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1 Introduction

Maximum lift prediction for a modern realistic transport high-lift configura-
tions using a Computational Fluid Dynamics (CFD) based method still poses
a significant challenge. The flow around a high-lift aircraft configuration can be
characterized by a number of physical flow features such as flow separation, lami-
nar/turbulent boundary layers, wakes of wing elements, vortical flows structures,
vortex break down, but also deformation of the wing and its components. The
accurate modelling of these individual physical features require the development,
verification and validation of specific CFD algorithms. This paper focuses only
on one of these algorithms, namely a time-integration algorithm.

Flow around a realistic high-lift configuration can be expected to be unsteady
especially near maximum lift. Therefore, it is necessary to verify and apply un-
steady time-integration algorithms for these flow conditions.

The intention of this work is to explore the possibilities that current un-
steady Reynolds-Averaged Navier-Stokes (RANS) capabilities offer in modelling
unsteady high-lift flows. Unsteady RANS (URANS) methodology is not (yet)
widely applied to three-dimensional high-lift configurations basically due to the
inherent high computational costs. Current practice is to compute high-lift flows
with a steady flow solution method, where typically a Runge-Kutta or a lower-
upper symmetric Gauss-Seidel (LUSGS) time integration algorithm using con-
vergence acceleration techniques (local time stepping, multigrid) are employed.

The aim of this CFD study is threefold, firstly to get some more experience
with unsteady flow computations for a realistic high-lift configuration. Secondly,
alternative computational strategies are investigated in order to contribute to a
best practice for unsteady flow computations. And finally, the aim is to attempt
to improve maximum lift prediction, if possible, and otherwise to understand
why maximum lift is not reached. In the latter case it is important to try to
assess the dominant effect that prohibits maximum lift prediction.

In this paper firstly, the computational set-up is described. Next, the results of
a number of alternative computational strategies including unsteady computa-
tions are presented. Subsequently, an extended post-processing analysis is made
to try to understand and explain the occuring lift break down near maximum
lift.
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2 Unsteady Flow Computation

In an unsteady flow computation based on the dual time step approach the size
of the time step needs to be chosen. It is observed in various research studies
that for a three dimensional high-lift configuration the time step can not be
taken too small since the computational effort becomes too large, see Refs. [1],
[2], [3]. Therefore, a time integration approach with a relatively large time step
is investigated here. The idea of taking a relatively large time step, is that high
frequency components will be damped and low frequency components are com-
puted/modelled. In an unsteady flow computation the time step in each dual
grid cell is the same. In a steady flow computation the time step in each dual
cell differs due to the local time stepping algorithm approach adopted. For a
limited number of three-dimensional high-lift configurations it is demonstrated
that an unsteady flow computation can stabilize the aerodynamic coefficients.
Nevertheless, more experience with unsteady flow computations is necessary. For
instance it could be beneficial to employ an unsteady time integration method in
the initial startup phase of the computation where the flow is basically unsteady.

Some notation is introduced to explain the choice of the time step size. A
characteristic time step can be derived from the reference velocity and reference
as length

ΔTref =
Lref
uref

(1)

which is basically the time that the flow needs to travel one chord length. In the
computational study the following time steps are considered (approximately):
ΔT = ΔTref , ΔT = ΔTref/10 and ΔT = ΔTref/30. In Refs. [1], [2], [3] much
smaller time steps are considered.

3 Computational Set-Up

3.1 The Geometry of the High-Lift Configuration

In the CFD study described here the wind tunnel geometry of a high-lift trans-
port configuration is studied. The high-lift configuration includes a through-flow
nacelle. At the main wing leading edge inboard a droop-nose device is installed
and outboard a slat is deployed. At the main wing trailing edge an inner flap,
outer flap and an aileron are deployed, see Figure 1. At the wing tip a winglet
is installed.

3.2 Computational Grid, Flow Conditions, Flow Solver Settings

Starting point for the CFD study is a polar computation on an existing un-
structured grid which for the purpose of this study is referred to as the baseline
computation. The computational grid has 29.8 million points and is created with
the current practice for Centaur meshing [5]. For the flow computations the Tau
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Fig. 1. Front and rear view of the transport aircraft configuration

flow solver, see [4], is utilised. Fully turbulent flow computations are performed
using the Spalart-Allmaras turbulence model on 72 processors.

In order to describe the computational strategies some notation needs to be
introduced for the angles of attack. Let α0 be an angle in the mid linear range
of the lift polar and define αi+1 = αi + c degree with c a fixed constant. The
largest angle considered in this study is α10.

The practice to compute maximum lift for a high-lift configuration is to per-
form an alpha sweep with the steady flow solver starting in the linear range α0.
The flow solution for angle αi is then determined by restarting from the flow
solution at αi−1. A start from an initial uniform flow solution may lead to a
different solution for larger angles and hence this approach is not pursued.

In the unsteady flow computations considered in this paper 200 inner iter-
ations per time step are taken. For displaying the lift polars in the unsteady
computations the lift coefficient is averaged over the last 20 unsteady time steps
(hence no averaging over the computed lift in the inner iteration). The ampli-
tude in lift oscillation over these 20 unsteady time steps is displayed by means
of an error bar. A large amplitude in lift-oscillation is then expressed by a larger
error bar in the lift convergence plot. It should be mentioned beforehand that
the 20 unsteady time steps taken is too low to measure low frequency lift oscilla-
tions. Hence, the error bar is basically a measure for high-frequency components.
In a steady flow computations the lift is averaged over the last 200 multigrid
iterations.

4 Numerical Results

4.1 Baseline Computation

In the baseline computation the steady flow solver is used to compute for the
angles α0, ..., α10. For each angle a restart is performed from the preceding an-
gle of attack. Per angle of attack 3000 multigrid cycles are taken (initial angle
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from scratch). In the baseline computation a 3w multigrid cycling strategy us-
ing lower-upper symmetric Gauss-Seidel implicit time integration scheme with
a CFL number of 5.0 is adopted.

In Figure 2 it can be observed that maximum lift measured in an ETW wind
tunnel campaign is underpredicted significantly in the baseline computation.
The convergence history for the baseline computation is shown in Figure 2 as
well. It can be observed that in the linear range, i.e. for angles α0, ..., α2, the lift
coefficient stabilizes. For larger angles α3, ..., α6, there is an oscillatory behaviour
and for α7, ..., α10 the computed lift has not converged yet and is still decreasing.
This oscillatory and non-converging behaviour is experienced as unsatisfactory.
In addition for the largest angles the computed lift is even decreasing leading to
an even larger difference with experimental values.

angle of attack

C
L

A350 baseline 
Experimental Data (Pol1252)

50 lift counts

Iteration

C
L

0 10000 20000 30000 40000

α0

20 lift counts

Fig. 2. Cross comparison of the lift computed in the baseline configuration and ETW
experimental lift (top); convergence history of the lift-coefficient in the baseline com-
putation (bottom)

4.2 Alternative Computational Strategies

Attempts are made with alternative computational strategies to stabilize lift
and possibly enhance lift in the maximum lift range. To influence the conver-
gence behaviour unsteady computations combined with steady computations are
conducted. These are described here.

a) Alpha-Sweep with Unsteady Restart. An alpha sweep is performed
starting in the linear range, similar as in the baseline computation. The idea
here is to damp the oscillations in the convergence by restarting the steady flow
computation with an unsteady computation at the same angle of attack. Firstly,
by restarting from the computed solution at the preceding angle of attack, a
limited number of 1000 3w multigrid cycles with the steady solver are taken.
This is followed by 50 times steps using the unsteady solver. The time step size
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iteration
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Fig. 3. Convergence history of the lift-coefficient for the computation where the steady
flow computation is restarted with an unsteady flow computation for each angle of
attack

is chosen as Δt = 0.004 which is approximately amounts to Δtref/30. This time
step size has been found to be useful in other 3D high-lift computations, not
reported here.

It can be observed in Figure 3 that the lift coefficient stabilizes and that the
large oscillations in the flow computation are actually damped. As a matter a fact
the oscillatory behaviour is damped for the angles α3, ..., α9. It can be observed
in Figure 4 that computed lift is larger for the angles α6, ..., α10 compared to
the baseline computation. Nevertheless, experimental lift is underpredicted still.
It should be noted that the flow computation has not fully progressed to a
converged lift-coefficient in the unsteady phase and more iterations/time steps
are likely needed. In the linear range approximately the same lift is computed.
For the largest angles of attack the lift oscillation in in the unsteady computation
(as indicated by the error bars) is much smaller than the computed lift oscillation
in the baseline computation.

b) Steady Flow Computation with 2v Multigrid Cycles. Near maximum
lift flow separations occur which make the multigrid solution process inefficient.
This can be expected basically while the coarse grid operator forms an inaccurate
representation of the fine grid operator in case of flow separations. One way to
circumvent this, is to employ a reduced number of multigrid levels. A common
strategy is to switch to a 2v multigrid cycling strategy with the steady solver
for the largest angles of attack.

In this computation a restart is made from the preceding angle of attack
followed by 6000 multigrid 2-v cycles. The convergence history is shown in



80 J.W. van der Burg and M. Luehmann

angle of attack
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50 lift counts

Fig. 4. Cross-comparison of lift coefficients computed in the baseline computation, the
lift coefficients in the computation with unsteady-restart (after 1000 steady iterations)
for anglesα0, ..., α10, the lift coefficient computed in a steady computation using the
2v-multigrid strategy where restarts are made from the preceding angle of attack and
ETW experimental lift.

Figure 5. It can observed that the computation stabilizes for α6, ..., α9 although
the lift coefficients are not fully converged yet. For angle α10 large oscillations
in computed lift are present.

Figure 4 shows a cross-comparison of the lift coefficients computed with the
steady multigrid 2v-cycles compared to the computed lift in the baseline com-
putation. It can be observed for the largest angles that a somewhat larger lift
is computed compared to the computed lift in the the baseline configuration.
Experimental lift is underpredicted. There is some concern that by taking a
larger number of multigrid iterations the lift coefficient destabilizes. This will be
addressed later.

c) Unsteady Restart from Computed Steady Solution. The computed
baseline solutions at α7, ..., α10 are restarted with an unsteady computation
with 400 time steps and a time step size of Δt = 0.01 which is approximately
Δtref/10. The convergence histories for the unsteady computations at angles
α7 and α8 are shown in Figure 6. Approximately, the same level of lift is com-
puted. It can be observed for angle α7 the lift coefficient is stabilizing and for
α8 the coefficient slowly varying with a small amplitude. For angles α9 and α10

an oscillatory behaviour with a larger amplitude in lift is observed.

d) Start Unsteady Flow Computations from an Initial Flow Solution
and Continue with 2v Multigrid. The reason for attempting an unsteady
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Fig. 5. Convergence history of the lift-coefficient for a steady flow computation using
the multigrid 2v-cycling strategy. The steady flow computation is restarted from the
baseline solution computed at angle α5.
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Fig. 6. Convergence history of the computed lift after restarting the baseline flow
solution with an unsteady computation at angle α7 and α8

computation from an initial flow solution is that experience has learned that ini-
tialisation can have a large effect on the final computed solution. Common prac-
tice is the computational strategy pursued in the baseline computation (steady
restart).

In this computation for each angle of attack an unsteady computation is
performed starting from an initial solution by taking 50 time steps with Δt =
0.01 (corresponds to 50 times 200=10000 multigrid iterations). Subsequently,
18000 2-v multigrid cycles are taken. Hence, in total 10000 unsteady plus 18000
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angle of attack
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Fig. 7. Cross-comparison of the lift coefficients computed with steady 2v-multigrid
after 19000 and 28000 iterations (with an unsteady computation from scratch, 10000
inner iterations, Δt = 0.01), the lift computed in the baseline computation, the lift
computed in a steady 2v-multigrid computation where a restart is made from the
preceding angle of attack and ETW experimental lift.

steady iterations are performed. A large number of multigrid 2v-cycles are taken
in order to examine whether the flow solution is converging/stabilizing. It turns
out that the lift coefficient is converging for angle α7. But for larger angles the
lift coefficients are no longer converging.

The computed lift coefficients in the steady phase after 19000 and 28000
iterations are shown in Figure 7. It can be observed that the computed lift
after 28000 iterations is significantly reduced even to a level smaller than the
computed lift in the baseline computation. In section 4.3 it is attempted to find
an explanation for this behaviour.

e) Unsteady Flow Computations with a Start from an Initial Flow So-
lution. Finally, an unsteady computation is performed for the angles of attack
α7, ..., α10 starting from an initial flow solution. In total 625 time steps are taken
with unsteady time step sizes Δt = 0.004 which amounts to a simulated time of
2.5 secs.

The lift coefficient does not converge to a stationary value for the computed
angles. For angles α7 and α8 lift is slowly steadily decreasing (non-converging)
and for the larger angles α9 and α10 an oscillatory behaviour in lift is observed.

The computed lift in the unsteady computation is compared to the baseline
result in Figure 8. It can be observed that the lift reduces significantly from 1.2
secs to 2.5 secs. This will be examined more closely in Section 4.3 "Extended
post-processing". It should be mentioned that the flow solution for α9 actually
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angle of attack
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Fig. 8. Cross-comparison of lift coefficients computed in an unsteady computation with
Δt = 0.004 at time 1.2 secs and 2.5 secs, the lift coefficients computation in the baseline
computation and ETW experimental lift
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Fig. 9. Cross-comparison of the lift coefficients computed in three unsteady computa-
tions with time step sizes Δt = 0.004, Δt = 0.01 and Δt = 0.1 (unsteady computation
from an initial solution), the lift coefficients computed in the baseline computation and
ETW experimental lift

crashes at t=2.45 secs. A reason for the crash may be that the number of inner
iterations is chosen too small. A check of the convergence history learns that in
200 iterations the residual drops about 0.5 orders. Another possible explanation
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is that the unsteady extrapolation order is too large (second-order in this study).
The extrapolation might lead to an unphysical start solution.

As a second step the time step size in the unsteady computation is varied. It
is necessary to check whether the computed flow solution depends on the time
step size. Therefore, three different time step sizes are compared. The time step
size is increased to Δt = 0.01 (250 time steps) and Δt = 0.1 (50 time steps). The
results are shown in Figure 9. It can be observed in the unsteady computations
for the angles α7, α8 and α9 that the computed lift with Δt = 0.01 is somewhat
larger than the lift with Δt = 0.004. Obviously, a change in time step has only
a small effect on computed lift. It can be observed as well that for a larger
simulated time, 0.5 secs, using Δt = 0.1 the computed lift is at approximately
the same level as the lift computed in the baseline computation.

4.3 Extended Post-Processing

In the steady and unsteady flow computations it is found that the lift breaks
down for the largest angles α8, ..., α10. In the computational strategies considered
before it was not possible to achieve a better agreement with the experimental
lift in the maximum lift range. Although, in some (unsteady) computations it
appeared that lift is improved in the maximum lift range similar as in the steady
computation. Additional unsteady time steps, nevertheless, lead to a break down
in lift. In this section an attempt is made to find an explanation for the break
down in lift.

Fig. 10. Computed pressure distribution and skin friction lines for angle of attack α8
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Fig. 11. The computed kinematic vorticity number shaded by x-vorticity 19000 itera-
tions (left) and 28000 iterations (right). Isoplots of the kinematic vorticity number are
shown at value 1.3. Dark shaded vortices indicates anti-clockwise rotation.

The computed pressure coefficient distribution and skin friction lines for the
baseline computation is shown in Figure 10 for angle of attack α8. For this angle
of attack the flow is separated on the upper inboard wing, but also outboard on
the upper wing near the aileron. It is verified that in the other computations,
basically the same flow characteristcs occur, but with local differences in flow
topology.

The computed flow solution with the steady solver using 2v multigrid cycling
(described in section 6) is shown in Figure 11. In these figures isoplots of the
kinematic vorticity number (i.e. a measure for the rotational stress divided by the
shear stress) is shown which is shaded by x-vorticity to distinguish between ro-
tation directions. These figures mainly show the same vortical structures. When
focussing in more detail on the steady solver flow solutions firstly, see Figure
11, it can observed that a large difference occurs in the wake of the inner strake
vortex. It appears that the vortex starting from the area between the deployed
droop nose device and the pylon breaks down. This can for instance be seen in
the right picture of Figure 11. The wake of this vortex has broken up and this
wake interacts with the inner strake vortex. One possible explanation might be
that the vortex has an unfavourable interaction with the prismatic/tetrahedral
grid interface, so that it diffuses and breaks down. Another possible explanation
might be that the inner strake vortex breaks down (above the flap). One way to
avoid this would be to make the computational grid in this area coarser, hence
introduce vortex break down artificially.

A second observation is that the vortex emanating from the pylon leading edge
seems to hit the wing leading edge indicated by a small local area of vortex break
down. The vortex reattaches and continues its way over the main wing element.
Furthermore, it can be observed in Figure 11 that the vortices are not distinctly
captured at the at the main wing leading edge between pylon and droop nose
device. This may be improved by introducing a local grid refinement.
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Fig. 12. The computed kinematic vorticity number shaded by x-vorticity at t=1.2 sec
(left) and t=2.5 sec (right). Isoplots of the kinematic vorticity number are shown at
value 1.3. Dark shaded vortices indicates anti-clockwise rotation.

The computed flow solutions of the unsteady flow solution (described in sec-
tion 5 with Δt = 0.004) at t=1.2 sec and 2.5 sec are compared in Figure 12.
The computed flow solution at t=2.5 sec resembles the flow solution computed
with the steady solver using the 2v multigrid strategy after 19000 iterations. In
general one can say that the vortical structures are represented somewhat more
clearly.

The influence of the prismatic/tetrahedral grid interface on the main wing can
be observed in Figure 12. The vortex that emanates from the main wing leading
edge between the pylon and droop nose device changes location and transports
an area of clock-wise vorticity (near the main wing under the inner strake vortex)
downstream. The occurrence of this flow feature may be exaggerated by the grid
interface.

5 Conclusions

A number of alternative computational strategies, both steady and unsteady flow
computations, are investigated. It is concluded, that an unsteady computation
with a relatively large time can stabilise the aerodynamic coefficients during
convergence. This confirms the presumption that by taking a relatively large
time step the small scale frequency components are damped.

It is also shown that the same effect can be realised with a steady 2v multigrid
cycling strategy. Nevertheless, by taking a large number of 2v multigrid cycles the
convergence history becomes oscillatory as well and lift breaks down similar as
in the baseline computation. These steady results indicate that the flow solution
is inherently unsteady.

In the computational strategies considered in this paper it was not possible
to achieve a better agreement with the experimental lift in the maximum lift
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range. Although, in some (unsteady) computations it appeared that lift was
improved in the maximum lift range, additional unsteady time steps would lead
to a lift break down, similar as in the steady computation. Several attempts
are made to compute with an unsteady solver with different time step sizes.
In these unsteady computations basically the same flow physics is found. This
leads to the belief that in order to improve the prediction of maximum lift either
the computational grid needs to be improved or the flow modelling (based on
Spalart-Allmaras turbulence model here) is insufficient.

A necessity for investigating/improving the high-lift flow computation is the
possibility to locally adapt/improve a computational mesh. This would allow to
locally manipulate/enhance vortical flow structures and to examine their influ-
ence on the flow without completely changing the computational grid. This is
not possible at the moment with the current grid generation capability. Some
suggestions for improving in computational grid size can be proposed, such as
refine the grid in the area of the wing leading edge/pylon intersection to cap-
ture the vortices emanating at pylon, nacelle and droop nose device edge; make
the computational grid trailing edge coarser to fix vortex break down of strake
vortices.

One idea might be then to locally introduce a structured Chimera grid on the
main wing, ranging from fuselage to approximately the spanwise position out-
baord of the engine pylon. This would allow to more accurately capture vorticity
and would remove the unfavourable influence of the prismatic/tetrahedral grid
interface.

An even better solution will be achieved vie the so-called Hyperflex grid ap-
proach, in which it becomes possible to run the solver on a mixed structured-
unstructured mesh. This approach could provide ideal mesh configurations to
resolve the physical phenomena and to avoid unwanted mesh metric discontinu-
ity influence on the computed flow.

Concerning enhanced flow modelling it would be a possibility to switch to
a more complex turbulence like Menter-SST and/or a Reynolds stress model
(in an industrialisation phase). The advantage of using RSM over Menter-SST
is that vortices are better represented, since off-diagonal stress components are
modelled. Nevertheless, even an RSM turbulence model is insufficient to model
vortex-break down. As an engineering approach this still needs to be handled by
choosing appropriate (coarse) grid resolution.
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