { if up then ~s; }
walk downup(s,t) { topdown(s); bottomup(t); }

(“’ is a no-op on non-walks such as actions.) We note that each nested walk
views the current node of the enclosing walk as the root. Note that no nested
walk designation happens for downup because derivation semantics (as of §3.4)) is
appropriate here, if we want s to be applied on the way down and t on the way
up. For comparison, consider these definitions:

walk badDownupl(s,t) { “topdown(s); “bottomup(t); }

action badDownup2(s,t) { “topdown(s); “bottomup(t); }

badDownupl performs a top-down walk followed by a bottom-up walk for each
node in the tree. badDownup2 performs a top-down walk followed by a bottom-up
walk for a given tree; both walks start from the root.

3.10 Termination of Walks

A walk terminates regularly, if the walk encounters the root of a tree through the
parent branch. A walk terminates irregularly if an unhandled exception is thrown
by the step action. A walk may also be terminated explicitly or suspended via
designated actions stop and suspend.

Accidentally, one may describe walks that do not terminate. This is implied
by the expressiveness and flexibility of the abstraction form for walks. For in-
stance, a transformation may continuously expand some redex for the down join
point. Other programming techniques for traversals are also susceptible to this
problem [16].

Another major challenge for termination is when graphs are walked. That is,
walks may be cyclic. In adaptive programming [19], strategic programming on
graphs [I1], and OO programming with visitor combinator [30], this problem
can arise as well. The problem can be solved, if we can make sure that no object
is visited more than once. In NUTHATCH, we can use an ‘enter once’ walk as the
starting point for any walk on a graph. Thus:

walk enteronce {
state seen = new WeakHashSet();
if down then
if seen.contains(current)
then walk to parent;
else seen.add(current);

}

Thus, the walk keeps track of all nodes that were encountered. This scheme
is not just useful for avoiding cyclic walks; it generally prevents walks from
entering nodes more than once, even in directed acyclic graphs. The problem of
non-termination or repeated walks into the same nodes can also be addressed if
additional metamodel information is available to distinguish composition versus
reference relationships, as in the case of walking EMF models, for example. That
is, edges for reference relationships shall not be followed by walks.

Walk Your Tree Any Way You Want 43

3.11 Walks Building Terms

When facing exogenous transformations [20] (i.e., transformations with a target
metamodel that is different from the source metamodel), then ‘in place’ rewriting
(see §377) may not be appropriate, unless it is acceptable to operate on trees that
use a ‘union’ metamodel for source and target models.

Suitable tree builders can be used to describe exogenous transformations or
even endogenous transformations, when the source of the transformation is to
be preserved. Consider the following walk that uses a tree builder to copy the
walked tree, which is a good starting point for an endogenous transformation
which preserves the walked tree:

walk copyall {
state result = new TreeBuilder();
if down then { result.add(current); result.moveDown(); }
if up then result.moveUp();

}

The idea is that a tree builder provides an interface to (building) a tree; there
are operations for adding nodes and edges. Further, the builder uses a cursor to
maintain the current focus for addition. The cursor is a pointer to the children list
of some node. Upon construction, the cursor points to the degenerated children
list that will hold the root of the built tree. In the ‘copy all’ walk, we use the
following operations:

— add: A given node (current in the example) is added to the children list pointed
to by the cursor, where information such name, type, and data as well as label
(for the edge to the parent) is copied over.

— moveDown: The cursor is set to point to the children list of the last node in the
children list currently pointed to by the cursor.

— mowveUp: The cursor is set to point to the children list of the parent node of the
last node in the children list currently pointed to by the cursor.

When implementing exogenous transformations, tree builders are invoked to add
‘terms’ specific to the target model.

4 Walking in Java

In the following, we sketch the NUTHATCH/J library for walking in Java.
NUTHATCH transformations can be mapped to Java code that uses the
NuTHATCH/J library.

4.1 Basic Interfaces

NuTHATCH/J is designed as a generic tree walking library for Java which is
independent of the underlying data representation. Thus, the library can be
adapted by parameterization and subclassing for use with different kinds of trees,
including those of existing transformation systems; see §4.41

Walks are specified by implementing the Walk interface:

44 A.H. Bagge and R. Lammel

public interface Walk<W extends Walker<?, 7>> {
int step(W walker);

}

The step method performs a single step of the walk, can observe and manipulate
state, and returns the next branch to walk to. The Walker type of the library
encapsulates the tree-walking functionality and maintains the current node and
state as described in §2.5] and provides the tree observers of §2.11

The Walk interface is parameterized by the walker type, thereby making the
extended features of a walker accessible in a type-safe manner. For example, the
following code (also available online) implements the example from It

public int step(ExprWalker w) {
if (down(w)) {
if (w.match(Add(var("x"), Int(0)))) w.replace(w.getEnv().get("x"));
if (w.match(Mul(var("x"), Int(0)))) w.replace(Int(0));
}
return NEXT;
}

ExprWalker is a subtype of Walker which fixes the generics parameters for the
expression terms of the example.

4.2 Extra State

Walk state is handled either by using variables in a closure or field variables
in the class which implements Walk. The following Java code uses the former
technique to replicate the example from §3.6t

final StringBuffer s = new StringBuffer(); // Accumulate result here.
Walk<ExprWalker> toTerm = new BaseWalk<ExprWalker>() {
public int step(ExprWalker w) {
if (leaf(w)) // We are at a leaf; print data value.
s.append(w.getData() .toString());
else if (down(w)) // First time we see this node; print constructor name.
s.append(w.getName () + "(");
else if (up(w)) // Just finished with children ; close parenthesis .
s.append(")");
else // Coming up from a child (not the last); insert a comma.
s.append(", ");
return NEXT;

};

4.3 Combinator Style

A library of common parameterized walk or action combinators (in the sense
of §3.8)) is available for various join points. In a combinator style, the simplifier
of {1l can be expressed as follows:

Walk Your Tree Any Way You Want 45

Walk<ExprWalker> w =
walk(up(sequence(match(Add(var("x"), Int(0)), replace(var("x"))),
match(Mul(var("x"), Int(0)), replace(Int(0))))));

The walk is built up using static methods calls, where ‘walk’ represents the
default walk, ‘up’ builds a conditional action for the up join point, ‘sequence’
executes all its arguments in the given order, ‘match’ executes its argument, if
the pattern matches, and ‘replace’ performs a replace action.

4.4 Tool Integration

NUTHATCH/J integrates with Spoofax/Stratego/XT [4] and Rascal [I3] so that
these systems can be used in NUTHATCH/J applications. This is well in line with
other transformation systems that support diverse access methods. For instance,
Tom [21I] can be applied to parse trees and object graphs of a domain model;
POM adapters [12] allow Stratego to transform an Eclipse JDT AST.

The NUTHATCH/J+Stratego library supports untyped trees using the same
term implementation as the Java version of Stratego. It also provides an interface
to the JSGLR parser, including a pattern generator which generates pattern
builders from an abstract syntax specification. Syntax definitions and minimal
tooling for working on Java programs is also available, through the JavaFront
package for Stratego.

The NUTHATCH/J+Rascal library wraps the Rascal data types into NUTHATCH
trees, and can work on both concrete and abstract syntax trees (though without
support for making concrete syntax patterns, at the time of writing).

4.5 Performance

As of writing, NUTHATCH/J has not yet been optimized for performance. Never-
theless, we have done some measurements of traversal and rewriting performance
on Java programs, comparing against Stratego. All NUTHATCH/J measurements
were done using Stratego terms as the underlying data structure, so that we
could use the exact same data for both NUTHATCH/J and Stratego, and check
that both implementations gave the exact same results

For reference, we also measured hand-written Java versions of some of the
transformations, in order to get an idea of the top performance possible using
the Stratego term library.

A few selected experiments are summarized in TableMd The experiments show
that performance of NUTHATCH/J is similar to that of the Stratego interpreter
for trivial traversals (topdown, downup), but slower than compiled Stratego code.

5 Stratego measurements were done using both interpreted and compiled code, both
using version 1.1 of the Spoofax language workbench. For interpretation, we used
the hybrid interpreter, which uses compiled-to-Java versions of the standard libraries,
but interprets user code on the fly. Measurements are an average of 5000 iterations,
run on an otherwise idle AMD FX-8350 computer, running OpenJDK 7ulb5.

5 See [http: //nuthatchery.org/icmt13/benchmarks.html|for more details.

http://nuthatchery.org/icmt13/benchmarks.html

46 A.H. Bagge and R. Lammel

Table 1. Some performance measurements of NUTHATCH/J vs. Stratego, with exe-
cution times in milliseconds (average over 5000 runs) for NUTHATCH/J, interpreted
Stratego, compiled Stratego (STRJ), and hand-written Java

Nuthatch/J Stratego STRJ Java

Collect Strings 3.0 5.0 4.2 —
Commute 4.6 29.8 0.9 0.8
Bottomup Build 5.6 3.2 1.2 —
Topdown 1.5 1.0 0.5 0.5
Downup 1.5 1.7 0.6 0.5

Simple transformations (commute) are a lot faster in NUTHATCH/J than with
interpreted Stratego code, but again, compiled Stratego is faster. NUTHATCH/J
has an advantage when using plain Java to accumulate state, and outperforms
compiled Stratego on collecting strings from a tree.

5 Related Work

Walks a la NUTHATCH combine generic traversal, stateful behavior, OO-like
derivation, and parameterization. Accordingly, walks relate to Stratego-like
programming, visitor programming including visitor combinators, adaptive pro-
gramming, generic functional programming, and model transformation.

Stratego et al. Walks are inspired by the seminal work on strategies a la Strat-
ego [29/4]—the combination of term rewriting and programmable strategies, also
for traversal purposes. Walks depart from strategies in that the basic traversal ex-
pressiveness is about continuous walking along branches as opposed to recursive
one-layer traversal. Further, walks are designed around state, whereas strategies
only uses state in the special sense of dynamic rewrite rules [3]. Also, walks are
designed to be derivable (and parameterized), whereas strategies leverage param-
eterization only. §3.8 shows how walks represent Stratego-like traversal schemes.
The AspectStratego [10] variation on Stratego was proposed to leverage some
means of aspect orientation in the context of term rewriting. In this work, join
points of rewriting or the strategic program can be intercepted. By contrast,
walks a la NUTHATCH interact with join points for walks along trees.

Visitor programming. In the OO programming context, traversal problems can
be addressed by means of visitors [22]. Specifically, advanced approaches use
visitor combinators [30/21] inspired by Stratego. The cited approaches transpose
Stratego style to an OO language context; they make limited use of OO-like
derivation and imperative state. When compared to walks, ‘visits’ are controlled
strategically (as above), as opposed to exposing join points of the walks to the
problem-specific functionality.

Adaptive programming. The notion of processing object graphs in a structure-shy
fashion has been realized in seminal work on adaptive programming [19], where
traversal specifications of objects to be visited are separated from actions to be
actually applied to the objects on the path. Stratego-like strategic programming

Walk Your Tree Any Way You Want 47

and adaptive programming are known to be related in a non-trivial manner [I7].
Walks differ from adaptive programs in that they do not leverage any special
language constructs for traversal specifications. Also, each step of a walk may
affect the remaining path.

Generic functional programming. The parameterization- or combinator-based
approach of traversal programming has been pushed particularly far in a generic
functional programming context; see, e.g., the ‘mother of traversal’ [14123]. In-
deed, such approaches offer highly parameterized abstractions for different traver-
sal instantiations. By contrast, walks a la NUTHATCH additionally offer i) OO-
like derivation, ii) imperative OO-like stateful behavior, and iii) exposure of join
points of walks (traversals) for customized traversal behavior.

Model transformation. Because of the large amount MT languages in existence,
it is hard to compile a useful comparison. Overall, NUTHATCH style is closer to
term rewriting approaches. We have in mind ATL [J] as a representative in what
follows. Thus, model transformations match source model elements and map
them to target model elements. Endogenous transformations, specifically, may
rely on some degree of implicit behavior (refinement) to copy or retain model
elements when not said otherwise [26]. MT rules are essentially declarative, with
some built-in scheme of applying rules to the source model. Escapes to imperative
features are needed in practice and thus supported. Join points of walks a la
NUTHATCH are not established for MT languages.

6 Concluding Remarks

We have described a new approach to traversal programming with walks as the
central abstraction form. The development of the walk notion and all of our re-
lated experiments were based on the NUTHATCH/J library for walks in Java. The
NUTHATCH transformation language should be viewed as an ongoing effort to ex-
tract a transformation DSL from the NUTHATCH/ J library. NUTHATCH can express
traversal schemes a la Stratego and thus, it provides ‘proven expressiveness’. Im-
portantly, OO idioms (such as state, encapsulation, closures, and type derivation)
are also part of the NUTHATCH programming model. The NUTHATCH/J library
leverages adapters for tree formats of other transformation tools in the interest of
tool integration.

Proper DSL notation enables conciseness (when compared to Java), type check-
ing, static analyses for other properties of walks, and compile-time optimizations.
However, an external DSL approach makes it harder to provide all language ser-
vices. Therefore, we continue research on the NUTHATCH/J’s combinator style of
§4.3lto perhaps settle on an internal DSL (in fact, DSL embedding) which is a popu-
lar approach for transformation languages with functional host languages [I8J25/[7].
NUTHATCH/J’s combinator style would also permit on-the-fly optimization, as it
has been used elsewhere for embedded DSL implementation [2712§].

Acknowledgments. This research is funded in part by the Research Council
of Norway.

48

A.H. Bagge and R. Lammel

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Aho, A.V., Ullman, J.D.: Translations on a Context-Free Grammar. Information

and Control 19(5), 439-475 (1971)

. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking

Rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36-47.
Springer, Heidelberg (2007)

. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program Transformation with

Scoped Dynamic Rewrite Rules. Fundamenta Informaticae 69(1-2), 123-178 (2006)

. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A

language and toolset for program transformation. Sci. Comput. Program. 72(1-2),
52-70 (2008)

. Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-1ille3.fr/tatal (release October 12, 2007)

. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3),

190-210 (2006)

. George, L., Wider, A., Scheidgen, M.: Type-Safe Model Transformation Languages

as Internal DSLs in Scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 160-175. Springer, Heidelberg (2012)

. Huet, G.: The Zipper. J. Funct. Program. 7(5), 549-554 (1997)
. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.

Sci. Comput. Program. 72(1-2), 31-39 (2008)

Kalleberg, K.T., Visser, E.: Combining Aspect-Oriented and Strategic Program-
ming. In: Workshop on Rule-Based Programming (RULE 2005). ENTCS, vol. 147,
pp. 5-30 (2006)

Kalleberg, K.T., Visser, E.: Strategic Graph Rewriting: Transforming and Travers-
ing Terms with References. In: 6th Intl. Workshop on Reduction Strategies in
Rewriting and Programming (WRS 2006) (2006), online publication

Kalleberg, K.T., Visser, E.: Fusing a Transformation Language with an Open
Compiler. In: 7th Workshop on Language Descriptions, Tools and Applications
(LDTA 2007). ENTCS, pp. 18-31. Elsevier (2007)

Klint, P., van der Storm, T., Vinju, J.J.: Rascal: A Domain Specific Language
for Source Code Analysis and Manipulation. In: 9th IEEE Intl. Working Conf. on
Source Code Analysis and Manipulation (SCAM 2009), pp. 168-177. IEEE CS
(2009)

Lammel, R.: The Sketch of a Polymorphic Symphony. In: Reduction Strategies in
Rewriting and Programming (WRS 2002). ENTCS, vol. 70, pp. 135-155 (2002)
Lammel, R., Peyton Jones, S.L.: Scrap your boilerplate: a practical design pat-
tern for generic programming. In: ACM SIGPLAN Intl. Workshop on Types in
Languages Design and Implementation (TLDI 2003), pp. 26-37. ACM (2003)
Léammel, R., Thompson, S., Kaiser, M.: Programming errors in traversal
programs over structured data. Sci. Comput. Program (2012) (in press),
doi:10.1016/j.scico.2011.11.006

Lammel, R., Visser, E., Visser, J.: Strategic programming meets adaptive program-
ming. In: 2nd Intl. Conf. on Aspect-Oriented Software Development (AOSD 2003),
pp. 168-177 (2003)

Lammel, R., Visser, J.: A Strafunski Application Letter. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 357-375. Springer, Heidelberg (2002)

http://www.grappa.univ-lille3.fr/tata

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Walk Your Tree Any Way You Want 49

Lieberherr, K.J., Patt-Shamir, B., Orleans, D.: Traversals of object structures:
Specification and Efficient Implementation. ACM Transactions on Programming
Languages and Systems 26(2), 370-412 (2004)

Mens, T., Van Gorp, P.: A taxonomy of model transformation. ENTCS, vol. 152,
pp. 125-142 (2006)

Moreau, P.E., Reilles, A.: Rules and Strategies in Java. In: Reduction Strategies
in Rewriting and Programming (WRS 2007). ENTCS, vol. 204, pp. 71-82 (2008)

Palsberg, J., Jay, C.B.: The Essence of the Visitor Pattern. In: 22nd Intl. Computer
Software and Applications Conf (COMPSAC 1998), pp. 9-15. IEEE Computer
Society (1998)

Ren, D., Erwig, M.: A generic recursion toolbox for Haskell or: scrap your
boilerplate systematically. In: Proceedings of the ACM SIGPLAN Workshop on
Haskell, pp. 13-24. ACM (2006)

Reynolds, J.C.: The Discoveries of Continuations. Lisp and Symbolic Computa-
tion 6(3-4), 233-248 (1993)

Sloane, A.M.: Lightweight Language Processing in Kiama. In: Fernandes, J.M.,
Lammel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 408-425. Springer, Heidelberg (2011)

Tisi, M., Martinez, S., Jouault, F., Cabot, J.: Refining Models with Rule-based
Model Transformations. Tech. Rep. 7582, INRIA (2011)

Veldhuizen, T.L.: Expression templates. C+-+ Report 7(5), 26-31 (1995), reprinted
in C++ Gems, ed. Stanley Lippman

Viera, M., Swierstra, S.D., Lempsink, E.: Haskell, do you read me?: constructing
and composing efficient top-down parsers at runtime. In: 1st ACM SIGPLAN
Symposium on Haskell (Haskell 2008), pp. 63-74. ACM (2008)

Visser, E., Benaissa, Z., Tolmach, A.: Building program optimizers with rewrit-
ing strategies. In: 3rd ACM SIGPLAN Intl. Conf. on Functional Programming,
ICFP 1998, pp. 13-26. ACM Press (1998)

Visser, J.: Visitor combination and traversal control. In: 16th ACM SIGPLAN Conf.
on Object Oriented Programming, OOPSLA 2001, pp. 270-282. ACM (2001)

On an Automated Translation of Satellite
Procedures Using Triple Graph Grammars

Frank Hermann!, Susann Gottmann!s*, Nico Nachtigall!'*, Benjamin Braatz!,
Gianluigi Morelli?, Alain Pierre?, and Thomas Engel!

! Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg
firstname.lastname@uni.lu
http://www.uni.lu/snt/

2 SES, Luxembourg
firstname.lastname@ses.com
http://www.ses.com/

Model transformation based on triple graph grammars (TGGs) is a general,
intuitive and formally well defined technique for the translation of models [BI6l2].
While previous concepts and case studies were focused mainly on visual models
of software and systems, this article describes an industrial application of model
transformations based on TGGs as a powerful technique for software translation
using the tool Henshin [I]. The general problem in this scenario is to translate
source code that is currently in use into corresponding source code that shall
run on a new system. Up to now, this problem was addressed based on manually
written converters, parser generators, compiler-compilers or meta-programming
environments using term rewriting or similar techniques (see e.g. [4]).

Within the joint research project PIL2SPELI with the industrial partner
SES (Société Européenne des Satellites), we applied TGGs for the translation of
satellite control software. SES is currently operating a fleet of 52 satellites, which
are manufactured by different vendors, who often use their own proprietary lan-
guages for operational procedures. In order to reduce the high complexity dur-
ing operation caused by this heterogeneity, SES decided to develop and use the
satellite control language SPELL [7] (Satellite Procedure Execution Language &
Library), which is nowadays used by more and more operators and may become
a standard in this domain. For this reason, SES is faced with the need to convert
satellite control procedures delivered by the manufacturers into SPELL proce-
dures. The main aim of this project was to provide a fully automated translation
of existing satellite control procedures written in the programming language PIL
(Procedure Intermediate Language) of the manufacturer ASTRIUM into SPELL
procedures. Since the procedures in PIL are already validated, several require-
ments are important: automation of the execution, maintainability of the trans-
lation patterns, readability of the output, and, most importantly, reliability in
terms of fidelity, precision and correctness of the translation. For SES, the listed
requirements are of very high importance to minimise the efforts for revalidation.

* Supported by the Fonds National de la Recherche, Luxembourg (3968135, 4895603).
! This project is part of the Efficient Automation of Satellite Operations (EASO)
project supported by the European Space Agency (ESA).

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 50-5T] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.uni.lu/snt/
http://www.ses.com/

Translating Satellite Procedures Using TGGs 51

The general idea of TGGs is to specify languages of integrated models, where
each integrated model contains a source model and a corresponding target model
together with explicit correspondence structures. In the present case, models are
given by abstract syntax trees of the source code of the source and target do-
mains. The operational rules for executing the translation are generated from
the specified TGG. The translation preserves the given source model and cre-
ates explicit tracebility links between corresponding fragments of the input and
output. These correspondence links are used in the validation phase for assuring
quality concerning precision and fidelity of the translation.

In the present scenario, the bidirectional features of TGGs were not of interest,
such that it would have been possible to use another unidirectional transforma-
tion approach, like ATL (ATLAS Transformation Language) [3]. Still, TGGs
showed benefits that were important for SES. The initial mapping document
provided by SES engineers contained translation patterns for example code frag-
ments. These patterns were loaded in the GUI of Henshin and generalised to rules
of the TGG, such that the resulting translator met the industrial requirement of
ensuring theses patterns in the translation. Since TGGs do not need recursion
and do not cause side effects, we were able to handle the occurring intermedi-
ate modifications of the mapping document by the domain experts during the
development of the TGG. The evaluation by SES and ASTRIUM domain ex-
perts delivered remarkable results concerning the listed requirements and as an
effective result, the communication satellite Astra 2F is operational in space and
controlled by the generated procedures that are running in ground control.

In future work, we will apply TGGs for the synchronisation between the source
code of satellite procedures and corresponding visualisations.

References

1. The Eclipse Foundation: EMF Henshin — Version 0.9.4 (2013),
http://www.eclipse.org/modeling/emft/henshin/

2. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Model Driven Interoperability (MDI 2010), pp. 22-31. ACM (2010)

3. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.
Science of Computer Programming 72, 31-39 (2008)

4. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal. In:
Fernandes, J.M., Lammel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222-289. Springer, Heidelberg (2011)

5. Schiirr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151-163.
Springer, Heidelberg (1995)

6. Schiirr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozen-
berg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411-425. Springer,
Heidelberg (2008)

7. SES Engineering: SPELL - Satellite Procedure Execution Language & Library —
Version 2.3.13 (2013), http://code.google.com/p/spell-sat/

http://www.eclipse.org/modeling/emft/henshin/
http://code.google.com/p/spell-sat/

The Graph Grammar Library - A Generic
Framework for Chemical Graph Rewrite Systems

Martin Mann!, Heinz Ekker?, and Christoph Flamm?

! Bioinformatics, Institut for Computer Science, University of Freiburg,
Georges-Kohler-Allee 106, 79106 Freiburg, Germany,
mmann@informatik.uni-freiburg.de
2 Institute for Theoretical Chemistry, University of Vienna, Wahringerstrasse 17,
1090 Vienna, Austria,
xtof@tbi.univie.ac.at

Graph rewrite systems are powerful tools to model and study complex problems
in various fields of research [7]. Their successful application to chemical reaction
modelling on a molecular level was shown [IL2L[6] but no appropriate and simple
system is available at the moment [8]. The Graph Grammar Library (GGL),
presented in this contribution and more extensively in [4], fills this gap and
provides feature-rich functionality especially for chemical transformation.

The GGL implements a simple generic Double Push Out approach for general
graph rewrite systems [7] on labeled undirected graphs. The object oriented C++
framework focuses on a high level of modularity as well as high performance,
using state-of-the-art algorithms and data structures, and comes with extensive
end user and API documentation. Central modules (e.g. graph matching, match
handling, graph storage) are combined via simple interfaces, which enables an
easy combining to tackle the problem at hand.

The large GGL chemistry module enables extensive and detailed studies of
chemical systems. It well meets the requirements and abilities envisioned by Ya-
dav et al. [§] for such chemical rewrite systems. Here, molecules are represented
as vertex and edge labeled undirected graphs while chemical reactions are de-
scribed by according graph grammar rules, see Fig. [Il Such a graph grammar
is a generating system for the explicit construction of an entire chemical space,

N

__ comvertto ert to
[j/ S\IILES C1=C0c(0c)cCl
c=coc _convert from ert from \
Q\IILES ‘

Fig. 1. Illustration of the basic steps to convert the educt molecules acolein and methyl
vinyl ether via a Diels-Alder reaction [4] to the cyclic product molecule. Physico-
chemical properties for the molecules, such as free energies (AG), or for the reaction,
e.g. reaction rates, can be estimated either by using GGL built-in functionality or via
calls to the OpenBabel chemistry toolkit [5].

/ ©
convert from

c=ce=0 SMILES

apply graph
rewrite rule

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 52-p3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

The GGL - A Generic Framework for Chemical Graph Rewrite Systems 53

i.e. all molecules reachable from the initial molecules by iterative reaction ap-
plications. An extensive system of wildcards, degree and adjacency constraints,
and negative application conditions (NAC), such as the non-existence of edges,
makes it easy to formulate very specific graph transformation rules by modulat-
ing their context dependent matching behaviour. Rules are encoded using the
Graph Modelling Language (GML) easily understood and used by non-expert
users. The molecule graphs produced by the graph grammar encoded chemical
reactions have to pass extensive sanity checks and e.g. arromaticity correction
to ensure the production of proper molecules only.

Besides the efficient handling of chemical transformation the GGL offers ad-
vanced cheminformatics algorithms. Among them are methods for the estimation
of reaction rates or the free energies of molecules, the generation of canonical
SMILES (a popular line notation for molecules) or chemical ring or aromaticity
perception. Furthermore the entire functionality of the popular chemical toolbox
Open Babel [5] can be harnessed from within the GGL via the implementation of
a bi-directional interface for the exchange of chemical graphs. All these features
are used within the GGL-based toyChem tool part of the library that enables
the expansion and visualization of reaction networks given some initial molecules
and a set of chemical reaction rewrite rules.

The graph grammar based simulation of chemical reactions offered by the
GGL is a powerful tool for extensive cheminformatics studies on a molecular
level and it already provides rewrite rules for all enzymes listed in the KEGG
LIGAND database [3]. The GGL is freely available at

http://www.tbi.univie.ac.at/software/GGL

For a full description of all GGL features please refer to [4] available at
http://arxiv.org/abs/1304.1356

References

1. Benks, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry.
J Chem. Inf. and Comp. Sci. 43(4), 1085-1093 (2003)

2. Flamm, C., Ullrich, A., Ekker, H., Mann, M., Hoegerl, D., Rohrschneider, M.,
Sauer, S., Scheuermann, G., Klemm, K., Hofacker, I.L., Stadler, P.F.: Evolution
of metabolic networks: A computational framework. J. Syst. Chem. 1(1), 4 (2010)

3. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration
and interpretation of large-scale molecular data sets. Nuc. Acids Res. (2011)

4. Mann, M., Ekker, H., Flamm, C.: The graph grammar library - a generic framework
for chemical graph rewrite systems. arXiv (2013), http://arxiv.org/abs/1304.1356

5. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison,
G.R.: Open Babel: An open chemical toolbox. J. Cheminf. 3(1), 33+ (2011)

6. Rosselld, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical
graph transformation. Electron. Notes Theor. Comput. Sci. 127, 157-166 (2005)

7. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc. (1997)

8. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph
transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G.
(eds.) ICGT 2004. LNCS, vol. 3256, pp. 83-95. Springer, Heidelberg (2004)

http://arxiv.org/abs/1304.1356

Fragmented Validation:
A Simple and Efficient Contribution

to XSLT Checking
(Extended Abstract)

Markus Lepper!' and Baltasar Trancén y Widemann'+2
! <semantics/> GmbH, Berlin, DE
2 Tlmenau University of Technology, Ilmenau, DE
post@markuslepper.eu, Baltasar.Trancon@tu-ilmenau.de

Debugging and verifying XSLT programs is a tedious but important task, and
automated support is urgently requested by practice. Type checking of XSLT
is untractable in general. Very different theoretical and practical work exists in
this field, either restricting the involved languages, or aiming at approximations.

In contrast to these ambitious and expensive approaches, fragmented valida-
tion is light-weight. It does not consider the input document and the questions of
control flow, in XSLT especially complicated due to the dynamic pattern match-
ing, but restricts itself to the fragments of target language elements which are
statically embedded in an XSLT script, and which are the stencils for many (in
most cases: for all) elements of the result documents.

Fragmented Validation finds places in an XSLT program where output is
produced which is certainly illegal w.r.t. the document type of the intended
result. It does so by a kind of abstract interpretation. This can be performed in
linear time on the fly, when parsing an XSLT program. The usual deterministic
parsing alternates with a non-deterministic mode, the defining automata for
which are created dynamically on demand by two simple operations on relations.

The intended document type of the result must be given by a regular tree
grammar. This is a map from the set of all labels allowed for nodes of the
document tree to regular expressions over these labels, called content models in
the context of XML. This defines the allowed sequences of child elements, when
lifted from labels to elements. A W3C DTD is an example for such a regular
tree grammar. It can also be constructed for the XSLT language itself.

The structure of an XSLT program and the corresponding parsing process
divide into different zones, which fall in one of four categories:

1. Pure XSLT. The top of the document tree is an element defined by XSLT
(namely stylesheet), and contains further XSLT elements.

2. Embedded result sequences. As contents of selected XSLT elements,
sequences of result elements may appear.

3. Result elements’ contents. The contents of result elements in most cases
consist again of result elements only.

4. XSLT elements in result elements’ contents. The contents of result
elements may be interspered with further XSLT elements.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 54-5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Fragmented Validation: A Simple and Efficient Contribution 55

The execution of an XSLT program will result in a document which is con-
structed by concatenating the contained result elements sequences, and by replac-
ing the XSLT elements embedded therein by further evaluation results recursively.
This motivates the basic idea of fragmented validation.

The two “pure” zones of the input document, XSLT or result elements only,
can be parsed as usual, in a deterministic way: The content models of all ele-
ments of both languages are translated into one deterministic finite automaton,
DFA each. Each DFA has, as usual, one start state, a set of accepting states,
and transitions labeled with the tags of consumed child elements. By represent-
ing these DFAs as relations between states, our method becomes most easy to
understand and to implement. Parsing is realized by applying this relation to a
set of states, which is a singleton set in the two cases of deterministic parsing.

Whenever the zone “2” is entered and as soon as the first result element
embedded as child of an XSLT element is consumed, all those states from all
content models are put into the set of current states which are reachable by
a transition labelled with that element’s tag. So a non-deterministic parsing
process starts, which realizes a kind of “reading at more than one grammar
position simultanuously”, because we do not know at which position of the result
grammar this particular fragment will end up later, on execution. Nevertheless,
at least one such point must exist for the program to be sensible. So parsing in
this non-deterministic way must always be able to proceed for the whole XSLT
element’s contents, and an error is detected as soon as the set of current states
becomes empty. (To reach an accepting state is not required, since the contents
of the future result element may be completed correctly by some other XSLT
rule. This context information is beyond the scope of fragmented validation!)

When the contents of a particular result element are parsed, this starts in a
deterministic way, with the set of current states containing only the start state
of the DFA, as usual. But as soon as an embedded, content generating XSLT
element appears, the transitive and reflexive closure of the transition relation
(ignoring all transition labels) is applied to this set. This is an abstract interpre-
tation of the later execution, since we do not know how many of the following
allowed result elements the later expansion of the inserted XSLT element will
contribute. Parsing continues as usual. When parsing the closing tag of the con-
taining result element, at least one accepting state of its content model must be
contained in the set, otherwise again an error is detected.

This abstract interpretation is also applied in the previous case, so that both
kinds of non-determinism combine naturally, whenever necessary.

This is the whole idea, and it turned out that it is capable of finding from fifty
to hundred percent of the errors found by much more sophisticated validation
techniques, when applied to acknowledged real-world test material.

Model Querying with FunnyQT
(Extended Abstract)

Tassilo Horn

Institute for Software Technology
University Koblenz-Landau, Germany
horn@uni-koblenz.de

FunnyQT is a new model querying and transformation approach. It is designed as
an extensible API in the functional, JVM-based Lisp dialect Clojure. FunnyQT
targets the modeling frameworks JGralL.ab and EMF, and it is extensible to other
frameworks as well. Its querying parts are already stable while its transformation
parts are still in early stages of development, so this paper focuses on the former.

Clojure API. FunnyQT is not a separate language with its own concrete syn-
tax and semantics, but a Clojure API, i.e., FunnyQT queries are essentially
Clojure expressions. Clojure’s JVM-basing guarantees efficient and wrapper-free
interoperability with existing Java libraries including almost all modeling frame-
works. Clojure provides a large set of features including higher-order functions
and control structures that can be used directly. Clojure programs also tend to
be much more concise than equivalent programs in imperative languages. A first
case study involving complex, parallelized FunnyQT queries on large models has
been released as a whitepaper [2].

Modeling frameworks. FunnyQT is applicable to any modeling framework in
principle, and support for EMF [5] and JGraLab [3] are already built-in.
FunnyQT uses the framework-specific model representations, and there is no
adaption layer unifying access to models and model elements. Instead, for any
modeling framework, FunnyQT has a framework-specific core namespace pro-
viding functions for accessing models and model elements. These functions are
named according to the terminology of the corresponding framework, and they
expose all its characteristics. Built on top of these framework-specific APIs, there
are generic APIs applicable to any supported modeling framework which provide
various features discussed in the following.

Basic querying € model management. The basic querying API contains func-
tions for sequencing the elements contained in a model, functions for accessing
the attributes and referenced elements of a given model element, comprehen-
sions, quantified expressions, and polymorphic functions dispatching on meta-
model types. Combined with Clojure’s standard functions and control structures,
these parts of the FunnyQT API enable model querying similar to OCL. Fun-
nyQT’s model management facilities enable loading and storing of models and
metamodels, creation and deletion of model elements, setting of property values,
and visualization of models or extracts thereof. Combined with the basic query-
ing API, these facilities enable typical model management tasks and algorithmic
transformations similar to the Epsilon Object Language [4].

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 56 2013.
© Springer-Verlag Berlin Heidelberg 2013

Model Querying with FunnyQT 57

Regular path expressions. Regular path expressions (RPEs) are a very powerful
querying concept borrowed from GReQL [I]. An RPE can be used to calculate
the set of elements reachable from a given element by traversing a path specified
by role names and typed edge symbols combined with regular path operators
such as sequence, option, alternative, or transitive (reflexive) closure.

Pattern matching. FunnyQT also supports pattern matching using an internal
DSL implemented with Clojure’s metaprogramming facilities. A pattern is spec-
ified using a special FunnyQT macro and contains named and typed node and
edge symbols specifying the structure of the subgraph to be matched. Further-
more, negative application conditions are supported, arbitrary constraints may
be specified, and patterns may be composed of other patterns. At compile-time,
the macro transforms such a pattern definition to an ordinary function. When
being called, the function results in a lazy sequence of all matches in the queried
model. The lazyness of the sequence means that the matches are not calculated
until they are retrieved from the sequence one at a time. Thus, finding the first
few matches is much cheaper than computing all matches.

Concludingly, FunnyQT at the current point in time provides a comprehensive
approach to model querying and model management. Its core characteristics are
its support for multiple modeling frameworks, its functional alignment as Clojure
API, its extensibility, and the ability to exploit existing Clojure and Java libraries
like demonstrated in [2], where Java’s new ForkJoin library has been used to
parallelize complex queries.

FunnyQT’s basic querying API including the features inherited by its host
language Clojure already enable an expressivity comparable to OCL or EOL,
and its support for regular path expressions and pattern matching provide even
more powerful querying capabilities.

In future work, FunnyQT will be extended to a comprehensive querying and
transformation approach. A first preview on FunnyQT transformations can be
experienced at this year’s Transformation Tool Contes, where FunnyQT solu-
tions have been submitted for all three case studies.

References

1. Ebert, J., Bildhauer, D.: Reverse Engineering Using Graph Queries. In:
Engels, G., Lewerentz, C., Schifer, W., Schiirr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 335-362. Springer, Heidelberg (2010)

2. Horn, T.: FunQL: A Functional Graph Query Language. Whitepaper (January 2012),

http://www.uni-koblenz.de/ horn/funql-whitepaper.pdf

. JGraLab Hompage (March 2013), http://jgralab.uni-koblenz.de

4. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book (March 2013),
http://www.eclipse.org/epsilon/doc/book/

5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional (2008)

w

[un

http://planet-sl.org/ttc2013

http://www.uni-koblenz.de/~horn/funql-whitepaper.pdf
http://jgralab.uni-koblenz.de
http://www.eclipse.org/epsilon/doc/book/
http://planet-sl.org/ttc2013

Yet Another Three QVT Languages

Edward Willink!, Horacio Hoyos?, and Dimitris Kolovos?

! Willink Transformations Ltd., Reading, UK
ed@willinktransformations.co.uk
2 The University of York, York, UK,

horacio.hoyos.rodriguez@ieee.org, dimitris.kolovos@york.ac.uk

The early enthusiasm, in 2002, for model to model transformation languages led
to eight submissions for an OMG standard[I] comprising three languages, yet no
commercial products. The QVT Core language was intended as the foundation
for QVT Relations but the available implementations have ignored the core lan-
guage. Rather than ignoring the core language, we take the opposite approach
and introduce three more core languages. Progressive program-to-program trans-
formation through these core languages terminates in an easily implemented
imperative language that supports declarative transformations.

There are currently only two freely available but discouragingly stable imple-
mentations of QVTr. There are no implementations for QVTc. The Eclipse QVT
Declarative project provides only models, editors and parsers for both QVTr and
QVTc. We outline progress to remedy the execution deficiency.

The original work for Eclipse QVTd execution considered only QVTr and
confirmed that direct tooling of a complex declarative language such as QVTr
is rather hard. Three years ago, the direct approach was abandoned and the
progressive approach shown in the Figure was first posted on the web. Work on
this approach has at last started.

QVT Declarative W \‘ New Intermedate Languagesw (VM

QUTr b QUTc [=ft QUTU fmblQV Tl QUT | + e
: I Y t 4
program-to-program : v :
— transformation ATL i ALF Java
language representation | ETL composition QVTo |

At the left we have the two QVT Declarative languages, with QVTr realized by
a QVTr to QVTc program-to-program transformation. Our three new languages,
QVTu, QVTm and QVTi are syntactic and semantic simplifications of QVTc.
QVTi is realized by extending the OCL support of Eclipse OCL. This enables
the Xtext editing, OCL and UML model support and the OCL to Java code
generator to be exploited.

The utility of the new languages and the program to program transformations
are summarized below.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 58-FJ] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Yet Another Three QVT Languages 59

QVTcto QVTu (Unidirectional). The QVTc transformation is aligned to the
user’s invocation context to extract a uni-directional declarative representation.

— the redundant multi-directionality and enforcement modes are eliminated.

QVTu to QVTm (Minimal). The QVTu transformation is normalized to
give as simple and as uniform a declarative representation as possible.

— syntactic sugar is removed
— representation alternatives are normalized

QVTm to QVTi (Imperative). A practical multi-pass implementation is
synthesized that can be easily executed on a model-friendly Virtual Machine.

— a reconciler is synthesized if an update transformation is required
— a pattern matching schedule serializes declarative input matches
— a pattern generation schedule serializes declarative output updates

QVTec differs from other transformation languages in requiring traceability to
be made explicit in an additional middle metamodel. QVTi exploits the middle
model to provide a convenient buffer between the reconciliation, input match-
ing and output update passes. The reconciliation for an update transformation
populates the middle model with the pre-existing matches. An in-place transfor-
mation ensures that all input context is cached in the middle model before any
potentially conflicting output updates are made. A solution to these complexi-
ties is prepared at compile time, and expressed in QVTi, so that the run-time
execution is naive and efficient.

These new languages are not just a convenience for realizing QVTc, they
also offer important interchange points for other transformation technologies to
exploit and so share the tool chain.

— QVTu provides a high level interchange point for other uni-directional
declarative transformation languages such as ATL or ETL.

— QVTm provides a normalized representation at which declarative transfor-
mation composition and optimisation can be applied.

— QVTi provides a low level interchange point that imperative transformation
languages such as QVTo, ALF or EOL may exploit.

The extension of Eclipse OCL VM[2] to support execution of QVTi proved to
be surprisingly easy. Some simple transformations have confirmed how simple
QVTi can be. It is now only necessary to develop the QVTr to QVTc to QVTu
to QVTm to QVTi program transformation chain.

References

1. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
version 1.1 (January 2011), http://www.omg.org/spec/QVT/1.1/

2. Willink, E.D.: An extensible ocl virtual machine and code generator. In:
Proceedings of the 12th Workshop on OCL and Textual Modelling, OCL 2012,
pp. 13-18. ACM (2012)

http://www.omg.org/spec/QVT/1.1/

A Methodological Approach for the Coupled Evolution
of Metamodels and ATL Transformations

Davide Di Ruscio, Ludovico lovino, and Alfonso Pierantonio

Department of Information Engineering,
Computer Science and Mathematics University of L’ Aquila
{davide .diruscio, ludovico.iovino,alfonso. pierantonio}@univaq L1t

Abstract. Model-Driven Engineering is a software discipline that relies on
(meta) models as first class entities and that aims to develop, maintain and evolve
software by exploiting model transformations. Analogously to software, meta-
models are subject to evolutionary pressures which might compromise a wide
range of artefacts including transformations. In contrast with the problem of
metamodel/model co-evolution, the problem of adapting model transformations
according to the changes operated on the corresponding metamodels is to a great
extent unexplored. This is largely due to its intricacy but also to the difficulty
in having a mature process which on one hand is able to evaluate the cost and
benefits of adaptations, and on the other hand ensures that consistent methods are
used to maintain quality and design integrity during the adaptation. This paper
proposes a methodological approach to the coupled evolution of ATL transfor-
mations aiming at evaluating its sustainability prior to any adaptation step based
on the assessment of change impact significance.

1 Introduction

Model-driven engineering (MDE) is a software discipline that employs models for de-
scribing problems in an application domain by means of metamodels. Different ab-
straction levels are bridged together by automated transformations which permit source
models to be mapped to target models. These artifacts and the interrelationships among
them constitute an ecosystem at whose core there are metamodels [4]. Since evolution
in software is anything but a rare occurrence [[12], it can affect metamodels as well [19]
causing a ripple effect over the rest of the ecosystem. However, whenever a metamodel
undergoes modifications, it is of vital relevance that the impact of such changes is fully
understood prior initiating their propagation: regardless how urgent the motivations for
changing a metamodel are, underestimating the difficulties in restoring the consistency
in the ecosystem can lead to an impasse, in which no progress can be made [6]].

The problem of metamodel/model coupled evolution] has been already extensively
investigated (e.g., see [6l2l16/8/10]). The existing approaches provide tools and tech-
niques to define and apply migration strategies able to take models conforming to the
original metamodel and to produce models conforming to the evolved metamodel. On
the contrary, despite its relevance the metamodel/transformation co-evolution problem

! Throughout this paper we will use the terms coupled evolution, co-evolution and co-adaptation
as synonyms whenever it does not give place to misinterpretations.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 60-75] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

A Methodological Approach for the Coupled Evolution 61

is still open and requires further investigations. In fact, adapting transformations does
not only take into account the domain conformance [14] between the definition of a
transformation and its metamodels but must consider also the intelligence used by
the transformation for generating the target model elements. Very few attempts have
been made so far and generally they tend to re-apply the same techniques used for the
metamodel/model co-evolution, as in [[13] where higher-order transformations (HOTs)
are used to migrate, whenever possible, existing transformations according to occurred
metamodel changes. Thus, only the most obvious cases, such as renamings and dele-
tions, are covered leaving the responsibility of managing the most complex ones to the
modeler who typically face the problem with individual and spontaneous skills. This
is largely due to the intricacies of the problem but also to the lack of a mature pro-
cess which on one hand is able to evaluate the cost and benefits of adaptations, and on
the other hand ensures that consistent methods are used to maintain quality and design
integrity during the adaptation.

This paper proposes a comprehensive and methodological approach to the coupled
evolution of ATL transformations. As with many engineering activity, measurement is
crucial in order to assess at early stages of a process the sustainability of the costs versus
the benefits. Therefore, a process is proposed for the systematic co-evolution of artifacts
and which includes the following activities: i) establishing the dependencies between a
transformation and its (source) metamodel; ii) evaluating the cost of the adaptation; iii)
deciding whether it is sustainable or not by eventually reconsidering certain decisions;
and finally iv) if the assessment has a positive outcome the impacted transformation
is adapted. The main contribution of the paper is to define a methodology in which an
early assessment of the impact cost and significance is conducted and which can provide
the modeler with the right tools and techniques for addressing a complex problem in a
more disciplined way.

The structure of the paper is as follows: In Section2] we discuss an example which
motivates the metamodel/transformation coupled evolution problem. In Section 3] we
discuss a classification of metamodel changes according to their impact on the existing
transformations. The proposed process for the systematic co-evolution of metamod-
els and ATL transformations is described in Section [l Related work is described in
Section[3 and the paper is concluded in Section

2 Motivating Scenario

In MDE model transformations play a key role since they are able to generate tar-
get models starting from source ones according to transformation rules, which are de-
fined with respect to source and target metamodels. For instance, Listing [T, 1] shows an
ATL transformation able to transform models conforming to the PetriNet metamodel
reported in Figure[Ila, and to generate Petri Net Markup Language (PNML) [1]] models
conforming to the metamodel in Figure Rl

According to the metamodel in Figure [[la a PetriNetModel mainly consists of
Places and Transitions which are contained in the Net element. Concerning the
metamodel in FigureP] the metaclass PNML.Document represents the root element which
is composed of Petri nets specified by means of NetElement instances. A Petri net

62 D. Di Ruscio, L. Iovino, and A. Pierantonio

is composed of NetContent elements which are distinguished into Arc, Place, and
Transition. Net elements and net contents can have a Name, which is a Labeled
Element composed of Labels.

Listing 1.1. Fragment of the PetriNet2PNML ATL transformation

lhelper context PetriNetMMO!Transition def: createArcsSrc (parent:PNML!NetElement) :
PNML!Arc=

2 self.src->iterate(e; res : PNML!Arc=0OclUndefined| thisModule.createArcSrc (e,
parent, self));

3helper context PetriNetMMO!Transition def: createArcsTrs (parent:PNML!NetElement) :
PNML!Arc=

4 self.dst->iterate(e; res : PNML!Arc=OclUndefined | thisModule.createArcTrs (self,
parent,e));

S5rule Net {

6 from s: PetriNetMMO!Net

7 to t: PNML!NetElement (

8 name<-s.name,

9 contents <- s.places.union(s.transitions),
10 id<-s.name

11) o

12 e

13rule Place {
14 from s: PetriNetMMO!Place (s.oclIsTypeOf (PetriNetMMO!Place)
15 to t: PNML!Place (

16 name <- name,
17 id <- s.name+’_src:’+s.src.size().toString()+’_dst:’+ s.dst.size().toString()),
18...}

19rule Transition {
20 from s: PetriNetMMO!Transition
21 to t: PNML!Transition (

22 name <- s.name,

23 id <- s.name+’_dst:’+s.dst.size().toString()),
24

25 do{

26 s.createArcsSrc(t.net);
27 s.createArcsTrs(t.net);
28 }}...

The transformation shown in Listing [[.Ilis a revised version of the one available in
the ATL Transformation Zod? and consists of the following rules:

H Namedtlement H arc B Fement
T name : String T weight : Integer | [=]
- elements [0.*
0.r [dst 0.]src A o |arcs
H Place H Transition L.l net pet
T name ! String 0.0 dst 7 name ! String $1.1 |
: : re 0. = : H Petrinet H PlaceToTransition |incomingardE TransitionToPlace
1.*|places net transitions | o.* o
1.1 1.1#net nets o, ﬂ‘-'EUtQD'nQA"C 0.*] outgoingarc|1.*
E PetriNetModel |y 1 pet ENT s Srcg pl| ':C;’m'”g’m stcy 4
o " etrie oge ace = T "
0.+ |T_name : String 1.1 i £l Transition
model [it
a) Initial version b) Revised version

Fig. 1. Different versions of the source PetriNet metamodel

2 http://www.eclipse.org/m2m/atl/atlTransformations/

http://www.eclipse.org/m2m/atl/atlTransformations/

A Methodological Approach for the Coupled Evolution 63

labeledElement
Label IdedEil t
£l LabeledElement G H Labe H idedElemen

T text : Stringe T id ! String

1.1 labels

R v Y 8

0.1 H Name 0 Locatedelement [
name T location : String

0.1
EING A

T value ! String 1.1 H PNMLDocument]
xmins

I.1 ype :
nets
net 0.1 : document §1.1 target| 1 1
H NetElement et eontents sources

h1 o B NetContent 5 netContentElement | H Place
0.1 N

netContent [

H arc H Transition

Fig. 2. Target PNML metamodel

D> Net generates a target NetElement for each instance of the source Net metaclass.
The name of the generated NetElement is the same of the source Net. Moreover, the
content of the target Net Element consists of the union of the place and transition
elements contained in the source Petri net model (see lines 7-11 in Listing [L.).
Figured shows the PNML model (represented as an object diagram) automatically gen-
erated from the PetriNet model in Figure[3l The instance netElement1 in Figure[d has
been generated by the Net rule from the source net1 element in Figure Bl Interest-
ingly, the content of the target NetElement consists of the union of the target elements
corresponding to the source places and transitions;

> Place generates a target P1ace element for each place in the source model. The name
of the generated element is the same as the source. Moreover, the value of the target
attribute id is a string concatenation which considers the number of the incoming and
outgoing transitions of the input Place (see lines 15-18 in Listing [[.). For instance,
the id value of the place p2 in Figure[is p2 src:1 dst: 0 since the source place has
only one incoming transition and no outgoing transitions;

> Transition generates a Transition element for each transition in the source model.
The value of the id attribute maintains the number of destination places of the con-
sidered transition as the sample transition t1 in Figure Ml (see lines 21-23 in List-
ing [[.I)). The generation of target Arc elements is performed by means of the helpers

modeld : PetriNetModel p3: Place t1: Transition | p1: Place
nets = net name="p3" | dst src | dst=p3 p2 dstsrc | dst=11
sre =11 name ="t1" name="p1"
madel |- : src=pi net=nett
net1 ; Het] p2: Place = g ﬁléée-s
name="net!" name="p2" clst
places = p1 sre=1
net L

Fig. 3. Sample PetriNet model

64 D. Di Ruscio, L. Iovino, and A. Pierantonio

net (net
netElement1 : T T contents
oo | contents B3 :place arc3 : arc
PNM“t"[;ocoucmént contents = p1 id="p3_src1_ost0" [Arget bl i source = p2 targel

= nets |11, arc1,p3, source =arc3 target=p3

nets = netElement1 arca, p2’.arc2 — contents
name = "net1"
contents net
contents contents

p1_: place Liies arci : arc i teansition) ‘ arc2 : arc p2 _: place |
id = "p1_src:0_dst:1" farget | SOUrCe = p1 source target I::::r:;f:}(?‘l source target | oyyrce =t source |jg ="n2_src1_dst0" |
target = arc1 target=1t1 target = arc2 target=p2 target SOUrCE = arc2

e target = arc3
source 2y

Fig. 4. Sample PNML model

createArcsSrc and createArcsTrs which are executed in the action block of the
Transition rule (see lines 25-28 in Listing [L1)).

Let us consider the exemplar PetriNet metamodel evolution [19] by refining the
metamodel in Figure[Ila to obtain the new version shown in Figure [[lb. The new ver-
sion of the metamodel has been produced by operating a number of changes, such as:

1. the TransitionToPlace and PlaceToTransition metaclasses have been
added;

2. the new metaclass Arc has been added as a superclass of the TransitionToPlace
and PlaceToTransition metaclasses;

3. the metaclass Net has been renamed as PetriNet;

4. the old references places and transitions in the old Net metaclass have been
merged in the elements reference of the new PetriNet metaclass.

Because of the operated modifications, the existing ATL transformations relying on the
first version of the PetriNet metamodel can require some adaptations. For instance, in
the case of the sample PetriNet2PNML transformation in Listing [[LT] the rule Ner has
to be adapted since the references places and transitions used in the binding of
the property contents (see line 9 in Listing [LT) do not exist in the new version of the
metamodel. Also, the input pattern of the same rule has to be changed since the meta-
class Net is not available because of the renaming modification operated on it to obtain
the new metaclass PetriNet. In general, manually adapting ATL transformations is
error-prone and can give place to inconsistencies. Moreover, it is very difficult to real-
ize all the parts of the transformation which are potentially affected by the metamodel
modifications. Such an issue becomes very relevant when dealing with complex ATL
transformations with a considerable number of rules and helpers. In the next section we
discuss a classification of metamodel changes, which are organized with respect to the
kind of required transformation adaptations.

3 Metamodel Changes and Transformation Adaptations

Changes to metamodels might have an impact to the models, editors, generated code,
and model transformations that depend on the aforementioned metamodels. Concern-
ing model transformations, because of changes to a given metamodel, transformation

A Methodological Approach for the Coupled Evolution 65

inconsistencies can occur and are those elements in the transformation, which do not
longer satisfy the domain conformance [14]. For instance, a sample domain confor-
mance constraint might state that the source elements of every transformation rule must
correspond to a metaclass in the source metamodel [15]. Consequently, when a concept
is removed from a metamodel, existing transformations that use the removed concept
are no longer domain conformant with the evolved metamodel. Hereafter, we say that
a metamodel change affects a transformation when there are some transformation ele-
ments, which do not longer satisfy the domain conformance with the new metamodel.

In this section we investigate the problem by discussing some typical metamodel
changes together with the corresponding co-changes of already existing ATL transfor-
mations. We depart from catalogues of metamodel changes as they are available in the
literature, e.g., [19010] and previous work of the authors [2l5]]. Moreover, we take into
account also the terminology proposed in [[13] to classify metamodel changes. In par-
ticular, according to [13]], in the case of metamodel/transformation co-evolution, meta-
model changes can be classified as follows:

— fully automated, when they affect existing transformations which can be automati-
cally migrated without user intervention;

— partially automated, when they affect existing transformations which can be adapted
automatically even though some manual fine-tuning is required to complete the
adaptation;

— fully semantic, when they affect transformations which cannot be automatically
migrated, and the user has to completely define the adaptation.

To better comprehend such a classification, in the following we discuss three meta-
model changes, one representative for each category in the previous classification. The
interested reader can refer to [2] and to the material available on-lind] for an extensive
catalogue of metamodel changes and their effects on corresponding artifacts.

Rename metaelement. There are changes which can be automatically managed without
user intervention. This is the case of metaclement renaming, where transformations can
be fully adapted by simply replacing all the occurrences of the old metaelement with the
new one. For instance, the input pattern of the adapted Net rule shown in Listing[T.2]has
been obtained by replacing Net with PetriNet (see line 3) according to the renaming
change operated on the source Net metaclass.

Listing 1.2. Fragment of the Net rule which has been adapted after the rename metaelement and
merge references changes

lrule Net ({

2 from

3 s : PetriNetMMO!PetriNet --Warning: element Net has been changed !

4 to

5 t : PNML!NetElement (

6 name <- name,

7 document <- thisModule.document,

8 contents <- s.elements->select(e | e.oclIsKindOf (PetriNetMMO!Place)) .union (s
.elements—->select (e | e.oclIsKindOf (PetriNetMMO!Transition))),

10)

3 http://www.metamodelrefactoring.org/

http://www.metamodelrefactoring.org/

66 D. Di Ruscio, L. Iovino, and A. Pierantonio

Merge references. Given an existing metamodel, existing references can be merged by
giving place to a new one. For instance, in the new version of the PetriNet metamodel
shown in Figure [Ilb, the references places and transitions in the metaclass Net
have been merged in the new reference elements having the new metaclass Element
as type. Element is also the superclass of Place and Transition metaclasses. In
this case, a default migration policy can be adopted by changing the occurrences of
the merged references as reported in the adapted version of the Net rule shown in
Listing[T.2] In particular, each occurrence of the references places and transitions
is replaced with a select statement to filter Place and Transition instances on the
new elements reference (see line 8 in Listing [T.2).

Add metaclass. According to [[13]] this modification is fully semantic since it is impossi-
ble to derive new transformation rules from new metaclasses, without any information
about how the added elements should be automatically manipulated. However, we be-
lieve that in these cases, some default actions can be undertaken, then the user can
refine or amend them. For instance, whenever a new metaclass is added, the considered
ATL transformation can be migrated by adding a new transformation rule having the
added metaclass as a source input pattern. Then, the user can refine such a rule by im-
plementing the target pattern. For example, because of the addition of the metaclasses
TransitionToPlace in the initial PetriNet metamodel in Figure[Ila, the matched rule
in Listing[I.3] can be added to the transformation shown in Listing [L.]

Listing 1.3. New transformation rule to manage the addition of the TransitionToPlace
metaclass

1--QRule for TransitionToPlace added subclass
2rule TransitionToPlace ({

3 from

4 s_TransitionToPlace : PetriNetMMO!TransitionToPlace (s_TransitionToPlace.
oclIsTypeOf (PetriNetMMO ! TransitionToPlace))

5 to

6 —— t_TransitionToPlace : PNML!"Type your matching element name"

7}

According to the discussion above, the metamodel/transformation co-evolution prob-
lem is complex especially because in most of the cases transformations can be adapted
in different manners and user intervention is required. Existing approaches, like [13/14]
introduce techniques mainly to support fully automated changes. However, adaptations
are performed by means of individual and spontaneous skills without adhering to a
well-established process, which beyond the actual adaptation activities would include
also an evaluation of the cost and benefits of the changes to be operated.

4 Adaptation of ATL Transformations

In this section we propose a methodology for supporting the adaptation of ATL transfor-
mations according to the changes operated on the corresponding metamodels.
The methodology consists of a number of activities that encompass the specification
of the metamodel changes, the evaluation of their impact on the existing artifacts, the
sustainability of the induced adaptations, and the actual migrations of the affected arti-
facts. For each activity, supporting techniques that can be employed are mentioned, and

A Methodological Approach for the Coupled Evolution 67

more space is devoted to the cost evaluation of the required adaptations (Section [.2)),
and to their concrete application (Section [4.3)).

4.1 Overview of the Methodology Activities

The activities of the proposed methodology are shown in Figure [5] and detailed in the
rest of the section.

Relation Definition. This activity is independent from the specific metamodel evolution
and the affected transformations, thus it is performed once forever as long as both the
transformation language and the metamodeling language do not evolve. In particular,
in this activity the ATL and the ECore metamodels are considered in order to establish
correspondences between them. Such correspondences are used later in the process to
automatically derive the dependencies between an evolving metamodel and the existing
transformations. This activity can be done by using the work in [[L1] that exploits weav-
ing models and megamodels to specify and manipulate correspondences among related
and evolving artifacts. The upper side of Figure [6] shows a sample weaving model (as
defined in [11]]), which specifies the relation between the ECore metaclass EClass and
the ATL metaclass Oc1ModelElement.

Dependencies Elicitation. Given the correspondences defined in the previous activity, it
is possible to automatically derive a weaving model representing all the dependencies
between the evolving metamodel, and the existing ATL transformations. The lower side
of Figure [6] shows the dependencies between the metaclasses of the PetriNet meta-
model and the elements of a given ATL transformation having it as source metamodel.
For instance, the first rule of the transformation shown on the right-hand side of Fig-
urel6l contains an Oc1ModelElement named Net, thus it is connected with the EClass
element similarly named on the left-hand side of the figure. Such a dependency link
specifies that changing the name of the Net metaclass in the PetriNet metamodel
implies to propagate such a change to each 0Oc1ModelElement linked to it.

Metamodel Changes Specification. The changes that modeler wants to operate on a
given metamodel should be properly represented in order to enable automatic manipu-

Metamodel
too expensive? Changes
Commit
: v
Relation Metamodel Adaptation Cost Transformation
Definition Changes Evaluation Adaptation
Refinement P

e l : T !

Metamodel Change Impact
- Changes Analisys

Specification

Dependencies

Elicitation end

Fig. 5. Methodology activities

68 D. Di Ruscio, L. Iovino, and A. Pierantonio

} Ecore 4 4 ATL
| L | I L 1 ;
EClassifier
-——— |—|—' name : String i WM _Ol:\Typ:
[] [] relal
ATL]
-——
S
: EClass T e T e
-abstract : Boolean name <->name
[EstructuralFeature] 0." i -
- ——
[
-eStructuralFeatures
Rel2Dep
conformsTo conformsTo
\ 4 Ir‘ule Net {
fromp============
PetriNetMM WM s | PetriNetMMa!Net 1
‘dependency to lmwmmmmmme—eo .
Net sansitons _ _ | _ ATL - ~t": PNMLINetElement (
String - ~~1 -
1 - bR
/// 1.0 -net \\\\\ —— rule Place {
-~ T T T~ frem. pemm———————
& -dst ki Botet '
s : PetriNetMMo!Place |
iring -——-4 P T—— 4
0. \\\’\ t : PNML!Place (
\) it i bR
YOS
|-_—_-_-___-______—_-_-__-_-_-______T_-_-.-_T____: rule Tr?znsknons {
| e : Modiel transformation - - -@- - - : weaving link fromp=m=>mmmmmmmmmmme
*** s ! PetriNetMMd!Transitiont
! '
0 mmmmmmmem———————]
t : PNML!Transition (
b
¥

Fig. 6. Relation Definition and Dependencies Elicitation

lations and the subsequent phases of the process. For instance, in this phase it is possi-
ble to adopt the metamodel independent approach to difference representation proposed
in [3]] already used to deal with other coupled evolution problems (e.g., adaptation of
models [2]], and GMF editors [3]).

Change Impact Analysis. In general, change impact analysis can be considered as the
activity of detecting which modeling artifacts within the metamodeling ecosystem are
impacted by a change made in the evolving metamodel. In the specific case of ATL
model transformations, according to the dependencies previously elicited, all the trans-
formation elements which are in relation with the changed metamodel elements are
identified and used as input during the adaptation cost evaluation as discussed in the
following. It is important to note that in this phase both affected transformation rules
and helpers are taken into account. Concerning the latter specific management might be
required in case of complex helpers that entail the execution of other affected ones.
Adaptation Cost Evaluation. By considering the affected elements identified in the pre-
vious phase, modelers evaluate the cost for adapting the affected transformations. In
this respect, if the adaptation is too expensive (according to an established threshold)
modelers can decide to refine the metamodel changes to reduce the corresponding costs,
otherwise they can accept the operated metamodel changes. The evaluation is based on
an adaptation cost function as discussed in the next section.

A Methodological Approach for the Coupled Evolution 69

Metamodel Changes Commit. Once the metamodel changes have been evaluated, mod-
elers can commit them in order to concretely apply the previously evaluated
transformation adaptations.

Transformation Adaptation. In this phase the existing transformations which have been
affected by the committed metamodel changes are adapted. Proper tools are required to
support this step. Over the last years different approaches have been proposed to support
the coupled evolution of metamodels and related artifacts. In Section 4.3 we show how
EMFMigrate [4]] can be used as possible supporting tool in this phase.

4.2 Evaluating the Adaptation Cost of Model Transformations

Proper cost functions have to be considered to evaluate the sustainability of adapting
existing transformations. The cost related to the adaptation cannot be uniquely defined
since it depends on many factors, e.g., the application domain, the stage of the consid-
ered development process, and the execution environment. In this section we present a
possible adaptation cost function, and show an explanatory example about how it can
influence the choice of the metamodel changes to be operated.

Definition 1. (Adaptation Cost) Let A = {61, 02, ...,0,} be a difference model con-
forming to the difference metamodel DM and consisting of metamodel changes §; as
in the catalogue in [2)]. The cost of adapting ATL transformations affected by the meta-
model changes in A is the function ¢ : DM — N defined as

c(A) = Coy + Z kiw(0;)
i=1

where Ceny € N is the cost for setting up the used adaptation environment, k; is the
number of transformation elements which are affected by 6; (as discovered in the change
impact analysis activity) and

ca If6; is automated
w(0;) = { ¢pa If 0; is partially automated (D
¢ If 8y is fully semantic

where cq, Cpa, ¢z € N are the costs of automated, partially automated, and fully
semantic adaptations, respectively.

To discuss a simple application of the previous adaptation cost function, let us con-
sider the situation in Figure [7l It consists of a simple metamodel, and an endogenous
ATL transformation, which creates a copy of models conforming to the shown meta-
model. For some reason, let us assume that the modeler wants to refine the metamodel
by renaming all the occurrences of the attributes name as id (see the left-hand side of
Figure [§). Even though this is a simple modification, it has some impact on the ATL
transformation. According to the previous adaptation cost function, since the modifica-
tion is fully automated, the cost of the adaptation is cepy + 5 X ¢, and corresponds to
the cost for operating the changes highlighted in the right-hand side of Figure[8l(i.e., all
the bindings name <- s.name have to be replaced by id <- s.id).

70 D. Di Ruscio, L. Iovino, and A. Pierantonio
B Container 2 module ABCD2ABCD; 22=rule C2C{
3 create OUT : MM from IN : MM; 23 from s:MM!C
4= rule Container{ 24 to t: MMICC
0.7] elements 5 from s:MM!Container 25 name<-s.name
B General 6 to t:MM!Container(26)
7 elements <- s.elements 27 }
8 b} 28=rule D2D{
9 29 from s:MM!D
10= rule A2A{ 30 to t: MM!ID(C
11 from s:MMIA 31 name<-5s.name
Ha BE 12 to t: MMIAC 32 3
o name : EString = name : EString 13 name<-s.name 33 %
14 b 34=rule E2E{
15 |} 35 from s:MMIE
16= rule B2B{ 36 to t: MMIEC
BcC BD 17 from s:MMIB 37 name<-s.name
“— o name : EString o name : EString [18 to t: MMIB(38 b
19 name<-s.name t
HE 20 b]
© name : EString [—— 21 })

Fig. 7. Simple metamodel

and endogenous ATL transformation

2 module ABCD2ABCD; 22z rule C2C{
3 create OUT : MM from IN : MM; 23 from s:MM!C
4= rule Container{ 24 to t: MMIC(
- 5 from s:MM!Container 25 :--i-d:-g-\-d---_l
6 to t:MM!Container(26 T
r 0 - yo
] 7 elements <- s.elements 27 }
A 8 D 28=rule D2D{
9 |} 29 from s:MMID
18- rule A2A{ 30 to t: MMID(
11 from s:MMIA 31 THd<=s.id i
Ha EE 12 32 '"; """"" !
o id : EString o id: EString 1: 33 }
14 34=rule E2E{
15 } 35 from s:MM!E
16= rule B2B{ 36 to t: MMIE(
g C Iz 17 from s:MM!B 37 FEEEEd T
— o id: Estring o id * EString 18 to t: MMIBC 33 L i g
1 e)
BE 20 p|
o id : EString — 21 i}

Fig. 8. First proposed metamodel refactoring and corresponding adaptation

As it is possible to notice, the metamodel in Figure [§] can be enhanced by adding
a superclass for the metaclasses A, B, C, D, and E, in order to pull-up the attribute id
as shown in Figure [0l Even though the resulting metamodel is more well-designed than
the metamodel in Figure[8] the consequent transformation adaptation cost is higher than
the previous one. In fact, by considering the cost function previously defined, adapting
the transformation would cost ¢,y + 7 X ¢4, corresponding to the addition of an abstract
rule for managing the new superclass, and the changes to be operated on the existing
transformation rules (see the right-hand side of Figure [0). It is important to note that
such a transformation adaptation is one of possible ones that can be selected from a
library of adaptations (and in case manually refined) as discussed in Section[4.3] Even
tough this is a simplified case, it permits to show how in some cases, modelers have
to make a trade-off by accepting less elegant metamodel changes while reducing the

A Methodological Approach for the Coupled Evolution 71

elements

13:lgbstract rule Super2Super { fmmm————————————am
14 from 33 rule C2C{extends Super2Super{ |
15 st MMISuper 34 L e
16 to 35 s: MMIC
N | 17 £: MMISuper (36 to -
18 id <- s.id 37 € MICIO T
[HA | BC | 19) 38 } T et v |
1 | | 20 . 39= rule DzDLextends Super2Super{
L 1L | 21=rule A2A extends Super2Super{ 40 R i i e
[22 from a1 s: MMID
23 s: MMIA 42 to ==
— Bt | 24 to - 43 €2 MMID IO 1
Lk —— | = & MAiO]) 44 3 e oo
26 [hest] 45- rule E2Eiextends Super2Super{ |
272 rule B2D| extends Superzsuperi | 46 romt————————————————==4
2 from 47 s: MMIE
29 s: MMIB 48 to =5
39 to 49 & MMIELO)
=1

B super 3 ooy
D 3 :
i e [. 3 el 3

Fig. 9. Second proposed metamodel refactoring and corresponding adaptation

Artifact . _____] Ir_r:? r?;g;oor: Difference
Metamodel r%les model

. v

Custom - ;
. S Migration Migrated
Artifact migration engine }——) Artifact
rules \

[)

Fig. 10. Overview of EMFMigrate

impact on existing transformations. This aspect is more evident in cases of complex
transformations, which have been already tested and validated. In such situations, it
might have sense performing metamodel changes, which do not require a complete re-
validation of the new transformations. Informally, we can say that we are talking about
optimization problems whose solutions depend on a number of contrasting factors, most
importantly the expressiveness of the resulting metamodels against the impact on the
affected transformations.

4.3 Transformation Adaptation with EMFMigrate

In this section we propose the adoption of EMFMigrate as a possible tool support-
ing the last step of the methodology proposed in Section 4.1l EMFMigrate permits to
specify, customize, and apply migrations of any kind of artifact, which has been af-
fected by changes operated on the corresponding metamodel. Thus, we show how it
is possible to employ EMFMigrate to adapt ATL transformations. The overall archi-
tecture of the approach is shown in Figure EMFMigrate permits to specify default
adaptations, and collect them in libraries. The idea is having one library for each kind
of artifacts. Adaptations are applied with respect to the occurred metamodel changes,
properly represented by means of a difference model. The default migrations can be

72 D. Di Ruscio, L. Iovino, and A. Pierantonio

Listing 1.4. Sample migration rules in EMFMigrate

lrule mergeReferences
2

3 mergeReferences (refl, ref2, newName)

4

5

6 <NavigationOrAttributeCallExp s>
7 [name == refl.name] -> [[${newName}->select (e |

8 e.o0clIsKindOf (${refl.type}))
9 11;

11 <NavigationOrAttributeCallExp s>

12 [name == ref2.name] —> [[%{newName}->select (e |

13 e.oclIsKindOf (${ref2.type}))
14 11;

extended or even amended by users which can specify custom migration rules to refine
or replace default transformation adaptations.

By considering the sample PetriNet metamodel in Figure[la, the references places
and transitions have been merged in the new reference elements as shown in
the new version of the metamodel in Figure [Ilb. The adaptation implemented by the
migration rule mergeReferences in Listing [[.4] rewrites all the occurrences of the
matched references refl and ref2 with target ATL select operations which prop-
erly filter the new reference newName by selecting elements of type refl. type and
ref2 . type. For instance, in case of the reference place of the running example, all the
instances of NavigationOrAttributeCallExp named place will be rewritten with
elements->select (e | e.oclIsKindOf (Place)) (see lines 6-14 in Listing[T.4).
It is important to recall that NavigationOrAttributeCallExp is the metaclass of
the ATL metamodel which is used to refer to structural features of a given element. For
instance, on the right-hand side of Figure[IT] there are two NavigationOrAttribute
CallExp instances since the references places, and transitions of the source
metaclass Net are used to set the value of the target contents reference.

To simplify the specification or rewriting rules, EMFMigrate permits to specify terms
by using the concrete syntax of ATL between the symbols “[[and ““]11”, instead of its
abstract syntax (see the right-hand side of the rewriting rules in Listing [T.4).

As said in Section [3] there are metamodel changes that require the intervention of
the users since it is not possible to fully automate the migration of the affected trans-
formations. However, in such situations it is possible to implement default migration
policies which can be refined/completed or even fully replaced by the user. Interested
readers can refer to [6/4)20] for a more detailed presentation of EMFMigrate and its
comparison with related approaches.

5 Related Work

The techniques and the methodology of our work are inspired by research on co-
evolution in model-driven engineering [7]. Much of this work is concerned with co-
transforming models in reply to metamodel changes [19/16/2/10].

In this work we deal with another kind of co-evolution problem, even though re-
lated to the previous one, which concerns the adaptation of ATL transformations that

A Methodological Approach for the Coupled Evolution 73

[rule Wet ¢ .

4 4 Out Pattern 114:2-132:4
i<+ Simple Out Pattern Element 114:5-120:4

{
document<-thisModule.document, i 4 Ocl Model Element NetElement
{ contentsi<- |s.places.union(s.transitions}y 4 4 Binding115:3-115:13
typg <- type uri, 4 Variable Exp 115:9-115:13
id<-+s.name .
Ve | 4 4 Binding 116:3-116:32
name : PNML!Name % Navigation Or Attribute Call Exp document
¢ | 4 Binding 117:3-117:45
dabels <<= label 4[4 Gperation Call Exp 117:16-11745
label :'pm!Label > 4 Navigation Or Attribute Call Exp places
(> <4 Navigation Or Attribute Call Exp transitions|
EEXE "¢ [LDENE p 4 Binding 118:3-118:19

cype “’x;_ N — 4 4 Binding 119311913
T [» 4 Navigation Or Attribute Call Exp name
value <- 'http://www.informatik.hu-ber: [» <= Simple Out Pattern Element 121:2-124:4
) > 4 Simple Out Pattern Element 125:2-128:4
> < Simple Out Pattern Element 129:2-132:4
thisModule.document.nets<-t; b 4 Action Block 134:2-136:3
} 4 4 InPattern 113:2-113:25
| | 4|4 SimpleIn Pattern Element 113:7-113:25
| 4 OclModel Element Net |

do{

Fig. 11. Sample ATL transformation rule and its abstract syntax

have been affected by metamodel changes. Only recently, the problem of metamodel
evolution/transformation adaptation has gained attention and so far, only few attempts
have been provided to deal with it in a dedicated way [13l9/14]. In [13] the authors
propose HOT's which are able to support the adaptation of existing transformations de-
veloped in the GME/GReAT toolset. The approach is able to automate certain parts of
the evolution and when automation is not possible, their algorithms automatically alert
the user about the missing information, which can then be provided manually after the
automatic part of the interpreter evolution. The process proposed in [9] is divided in
two main stages: the detection stage, where the changes to the metamodel are detected
and classified, while the required actions for each type of change are performed at the
co-evolution stage. Our approach permits to specify ATL migrations by means of con-
structs which are easier than specifying HOTs. Moreover, a dedicated support is also
provided to develop customizations in an integrated manner. In [14] the authors investi-
gate the problem of metamodel/transformation co-evolution and introduce the domain
conformance as the relation between occurring between metamodels and transforma-
tions. Even though the authors propose an adaptation process consisting of three phases
(impact detection, impact analysis, and transformation adaptation) the cost related to
the adaptations (as shown in this paper) are completely neglected.

In [17] the authors propose a change impact analysis for Object-Oriented programs.
The authors provide feedback on the semantic impact of a set of program changes. This
analysis is used to determine the existing test programs affected by a set of changes.
Similarly to our approach, the authors consider of crucial relevance the activity of
analyzing the change impact even though they do not propose a measure for the adap-
tation cost, which has to be considered to evaluate if the changes have to be actually
performed. In [18] Vignaga presents a set of metrics which make ATL transformations
measurable, and enables assessing their quality. Such metrics can be used in our ap-
proach to extend the adaptation cost function in order to take into account also quality
aspects of the transformations during their adaptation.

74 D. Di Ruscio, L. Iovino, and A. Pierantonio

6 Conclusions and Future Work

Restoring the consistency of an ATL transformation when its corresponding metamod-
els are modified is a difficult problem. In this paper, we proposed a process in which
measurement plays an important role as it permits on one hand to assess the sustainabil-
ity of the costs versus the benefits of the prospected adaptation; and on the other hand
to ensure that consistent methods are used to maintain quality and design integrity. In
fact, proceeding without a preliminary evaluation of the difficulties can easily lead to a
situation, in which either no progress can be made or inconsistencies with consequent
information erosion are introduced. The proposed approach starts with defining the re-
lations between the transformation language and the metamodeling language; then the
dependencies are automatically obtained and highlighted and the modeler specifies the
metamodel evolution. A change impact analysis produces an adaptation costs evalua-
tion and the modeler has to make a choice. Then committing the changes the existing
transformation needs to be adapted and in this direction we proposed EMFMigrate.

In our ongoing research, we intend to focus on more complex adaptation cost func-
tions in order to take into account all the possible aspects which are involved in the
adaptation process. The function proposed in this paper, even though simplified, is a
starting point to formalize the problem as a multi-objective optimization since different
objective functions have to be optimized simultaneously. For instance, as shown in the
paper, typically modelers want to maximize the expressive power of the evolving meta-
models and minimize the cost related to the adaptation of the affected transformations.

References

1. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, Technology, and Tools.
In: van der Aalst, W.M.P, Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483-505.
Springer, Heidelberg (2003)

2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in
model-driven engineering. In: Procs. ECOC 2008, pp. 222-231. IEEE Computer Society
(2008)

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology 6(9), 165-185 (2007)

4. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: How to manage
coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 20-37. Springer, Heidelberg (2012)

5. Di Ruscio, D., Limmel, R., Pierantonio, A.: Automated co-evolution of GMF editor models.
In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 143-162.
Springer, Heidelberg (2011)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engineering.
IEEE Software 29(6), 78-84 (2012)

7. Favre, J.-M.: Meta-Model and Model Co-evolution within the 3D Software Space. In:
Procs. of ELISA 2003, Amsterdam (September 2003)

8. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by precise de-
tection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 34-49. Springer, Heidelberg (2009)

15.

16.

17.

18.
19.

20.

A Methodological Approach for the Coupled Evolution 75

. Garcia, J., Diaz, O., Azanza, M.: Model transformation co-evolution: A semi-automatic

approach. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 144-163.
Springer, Heidelberg (2013)

. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope - automating coupled evolution of

metamodels and models, pp. 52-76 (2009)

. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution

in mde. Journal of Object Technology 11(3), 1-33 (2012)

. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change.

Academic Press Professional, Inc., San Diego (1985)

. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel approach to

semi-automated evolution of DSML model transformation. In: van den Brand, M., Gasevic¢,
D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23—41. Springer, Heidelberg (2010)

. D. Méndez, A. Etien, A. Muller, and R. Casallas. Transformation migration after metamodel

evolution. In International Workshop on Models and Evolution - MODELS 2010.

Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., Polack, F.: Comparing model-
metamodel and transformation-metamodel coevolution. In: Petriu, D.C., Rouquette, N.,
Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, Springer, Heidelberg (2010)
Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with epsilon flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184-198. Springer,
Heidelberg (2010)

Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In: Proceedings
of PASTE 2001, pp. 46-53. ACM, New York (2001)

Vignaga, A.: Metrics for measuring atl model transformations. Technical report (2009)
Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 600-624. Springer, Heidelberg (2007)

Wagelaar, D., Iovino, L., Di Ruscio, D., Pierantonio, A.: Translational semantics of a
co-evolution specific language with the EMF transformation virtual machine. In: Hu, Z.,
de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 192-207. Springer, Heidelberg (2012)

Metamodel-Specific Coupled Evolution Based
on Dynamically Typed Graph Transformations

Christian Krause!*, Johannes Dyck?, and Holger Giese?

1 SAP Innovation Center Potsdam
me@ckrause.org
2 Hasso Plattner Institute, University of Potsdam

Abstract. A key challenge in model-driven software engineering is the
evolution of metamodels and the required effort in migrating their in-
stance models. Even though there already exist both theoretical work
and tool support for coupled evolution of metamodels and models, the
existing approaches lack expressive power for defining metamodel-specific
coupled changes or are too generic to permit assurance of metamodel con-
formance. In this paper, we devise a mechanism to define and execute
coupled evolutions of metamodels and instance models based on graph
transformations. We target the Eclipse Modeling Framework (EMF) and
achieve the coupling of changes by bridging the conceptual gap between
the metamodel and the instance model levels using a wrapper for EMF
instance models. Coupled evolutions are then defined by means of dy-
namically typed graph transformation rules. This specification approach
is expressive as it allows the developer to model customized migration
rules, which are pivotal for metamodel-specific changes. We present static
and run-time consistency checks and show how to decouple the execution
of migrations. Our implementation consists of a wrapper package that is
used in conjunction with the model transformation tool Henshin.

1 Introduction

Metamodels constitute central artifacts in model-driven engineering as they are
used to define the abstract syntax of domain-specific modeling languages. At the
same time, metamodels are subject to constant change because the requirements
and the concepts of the specified languages evolve over time. Metamodel changes,
however, can break the conformance of instance models. Therefore it is necessary
to migrate the instance models to accommodate for the metamodel changes.

The main aspect which makes metamodel evolution and instance model mi-
gration challenging is the fact that changes on the two modeling levels have
circular dependencies. To remove a concept realized by a class in a metamodel,
it is first necessary to remove or migrate all instances of this class. Conversely,
using a new concept on the instance level requires that the corresponding class
has been added to the metamodel first. Thus, it is crucial to realize metamodel
evolutions and model migrations in a coordinated way, which is referred to as
coupled evolution [1] or co-evolution in the literature.

* Corresponding author.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 767 2013.
© Springer-Verlag Berlin Heidelberg 2013

Metamodel-Specific Coupled Evolution Based on Graph Transformations 77

An empirical study on the histories of two industrial metamodels [2] indi-
cates that different types of metamodel changes are relevant in practice. In this
study, half of the metamodel changes required the migration of instance models.
This class of coupled changes further divides into metamodel-independent and
metamodel-specific changes. Metamodel-independent changes can be realized by
generic evolution strategies, e.g., refactorings [3], and form the majority of these
changes. However, the study also revealed that for the two industrial case studies
22% of the coupled changes were metamodel-specific, i.e., they required domain
knowledge about the target language and manually specified migration strate-
gies. A typical example of a metamodel-specific change is the refinement of a
metamodel concept based on the properties of its instances. For example, a lan-
guage for Petri nets that includes a class for places with a capacity attribute
could be refined into one class for places with finite capacities and another class
for places with unbounded capacities. The required metamodel changes alone
could be easily achieved using standard refactorings. However, the migration
of the instance models is non-trivial as place instances need to be mapped to
different concepts depending on the specific values of their capacity attributes.

In the recent years, several approaches and tools have been developed for cou-
pled metamodel and model evolutions (see Section [M). All of them are suitable
for realizing metamodel-independent changes, such as the renaming of a class.
However, metamodel-specific changes as described above are either not well sup-
ported or the approaches are too generic to statically ensure metamodel confor-
mance. A uniform approach for modeling the coupled evolution at the metamodel
and the instance model levels and ensuring its consistency is still missing.

In this paper, we present an approach for specifying coupled evolutions of
metamodels and instance models based on graph transformations. The key idea
is to bridge the conceptual gap between the metamodel and the instance model
levels using instance model wrappers. These wrappers allow us to access and
change the type information of objects using ordinary structural class features.
Wrappers also provide generic access to an object’s links and attribute values. We
then specify coupled evolutions using dynamically typed graph transformation
rules. In this approach, only the changes to the metamodels and instance models
are specified. Moreover, metamodel-specific changes are directly supported. In
particular, non-trivial migration strategies can be directly specified along the
metamodel changes. To ensure consistency, specifically, type conformance of the
migrated models, we provide static and run-time checks. The former can be used
to guarantee conformance at design-time. Moreover, we show how the execution
of instance model migrations can be decoupled from the metamodel evolution.

Our prototypical tool support targets metamodels defined in the Eclipse Mod-
eling Framework [4] (EMF) and is based on the model transformation language
and tool Henshin [5]. Our implementation is entirely encapsulated in the wrapper
model. Thus, no intrusive changes to EMF or Henshin are required.

The rest of this paper is organized as follows. In Section [2] we recall prelimi-
naries on EMF and Henshin. In Section Bl we introduce our wrapper model. In
Section] we present our approach to coupled evolution. In Section Bl we define

78 Christian Krause, Johannes Dyck, Holger Giese

consistency checks. In Section [6] we show how to decouple the execution of mi-
grations. Section [l contains related work, Section 8 conclusions and future work.

2 Preliminaries

Our approach targets the Eclipse Modeling Framework [4] (EMF) and is based
on graph transformations and the model transformation tool Henshin [5]. EMF
is widely used in the industry for defining domain-specific languages (DSLs) as
well as the basis for higher-level modeling languages such as UML.

The concepts for defining metamodels in EMF are defined in the FEcore
metametamodel. Fig. [l shows the for us relevant parts of Ecore and a user-
defined metamodel for Petri nets. Ecore’s metaclasses EClass, EReference, and
EAttribute are used to define classes, associations, and attributes, respectively.
Ecore also defines the metaclass EObject, which serves as the base class for all in-
stance objects. EMF supports reflection, i.e., it is possible to find out the type of
an EObject. However, the type information cannot be accessed through a struc-
tural feature, i.e., there is no reference from EObject to EClass. Instead, types
must be obtained using reflection methods defined in EObject (not shown here).

B EObject H Eclassifier E] EPackage
0..*
4 4 eClassifiers [0-* eSubpackages E Net

= name : EString

0..* H Eclass E] EDataType H EstructuralFeaturd
<«
0.% 0.*
] 1 eAttributeType T 0.1 4 0..*% places transitions
eSuperTypes H Eeattribute H EReference H Place src 0.* [Transition
© name : EString ©= name : EString
eReferenceType | © capacity : EInt trg 0.*

eStructuralFeatures
Fig. 1. Ecore metametamodel (left) and a user-defined metamodel for Petri nets (right)

Graphs and graph transformations are means for both formal and intuitive
descriptions of structure and structural changes (see, e.g., [7]). A graph consists
of sets of nodes and edges representing entities and relations between them. The
instance-of relationship between a model and its metamodel can be captured
using (instance) graphs and type graphs. Similarly to classes in a metamodel,
nodes in a type graph can define a number of primitive typed attributes.

Graph transformation rules are used to
specify changes to graphs, i.e., removing
or adding nodes or edges or changing at- fe

= Rule deleteTransition(x)

tribute values. Formally, a rule is given by | places
two graphs: A left-hand side (LHS) describ- i “de('(:‘:’;gfa"sms

ing the precondition and a right-hand side e
(RHS) specifying the changes. The appli- «delete™s cdeletes

cation of a transformation rule to a graph
amounts to finding a match of the LHS in Fig. 2. Rule deleteTransition(x)

Metamodel-Specific Coupled Evolution Based on Graph Transformations 79

this graph and replacing it by the RHS. In this paper, we depict a rule using
a single graph with node and edge stereotypes for the action to be performed.
Fig. [2 shows an example rule that deletes a transition in a Petri net model
including all its source and target edges.

We use the EMF model transformation tool Henshin [5] which is based on
graph transformations. Transformations are executed in Henshin in-place, i.e.,
directly to a given model. A feature of Henshin essential to our approach of
coupled evolution is rule amalgamation [5J§]. Formally, a kernel-rule can be em-
bedded in one or more multi-rules. While a kernel-rule is matched and applied
only once, a multi-rule is executed for all possible matches. In Henshin, multi-
rules can be used again as kernel-rules and thus nested. In this paper, we employ
amalgamation to specify the transformation of all relevant instance entities dur-
ing model migration whereas we execute the evolution rule only once. Elements
in multi-rules are denoted using *-stereotypes, e.g., the place nodes in Fig. Bl

3 Wrapping EMF Instance Models

Our approach for coupled metamodel and model evolution is based on the idea of
making the type-instance relations for objects, attributes and links between ob-
jects available as ordinary structural features of objects. Moreover, the attribute
values of an object and its links to other objects should be accessible in a generic
way, i.e., without the need of knowing the type of the object resp. feature.

One approach to achieve such a functionality is to enrich Ecore itself by such
reflective structural features. For instance, the EObject metaclass could be ex-
tended with a structural feature for accessing its type, i.e., with a reference to
EClass. The other required features could be realized in a similar way. This ap-
proach, however, would be an intrusive change to Ecore and would require the
use of a customized version of EMF.

An alternative approach which we advocate in this paper is based on the idea
of wrapping the objects in EMF instance models, i.e., instances of EObject, by
appropriate wrapper objects that provide the necessary features. The wrapper
objects and their features are defined again by a metamodel.

3.1 The Wrap Metamodel

The wrap metamodel is shown in Fig.[Bl An instance of the class WObject repre-
sents a wrapper for an arbitrary EObject. The wrapped EObject can be obtained
using the eObject reference and its type using the eClass reference. Thereby, we
bridge the conceptual gap between the instance and the metamodel level. Wrap-
per objects contain a set of members, which are instances of either WValue or
WLink. WLinks represent links to other (wrapped) objects and can be regarded
as instances of EReferences. Similarly, WValues represent specific values of an
attribute of the object and can be seen as instances of EAttributes. The type of
a WMember can be accessed via the eStructuralFeature reference. The data value
encapsulated in a WValue can be accessed through the eValue attribute.

80 Christian Krause, Johannes Dyck, Holger Giese

[EObject[@| 0..1 H wobject
(From ecore) ?

wMembers

Fig. 3. The wrap metamodel and its references to Ecore

0..1 H EStructuralFeature [2]
(From ecore)

eStructuralFeature

wTarget

= 0.1
eClass

H EcClass (@
(From ecore)

H wvalue
= eValue : EJavaObject

This simple wrap metamodel provides all features needed in our approach for
a coupled metamodel and model evolution. In particular, it allows us to match
an object together with its type, to dynamically create an instance of a type that
is unknown at design-time, and also to change the type of an object at run-time.
A similar functionality is available for attribute values and links to other objects.
In addition to these object level operations, the wrapper concept also allows us
to make changes to the type level, i.e., to the metamodels.

3.2 Usage

To illustrate the usage of wrapper models and the achieved higher expressiveness,
we use a simple graph transformation rule shown in Fig. @ and the equivalent
rule using wrappers in Fig. Bl The simple rule matches an object n of type Net
with a value x for the name attribute. The rule creates an object p of type Place
and a link of type places between n and p. Thus, it realizes the creation of a
place in a Petri net. The corresponding rule with wrappers contains in total
eight objects. The four objects in the upper row represent the metamodel level
and contain class and feature definitions. Specifically, two classes with the names
‘Net’ and ‘Place’ are matched together with an attribute feature called ‘name’ and
a reference ‘places’. The lower row consists of wrapper objects which represent
instances of the metamodel elements. The type-instance relations manifest here
as edges from the wrapper objects to the metamodel elements.

The simple and the wrapper-based rules are in fact behaviorally equivalent.
Furthermore, wrapper-based rules can be automatically generated from simple
rules. However, there are important differences in the usage and the expressive-
ness. In the classical approach, the metamodel is fixed and must be available

eStructuralFeatures eStructuralFeatures eType

:EAttribute :EClass :EReference :EClass
= name="name" = name="Net" = name="places" = name="Place"

«create» «create»
eStructuralFeature eClass eStructuralFeature eClass

«create».
n:Net p:Place ‘WValue n:WObject :WLink
o name=x| «create» [| = eValue=x «create» /k:‘ «create»
places wMembers wMembers wTarget

Fig. 4. A statically Fig. 5. Corresponding rule with wrappers (dynamically typed)
typed rule

Metamodel-Specific Coupled Evolution Based on Graph Transformations 81

at design-time. In contrast, the rule using wrappers matches the required meta-
model elements at run-time together with their instances. The only design-time
dependencies of the wrapper-based rule are to Ecore and the (generic) wrap
metamodel. Due to these differences in the typing, we say that the simple rule
is statically typed whereas the wrapper-rule is dynamically typed. Since there are
no design-time dependencies to the targeted metamodel, the wrapper-based rule
could even transform the metamodel and the instance models at the same time.
For example, the rule could create a new class and directly create instances of it.
Thus, the wrapper-based approach has a higher expressive power which is the
basis for realizing coupled evolutions of metamodels and instance models.
Although the two rules in Fig. [and [l are behaviorally equivalent, we can-
not naively apply the wrapper-based rule in the same way as the simple rule.
To ensure that the wrapper-based approach works in the intended way, the us-
age scenario with wrappers should consist of the following three steps. First,
all instance models are wrapped using a provided implementation of the wrap
metamodel. Specifically, for every EObject, a corresponding WObject is created.
For every attribute value of an EObject, a corresponding WValue is created in
its wrapper. Similarly, for every link to an EObject, a corresponding WLink is
created. This functionality is provided as part of the implementation of the
wrap package and can be reused. Second, the wrapper models and the meta-
models are transformed using either an in-place model transformation language
or a general-purpose programming language. The provided implementation of
the wrap metamodel transparently performs all locally consistent changes made
to the wrappers also at the wrapped EObjects (see Section B3). Changes are
allowed to be made only to the wrappers and the metamodels, but not to the
wrapped EObjects. Third, the changed metamodels are directly available and
can be persisted. To obtain the migrated instance models, the changed EObjects
are extracted from the wrapper objects using the eObject reference in WODbject.
Thus, we first wrap all instance models, then transform the wrappers (and the
metamodels), and finally extract the changed metamodels and the migrated in-
stances. Hence, the actual coupled metamodel and model evolution is performed
in step 2. An important aspect of this approach is that the provided implemen-
tation of the wrap metamodel automatically reflects all consistent changes made
to the wrappers to the wrapped EObjects, thereby ensuring compliance of the
models. We discuss compliance and consistency in detail in the following section.

3.3 Compliance and Consistency

A wrapper model is compliant with its underlying instance model if they are
structurally equivalent. This notion of equivalence can be formalized by requir-
ing that the map that associates WObjects with their wrapped EObjects forms a
graph isomorphism for typed, attributed graphs which makes appropriate type
conversions and translates WLink objects to edges. We omit the formal definition
here. Note that step 1 in the previous section produces by construction a com-
pliant wrapper model. Our goal is to ensure that after step 2, the wrapper model
is still compliant, meaning that the transformation performed on the wrapper

82 Christian Krause, Johannes Dyck, Holger Giese

model is also correctly performed on the instance model. However, compliance
can be ensured only if the transformation yields a consistent wrapper model.

Definition 1 (Consistency). A WObject is called locally consistent if its
eClass is set and instantiable and all its members are locally consistent. A WLink
is locally consistent if its eStructuralFeature is a valid EReference of the wrapper’s
EClass and the wTarget is set and its eObject is a valid value for this reference.
A WValue is locally consistent if its eStructuralFeature is a valid EAttribute of
the wrapper’s EClass and the eValue is set and a valid value for this attribute. A
wrapper model is consistent if all its wrapper objects are locally consistent and
all involved metamodels are consistent.

Consistency of a metamodel is defined and can be checked using standard con-
straints for Ecore, e.g., the type of an EReference must be always set.

All locally consistent changes made to a wrapper model during the transfor-
mation are performed also on the underlying instance model. The execution of
inconsistent changes is deferred until the local inconsistencies are resolved in the
wrapper. The default implementation of WObject performs the following actions
when changes are made to its features:

— Setting the class. If the new EClass is set and instantiable, the eObject
reference is updated with a fresh instance of the new EClass. For all locally
consistent WValues and WLinks, the corresponding attribute and reference
values are also set in the new EObject. If the eClass reference has been unset
or is not instantiable, the eObject reference is unset. All incoming WLinks
are notified that their targets changed.

— Adding or removing a member. If the eObject reference is set and the
member is locally consistent, then the feature change is also performed on
the EObject.

Similarly, changes to a WMember have the following effects:

— Setting the structural feature. If the member was locally consistent
before the change, the value is removed from the old feature of the EObject.
If the member is locally consistent after the change, the value is added to
the new feature of the EObject.

— Setting the target or value. If the member is a WLink and was locally
consistent before the change, the old target is removed from the EObject’s
reference. If the link is locally consistent after the change, the new target is
added to the EObject’s reference. Analogously if the member is a WValue.

In addition to these automatic changes, the wrappers also monitor relevant
metamodel elements and perform similar actions. This behavior ensures that
all locally consistent changes are correctly propagated to the wrapped objects.
Local inconsistencies in the wrappers, e.g., members with incompatible features,
are explicitly allowed during the migration. However, if the migration follows
steps 1-3 in the previous section, and all wrapper models are consistent after
the transformation in step 2, then they are also compliant. Thus, it suffices to
ensure that the transformation result is consistent. We discuss means to ensure
consistency later in Section

Metamodel-Specific Coupled Evolution Based on Graph Transformations 83

4 Coupled Metamodel and Model Evolution

The key problem for realizing coupled metamodel evolution and instance model
migration is that the transformations have to be defined both on the type level
and the object level. Moreover, as described in Section [there are dependencies
between these two modeling levels. Our solution to this problem is to use wrap-
pers, which provide us with a technical means to connect the metamodel and
the instance model levels. Specifically, wrappers allow us to use standard model
transformation languages with in-place semantics to realize coupled evolution.

4.1 Evolution Scenario

We consider an example of a metamodel evolution for a Petri net metamodel,
shown in Fig[6 The evolution consists of two main parts.

In the first part, the src reference from Transition to Place is removed in favor
of a new class, called ArcPT, which is used to represent an arc from a place to a
transition. The new class ArcPT contains an integer attribute weight which can
be used to specify the weight of an arc. Similarly, we could also introduce a class
ArcTP for modeling arcs from transitions to places. We omit this for simplicity
here. This part of the evolution is essentially a replacement of a reference with a
class and introducing a new attribute with a default value for all instance models.
Therefore, this part of the evolution can be regarded as metamodel-independent.

The second part of the evolution concerns the class Place, which is made ab-
stract and refined into the two new classes UnboundedPlace and BoundedPlace.
The capacity attribute of Place is moved to BoundedPlace. The migration of the
instance models should translate instances of Place with a positive capacity to
BoundedPlace, and instances with a negative capacity value to instances of Un-
boundedPlace. This change is metamodel-specific because the migration of Place
objects non-trivially depends on the specific values of the capacity attribute.

4.2 Solution

We realize this coupled metamodel and model evolution using wrapper-based
graph transformation rules in Henshin [5].

E Net

El Net = pame : EString
= name : EString

0.% 0% 0.* . 0.x
.. - places arcPTs | 0. transitions
places transitions

H Place src 0.* H Transition H Place src 0.1 H ArcPT 0.1trg | [Transition
= name : EString = name : EString — = name : EString = weight : EInt = name : EString

ity : EInt
= capacity : EIn trg 0 T trg 0.% ‘

[E unboundedPlace| [H BoundedPlace
= capacity : EInt

Fig. 6. Example of a Petri net metamodel evolution

84 Christian Krause, Johannes Dyck, Holger Giese

«createn «preserve»
:EPackage
eClassifiers «preserven — «preserven
eClassifiers eClassifiers
«create»
eType «delete» «preserve» «create»
:EReference :EClass eType
«delete» = name="src"| «delete» | o name="Transition" |
eType eStructuralFeatures
: «preserve» «delete*» «preserve*»
eClass eStructuralFeature eClass
: «delete*s «delete*» «preserve*»
H «preserve*» wrTarget «delete*»| wMembers «preserve*» wrTarget «preserve*»
N lace:WODbject. :WLink ransition:WObject| “WLink
- resqrven
. 9 «create*» «create*» «presqrve™s :
- wTarget wTarget wMpmbers
LA :
- «create*» «create*» «create*»
: 2 [«create*» WwMembers «create*» wMembers «create*». wMembers [«preserves
H src:WLink ar Object] trg:WLink! net:WObject
B —— 1
H «create*»
H wTarget « 5y
H «create*» <pveserlve »
B * eClass
: eStructuralFeature «creeact; " «create™s «create*»
H eStructuralFeature eStructuralFeature
«create»
:EClass
= name="ArcPT"
«create» creater
:EReference eStructuralFeature; (creater perCatch
creste eStructuralFeatures |:EReference «create»
« » vera” X [<oreserv
eStruéturalFeatures = name="trg :EReference «preserve»
= i =true [<—{:EClass
«create» [«create» © name="arcPTs" = name="Net"
«preserve» eType |:EAttribute «createn = upperBound=-1 «createn
:EDataT) ©= name="weight" eType e
= name="EInt © defaultvalueLiteral="1" estructuralFeatures
Fig. 7. Coupled evolution rule createArcPT
«preserve»
EPackage
«create» «create»
eClassifiers preserven eClassifiers
eClassifiers
«create» «preserve» «create»
Ectass «createn EClass «create» i
="Place” 0
= nam eSuperTypes = L eSuperTypes |'= name="UnboundedPlace
Permyp o abstract=False->true PerTyp:
«create» «delete» | eStructuralFeatures
eStructuralFeatures e
:EAttribute
"= name="capacity"
reats «preserve*/bounded» «delete*/unbounded» delete qereate :
eClass eClass eStructuralFeature eStructuralFeature eClass eClass :
g «preserve*/bounded | adelet
o= * 1 «preserve*/bounded»| delet eserver ed |
= «preserve*/bounded» wMembers preserve*/| «preserve*/unbounded»
< -WObject. \Wvalue :wWvalue | e:WObject
0 = eValue=x ‘ ‘ = eValue=y |]
o
Attribute condition: x>=0 Attribute condition: y<0

Fig. 8. Coupled evolution rule splitPlaceClass

Fig. [shows the rule createArcPT for the first part of the evolution and the
migration. The metamodel evolution parts can be found in the top and the
bottom of the rule, whereas the model migration is realized by the middle part.
The metamodel evolution consists of the deletion of the src reference of the
Transition-class, the creation of the new class ArcPT together with its structural

Metamodel-Specific Coupled Evolution Based on Graph Transformations 85

features, and the creation of a new containment reference for arcs in the Net-
class. The model migration part consists of replacing every wrapper object that
represents a src-link from a transition to a place by a fresh instance of the new
class ArcPT. Note that this migration is performed on all such links because of the
star in the action stereotypes, which is Henshin’s syntax for multi-rules [58]. This
also means that the coupled evolution is realized as a transaction that performs
the metamodel evolution and the migration of all instances in an atomic step

Fig. [shows the rule splitPlaceClass which realizes the second part of the
coupled evolution. The upper part specifies the metamodel evolution where Place
is made abstract, the two new classes BoundedPlace and UnboundedPlace are
created, and the capacity attribute is moved to the new class BoundedPlace. The
model migration is realized using two star-rules, respectively call bounded and
unbounded. The star-rule bounded matches all places with a positive capacity
(checked using the attribute condition 2 > 0) and changes their type from Place
to BoundedPlace. Analogously, the star-rule unbounded matches all places with
a negative capacity and changes their type from Place to UnboundedPlace. Thus,
the rule expresses both the metamodel evolution as well as the non-trivial and
metamodel-specific migration of instance models in a concise way. To reduce the
amount of manual specification, it may be possible to generate default coupled
evolution rules from metamodel evolution rules and allow for customization of
the rules’ migration parts to account for non-trivial conditions as seen above.

At this point we want to highlight that the in Section [l mentioned interde-
pendencies between the metamodel changes and the instance model changes are
completely hidden for the designer, i.e., there is no need to define the specific
order of the low-level structural operations.

5 Ensuring Consistency

As discussed in Section B3] the correctness of a coupled evolution mainly relies
on the compliance of the transformation result, which in turn can be ensured
by showing that the transformation produces a consistent wrapper model. Thus,
it is important to support the developer to ensure consistency. To this end, we
consider static and run-time consistency checks.

5.1 Static Consistency

Static consistency checks are performed at design-time by checking structural
constraints in the transformation rules. We discuss relevant consistency condi-
tions for rules which could be automatically checked or enforced by rule editors.

To ensure consistency of wrapper objects, it is important that their properties
are immediately set on creation, and unset on deletion. Therefore, the following
objects and edges should be created or deleted together in a rule: WObjects
and their eClass edge; WValues and their eStructuralFeature edge; WLinks and

! Comparable with the notion of coupled transactions in [J.

86 Christian Krause, Johannes Dyck, Holger Giese

their eStructuralFeature and wTarget edge. The value of a new WValue should
be set on construction. In most cases, new elements should be added to an
existing container object on creation, except for new root elements, such as a
new package in a metamodel. When deleting a metamodel-element, all instances
of this element should be also deleted. In Henshin, this can be realized, e.g., using
starred action stereotypes. An example of such a scenario is the EReference “src”
which is deleted together with all its instance links in the rule createArcPT. In a
similar way, classes should be deleted only together with all their instances, and
attributes together with all their values. If a rule does not delete the instances
of a deleted type, this is a strong indicator for an incorrect migration.

Another important aspect that can be statically checked is the type confor-
mance of links and attribute values. Specifically, the target of a link should be
typed over a class that is a valid type of the links’ reference. This can be en-
sured at design-time by using one of the rule patterns shown in Fig. [0l Similarly,
type conformance of attribute values can be ensured. Together with the afore-
mentioned constraints, these patterns allow us to automatically detect possible
problems occurring during the migrations already at design-time. As one of the
most crucial correctness criteria, type conformance can be ensured statically.

:EClass :EReference :EClass :EReference
eType eAllSuperTypes eType
:EClass
eClass eStructuralFeature eStructuralFeature
:WObject ‘WLink eClass |.wobject “WLink
wTarget wTarget

Fig. 9. Two rule patterns that statically ensure type conformance of links

5.2 Run-Time Consistency

In addition to the static analysis methods, we also employ consistency checks at
run-time. The simplest way is to directly check the consistency constraints from
Def. Ml on the transformation result. If this check succeeds, the transformation
result is consistent and thus also compliant. Furthermore, we can also intercept
possible inconsistencies already during a rule application. Specifically, by em-
ploying double-pushout graph transformations [7], a rule is applicable only if no
dangling edges are produced. This ensures that a metamodel-element is deleted
only if all its instances are also deleted.

Together with the static consistency checks, the automatic run-time checks
are helpful tools to support the developer to safely execute the coupled evolution.

6 Decoupled Execution of Model Migrations

In practice, applying the metamodel evolution and the migrations of all instance
models at the same time as suggested in the previous sections is often not a

Metamodel-Specific Coupled Evolution Based on Graph Transformations 87

feasible solution. The typical scenario consists of two independently executed
steps. First, the developer of a modeling language evolves the metamodel. Then
the user is confronted with a new version of the metamodel and needs to migrate
her instance models. Thus, it is important to be able to decouple the execution
of the model migrations from the metamodel evolutions (cf. also [9]).

To support independently executed migrations, we propose to separate the
coupled evolution rules into sets of (1) metamodel evolution rules, and (2) mi-
gration rules. These rules can be automatically generated at design-time from
coupled evolution rules to execute the metamodel evolution and the model
migrations separately. We describe these two steps in more detail now.

6.1 Metamodel Evolution

Metamodel evolution rules are generated from coupled evolution rules simply by
deleting all instance level elements, i.e., all nodes and links that refer to types of
the wrap metamodel. For the coupled evolution rules in Fig. [[and [this means
that the migration regions are removed.

The derived metamodel evolution rules can be directly applied to adapt the
metamodels. In order to facilitate the model migrations, we assume that the
new versions of the metamodels get a different namespace URI and are saved
separately from the old versions. This is important to distinguish old model
instance from migrated ones and to perform the migration without changing the
metamodels. The user simply obtains the new version of the metamodel together
with generated migration rules to migrate her instance models (see below).

6.2 Model Migration

The migration rules are also generated from the coupled evolution rules. For sim-
plicity, we assume that only a single metamodel package was subject to changes.
Let oldURI denote the namespace URI of the old version of this package and
newURI be the namespace URI of the new version. For a given coupled evolution
rule, we obtain the corresponding migration rule as follows:

1. Add two package declarations to the rule, one with oldURI and the other
with newURI as its namespace URI.

2. Add a containment edge from the old package to all classifiers marked for
deletion in the rule. Add a containment edge from the new package to all
classifiers marked for creation. Change the action for all metamodel ele-
ments to preserve and remove all attribute conditions other than the name-
constraints.

3. Duplicate all preserved classifiers in the rule. Add a containment edge from
the old package to the original classifier and a containment edge from the
new package to the duplicate.

4. For all wrapper nodes whose type is preserved, replace the preserved type
edge by these two edges: one delete edge to the old type and one create edge
to the corresponding new type (the duplicate created in B]). Note that the
types of all other nodes are already handled by the original rule.

88 Christian Krause, Johannes Dyck, Holger Giese

= nsURI=oldURI

= nsURI=newURI

«preserve»
«preserven . «preserve»
eClassifiers
eStructuralFeatures eStructuralFeatures

preserve» preserve «preserve: preserven
:EAttribute :EClass :EAttribute :EClass

"o name="capacity” |"© name="Place" & name="capacity” | = name="BoundedPlace"

«preserven
«preserve» P

eClassifiers

“preserve»

eClassifiers eClassifiers

preserver preserver
:EClass :EClass
| & name="Place”| | = name="UnboundedPlace"

«create*/bounded»

«delete*/bounded» eClass

eStructuralFeature

«create*/unbounded»
eClass

«delete*/unbounded»
eStructuralFeature

«create*/bounded»

«delete*/bounded»
eStructuralFeature

eClass

«delete*/unbounded»

preserve*/bounded»]| «preserve*/bounded» [«preserve */unbounded . «delete*/unbounded
Wvalue) «delete*/unbounded» [yo 1
| o evalue=x [[] | o evalue=y
Attribute condition: x>=0 Attribute condition: y<0

Fig. 10. Generated migration rule migrate_splitPlaceClass

:EPackage
= nsURI=newURI

«preserve*/classes» «preserve*/classes»
eClassifiers eClassifiers

«delete*/classes/objects» «create*/classes/objects»

eClass

eClass

o name=x
«preserve*/classes/features» «preserve*/classes/features»
eStructuralFeatures eStructuralFeatures

«delete*/classes/features/members» «create*/classes/features/members»
eStructuralFeature eStructuralFeature

preserve*/classes/features/members» «preserve*/classes/Features» |
:WMember | EStructuralFeature

o name=y

cl
Feature

:EStructurall

Fig. 11. Generic rule for migrating objects with unchanged types

Fig. [0 shows the migration rule generated from rule splitPlaceClass in Fig.
The upper left part contains the relevant elements of the old metamodel, the
upper right part the relevant elements of the new metamodel, and the lower part
the migration of the instance model elements. Note that the old and the new
metamodels are distinguished by their namespace URIs and that no metamodel
changes are performed by this rule. The effect of applying this rule is that all
instance model objects targeted by this rule are properly migrated to the new
metamodel. However, elements that are not handled by this rule, e.g. Transition
objects, need to be migrated to the new metamodel version, too. Fortunately, we
can simply change the types of these objects from the old to the corresponding
new metamodel element. This can be achieved using the generic migration rule
shown in Fig. [[Tl Thus, it suffices to first apply the generated migration rule in
Fig. IO and then the generic migration rule in Fig. [ITl for the remaining objects.
Thereby, the executions of model migrations can be completely decoupled from
the metamodel evolution and even from migrations of other model instances.

Metamodel-Specific Coupled Evolution Based on Graph Transformations 89

7 Related Work

Mantz et al. present a graph transformation based approach for coupled EMF
evolution which guarantees type conformance for the model migration [10]. How-
ever, migration rules are automatically generated from metamodel evolution
rules and, thus, cannot be manually specified as in our approach. Similarly,
Taentzer et al. present a formalization of coupled evolutions based on category
theory [IT] which also assumes that migration rules are automatically generated.
The COPE [I] tool (now Edapt [I2]) realizes an operator-based approach for
coupled evolution. Customized model migration as supported in our approach
cannot be specified using operators but must be implemented in COPE using a
scripting language. Moreover, COPE requires the integration of the co-evolution
operators with the metamodel editing tools. The limitations of a number of
approaches for automating model migrations are formalized and discussed in [13].
Epsilon Flock [9] is a domain-specific language for model migrations. Only the
migration rules are specified in Flock, but not the metamodel evolution. Flock
supports two types of rules: delete rules and migrate rules. Migrate rules can
be applied only to a single object in the source metamodel, but not to larger
structures, because Flock performs an implicit copying of all unchanged objects.
EMFMigrate [14] is a domain-specific language for defining coupled evolu-
tions where the migration targets arbitrary dependent artifacts. Migration rules
are specified separately from metamodel changes, can be assembled to reusable
libraries and refined for customizations. Different to our approach, it is not pos-
sible to check the correctness of the migration rules at design-time, i.e., that the
types of the migrated instance models are conform with the changed metamodel.
HoBler et al. present a graphical language for describing coupled evolutions [15]
with a focus on a number of typical patterns. The syntax of the transformation
language allows customizable rules but the type conformance of the migration
results cannot be guaranteed. Sprinkle et al. describe a visual language for meta-
model evolution [I6]. The approach requires implicit copying of unchanged meta-
model elements and makes no conformance guarantees.

8 Conclusions and Future Work

In this paper, we presented a new approach for specifying coupled metamodel
evolutions and instance model migrations based on graph transformations. Our
key idea was to enable a combined modeling approach for metamodels and in-
stance models by introducing wrappers for EMF, thus alleviating the problem
of circular dependencies between metamodel evolution and migrations. Our ap-
proach is both expressive and enables the assurance of consistency constraints.

For future work, we plan to define a more high-level syntax for coupled evolu-
tion rules that automatically ensures consistency by construction. In addition, we
plan to support the generation of default coupled evolution rules from metamodel
evolution rules, which then can be customized in order to refine the migration
logic. In another line of research, we plan to employ critical pair analysis [I7] to
ensure uniqueness of migration results.

90 Christian Krause, Johannes Dyck, Holger Giese
References
1. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled

10.

11.

12.
13.

14.

evolution of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 52-76. Springer, Heidelberg (2009), doi:10.1007/978-3-642-
03013-0_4

Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: Czarnecki, K., Ober, 1., Bruel, J.-M.,
Uhl, A., Vélter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645-659. Springer,
Heidelberg (2008), doi:10.1007/978-3-540-87875-9_ 45

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2009)

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 121-135. Springer, Heidelberg (2010), doi:10.1007/978-3-642-16145-2_9
Biermann, E., Ehrig, K., Kohler, C., Kuhns, G., Taentzer, G., Weiss, E.:
Graphical definition of in-place transformations in the Eclipse Modeling Frame-
work. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425-439. Springer, Heidelberg (2006), doi:10.1007/11880240_30
Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph
transformation. foundations, vol. I. World Scientific Publishing Co., Inc. (1997)
Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel independence
of amalgamated graph transformations applied to model transformation. In:
Engels, G., Lewerentz, C., Schafer, W., Schiirr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 121-140. Springer, Heidelberg (2010),
doi:10.1007/978-3-642-17322-6_ 7

Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 184-198. Springer, Heidelberg (2010), doi:10.1007/978-3-642-13688-7_13
Mantz, F., Jurack, S., Taentzer, G.: Graph transformation concepts for meta-
model evolution guaranteeing permanent type conformance throughout model mi-
gration. In: Schiirr, A., Varrd, D., Varr6, G. (eds.) AGTIVE 2011. LNCS, vol. 7233,
pp. 3-18. Springer, Heidelberg (2012), doi:10.1007/978-3-642-34176-2_3
Taentzer, G., Mantz, F., Lamo, Y.: Co-transformation of graphs and type
graphs with application to model co-evolution. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 326-340. Springer, Heidelberg (2012), doi:10.1007/978-3-642-33654-6_ 22
Edapt: Project homepage: http://www.eclipse.org/edapt

Herrmannsdoerfer, M., Ratiu, D.: Limitations of automating model migration in
response to metamodel adaptation. In: Ghosh, S. (ed.) MODELS 2009. LNCS,
vol. 6002, pp. 205-219. Springer, Heidelberg (2010), doi:10.1007/978-3-642-12261-
320

Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for manag-
ing co-evolution in MDE? In: IWMCP 2011, pp. 30-38. ACM (2011),
doi:10.1145/2000410.2000416

http://www.eclipse.org/edapt

15.

16.

17.

Metamodel-Specific Coupled Evolution Based on Graph Transformations 91

HoBler, J., Soden, M., Eichler, H.: Coevolution of models, metamodels and
transformations. In: Models and Human Reasoning, pp. 129-154. Wissenschaft
und Technik Verlag (2005)

Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model
evolution. Journal of Visual Languages & Computing 15(3-4), 291-307 (2004),
doi:10.1016/j.jv1c.2004.01.006

Heckel, R., Kiister, J.M., Taentzer, G.: Confluence of typed attributed graph
transformation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 161-176. Springer, Heidelberg (2002),
doi:10.1007/3-540-45832-8 14

Robust Real-Time Synchronization
between Textual and Graphical Editors

Oskar van Rest!?, Guido Wachsmuth!3, Jim R.H. Steel?,
Jérn Guy Siif?, and Eelco Visser!

! Delft University of Technology, The Netherlands,
o.f.vanrest@student.tudelft.nl, g.h.wachsmuth@tudelft.nl,
visser@acm.org
2 The University of Queensland, Australia,
jsteel@uqg.edu.au, jgsuess@itee.uqg.edu.au
3 Oracle Labs, Redwood Shores, CA, USA

Abstract. In modern Integrated Development Environments (IDEs),
textual editors are interactive and can handle intermediate, incomplete,
or otherwise erroneous texts while still providing editor services such
as syntax highlighting, error marking, outline views, and hover help. In
this paper, we present an approach for the robust synchronization of
interactive textual and graphical editors. The approach recovers from
errors during parsing and text-to-model synchronization, preserves tex-
tual and graphical layout in the presence of erroneous texts and models,
and provides synchronized editor services such as selection sharing and
navigation between editors. It was implemented for synchronizing tex-
tual editors generated by the Spoofax language workbench and graphical
editors generated by the Graphical Modeling Framework.

1 Introduction

Modeling languages such as Behavior Trees [317] or QVT Relational [I8] provide
both textual and graphical concrete syntax. Textual and graphical editors for
such languages need to synchronize textual representations, graphical represen-
tations, and underlying models. During this synchronization, layout in textual
and graphical representations needs to be preserved.

Textual editors generated by textual modeling frameworks such as TEF [19]
and Xtext [8] synchronize only on user request. Embedded textual editors based
on TEF synchronize on open and close [20]. Xtext-based editors synchronize on
save [16]. This breaks the interactive nature of integrated development environ-
ments (IDEs), where editors provide a wide variety of language-specific services
such as syntax highlighting, error marking, code navigation, content completion
and outline views in real-time, while their content is edited. Furthermore, those
editors can only synchronize valid models and tend to break either textual or
graphical layout. TEF-based editors ignore textual layout by design. Xtext-based
editors typically preserve textual layout, but tend to break layout in graphical
editors once identifiers change.

Robust real-time synchronization of textual and graphical editors is mainly
prevented by current text-to-model transformation practice, where model ele-
ments are temporarily deleted and recreated during parsing, existing persisted

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 92 2013.
© Springer-Verlag Berlin Heidelberg 2013

Robust Real-Time Synchronization between Textual and Graphical Editors 93

text —@)—> AST (@ —>| model

? @Jf) é) graphical editor

| v

textual editor
AST |«—@)— model [«—(4)—» graph

Fig.1. Steps involved in synchronizing textual and graphical editors: @ Parsing,
@ tree-to-model transformation, @ model merge, @ edit policy, ® model-to-text trans-
formation, ® pretty-printing. Steps marked black support error recovery. Steps marked
white support layout preservation.

models are ignored and overwritten by new models, and error recovery is limited.
In this paper, we propose a new approach which is outlined in Fig.[Il To synchro-
nize textual changes with a model, the text is @ parsed into an abstract syntax
tree, which is @ transformed into a model. The resulting model is @ merged
with the model in a graphical editor, which invokes an edit policy to @ update
its graphical representation of the model. To synchronize graphical changes with
a text, the edit policy @ changes the underlying model, which is @ transformed
into a tree. The resulting tree is ® merged with the tree in the textual editor and
turned back into text. The approach was implemented for synchronizing textual
editors generated by the Spoofax language workbench [13] and graphical editors
generated by the Graphical Modeling Framework for the Eclipse IDE. We ap-
plied this approach to Behavior Trees. Fig. [2 shows the textual and graphical
editor, which both share the same Behavior Tree model.

We proceed as follows. We first describe a mapping from grammars to meta-
models and the corresponding transformations @@ between trees and models.
In Sect. Bl we discuss error recovery in steps @@@. In Sect. @l we elaborate on
the preservation of textual and graphical layout in steps @@®. In Sect. Bl we
present our case study on the development of synchronizing editors for Behavior
Trees. Finally, we discuss related work in Sect. [6l

2 Tree-to-Model and Model-to-Tree Transformations

The textual syntax definition is the starting point of our approach. In this sec-
tion, we present a mapping from textual syntax definitions to metamodels and a
corresponding bidirectional mapping between abstract syntax trees conforming
to the textual syntax definition and models conforming to the generated meta-
model. We start with abstract mappings which need to be adapted for concrete
formalisms. We then discuss such an adaptation using the examples of Spoofax’
syntax definition formalism SDF [9I26], its name binding language NaBL [I4],
and EMF’s metamodeling formalism Ecore [24].

2.1 Mapping Textual Syntax Definition to Metamodel

We start with minimalistic grammar and metamodeling formalisms. In these for-
malisms, grammars, metamodels and models are represented as terms. Fig.[Blshows

94 O. van Rest et al.

[gate.btc 2 [l gate.btc_diagram &2
#RT R1 R1 "
P o % P_ale_tte '3
[CRSHFRS
#C C1 AR [Atrives 1 k&
#5 1 Arrives = Objects @
n
2 Proceeds & Node
S #C C2 GATE / \ 4 Alternativ...
#L.1 0pen 4 ParallelBr.
5 et R1 GATE R1 GATE
#5 3 Open + | 7 open ? + | 7 Closed 7 4 EmptyNode
; & & Connecti...
#C C3 Driver . "
#E 1 Presses-Button Rl AR Al e Connection
#C C4 Button [Proceeds] - |77 PressesB...
#5 1 Pressed J,
#T R1 C1 1 #N { R1 Button
RL+C22; RL - C31; R1 C41 Iahesel]

Fig. 2. Behavior Tree model in a textual editor (left) and in a graphical editor (right).
Both editors edit the same model and synchronize changes with each other.

the corresponding signatures. These signatures are of the form ¢ : T — s with ¢
a constructor for sort s and T a declaration of the number and types of arguments
of c. The mapping is specified in Fig. @ by rewrite rules expressed in Spoofax’
transformation language Stratego [IIT1]. These rules are of the form r : t1 —
t2 where s with r the rule name, t1 and t2 first-order terms, and s a strat-
egy expression. A rule applies to a term if the term matches t1 and s succeeds,
resulting in the instantiation of t2.

Grammars, metamodels, and models. A grammar consists of a lexical syn-
tax definition, a context-free syntax definition, and a list of namespace spec-
ifications (Fig. Bl line 1). Both lexical and context-free syntax are defined by
productions, which are grouped by the sorts they define (1. 2). Productions and
sorts are named, and each production provides a list of symbols (1. 3). A symbol
is either a character class (typically used to define lexical sorts), a string, a ref-
erence to a lexical sort, or a reference to a context-free sort (Il. 4-7). References
are named (first ID), refer to a sort by name (second ID), and might come with
a postfix operator for options, lists, or optional lists. References to lexical sorts
can be involved in name bindings, either as definition or use sites of a name
in a namespace (Il. 8-11). This integration of name binding into productions is
similar to Xtext’s approach. But in contrast to Xtext, we decouple namespaces
from sorts and allow them to be hierarchically structured.

A metamodel consists of a list of types, which are either primitive data types,
enumerated data types, abstract classes, or concrete classes (Il. 16-21). Type
names are qualified, providing a simple packaging mechanism. Both kinds of
classes consist of a list of qualified parent class names, defining the inheritance
hierarchy, and a list of features. We distinguish attributes, references, and con-
tainments (1l. 22-24). Each feature is named, refers its type by qualified name,
and defines a lower and upper bound (1l. 25-26).

Robust Real-Time Synchronization between Textual and Graphical Editors 95

1 Grammar: List(Sort)*List (Sort)*List (NSpace) — Grammar
2 Sort : ID*List (Prod) — Sort

3 Prod : ID*List (Symbol) — Prod

4 Chars : List(Char) — Symbol
5 Literal: String — Symbol
6 LSort : ID*ID*Binding*Operator — Symbol
7 CfSort : ID*ID*Operator — Symbol
8 None Binding
9 DefSite: ID — Binding
10 UseSite: ID — Binding
11 NSpace : ID*List (ID) — NSpace
12 None : Operator

13 Option : Operator

14 List : Operator

15 OptList: Operator

16 MM : List (Type) — Metamodel

17 DType : QID — Type

18 Enum : QID*List (Literal) — Type

19 AClass : List(QID)*QID*List (Feature) — Type

20 CClass : List(QID)*QID*List (Feature) — Type

21 Literal: ID — Literal

22 Attr : ID*QID*Bounds — Feature

23 Ref : ID*QID*Bounds — Feature

24 Contain: ID#*QID*Bounds — Feature

25 QID : ID*ID — QID

26 Bounds : INT*UnlimitedINT — Bounds

27 M : Object — Model

28 Obj : Opt (URI)*QID*List(Slot) — Object

29 : Value — Slot

30 : Opt (Value) — Slot

31 : List(Value) — Slot

32 Data : String — Value

33 Link : URI — Value

34 Contain: Object — Value

Fig. 3. Signatures for grammars (top), metamodels (center), and models (bottom)

A model is represented as a single root object (1. 27). An object consists of
an optional URI, the qualified name of the class it instantiates, and a list of
slots (1. 28). A slot may hold a single value or a list of values, where a value
is either an instance of a data type represented as a string, a link to an object
represented as the URI of this object, or a contained object (11. 29-34). Slots do
not refer to features. Instead, we assume an immutable order of the features of
a class, which links slots of an object to the features of its class.

Lexical Syntax. We are not interested in the inner structure of lexical tokens
and represent them as basic data at the leaves of abstract syntax trees. We
can keep the same basic data in models. Thus, we map lexical sorts from a
grammar to data types in a metamodel (Fig. d 1. 7-14). Predefined data types
(enumerations and primitives) are provided by the metamodel formalism and the
condition 1ex2qgid ensures that user-defined data types are only generated when
no corresponding predefined data type exists. When a lexical sort defines
only a finite number of literals, an enumeration is generated (sort2enum).
Only when sort2enum fails, we try to generate a primitive with sort2dtype

96 O. van Rest et al.

1 |grammar2mm:

2 Grammar (lex#*, cf*x, ns*) — MM([tyl*, ty2*, ty3x*])

3 where

4 <filter (sort2enum <+ sort2dtype)> lexx = tylx ;

5 <mapconcat (sort2classes)> cfx* = ty2x ;

6 <map (ns2class)> nsx* = ty3x*

7 |sort2enum:

8 Sort (name, prod*) — Enum(<lex2gid> name, <map (prod2lit)> prods)
9

10 |prod2lit: Prod(_, [Literal(name)]) — Literal (name)

11

12 | sort2dtype: Sort (name, _) — DType (<lex2gid> name)

13

14 | lex2gid: name — QID("lex", name) where <not (predefined)> name

15 |sort2classes:

16 Sort (name, prod#*) — [AClass([], QID("cf", name), []) |classx*]

17 where

18 <map (prod2class (|name)))> prodx = class*

19

20 |prod2class(|parent):

21 Prod(name, sym*) — CClass ([parent|parentx*], Q("ast", name), featx)
22 where

23 <filter (symbol2parent)> symx = parentx ;

24 <filter (symbol2feature)> sym*x = featx*

25

26 |symbol2feature:

27 LSort (label, sort, None(), op) — Attr(label, ty, <op2bounds> op)
28 where

29 <predefined <+ user—defined> sort = ty

30

31 | symbol2feature:

32 CfSort (1bl, sort, op) — Contain(lbl, QID("cf", sort), <op2bounds> op)
33

34 | op2bounds: None () — Bound (1, 1)

35 | op2bounds: Option() — Bound(0, 1)

36 |op2bounds: OptList () — Bound(0, Unbound())

37 | op2bounds: List () — Bound (1, Unbound())

38 |ns2class:

39 NSpace (name, ns*) — AClass (<map(ns2gid)> ns*, QID("ns", name), [])
40

41 |ns2gid: name — QID("ns", name)

42

43 | symbol2parent: LSort(_, _, DefSite(nspace), _) — QID("ns", nspace)
44

45 | symbol2feature:

46 LSort (label, sort, DefSite(_), op) — Attr(label, ty, <op2bounds> op)
47 where

48 <predefined <+ user—defined> sort = ty

49

50 | symbol2feature:

51 LSort (label, _, UseSite(ns), op) — Ref(label, QID("ns", ns), bounds)
52 where

53 <op2bounds> op = bounds

Fig. 4. Rewrite rules defining a grammar-to-metamodel transformation in Stratego

(in the first condition for grammar2mm, <+ encodes a deterministic choice). To
avoid name conflicts, we organize generated data types in a package lex.

Context-free Syntax. Abstract syntax trees represent the structure of sen-
tences. We can express such trees also as models. Therefore, the metamodel
needs to capture the structural rules of the context-free syntax. We achieve

Robust Real-Time Synchronization between Textual and Graphical Editors 97

1 |tree2model: t — M(<term2obij>)

2 |term2obj o cH () — Obj(<def—uri>, QID("ast", c), <map(term2slot)> tx*)
3 |term2slot : None () — None ()

4 |term2slot : Some(t) — Some (<term2slot> t)

5 |term2slot : tx* — <map (term2slot)> tx*

6 |term2val : t — Data(t) where is—string; not (ref—uri)

7 |term2val : t — Link (<ref—uri>)

8 |term2val : t — Contain(<term2obj> t) where is—compound
9

10 |model2tree: M(obj) — <obj2term> obj

11 |obj2term : Obj(_, QID("ast", c), sx) — c#(<map(slot2term)> s*)
12 |slot2term : None() — None ()

13 |slot2term : Some (val) — Some (<slot2term> val)
14 |slot2term : valx — <map (slot2term)> valx
15 |val2term : Data(val) — val

16 |val2term : Link (uri) — <name—of> uri

17 |val2term : Contain(obj) — <obj2term> obj

Fig. 5. Rewrite rules defining corresponding tree-to-model and model-to-tree transfor-
mations in Stratego

this by generating classes from context-free sorts and productions (Il. 15-24).
To avoid name conflicts, we organize them in separate packages cf and ast.
For each context-free sort, we generate an abstract class (sort2classes). For
each production of this sort, we generate a concrete class subclassing the abstract
class (prod2class). Features are generated from the symbols of the produc-
tion (1l. 26-32). We generate an attribute for each lexical sort (first rule). The
type of this attribute is derived from the lexical sort. For each context-free sort,
we generate a containment reference (second rule). Bounds of generated features
depend on operators (1l. 34-37). Options get a lower bound of 0, while all other
symbols get a lower bound of 1. Lists get an unlimited upper bound, while all
other sorts get an upper bound of 1.

Name Binding. In our minimalistic grammar formalism, namespaces and sorts
are separate concepts. Thus, namespaces impose their own class hierarchy on
the generated metamodel. For each namespace, we generate an abstract class
which subclasses its parent namespaces (1l. 38-43). When a production defines a
definition site of a name, the concrete class generated from this production needs
to subtype the namespace of the definition site. Therefore, symbol2parent
collects the namespaces of definition sites. At definition sites, the generated
feature is the same as for ordinary lexical sorts (1. 45-48). At use sites, a reference
to the namespace is generated instead (ll. 50-53).

2.2 Bidirectional Mapping between Trees and Models

We specify a bidirectional mapping between trees and models as a pair of uni-
directional mappings tree2model and model2tree in Fig. [l

To transform a tree into a model, we transform its term representation into an
object (tree2model). This is done by decomposing the term into its constructor
c and subterms t#. The constructor is used to identify the corresponding class
in the operator and the subterms are transformed into slots. When a term is the

98 O. van Rest et al.

lexical syntax
[a—zA—7] [a—zA—Z0—9]* — ID

context—free syntax
"module" id:ID types:Typex — Start {"Module"}
"entity" ID "{" Property*x "}" — Type {"Entity"}
"datatype" ID — Type {"DataType"}
ID ":" ID — Property {"Property"}

namespaces Module Type Property
EH Module
binding rules =D = id:ID
Module (m, _):
defines non—unique Module m
scopes Type types 0.*
Entity(e, _): H Property 1118 1ype
defines unique Type e =id:ID type o id:ID
scopes Property . .
DataType (t) : 0.* properties
defines unique Type t
Property (p, t): H Entity E DataType
defines unique Property p
refers to Type t

Fig. 6. Syntax definition in SDF (top), name binding rules in NaBL (left) and generated
Ecore metamodel (right) for an entity language.

definition site of a name, we expect def-uri to provide a URI for it. Otherwise,
it should yield None (). The first rule of term2val transforms strings (the
leaves of a tree) into (one of) the slot’s value(s). The rule only works if the
string is not the use site of a name. The second rule covers such use sites, by
generating a link with a URI. We expect ref-uri to provide the URI of a
bound name. Otherwise, it should fail. The third rule of term2val transforms
compound terms into contained objects.

The rules for model2tree mirror the rules for tree2model. We expect
name-of to yield the name which establishes the binding to the linked object.

2.3 Connecting Spoofax and EMF

In Spoofax, lexical and context-free syntax are defined in SDF [926]. Name
binding and scope rules are defined separately in NaBL [I4]. From these defi-
nitions we generate metamodels in Ecore, EMF’s metamodeling formalism [24].
Fig. [l shows syntax definition, name binding rules and generated metamodel for
a small data modeling language.

SDF and NaBL differ from the minimalistic grammar formalism in several
ways. First, naming conventions are different. Since symbols are only optionally
labeled in SDF, we generate missing labels either from sorts or from referred
namespaces. We use annotated constructor names as production names. Since
these are not required to be unique in SDF, we generate unique names where
needed. Second, SDF supports special injection and bracket productions,which
we model by inheritance. Third, SDF provides additional kinds of EBNF-like
operators and allows to apply them not only to sorts, but on any symbol. We
introduce intermediate sorts to break down such applications. Finally, NaBL

Robust Real-Time Synchronization between Textual and Graphical Editors 99

separates name binding rules from productions. We weave productions and name
binding rules based on their constructors.

Ecore differs from the minimalistic metamodel formalism as well. The only
relevant differences are order and uniqueness of many-valued features. Since text
is sequential, we generate ordered features. While references and containments
are inherently unique in Ecore, we generate non-unique attributes. In a post-
processing step, we simplify the generated metamodel. We fold linear inheritance
chains, merge classes which share all their subclasses, and pull common features
from subclasses into their parent class.

For the mapping between trees and models, we apply the previously shown
transformations.Additionally, we provide a thin, generic Java layer which can
convert between models as Spoofax terms and models as EMF objects.

3 Error Recovery

Error recovery is crucial for real-time synchronization between editors. Further-
more, it allows for persisting erroneous models using the textual syntax. We
distinguish three kinds of errors which affect editor synchronization. Parse er-
rors and unresolved names are discovered in the textual editor when the text
is parsed to an AST which is afterwards statically analyzed. Graphical syntax
errors occur in the graphical editor when a model does not satisfy lower bound
constraints of its metamodel. Graphical editors relax this constraint to allow
for incremental modeling. More specific, semantic errors do not affect synchro-
nization and error marking for such errors is allowed in either the textual or
graphical editor, or both.

Parse Errors. Modern IDEs parse text with every change that is made to
it, ensuring rapid syntactic and semantic feedback as a program is edited. As
text is often in a syntactically invalid state as it is edited, parse error recovery
is needed to diagnose and report parse errors, and to construct a valid AST
for syntactically invalid text. Therefore, Spoofax has strong support for parse
error recovery [4]. It introduces additional recovery productions to grammars
that make it possible to parse syntactically incorrect text with added or missing
characters. These rules are automatically derived from the original grammar.
Spoofax’ parsing algorithm activates these rules only when syntax errors are
encountered and uses layout information to improve the quality of recoveries for
scoping structures, while still ensuring efficient parsing of erroneous text. This
approach avoids the loss of AST parts when a correct text is changed into an
incorrect one, which is crucial for real-time synchronization.

Unresolved names. Spoofax resolves names after parsing with an algorithm
which is based on declarative name binding and scoping rules [14]. The algorithm
is language-independent, handles multiple files, and works incrementally, which
allows for efficient re-analysis after changes. During intermediate editing stages,
not all references may be resolved. Fig. [0 illustrates this with a simple data
model. It contains a property title of type Strin, which cannot be resolved.

100 O. van Rest et al.

4 Book 4 Book entity Book {
title = Strin
x : Author

}

entity Book {
title : Strin title : title :
}

entity Author {} ? entity Author {}

. <+ Author <+ Author
datatype String datatype String

Fig.7. Recovery from a name resolution error and from a graphical syntax error

We recover from such errors during tree-to-model transformation (step @).
Spoofax provides special URIs for unresolved references. When we discover such
a URI, we do not fill the corresponding slot in the model. GMF handles such
underspecified models and visualizes model elements with unfilled slots. In the
example from Fig. [l the property appears in the graphical editor without any
type. The user can specify the missing type either by continue typing or by
choosing the type in the properties view of the graphical editor.

Graphical syntax errors. During graphical editing, newly added model ele-
ments are typically underspecified. Since graphical editors do not enforce comple-
tion, a user might first create a number of such underspecified elements before she
starts to complete them. To recover from such errors, the model-to-tree transfor-
mation needs to handle incomplete models (step @). A simple fix would be to map
unfilled slots to empty strings in the AST. Step ® would add these empty strings at
positions where the parser expects text for the missing element. The parser recov-
ers from such errors, but might report the error at a different position, confusing
the user. To overcome this problem, the model-to-tree transformation creates tex-
tual default values for unspecified attributes and references and ignores elements
with unspecified containments.

Both attributes and references are represented by strings in text. If they are
unspecified upon model-to-text transformation, we generate a default value that
conforms to the lexical syntax. For example, if an integer is expected, we take
default value 0, while if a string is expected, we take default value x (cf. Fig.).
Note that in case of a reference, it is important not to choose an existing name,
since this will connect every new model element to an existing one. The genera-
tion of default values introduces unresolved names and possibly semantic errors
as well. These errors are marked until they are resolved by completing under-
specified elements. Users may also switch to textual editing in the meantime, and
resolve the errors by typing. The solution can be further improved by allowing
users to specify default values in the syntax definition, as one may not prefer the
‘default’ defaults. Unspecified containments should ideally not be permitted by
graphical editors. In the graphical Behavior Trees editor (Sect.[), for example, we
automatically create both an atomic sequence and a contained node upon using
the node tool. However, this is not possible if multiple subtypes are allowed, in
which case the user needs to manually indicate the type of the contained element.
Therefore, we ignore elements with unspecified containments during model-to-tree
transformation. This means that users are required to complete such an element

Robust Real-Time Synchronization between Textual and Graphical Editors 101

4 Book 4 Book
entity Book { title : String title : String ent:'!.ty Book {.
title : String title : String
//commént //comment
author : Author
) 5 author
entity Ruthor U + Author < Author entity Author {}

Fig. 8. Textual layout preservation and pretty-printing in reaction to a new property

before switching to the textual editor, or the element will be destroyed upon the
next text-to-model transformation.

4 Layout Preservation

Textual layout consists of comments and whitespace, while graphical layout con-
sists of positions and sizes of graphical elements. This information needs to be
preserved during editor synchronization. Our approach to layout preservation is
based on merging in both directions (steps ®®). New ASTs or models are com-
pared against their old version to calculate differences between them. Differences
are then merged into the relevant representation, which causes the representation
to be incrementally updated with changes from the other editor.

Textual Layout Preservation. Spoofax supports textual layout preservation
for refactorings [5]. To achieve this, it combines origin tracking with pretty-
printing. We reuse this feature to preserve textual layout when propagating
changes from the graphical editor to text. Origin tracking relates nodes in an
AST with text fragments. This information is propagated by transformations.
It is lost when we transform a tree into a model, but it is still available in
the AST of the textual editor. Pretty-printing considers this old AST and a
new one generated by model-to-tree transformation. It compares both ASTs and
preserves text corresponding to unchanged parts. Fragments corresponding to
removed parts are removed from the text. New AST nodes are pretty-printed and
inserted into the text. For this purpose, Spoofax generates pretty-printing rules