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Abstract. In this article an investigation of possible coupling strategies
for large numerical models in fluid-structure interaction is given. The
focus is on the development and the assessment of a simplified approach
that uses existing and well verified scattered data interpolation meth-
ods. The interpolation problem is addressed by a pragmatic partitioning
approach of large models. Analysis of the interpolation of deflections
between different discretization of the coupling models are performed,
together with comparisons of static fluid-structure simulations with mea-
sured data of the elastic DLR-F12 wind tunnel model. The loads transfer
between CFD mesh and FE model for different partitioning schemes is
performed and assessed, finally some considerations for the use of the
suggested strategies on large models are presented.

Keywords: fluid-structure interaction for large models, scattered data
interpolation, spatial partitioning approaches, load transfer.

1 Introduction

Aeroelastic analysis generally implies the interaction between a flow field around
an elastic structure and the reverse influence of the structural deformation on
the flow. One important aspect of this problem is the spatial coupling between
the numerical models of flow and structure. Usually, the discretization of these
two models can be of a complete different type. For the calculation of transonic
flow, computational fluid dynamics (CFD) is a standard approach. Here, the
mathematically discretization of the flow field is based on a finite volume ap-
proach. For the calculation of the deformations of the elastic structure, finite
element (FE) modelling is common.

The differing discretization for flow and structure leads to an interpolation
problem between the two models. If an interpolation matrix H exists, then the
deformations ua of the aerodynamic surface mesh can be interpolated from struc-
tural deformations us by using Eq. 1, see [1]

ua = Hus. (1)

Likewise, the aerodynamic forces fa can be transformed to structural forces fs
using the transposed of the coupling matrix H by Eq. 2, see also [1]

fs = H
T fa. (2)
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Eq. 2 guarantees the global equilibrium of forces and momentum as well as
balance of the virtual work on both sides.

In the project COMFLITE, so-called scattered data interpolation methods
with radial basis functions, see [2] or [3], have been used for the calculation
of the interpolation matrix H . Examples for scattered data interpolation with
different radial basis functions applied for fluid structure interaction are given
in [1] and [4]. Radial basis functions can be divided in two types, those with
a global and those with a local character concerning the influence area of the
interpolation function. Radial basis functions with a global influence area include
the thin plate spline [5] and the volume spline [6]. Radial basis functions with
local character use a so-called compact support radius, see [7]. Those functions
can exclude the global influence of interpolation points between parts on the
structure which are far away from each other, like the influence of the deflections
of the horizontal tail plane on the deflections of the wing.

One of the problems for large industrial models, like whole aircraft config-
urations, is the dimension of the interpolation problem. In [8] the build-up of
the interpolation matrix H has been described as of an O(N3) complexity with
O(MN2) operations. Here, N denotes the number of supporting points and M
the number of the interpolation points. The size of the interpolation matrix H is
M cfd×Nfe, where Nfe usually is a certain subset of the nodes of the structure
model (FE model) and M cfd the number of the aerodynamic surface points of
the CFD model. Thus, for fine CFD meshes and FE grids, resulting in a high
number of coupling points, the coupling matrix quickly becomes too large for
the available computer memory and can therefore not be calculated. Moreover,
for large model problems the computation time of the matrix will increase with
increasing number of M and N to an extend which is not reasonable.

In the literature there are examples for the handling of large interpolation
problems. One example is the use of a so-called ”Partition of Unity” approach,
see [9]. In [8] and [10] the approach has been applied to structures relevant
for aircraft and aeronautical applications. In [11], a similar concept to divide
the interpolation region has been used. But neither one of the approaches has
been systematically investigated concerning the influence of the number and the
directions of the partitions, nor have respective simulation results been compared
to experimental data.

The aim of this paper is to describe the development and application of a
simplified partitioning approach for the spatial interpolation problem illustrated
above. Both the interpolation of deflections and the loads transfer are investi-
gated. For interpolation of deflections, the coupling regions will be divided into
equidistant partitions in a defined Cartesian direction, e.g. the x-direction, with
equal overlapping regions. In each overlapping region so-called Hermite poly-
nomial functions are used in order to smooth multiple interpolated values. For
the loads transfer, non-overlapping regions are suggested. The influence of the
number as well as of the directions of the partitions will be investigated system-
atically. Finally, the analysis results will be compared with experimental data.
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2 Scattered Data Interpolation with Radial Basis
Functions

In this section, some general considerations about the scattered data interpola-
tion function will be introduced. The general interpolation function reads

f (xj) = α1 + α2xi + α3yi + α4zi +
N∑
j=1

βjϕ
(
‖x‖ij

)
(3)

with the basis function ϕ
(
‖x‖ij

)
. The radial basis function is a function of the

euclidean distance ‖x‖ij of a supporting point xi to the interpolation point xj

‖x‖ij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (4)

Considering unit displacements for the solution vector f(xj) the interpolation
problem leads to an equation system with the unknown coefficients α and β that
has to be solved [

0 A
AT ϕ

]
·
[
α
β

]
=

[
0
E

]

with the following matrices

A =

⎡
⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xi
y1 y2 · · · yi
z1 z2 · · · zi

⎤
⎥⎥⎦ ; ϕ =

⎡
⎢⎢⎢⎣
ϕ11 ϕ12 · · · ϕ1i

ϕ21 ϕ22 · · · ϕ2i

...
...

. . .
...

ϕi1 ϕi2 · · · ϕii

⎤
⎥⎥⎥⎦ ; E =

⎡
⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ .

The calculation of the unknown coefficients is carried out with
[
α
β

]
=

[
0 A
AT ϕ

]−1

·
[
0
E

]

After the determination of the unknown coefficients the interpolation matrix H
can be calculated by

[H ] =
[
B C

] ·
[
α
β

]

with the following matrices

B =

⎡
⎢⎢⎢⎣
1 x1 y1 z1
1 x2 y2 z2

1
...

...
...

1 xj yj zj

⎤
⎥⎥⎥⎦ ; C =

⎡
⎢⎢⎢⎣
ϕ11 ϕ12 · · · ϕ1i

ϕ21 ϕ22 · · · ϕ2i

...
...

. . .
...

ϕj1 ϕj2 · · · ϕji

⎤
⎥⎥⎥⎦ .

With this interpolation matrix H the vector of the unknown displacements of
the aerodynamic surface points ua can then be calculated on the basis of the
structural displacements us from a finite element solution with Eq. 1.
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2.1 Global and Local Radial Basis Functions

As mentioned above, global and local radial basis functions can be distinguished.
The influence of a global basis function ϕ on the interpolation area is completely
unlimited. Each value of a supporting point thus has an influence on the interpo-
lation points. As a result, the calculated interpolation matrix can become very
large, and it is completely loaded. For large industrial models the interpolation
matrix H can thus exceed the memory of the architecture, as described in the
section above. Examples for global basis functions are the Volume Spline (Eq.
5) and the Thin Plate Spline (Eq. 6.),

ϕ
(
‖x‖ij

)
= ‖x‖ij (5)

ϕ
(
‖x‖ij

)
= ‖x‖2ij log ‖x‖ij (6)

Local basis functions ϕr have an influence area which is driven by a so-called
compact support radius. Here, the influence area of a supporting point Pi to an
interpolation point Pj is restricted through a radius r. In 2-dimensional space
the influence area is a circle, in 3-dimensional space it is a sphere. The compact
support radius r controls the influence of the basis function. In consequence, the
interpolation matrix can become sparse, also reducing the calculation time for
the generation of the matrix.

Examples for local basis functions (with compact support radius) are the
Euclid’s Hat function,

ϕr

(
‖x‖ij

)
= π

((
1

12
‖x‖3ij

)
−
(
r2 ‖x‖ij

)
+

(
4

3
r3
))

(7)

ϕr

(
‖x‖ij

)
= 0 {∀‖x‖ij ≥ 2r} (8)

3 Used Coupling Process Chains

In the project COMFLITE, two essential coupling approaches have been estab-
lished for fluid structure interaction simulations. The first one is the so-called
”discrete approach”, based on structural models described in physical coordi-
nates, the second one is the modal approach, using a modal transformation of
the general equation of motion, expressed in generalized coordinates. One major
difference between the two approaches lies in the spatial coupling. The discrete
approach uses the coupling matrix H in order to interpolate the discrete dis-
placements from structural nodes according to Eq. 1. Likewise, the transposed
matrix HT can be used to transform the aerodynamic forces on the structural
nodes according to Eq. 2. These coupling steps have to be done in each iteration
step, see the left flow chart in Fig. 1.



Coupling Strategies for Large Industrial Models 211

Fig. 1. Left: Process chain of discrete approach. Right: Process chain of modal
approach.

Unlike the discrete approach, the modal approach uses the coupling matrix
H only once. The general equation of motion in generalized coordinates reads

{q̈(t)} + [Ω] {q(t)} =
[
Φ̃
]T

{fs(t)} . (9)

Introducing now the linear approach for the transformation of the aerodynamic
loads according to Eq. 2 in Eq. 9 results in

{q̈(t)} + [Ω] {q(t)} =
[
Φ̃
]T

[H ]
T {fa(t)}

=
[
Φ̃a

]T
{fa(t)} . (10)

Now, on the right hand side of Eq. 10, the aerodynamic forces acting on the
surface of the system, and the structural eigenvalues Φ̃s, are interpolated onto
the aerodynamic surface mesh. This interpolation has to be done only once and
can be performed as a pre-processing step before the coupling procedure by

[
Φ̃a

]
= [H ]

[
Φ̃s

]
(11)

where Φ̃a denotes the modal matrix on the aerodynamic surface grid containing
the interpolated real mode shapes of the structure Φ̃s. Note, that all mode shapes
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Φ̃s have to be normalized to a generalized mass of ”1”. For steady state problems,
like the calculation of the static aeroelastic equilibrium, Eq. 10 reduces to

{q} = [Ω]
−1
[
Φ̃a

]T
{fa} . (12)

The displacements of the aerodynamic surface points can then be calculated by

{ua} =
[
Φ̃a

]
{q} . (13)

The applied coupling process chain for the modal approach can be seen in the
right flow chart of Fig. 1. The modal approach has been successfully used for
fluid-structure interaction simulation in [12] and [13].

4 Partitioning Approach for Large Industrial Models

For the handling of large industrial models, it is suggested to treat the interpo-
lation problem in partitions. A simple partitioning approach can be described
as follows. For a global coupling, the coupling matrix H usually covers the com-
plete interpolation region, i.e. the aerodynamic surface points and the underlying
structural nodes of the considered model. However, it is also possible to divide
the coupling region in n areas Ωi (i = 1...n) and to calculate a separate coupling
matrix for each area HΩi . For the discrete approach and the calculation of the
structural forces this still guarantees that the global equilibrium of forces and
momentum, ensured for the global coupling by Eq. 2, is now also ensured for
each coupling matrix HΩi and therefore also for each local partition

fΩi
s =

(
HΩi

)T
fΩi
a (14)

and ∑
fs =

∑
fa =

n∑
i=1

fΩi
s . (15)

However, for the interpolation of displacements, the division of the interpolation
region would produce discontinuities in the interpolated areas from one partition
Ωi to its neighbor partition Ωi+1. This is true both for the discrete approach, Eq.
1, and for the modal approach using Eq. 11 in order to interpolate the structural
mode shapes onto the aerodynamic surface. As a solution, in this areas it is
advisable to define overlapping regions and to smooth the interpolated values
in the overlap. Therefore, the use of so-called weighting functions, which in sum
give the ”1”

w1 (ξ) + w2 (ξ) = 1 with ξ = x/l. (16)

will be used. The applied weighting functions are the so-called Hermite-
Polynomial functions, see the left graph in Fig. 2, and they are

w1 (ξ) = 1− 3ξ2 + 2ξ3 (17)
w2 (ξ) = 3ξ2 − 2ξ3. (18)
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Fig. 2. Left: Curves of the Hermite-Polynomial functions. Right: Coupling regions
for two partitions and influence area (blue) of the weighting functions (red).

For the applied approach the subareas can be divided automatically in equidis-
tant parts in x-, y- or z-direction with overlapping regions of e.g. 50%. Exem-
plarily, in the right graph in Fig. 2, for two partitions, the overlapping areas
(blue lines) and the influence area of the applied weighting functions (red lines)
are depicted.

5 Test of the Partitioning Approach for Deflections

In the following subsection, the influence of the number of partitions on the qual-
ity of the resulting interpolation is assessed. The partitioning approach has been
tested using the finite element model of the DLR-F12 configuration. The DLR-
F12 configuration is a wind tunnel model of a conventional passenger aircraft
including wing, fuselage and tail. The FE model has been built up in ANSYS,
with approximately 100000 nodes. The model is a good test case for the coupling
strategies as the FE model has a very fine geometrical resolution, particularly
on the surface. For the validation of the interpolation scheme, a reference solu-
tion for the deflections has been obtained using the results of a selected mode
shape calculated on the complete structural mesh. In the next step, the same
mode shape is represented by a subset of nodes. The surface representation of
the mode shapes to be compared to the reference solution is obtained by inter-
polating the remaining surface nodes, which are not part of the subset, based on
the mode shape information of the nodes in the subset. For the test, mode shape
no. 19 has been selected because it involves a lot of local motion on the complete
aircraft, see the left graphic in Fig. 3. A subset of the existing FE nodes defined
as coupling nodes can be seen in the right graphic in Fig. 3. For the test of the
partitioning approach 1126 FE nodes are used which are more or less equally
distributed over the whole region.

The approach is tested for one up to fifty partitions, using always 50% overlap
per coupling region. Divisions have been performed in x-, y-, and z-direction, re-
spectively. For each interpolated mode shape the MAC-values according to Eq. 19
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Fig. 3. Left: Mode shape No.19. Right: FE-Model of the DLR-F12 model and 1126
chosen nodes as coupling points (cyan).

are calculated. The calculated MAC-values will quantify the agreement between
the reference mode shape (i.e. eigenvector) of the FE model and the interpolated
mode shape based on the subset. Values of 1 mean that the eigenvectors match
perfectly, i.e. 100%.

MACij =

(
{Ψ}Ti · {Φ}j

)2
(
{Ψ}Ti · {Ψ}i

)(
{Φ}Tj · {Φ}j

) (19)

{Ψ}i : ith eigenvector of complete FE model from normal modes analysis
{Φ}j : jth interpolated eigenvector of the same FE model based on a

subset of FE nodes

In Eq. 19, Ψi denotes the ith eigenvector of the FE model obtained from an eigen-
value analysis, e.g. by ANSYS or NASTRAN. Φj denotes the jth interpolated
eigenvector of the same FE model using the scattered data interpolation method
described above and the introduced partitioning approach. For each partition the
”Thin Plate Spline” function is used as radial basis function.

The results for this investigation are plotted in Fig. 4. With increasing num-
ber of partitions in z-direction the agreement between interpolated and reference
eigenvector increases equally. For partitions in x-direction the accuracy decreases
slightly. Nevertheless, it is recognizable that the range of the MAC-values be-
tween 99.8% < MAC < 99, 95% is very satisfying. The method works very well
and the dependance of the partitioning approach on the number of partitions is
not very significant. Thus, the number of partitions used for the interpolation
of eigenvalues according to Eq. 11 does not influence the interpolation results
significantly, or, in other words, results of a coupled simulations are expected to
be almost independent from the number of chosen partitions.
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Fig. 4. MAC-Values for different partition directions and their dependency of the num-
ber of partitions

6 Coupled Simulations of the DLR-F12

In this section the suggested partitioning approach will be tested in coupled
simulations using the modal approach in order to calculate the static aeroelas-
tic equilibrium of the DLR-F12 wind tunnel model. The wind tunnel tests have
been performed in order to provide an experimental data basis for code valida-
tion of tools for the prediction of the static aeroelastic equilibrium as well as the
investigation of dynamic derivatives in flight maneuvers, see [14] and [15]. The
wind tunnel tests have been conducted in the low-speed wind tunnel in Braun-
schweig (NWB) under guidance of the DLR Institute of Aerodynamic and Flow
Technology in Braunschweig.

The used finite element model of the DLR-F12 for the presented coupled sim-
ulations has been introduced in Section 5. For the calculation of the aeroelastic
equilibrium with the modal approach, the first 20 mode shapes of the complete
structural model have been interpolated onto the aerodynamic surface mesh of
the corresponding CFD model. The used CFD mesh of the DLR-F12 model is
depicted in the left graph in Fig. 5. The mesh has 12.4 million points and 31.6
million elements. The boundary layer has been resolved with 28 layers and 20.8
million prisms.

For the calculation of the aerodynamic forces, the three-dimensional and time
accurate Reynolds-Averaged Navier-Stokes (RANS) equations have been solved
with the DLR-TAU-Code [16]. For the spatial discretization a centered scheme
with scalar artificial dissipation was used in combination with a backward Euler
implicit scheme solved with LU-SGS iterations [17], using local time stepping for
the integration of the discrete equations. For the calculation of the viscous fluxes
the one-equation Spalart-Allmaras turbulence model [18] in original version was
used to taking into account the turbulence’s in the flow field.
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Fig. 5. Left: CFD mesh of the DLR-F12 wind tunnel model. Right: Deformation and
cp-distribution in static aeroelastic equilibrium state for an angle of attack α0 = 8.0deg.

Four coupled calculations will be compared. The first is the coupled simulation
using just one partition and therefore only one interpolation matrix H . For this
calculation the chosen coupling nodes of the FE model, which are the supporting
points for the interpolation, were reduced to 1126 points continuously distributed
over the whole model, in order to make the interpolation feasible at all. The
second calculation has been carried out by using less FE model information
(199 points) and three partitions in x-direction in order to interpolate the mode
shapes onto the aerodynamic mesh. The third simulation has been conducted by
using 1126 points and 20 partitions, with the partitions being evenly spaced in
y-direction. In the fourth calculation, 43422 points have been used, the coupling
region has been divided into 200 equidistant partitions in y-direction.

In all calculations the overlapping regions have been kept constant, always
covering 50% of the neighbouring partition. In Table 1 the variations of the
parameters for the partitioning approaches are listed.

Table 1. Partitioning parameters for calculations

No. Coupling-Points Parts Direction Overlap Basis Function

1 1126 1 - 50% Thin Plate Spline
2 199 3 x 50% Thin Plate Spline
3 1126 20 z 50% Thin Plate Spline
4 43244 200 y 50% Thin Plate Spline

In Table 2 the significant aerodynamic flow parameters for the simulations are
listed. All calculations have been carried out at the same flow parameters. The
only changes which have been conducted were the variation of the partitioning
parameters according to Table 1. Criteria for the evaluation of the quality of the
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Table 2. Aerodynamic parameters for calculations

Parameter Value Unit

Mach number 0.205723 [−]
Reynolds number 1.28e+06 [−]

reference chord length 0.252625 [m]
reference density 1.22523 [kg/m3]
reference velocity 70.0 [m/s]

reference temperature 288.15 [K]
angle of attack 8.0 [deg.]

different interpolation approaches are the comparison of the resulting pressure
distributions on the wing, as well as the comparison of the wing deflections.

In the right graphic in Fig. 5 above the cp-distributions for the undeformed
model and the model in aeroelastic equilibrium state are depicted. The results of
all simulations, compared to the experimental data for the pressure coefficients
cp, are depicted in Fig. 6. There were two measurement sections on the model for
the recording of the pressure coefficients cp, one on the left wing at y = −0.457m
and one on the right wing at y = 0.457m. As can be seen in Fig. 6, neither on the
left nor on the right wing there is a significant difference between the measured
and the calculated pressure distributions. Furthermore, the pressure coefficients
with respect to the variation of the number and the direction of the partitions
differ only marginally.
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Fig. 6. Left: Comparison of measured and calculated cp-distributions for left wing.
Right: Comparison for right wing.

In Fig. 7 the comparisons with respect to the elastic deformations of the DLR-
F12 wind tunnel model at an angle of attack of α0 = 0.8deg are depicted. The
elastic bending deformation has been compared for the c/4-line along the span of
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the left wing and is denoted with the letter w. It can be observed that the max-
imum elastic deformation w hardly differs between the four interpolation vari-
ations. The maximum deviation between the approaches is Δwmax ∼ 0.35mm.
The same can be observed for the elastic twist, denoted as Δε, representing the
change in the local incidence angle α of the model. For that case, the deviation
between the cases is Δαmax ∼ 0.1deg and can thus also be considered negligible.
Furthermore, all results match well with the measured data.
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Fig. 7. Left: Comparison of measured and calculated displacements with and without
partitioning approach. Right: Comparison of measured and calculated elastic twist.

Summarizing, the results show the functionality of the partitioning approach.
For the DLR-F12 configuration chosen as an example, neither the partition-
ing direction nor the number of partitions, and therefore the number of applied
coupling matrices, significantly influence the results of the static aeroelastic equi-
librium.

7 Applied Partitioning Approach for Load
Transformation

In the following section, the load transfer, i.e. the conversion of the load from
the CFD mesh to the FE nodes, is analyzed. Special focus is on the resulting
local load distribution and momentum. The same partitioning procedure as used
for the interpolation of the deflection can be applied for the load transformation
according to Eq. 2. However, as already mentioned in Section 4, for the load
transfer it is not necessary to generate overlapping regions among the partitions.
Rather, it is advantageous to keep the partitions without overlapping regions, as
smoothing the values in potential overlaps can disturb the equilibrium of forces
and momentum for the actual partition.

In Fig. 8 the cp-distribution and the corresponding forces of the DLR-F12
model in aeroelastic equilibrium, obtained from the coupled calculation described
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Fig. 8. Left: cp-distribution in aeroelastic equilibrium. Right: Corresponding force
distribution.

in Section 6, is shown. As a test case, the corresponding loads are transformed
using at first 199 coupling points and only one coupling matrix H for the com-
plete aircraft. In a next step, more FE points are used for the coupling, and
the interpolation region is divided in equidistant partitions. In each partition,
a separate matrix Hi is be generated and used corresponding to Eq. 2 for the
load transformation. This procedure has been performed for 10 partitions and
762 coupling points, for 20 partitions and 1126 points, and finally using 250
partitions and 43422 points. In all cases, the direction of the partitions has been
kept in y-direction, in order to obtain a local transfer of forces in each parti-
tion, especially on the wing. After the load transformation, the local momentum
around the c/4 line of the right wing has been calculated to assess the quality
of the momentum transfer in the coupling.
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Fig. 9. Left: Momentum around the local c/4-line caused by the CFD loads and
through the transformed FE loads using one coupling matrix and 199 coupling points.
Right: Using 10 coupling matrices and 762 coupling points.

In Fig. 9 and Fig. 10 the results of the load transformation using the partition-
ing approach is depicted. The blue lines in the graphs show the local momentum
around the c/4 line of the right wing caused by the aerodynamic forces on the
CFD mesh. The black line with the delta symbols show the momentum caused
by the transformed loads using one or more partitions and hence several cou-
pling matrices Hi. Thus, in the first case, 199 coupling points are used in just
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Fig. 10. Left: Momentum around the local c/4-line caused by the CFD loads and
through the transformed FE loads using 20 partitions and 1126 coupling points. Right:
Using 200 coupling matrices and 43422 coupling points.

one coupling matrix for the whole region. In the second case, 762 coupling points
are used in 10 non-overlapping partitions in y-direction, each using separate cou-
pling matrices. Likewise, the third case uses 1126 points and 20 partitions, and
case four uses 43422 points and 250 partitions.

The comparison of the results shows well the local influence of the load trans-
formation. One can observe, that with increasing number of supporting points,
and using the partitioning approach in y-direction, the local forces and therefore
also the local momentum around the c/4 line of the wing become more accu-
rate. Using the whole FE model information (43422 points) produces the best
agreement between the momentum caused by the aerodynamic forces and the
momentum Mc/4 on the structure; the error between CFD forces and momen-
tum and FE forces and momentum is very small, see the right picture in Fig.
10. The reason is, of course, that more coupling points allow more information
to be transferred, resulting in a more precise transformation of the aerodynamic
loads onto the structural points.

8 Conclusion

In this article a possible partitioning approach to solve the spatial coupling
problem of large scaled industrial models has been presented. The approach has
been validated for different partitioning strategies with respect to number and
direction of the partitions. The obtained numerical results have been compared
with experimentally determined wind tunnel data. It could be shown that the
approach works very well and that all partitioning choices produce very similar
results for the static aeroelastic equilibrium.

A few conclusions concerning the use of the partitioning approach for large
models can be drawn. First, the analysis shows that automatic partitioning with
overlap of the areas is a suitable choice for the handling of large models. The
resulting coupling matrices are small, the simulation time for the determination
of the coupling matrices and for the interpolation of deflections and the trans-
fer of loads is reduced. Number and direction of the partitions did not have a
significant influence on the reference model.
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For the interpolation of deflections, another pragmatic approach for large
models is the selection of a subset of coupling nodes on the FE side. For this
method, it could be shown that the number of coupling points is not of large
significance for the resulting deflection, provided that a sensible minimum num-
ber of points is selected. Furthermore, the points should be more or less equally
distributed over the coupling region.

Concerning the loads transfer, small spanwise partitions without overlap are
suggested. This way, the local error in force and momentum transfer can be
minimized. As a consequence, it is not necessary to use the same partitions, and
consequently not the same coupling matrices H and HT for the interpolation
of deflection and the transfer of forces between CFD and FE model. While for
global coupling matrices H , the global equivalence of forces and moments is
guaranteed, this might still lead to significant local errors. The use of small
partitions can solve that problem.

Finally, while the findings in COMFLITE support the potential of automated
treatment of large coupling models, it is still advisable to test the convergence
of the coupling procedure for each new configuration. The current paper has
provided criteria for such a test.
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