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Abstract. Recent developments in Reynolds-stress modeling for appli-
cations in aircraft aerodynamics are presented. These include a nonlin-
ear pressure-strain correlation, sensitizing the length-scale equation to
pressure gradients and large scale variations, laminar-turbulent transi-
tion modeling using linear stability analysis, and a careful calibration of
model constants.

The improved Reynolds-stress model is used to simulate different sub-
sonic and transonic airfoil flows as well as an oblique-shock/boundary-
layer interaction, employing the unstructured flow solver DLR-TAU.
Furthermore the simulation of the flow around an infinite swept wing
is presented, in which the prediction and modeling of both Tollmien-
Schlichting instabilities and cross-flow instabilities is included.

Keywords: CFD, turbulence modeling, second-moment closure,
transition.

1 Introduction

The numerical simulation of relevant flows in aircraft aerodynamics requires sta-
tistical treatment of turbulence. An appropriate starting point are the Reynolds
Averaged Navier-Stokes equations (RANS), which describe the time-averaged
motion of fluid flow [1]. These equations consider turbulence as a Reynolds-stress
tensor containing six different Reynolds stresses, which need to be provided by
a turbulence model. Most of the turbulence models currently used by aircraft
industry are based on the Boussinesq assumption (e.g. [2],[3]), which, as an ana-
logue of the molecular viscosity, sets the Reynolds-stress tensor in relation to
the mean strain rate tensor, with the scalar eddy viscosity μt as a constant of
proportionality. Although these so-called eddy-viscosity models proved to yield
reliable results for simple aerodynamic flows, they often fail in more complex
flows including flow separation, streamline curvature or strong effects of stress
anisotropy. In order to improve the performance of RANS modeling in more
complex flows, Reynolds-stress turbulence models (RSM) are investigated.

Reynolds-stress models directly calculate transport equations for all elements
of the Reynolds-stress tensor, hence the Boussinesq assumption is discarded.
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Consequently turbulent stress anisotropy can be captured naturally, at the cost
of higher computational effort. Beside the Reynolds-stress equations, RSM calcu-
late an additional transport equation in order to evaluate the turbulent length
scale, which is usually expressed by the dissipation rate ε or the specific dis-
sipation rate ω. At the Institute of Fluid Mechanics of TU Braunschweig, a
Reynolds-stress model by Jakirlić and Hanjalić [4] was implemented into the
DLR flow solver TAU [5], which uses the homogeneous part of the dissipation
rate as length scale variable [6]. Due to its advanced near-wall treatment of
turbulence through calibrated damping functions and a wall-reflection pressure-
strain model, the RSM can be considered as a so-called “low-Re” model, which
has already shown its capabilities to simulate boundary layers in subsonic flows
with pressure-gradients during the implementation process [6].

An undesirable side effect of the low-Re modeling is a delayed laminar-
turbulent transition ([7],[8]), which can be evaded by locally providing a realistic
Reynolds-stress distribution as a “transition tripping measure”. Usually a sim-
ple generic distribution scaled with the local boundary-layer edge velocity gives
a reliable transition behaviour. Physically more advanced is the determination
of a realistic Reynolds-stress distribution from linear stability analysis, as de-
scribed and implemented by Probst [8] for transition from Tollmien-Schlichting
instabilities.

Within the framework of the research project ComFliTe, the physically
advanced modeling of laminar-turbulent transition in combination with a
Reynolds-stress model is extended to the consideration of cross-flow instabili-
ties. The underlying theory as well as the application to the flow around an
infinitive swept wing is presented in Sect. 3. Furthermore, different subsonic and
transonic flows are simulated in order to check the industrial applicability of this
turbulence model. An adjustment of coefficients in the length-scale equation of
the model is necessary to achieve satisfying results, as can be seen in Sect. 4.

2 JHh-v1 / JHh-v2 Reynolds-Stress Model

Since Favre- and Reynolds-averaging of the Navier-Stokes equations produce
a new unknown Reynolds-stress tensor, closure of the equation system with a
turbulence model is required. Second-moment closure models use a transport
equation for each of the six components of the Reynolds-stress tensor, which can
be derived from the exact momentum equation, reading in general form [1]

∂
(
ρR̃ij

)
∂t

+
∂

∂xk

(
ρR̃ijŨk

)
= ρPij + ρΠij − ρεij + ρDν

ij + ρD
t
ij + ρMij , (1)

where only the production term Pij and the viscous diffusion Dν
ij can be calcu-

lated directly. However, all remaining terms on the right hand side of Eq. (1),
which describe pressure-strain correlation, dissipation, turbulent diffusion as well
as effects of compressibility, require modeling.

The JHh-v1 and JHh-v2 Reynolds-stress models are modified versions of the
JHh model developed by Jakirlić and Hanjalić [4], which uses the homogeneous
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dissipation rate εh as length scale variable in order to capture the correct dissi-
pation rate profile close to walls. Probst [6] extended the length scale equation
by two additional source terms, gaining promising results in different subsonic
aerodynamic flows. This model version is now referred to as JHh-v1. For the
application of the model to subsonic as well as transonic aerodynamic flows,
an adaptation of coefficients in the length scale equation was conducted, fur-
thermore a quadratic extension of the slow redistribution term [9] was added,
resulting in the model version JHh-v2.

The JHh models employ a linear pressure-strain correlation with an additional
wall-reflection model Πw

ij according to Gibson and Launder [10], as well as the
quadratic extension of the slow redistribution model mentioned above (term
including C′

1, only in JHh-v2):

ρΠij = ρΠij,1 + ρΠij,2 + ρΠ
w
ij (2)

ρΠij,1 = −εhρ
[
C1ãij + C

′
1

(
ãik ãjk − 1

3
δijA2

)]
(3)

ρΠij,2 = −C2ρ

(
Pij − 1

3
Pkkδij

)
. (4)

The model coefficients, including fw, Cw1 and Cw2 within the wall-reflection
model, contain near-wall damping functions which are calibrated based on DNS
data [11]:

C1 = C +
√
AE2 , C′

1 = −max (0.7A2; 0.5)C1 ,

C2 = 0.8A1/2 , C = 2.5AF 1/4f , F = min (0.6;A2) ,

f = min
[
(Ret /150)

3/2
; 1
]

, fw = min
[

˜k3/2

2.5εhd
; 1.4

]
,

Cw1 = max (1− 0.7C; 0.3) , Cw2 = max (A; 0.3) .

(5)

These damping functions contain the turbulence Reynolds number Ret =
k̃2/(νεh), the turbulent kinetic energy k̃, the local wall distance d as well as
anisotropy invariants of the Reynolds-stress tensor (A, A2) and of the homoge-
neous dissipation-rate tensor (E).

The anisotropic dissipation rate tensor εij can be divided into a homogeneous
part and a non-homogeneous part

εij = ε
h
ij +

1

2
Dν
ij , (6)

wherein the homogeneous part is approximated by an implicit relation:

εhij = fsR̃ij
εh

k̃
+ (1− fs) 2

3
δijε

h with fs = 1−
√
AE2 . (7)
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The homogeneous dissipation rate εh is provided by a scalar length scale equation:

Dεh

Dt
= −Cε1 ε

h

k̃
R̃ij

∂Ũi
∂xj

− Cε2fε ε
hε̃h

k̃
+ Cε3ν

k̃

εh
R̃jk

∂2Ũi
∂xj∂xl

∂2Ũi
∂xk∂xl

(8)

+
∂

∂xk

[(
1

2
νδkl + Cε

k̃

εh
R̃kl

)
∂εh

∂xl

]
+ Sl + Sε4

with the low-Reynolds damping function

fε = 1− Cε2 − 1.4

Cε2
exp

[
−
(
Ret
6

)2
]
. (9)

Two additional source terms have been introduced into the length-scale equation,
namely the length-scale limiter

Sl = max

{[(
1

Cl

∂l

∂xn

)2

− 1

](
1

Cl

∂l

∂xn

)2

; 0

}
εhε̃h

k̃
A with l =

k̃3/2

ε
(10)

and the pressure-gradient term

Sε4 = −C∗
ε4

εh

k̃

(
R̃ss

∂Ũs
∂xs

+ R̃n1n1

∂Ũn1

∂xn1

+ R̃n2n2

∂Ũn2

∂xn2

)
, (11)

to sensitize the equation to effects of non-equilibrium turbulence [6]. The source
term Sε4 needs to be computed in streamline oriented coordinates (xs, xn1 , xn2).
In order to ensure the applicability in a general flow solver, a transformation of
the streamline oriented terms into the Cartesian coordinate system is required.
This transformation can be found in [6]. The coefficients used in the length scale
equation are provided in Table 1.

Table 1. Coefficients of the εh-equation

Cε1 Cε2 Cε3 C∗
ε4 Cε Cl

JHh-v1 1.44 1.80 0.30 1.16 0.18 2.5
JHh-v2 1.44 1.85 0.70 0.58 0.18 2.5

A generalized gradient diffusion model [12] is used for the components of the
turbulent diffusion tensor, effects of compressibility are neglected.

3 Laminar-Turbulent Transition Modeling

In aeronautics, transition from laminar to turbulent flow is usually governed
by the unstable growth of small-scale disturbances in the laminar boundary
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layer. After a transitional phase of linear and non-linear amplifications, the 2D
Tollmien-Schlichting (TS) or 3D cross-flow (CF) waves may reach a considerable
amplitude before they finally break down into turbulence.

Within most RANS methods, the turbulent breakdown is considered as the
transition point, which sharply distincts between laminar and turbulent regions.
A common modeling approach is the so-called point transition, which deactivates
or limits the turbulence-model production terms in the whole laminar regime.
More complex transition models consider the effects of intermittency by intro-
ducing additional blending functions or transport equations. However, both the
simple point-transition and the intermittency models usually neglect the above-
mentioned fluctuations in the transitional region upstream of turbulence break-
down. Although these are not regarded as real turbulence, they formally produce
Reynolds stresses in a statistical sense and may therefore contribute to a realistic
modeling of turbulence onset within the RANS framework.

As demonstrated by Probst et al. [8], common RANS models using point
transition fail to capture the strong onset of turbulence in laminar separation
bubbles on low-Reynolds-number airfoils. For near-wall RANS models, such as
the JHh-RSM considered here, transition to turbulence may even be fully sup-
pressed, since the low-Reynolds damping terms interfere with the low freestream
turbulence levels encountered in aeronautics.

In order to provide realistic contributions of the transitional fluctuations in
Tollmien-Schlichting waves to the Reynolds stresses, [8] introduced a novel mod-
eling concept based on linear stability theory (LST). These are inserted via
turbulent source terms just ahead of the transition point, see Fig. 1, thus acting
as a local "inflow condition" for the turbulent flow region. The derivation of
the transitional input values applies a LST solver to compute the shapes of the
Reynolds-stress profiles at the end of the linear amplification stage and scales
them according to a DNS-based calibration.

Derived from the complex wave ansatz of 2D Tollmien-Schlichting waves, the
Reynolds-stress shapes can be written as:

uiuj
∗ =

|ûi| · |ûj|
2

cos
(
ϕui − ϕuj

)
. (12)

Here, |ûi| are the amplitudes and ϕui the phase shifts of the most amplified wave
f0 (i.e. N(f0) = max(N)) at the end of the linear stage x0. The amplitudes and
phase shifts are obtained from the complex eigenfunctions of f0 at x0:

|ûi| =
√
û2i,R + û2i,I , ϕui = arctan

ûi,I
ûi,R

, (13)

whereas the position x0 is computed via the classical eN method.
In line with both numerical and experimental observations, the present

modeling approach assumes that the (normalized) maximum streamwise veloc-
ity fluctuations u′max/Ue (with Ue being the boundary-layer edge velocity) in a
Tollmien-Schlichting wave reach a rather universal saturation amplitude before
breakdown to turbulence occurs. The universal value of the normalized satura-
tion level was obtained from DNS data of a transitional boundary layer in an
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Fig. 1. Schematic illustration of the geo-
metrical setup in the transitional region [8]
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adverse pressure gradient and yield |û|max /Ue = 0.1 or u2max/U
2
e = 0.005, respec-

tively. Thus, the required Reynolds-stress input values at x0 can be determined
from scaling the (normalized) Reynolds-stress shapes as:

uiuj0 = 0.005 · U2
e · uiuj

∗

u2
∗
max

. (14)

Finally, the model is closed by computing the dissipation-rate input profile from
the Reynolds-stress equations and the local amplification rate αi.

This modeling concept for Tollmien-Schlichting transition was shown to great-
ly improve predictions of laminar separation bubbles on airfoils and yield con-
sistent transition behaviour in flows as complex as stalling engine inlets [8]. The
present work is aimed to extend the approach to 3D cross-flow instabilities, which
are typically observed on swept wings.

In an equal way to the hitherto existing 2D approach, the most amplified cross-
flow wave f0,CF at position x0 is determined. From its complex eigenfunctions,
amplitude and phase shift are calculated via (13), leading to non-dimensionalized
Reynolds-stress shapes (12). It can be expected that the amplitude of cross-
flow waves reaches a saturation level which depends on the boundary-layer edge
velocity as well. As a first estimation, the same factor u2max/U

2
e = 0.005 is used

for scaling the Reynolds-stress shapes resulting from cross-flow waves, therefore
(14) is used for pure TS amplification as well as for pure CF validation. In cases
of mixed amplification, contributions of Reynolds-stresses from both TS and CF
waves have to be considered, applying weighting factors W1 and W2:

uiuj = Ue2 ·
(
0.005 ·W1 ·

(
uiuj

∗

u2
∗
max

)

TS

+ 0.005 ·W2 ·
(
uiuj

∗

u2
∗
max

)

CF

)
. (15)

These weighting factors depend on the state of amplification in point x0, more
precisely on the relations

(
N
Ncrit

)
TS

and
(

N
Ncrit

)
CF

. If the location at which
transition is prescribed in the numerical simulation and the location at which
transition is predicted by linear stability theory coincide, one of the weights
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should be around 1 (assuming that no interaction between both types of insta-
bilities is considered) and the other weight should be between 0 and 1. However,
if the transition locations do not coincide, e.g. when limiting the movement of
the transition line for stability reasons, unusual combinations of N-factor-ratios
can appear. To prevent strong variations of the Reynolds-stress input values de-
pending on the streamwise position, the weighting factors are determined from
the unit circle in the

(
N
Ncrit

)
TS

-
(

N
Ncrit

)
CF

-map, as sketched in Fig. 2, reading:

W1 =

⎡
⎢⎣1 +

(
N
Ncrit

)2
CF(

N
Ncrit

)2
TS

⎤
⎥⎦
−1/2

; W2 =

⎡
⎢⎣1 +

(
N
Ncrit

)2
TS(

N
Ncrit

)2
CF

⎤
⎥⎦
−1/2

. (16)

In order to validate the implementation of cross-flow transition modeling, a 2.5D
infinite swept wing with ONERA-D airfoil in its cross section is simulated using
the JHh-v2 model. The wing is swept at an angle of 60◦ and inclined to α = 4◦,
flow conditions are Re = 2.39 · 106 and M = 0.23. The 2-N-factors strategy
of TAU transition module [13] is used to predict the transition locations on
upper and lower surfaces. Critical N-factors are set to Ncrit,TS = Ncrit,CF = 7.5,
furthermore no interaction between both instability types is considered.

The distribution of the pressure coefficient (Fig. 3a) shows that on the upper
surface transition takes place in a laminar separation bubble. Stability analysis
indicates that on the upper wing surface, mainly Tollmien-Schlichting insta-
bilities are responsible for transition (Fig. 3b), while mixed amplification from
Tollmien-Schlichting and cross-flow instabilities occurs on the lower surface (Fig.
3c). Experiments [14] show a transition location of xtr/c = 0.35 for the lower
surface, indicating strong interaction between TS and CF instabilities. The pre-
dicted N-factors at this position are NTS = 3.2 and NCF = 4.

Fig. 4 shows the Reynolds-stress distributions that have been determined
in the way described above for the lower surface of the airfoil. At first, the
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Fig. 3. 2.5D Swept Wing: a) pressure coefficient; b) N-factor envelope on upper surface;
c) N-factor envelope on lower surface
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Fig. 4. 2.5D Swept Wing: prescribed Reynolds-stress distributions at transition loca-
tion for lower surface

contributions of TS and CF instabilities are established individually (Fig. 4a
and b), afterwards they are combined using (15) which can be seen in Fig. 4c).

4 Adjustment and Application of the Reynolds-Stress
Model

All computations shown in this work have been carried out using the DLR-TAU
Code [5], solving the RANS equations on hybrid unstructured grids with second
order accuracy. As a reference, simulation results using the SST model by Menter
[3] are also displayed.

4.1 Transonic Airfoil RAE 2822

The need to adapt coefficients in the length-scale equation becomes apparent
when considering the flow around the RAE 2822 airfoil [15], which is a standard
test case for turbulence models in transonic flow. Fig. 5 shows pressure distribu-
tions for two different flow conditions: Case 9 with Mach number M = 0.73 and
Reynolds number Re = 6.5 · 106 and Case 10 with Mach number M = 0.75 and
Reynolds number Re = 6.2 · 106, where in both cases the incidence is α = 2.8◦

and transition is prescribed at 3% chord on both sides.
In Case 9 as well as Case 10, the shock on the upper surface simulated by the

JHh-v1 model is positioned clearly upstream of the experimental data.
Boundary-layer velocity profiles, shown in Fig. 6 directly downstream of the

shock (x/c = 0.65) and further towards the trailing edge (x/c = 0.90), show that
the JHh-v1 model overestimates the momentum loss of the boundary layer due
to adverse pressure gradients. This leads to a reduced effective airfoil cambering
in combination with an upstream movement of the shock.
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Fig. 6. RAE 2822 airfoil: velocity profiles in upper-surface boundary-layer

By reducing the coefficient of the pressure-gradient source term in the εh-
equation (8), C∗

ε4, the additional production of dissipation due to adverse pres-
sure gradients is decreased, leading to higher levels of turbulence in the boundary
layer and a smaller sensitivity towards adverse pressure gradients. This effect is
amplified by increasing the coefficient of the sink term Cε2. As a result, the
JHh-v2 model shows a closer accordance to the experimental data.

4.2 Subsonic Airfoil HGR-01

The reduced sensitivity towards adverse pressure gradients has an influence on
the performance in subsonic high-lift flows as well, which can be seen for the
horizontal stabilizer airfoil HGR-01 at Mach number M = 0.073 and Reynolds
number Re = 656500. The agreement to experiments of the lift coefficient at
high angles of attack is slightly decreased (Fig. 7), the maximum lift coefficient
is now overestimated by 8.5%. The higher lift coefficient results from a smaller
momentum loss in the boundary layer and a smaller trailing edge separation, as
indicated in Fig. 8. Nonetheless improvements compared to the SST model can
be seen.
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Fig. 7. HGR-01 airfoil: lift curve, M = 0.073, Re = 656500

Fig. 8. HGR-01 airfoil: velocity and turbulent shear stress profiles near trailing edge

4.3 Zero Pressure-Gradient Flat Plate

Increasing the coefficient Cε2 reduces the dissipation rate, which involves a higher
skin friction in the boundary layer of a flat plate without pressure gradient. By
simultaneously increasing the coefficient Cε3, the skin friction can be reduced to
reasonable values. Since the JHh-v1 model simulates higher levels of skin friction
compared to available experimental data, Cε3 was increased beyond the point
of compensating the skin friction influence of Cε2. The resulting skin friction
coefficient for a zero pressure-gradient flat plate is shown in Fig. 9.

4.4 Oblique-Shock/Boundary-Layer Interaction

The behaviour of the Reynolds-stress models in shock-induced separation can be
examined when simulating the interaction of an oblique shock with a flat-plate
boundary-layer. Numerous experiments have been carried out at the Institut
Universitaire des Systèmes Thermiques Industriels (IUSTI), Marseille, France,
using a supersonic wind tunnel at Mach 2.3 [16], [17], [18]. The shock, created by
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Fig. 9. Skin-friction coefficient along Zero Pressure-Gradient Flat Plate, M = 0.1

a sharp-edged plate which is placed with an angle of 8 degrees into the freestream,
is strong enough to force separation of the turbulent boundary layer.

The size of the shock-induced separation shows a high sensitivity towards the
thickness of the incoming boundary layer, which was adapted by varying the
length of the computational domain upstream of the interaction region. Both
for experiments and numerical simulations, the boundary layer thickness and
skin friction coefficient of the boundary layer upstream of the interaction region
are listed in Table 2.

The shock-wave/boundary-layer interaction region, simulated with the JHh-
v2 model, can be seen in Fig. 10a. The surface pressure distribution in Fig. 10b
indicates an earlier pressure rise when using the JHh-v1 model compared to
the other turbulence models. This is due to bigger extensions of the separation
bubble, both in streamwise and in normal direction, and a higher momentum
loss of the boundary layer.

These observations can be made when comparing velocity profiles in the
boundary layer (Fig. 11). While the JHh-v1 model clearly overestimates the
influence of the shock on the boundary layer, the JHh-v2 model shows better
agreement to the experimental data. Figure 11 furthermore includes profiles of
the square root of the Reynolds-stress components R̃11 and R̃33, respectively,
simulated with the Reynolds-stress models as well as the SST model in compar-
ison to PIV data. Here the improved modeling of turbulent stresses within the
differential Reynolds-stress models, especially their capability of accounting for
Reynolds-stress anisotropy, is clearly visible. The JHh-v1 and JHh-v2 models
predict higher levels of streamwise Reynolds stress than wall-normal Reynolds

Table 2. Boundary layer upstream of the interaction region, X = 260 mm

experiments JHh-v1 JHh-v2 Menter SST
δ0(mm) 11 10.98 10.97 10.94

cf 0.002 0.00214 0.00200 0.00202
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Fig. 11. Oblique-Shock/Boundary-Layer Interaction: velocity and turbulence profiles
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stress, which is confirmed by the experiment. As a result of its inherent assump-
tion of stress isotropy, the SST model is unable to capture these differences.

4.5 Laminar Airfoil NLF9

For simulating the flow around the laminar airfoil NLF9, the TAU transition
module has been used in combination with the earlier discussed turbulence
models. The advanced transition modeling (Sect. 3) was applied to determine
Reynolds stresses directly upstream of the transition point, as a matter of the
simplification to a 2D flow only considering Tollmien-Schlichting instabilities. All
simulations have been performed on a 2D hybrid grid, containing 78000 points.
Measurements of the surface pressure were conducted in the cryogenic Ludwieg
tube (KRG) in Göttingen, furthermore the heat flux was measured to give an
indication of the transition location. The upper part of Fig. 12 shows the compar-
ison of experimentally and numerically achieved surface pressure distributions,
for subsonic free stream conditions (Case 68: M = 0.30, Re = 6 · 106, α = 5◦) as
well as for transonic free stream conditions (Case 95: M = 0.62, Re = 15 · 106,
α = 3◦). To compensate for effects of the wind tunnel side walls, the angle of
attack was reduced in the simulations until the measured lift coefficient was
reached, as listed in the Tables 3 and 4. It is noticable that both turbulence
models show almost similar pressure distributions for both test cases, with a
good agreement to the experimental data.

Table 3. NLF 9 airfoil, Case 68: experimental and numerical flow properties

CL α (xtr/c)upper (xtr/c)lower

experiments 0.9213 5◦ 0.15 − 0.25 0.55 − 0.65
SST 0.9253 3.55◦ 0.130 0.573

JHh-v2 0.9211 3.53◦ 0.114 0.564

Table 4. NLF 9 airfoil, Case 95: experimental and numerical flow properties

CL α (xtr/c)upper (xtr/c)lower

experiments 0.9116 3◦ 0.45 − 0.50 0.55 − 0.60
SST 0.9207 1.4◦ 0.470 0.534

JHh-v2 0.9145 1.4◦ 0.468 0.534

Since skin friction rises drastically after transition to a turbulent boundary
layer, the total value of heat flux between surface and fluid rises likewise. This
behaviour can be seen in the bottom part of Fig. 12. At the lower Mach number
M = 0.30, the heat flux for a turbulent surface seems to be at least −1K/s, con-
sequently the experimental transition location for Case 68 can be estimated to
x/c = 0.15...0.25 (upper surface) and x/c = 0.55...0.65 (lower surface). Develop-
ing a more distinct jump in heat flux at the higher Mach number M = 0.62, the
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Fig. 12. NLF 9 airfoil: pressure distributions (top) and heat flux (bottom) for Case 68
(left) and Case 95 (right)

experimental transition location for Case 95 can be estimated to x/c = 0.45...0.50
(upper surface) and x/c = 0.55...0.60 (lower surface). The transition locations
predicted by the TAU transition module are listed in the Tables 3 and 4, showing
good agreement to the experimental values as well.

5 Conclusion

Improvements of the Low-Re JHh Reynolds-stress turbulence model have suc-
cessfully been implemented and tested in different applications of aircraft aero-
dynamics using the DLR-TAU code.

By considering linear stability analysis, the RSM allows for a physically ad-
vanced modeling of laminar-turbulent transition. Using eigenfunctions of insta-
bilities in the laminar boundary layer, local Reynolds stresses can be derived
and prescribed at the transition point. This approach, before only applicable to
Tollmien-Schlichting instabilities, has been extended to cross-flow instabilities
and tested with the simulation of an infinite swept wing flow.

Furthermore an adjustment of coefficients in the length-scale equation of
the Reynolds-stress model was undertaken, by which the performance of the
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model could be improved for transonic airfoil flows as well as for an oblique-
shock/boundary-layer interaction flow.
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