
AMG in TAU: Adjoint Equations and Mesh
Deformation

M. Förster1 and A. Pal2

1 Fraunhofer Institute for Algorithms and Scientific Computing SCAI
Schloss Birlinghoven, 53754 Sankt Augustin, Germany
2 Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Lilienthalplatz 7, 38108 Braunschweig
malte.foerster@scai.fraunhofer.de,

anna.pal@dlr.de

1 Introduction

Dealing with aerodynamic and aeroelastic tasks typically involves large and ill
conditioned linear systems of equations. Usually the solution of these equations
is a time critical component of the overall simulation. While common one-level
solution techniques tend to be rather inefficient, the appliance of a hierarchical
method like algebraic multigrid (AMG) seems to be more promising in order to
deal with the increasing demands for the linear solver. However, due to various
sources of stiffness within the discretized problem, applying AMG in a straight-
forward way is not always possible. In the context of ComFliTe, the usage of
classical AMG was evaluated for mesh deformation applications based on linear
elasticity. For the solution of flow adjoint equations new and more sophisticated
AMG methods were developed. All approaches have been integrated into the
state-of-the-art linear solver library SAMG. The following report describes the
modified algorithms utilizing AMG and summarizes the results obtained within
the DLR simulation codes throughout the project.

2 Adjoint Equations

2.1 Governing Flow Equations and Their Discretization

The governing flow equations considered in this work are the steady compress-
ible Reynolds-averaged Navier-Stokes equations supplied with Spalart-Allmaras
turbulence model [1]. In conservative form, the equations are written as

∇ · (f c(W )− fv(W )) = S(W ), (1)

whereW is the conservative state vector defined asW=(ρ, ρu, ρv, ρw, ρE, ρν̃)T ,
ρ is the density, U = (u, v, w)T is the velocity vector, E is the total energy,
and ν̃ is the turbulence variable in the Spalart-Allmaras model. f c(W ) and
fv(W ) are vectors of convective and viscous fluxes, respectively, and S(W ) =
(0, 0, 0, 0, 0, s(W ))T denotes a source term.

N. Kroll et al. (eds.), Computational Flight Testing, Notes on Numerical 1
Fluid Mechanics and Multidisciplinary Design 123,
DOI: 10.1007/978-3-642-38877-4_1, © Springer-Verlag Berlin Heidelberg 2013



2 M. Förster and A. Pal

A finite volume discretization is performed on unstructured grids of non-
overlapping dual cells of a hybrid primary grid. For the discretization of con-
vective fluxes in mean-flow equations we employ the Jameson-Schmidt-Turkel
(JST) scheme with either scalar or matrix dissipation. The convective fluxes in
the turbulence equation are discretized with an upwind scheme with piecewise-
constant face reconstruction. Viscous flux discretization in the mean-flow equa-
tions is done either via thin shear layer (TSL) approximation or via Green-Gauss
formula. TSL approximation is always employed for viscous fluxes in the turbu-
lence equation. For more details concerning the employed discretization scheme
we refer to the description of discretization used in DLR TAU-code, [2].

2.2 The Discrete Adjoint Equations

An important and also rather costly component of gradient-based optimization
is the computation of gradients of the cost function with respect to the para-
meters of the problem (a set of so-called design variables). The adjoint method
provides an efficient way of doing this for a large amount of design variables.
The effort required for this evaluation is only weakly dependent on the number
of design variables.

For convenience of representation, we write the finite volume discretization of
the system (1) in the following way

R(W,X,D) = 0, (2)

where R, called the residual of the discretizations, contains the discretization of
both, inviscid and viscous fluxes as well as the turbulence source terms. D is a
set of design variables and X = X(D) is the computational mesh.

Suppose we want to minimize a cost function I(W,X,D) with respect to the
set of design variables D, subject to constraints

I(W,X,D) → min
D
,

R(W,X,D) = 0,

T (X,D) = 0 .

(3)

where constraint T (X,D) describes the mesh deformation. Following the adjoint-
based approach, the gradient dI/dD can be computed via the formula:

dI

dD
=
∂I

∂D
+ ΛT

∂R

∂D
+ Λ̂T

∂T

∂D
, (4)

where Λ and Λ̂ are so-called flow- and mesh- adjoint variables, which are obtained
from solving the flow-adjoint and mesh-adjoint equations, respectively. In this
work we are solely concerned with solution of the flow-adjoint equations, which
can be written as (

∂R

∂W

)T
Λ = −

(
∂I

∂W

)T
. (5)



AMG in TAU 3

An advantage of the adjoint-based approach is that in order to evaluate the
gradient of I with respect to any number of design variables, the adjoint equation
must be only solved once.

Note that system (5) is a large sparse system of linear algebraic equations,
which is generally very stiff for large practical applications, and thus requires a
powerful linear solver. In this work we develop iterative solution methods for (5)
which are based on algebraic multigrid.

3 Algebraic Multigrid

As opposed to geometric multigrid methods, algebraic multigrid does not explic-
itly use geometric information of a problem. All coarse levels, inter-grid transfer
and coarse level operators are constructed purely algebraically, based only on
the entries of a system matrix. Basic ideas of AMG methods were first intro-
duced in the early 1980’s by Brandt, McCormick, Ruge and Stüben [3], [4], [5],
[6]. As geometric multigrid, algebraic multigrid relies on the efficient interplay
of smoothing and coarse grid correction. However, algebraic multigrid is based
on a different definition of smoothness.

In geometric multigrid the definition of smoothness depends on the chosen grid
hierarchy. The error is called smooth if it can be approximated by a geometric
interpolation of the correction from the next coarser grid. In contrast to this, in
AMG coarser levels are constructed in such a way that all error frequencies are
successfully reduced by the combination of smoothing and coarse grid correction.
That is, the low frequencies or smooth error components that have to be taken
care of in the correction step are indirectly defined by those components which
are slow to converge by the chosen smoothing procedure.

The classical AMG algorithm consists of two phases - the setup phase and the
solution phase. In the setup phase the coarse levels, intergrid transfer operators
and coarse grid operators are constructed. During the solution phase, all AMG
components including the smoother are employed in a multigrid cycling algorithm.

The construction of coarse levels and interpolation operators in a classical
AMG method assumes M-matrices, which typically arise in the discretizations
of elliptic scalar PDEs. Based on the graph of strong couplings between variables,
the classical coarsening process tries to find an independent subset of nodes that
maximizes the F(ine) to C(oarse) connectivity in order to allow for efficient
interpolation routines from C to F with weights based on the matrix entries.
Restriction operators are defined as the transpose of interpolation, and galerkin
operators are used as coarse-grid operators (see e.g. [6]). For s.p.d. problems,
this choice of operators ensures a variational principle which guarantees that
coarse-grid correction processes are optimal w.r.t. the energy norm.

For the class of symmetric positive definite M-matrices classical AMG is
known to be a very robust and efficient solver. However, extensions of classi-
cal AMG are required in order to solve efficiently non-elliptic PDEs or systems
of PDEs. In both cases the matrices coming from the discretization are usually
far from s.p.d. M-Matrices. Non-symmetry usually does not cause problems for



4 M. Förster and A. Pal

AMG as long as the given matrix is still definite. However, large (both positive
and negative) off-diagonal entries, often leading to a strong violation of a diag-
onal dominance in the matrix, typically cause problems for algebraic multigrid.
Development of special extensions of AMG are necessary to treat such problems
efficiently. Extensions are also required in order to solve discretized systems of
PDEs with AMG, where one has to distinguish different physical quantities and
their different couplings in the linear system.

4 Defect Correction

Our goal is the solution of linear problems (5) corresponding to second-order
accurate finite volume discretizations. Due to a typically low numerical dissipa-
tion in these discretizations the resulting linear systems are often very stiff with
no diagonal dominance. Therefore, the construction of an efficient numerical
method for these linear problems is a challenging task. In order to compensate
for the lack of diagonal dominance, many iterative solution methods involve the
introduction of a pseudo-timestep in order to converge to a steady state.

The defect correction approach [7], [8] is another alternative for solving second-
order accurate problems. It employs an auxiliary first-order accurate discretiza-
tion of the same continuous problem. The benefit of this method is due to the
fact that a first-order accurate system is usually better-conditioned, sparser, and,
in general, allows more efficient solution with iterative methods.

4.1 The DC Algorithm

Let us rewrite our target second-order accurate problem (5) in a compact way,
employing common notations of linear algebra:

Ax = b, (6)

where

A =

(
∂R

∂W

)T
, x = Λ, and b = −

(
∂I

∂W

)T
.

If operator A1 is a first-order accurate linear operator, corresponding to the
same underlying problem, then the defect correction algorithm can be written
as following

– Choose an initial approximation x(0) to the solution of (6)
– For n = 1, 2, . . . until convergence do:

1. Compute a correction e(n) by solving

A1e
(n) = b −Ax(n−1) (7)

2. Update solution vector by adding the correction

x(n) = x(n−1) + e(n)

– End of do loop.



AMG in TAU 5

Obviously, the direct solution of the stiff target problem is avoided, since in (7)
the second-order discretization is only used to evaluate the right-hand side vec-
tor. Instead, a first-order system with the same matrix but different right-hand
sides must be solved in each iteration of the algorithm. Therefore, since a large
number of first-order problems has to be solved in this method, the efficiency of
the employed linear solver is crucial to the performance of the algorithm as a
whole.

4.2 The Choice of First-Order Accurate Operator

In order to construct a suitable first-order accurate operator corresponding to
problem (6), we modify the underlying discretization (2). Namely, we simplify
the dissipation term so that the resulting operator has only the immediate-
neighbors fill-in. It corresponds to getting rid of the pressure switch and second
order differences as well as discarding Martinelly coefficients in case they are
used in the dissipation formula. If the discretization of a viscous flux relies on
the Green-Gauss formula, in the first-order operator we switch to thin shear
layer (TSL) discretization instead.

5 AMG for Adjoint Equations

As practical experience shows, applying AMG directly to linear systems based
on second order discretizations within the context of CFD is not favorable. In
the following we will describe two different strategies on how to combine the
AMG methodology with the idea of defect correction.

5.1 AMG Components

In this section we will describe the components that form the AMG method
used in the defect correction strategies described later on. In principal, every
AMG method consists of a coarsening, smoothing and cycling strategy. As for
the cycling, we use a simple V-cycle with a direct LU-solver for the coarsest
grid.

Coarsening Strategy. Given the matrix for AMG corresponding to a linear sys-
tem of equations with multiple physical unknowns, the choice of a coarsening
strategy is not trivial. In our method we choose an aggregation type approach
in combination with piecewise constant interpolation. Aggregates are selected to
ensure a convection-determined alignment away from the body of an aircraft as
well as to preserve the direction of aggregates in the boundary layer near viscous
walls, as seen in Figure 1.

The choice of aggregates is identical for every physical unknown. The con-
struction of the aggregates is based on a scalar matrix with a point level con-
nectivity pattern. This matrix can be either the diagonal block of one ’primary’



6 M. Förster and A. Pal

Fig. 1. 1st and 2nd-level aggregates on NACA0012 with predefined clustersize 4 for
Euler computation (left and middle), 1st-level aggregates on flat plate directly above
the horisontal viscous wall for RANS computation (right)

unknown (like density) or some norm using the information of the whole block.
Nevertheless, piecewise constant interpolation has to be applied separately for
every physical unknown afterwards.

Smoothing. For scalar elliptic problems AMG can usually use cheap variable-
based smoothers as Gauss-Seidel or w-Jacobi. For our application we focus on
a more robust smoothing algorithm in form of ILU(0). Prior to building the
ILU decomposition, a reordering of variables according to the Reverse-Cuthill-
McKee algorithm (RCM) has proven to be very efficient. Furthermore, two ILU-
iterations are made in each pre- and post-smoothing step.

5.2 Outer Defect Correction (SAMG2)

The most straightforward way to integrate AMG into the defect correction pro-
cess is to apply it as a solver to the defect equation within each defect correction
step (7) (as described in Section 4). While the DC-residuals are computed based
on the 2nd order linear problem, the system passed to AMG is only of first order
accuracy. For increased stability of the overall approach, the defect correction
loop itself is employed as a preconditioner within a Krylov method, namely GM-
RES(100). To ensure the linearity of the preconditioner we have to perform a
fixed number of iterations within the AMG. For the presented results the number
of AMG iterations is fixed to one. The right part of Figure 2 shows the structure
of a single SAMG2 iteration.

The computational cost of one preconditioning step is dominated by the cost
of the ILU within the AMG-Smoothing process. Given an AMG operator com-
plexity of about 1.25 we can estimate the overall ILU cost to be about 5 times
the cost of a standard ILU(0) iteration on the 1st order matrix. Transfer op-
erators as well as residual evaluations within AMG steps cost less than 1 ILU(0)
approximately. The residual evaluation of the 2nd order matrix within the de-
fect correction does not need to be computed, since it is already given by the
GMRES outer loop. While the cost for the GMRES is independent of the choice
of the preconditioner we will ignore it.



AMG in TAU 7

Fig. 2. Structure of one Inner-DC/SAMG1 (left) and Outer-DC/SAMG2 (right) iter-
ation

Looking at Table 1 one can see that the memory requirements for the SAMG2
approach are even less that for a GMRES/ILU(0) combination. This is due
to the fact that most data constructs are based upon the much smaller first
order matrix rather than the large 2nd order operator. Overall the approximate
memory consumption is about 2.2 times the amount needed for explicit storage
of the main 2nd order system.

Table 1. Approximate Memory Requirements. 1 Unit corresponds to the explicit stor-
age for the Jacobian 2nd order.

ILU(0) SAMG2 SAMG1
TAU PETSc Matrix (2nd order) 1 1 1
TAU GMRES(100) 0.5 0.5 0.5

SAMG matrix copy (2nd order) - - 1
SAMG matrix copy (1st order) - 0.25 0.25
SAMG Hierarchy - 0.1 0.1

ILU(0) first level 1 0.25 0.25
ILU(0) Hierarchy - 0.1 0.1

2.5 2.2 3.2

AMG vs. 1-level Solver. Since the development of an AMG method compared
to an ILU(0) solver is quite time consuming, one could ask whether it might be
sufficient to use a one-level method within the defect correction scheme. Although
AMG usually has much better convergence rates, there is no indication if - and
to what extend - this accuracy is transferable to the outer equation.



8 M. Förster and A. Pal

Therefore we will also compare SAMG1 and SAMG2 to a one-level solver
within the outer defect correction algorithm. As we will see in our benchmarks
later on, using the one-level solver the convergence rates and therefore the num-
ber of iterations needed to achieve the desired accuracy grow significantly. Over-
all the growth in iteration count is stronger than the reduction in run time
per iteration, leading to a less efficient method. This statement holds for the
full spectrum of test examples in Section 7. Even more drastically, some of them
(e.g. MEGAFLUG, see Table 2) tend to diverge without the use of a hierarchical
solver within the defect correction.

5.3 Inner Defect Correction (SAMG1)

Another possibility of combining AMG and defect correction for the solution of a
2nd order accurate linear system is to integrate DC within the smoothing process
of the first AMG level. While AMG logically works directly on the second order
matrix, most operations within are mapped to the first order problem. Also the
creation of the coarser levels will be based on the first order matrix, giving the
same coarse-grid correction operator as used for SAMG2. In a sense SAMG1
corresponds to an integration of DC within AMG rather than the other way
around. As in the SAMG2 algorithm the whole iteration is accelerated via the
Krylov method GMRES(100). The left part of Figure 2 shows the basic structure
of a single SAMG1 iteration in comparison to SAMG2.

The core operations of one preconditioning step based on SAMG1 is almost
the same as that for SAMG2. The only difference is the matrix used for resid-
ual evaluation on the finest grid. All five residual evaluations - four within the
Richardson iteration of ILU(0) and one for the coarsegrid defect equation - will
be based on the much larger matrix 2nd order instead of the 1st order matrix.
This has a quite large effect on the run time, making one iteration of SAMG1
about twice as costly as one iteration of SAMG2.

The only difference in memory usage of the SAMG1 variant compared to
SAMG2 is the explicit storage of the 2nd order Jacobian within the AMG library.
Since residuals based on the 2nd order operator have to be evaluated within
SAMG as well as within the GMRES, the data currently has to be stored in
both environments, increasing the overall memory requirements from 2.2 up to
3.2 times the 2nd order operator.

6 Parallelization

In a parallel environment the intuitive way of processing large data sets is via
domain decomposition. However, in the context of linear solvers this is usually
not sufficient. Many components used for or within linear solution processes are
inherently sequential (Gauss Seidel, ILU, ...) and can therefore only be applied
for solving the domains separately from each other. Although these local solu-
tions can be merged, e.g. via a global Jacobi smoothing or a Krylov method,
the resulting approximation quality strongly suffers depending on the degree of
parallelism.



AMG in TAU 9

The parallel AMG cycle itself is a fully parallel algorithm, because it only
consists of sparse matrix vector multiplications. Given a fixed hierarchy and a
parallel smoothing process (like w-Jacobi), AMG will produce exactly the same
results for any given number of processors involved. Nevertheless, AMG’s per-
formance strongly depends on the setup process and the choice of the smoothing
method.

Parallel Coarsening. As described in Section 5, we use an aggregation type
strategy for coarsening. Since the used algorithm is inherently sequential, the
coarsening is done independently for each subdomain, leading to different coars-
enings for varying processor counts. However, the quality of the coarsenings
is only affected near the boundaries of each domain. To reduce the resulting
negative effect on the convergence rates, we reduce the aggregation size at the
boundaries, effectively limiting the amount of parallelism of the coarsening. In
other words, we might end up with a slightly reduced coarsening rate in order
to keep stable convergence rates.

Parallel Smoothing. AMG smoothing within our solution approaches is based
on ILU(0). Since ILU is not parallel at all, we can only apply it domain-wise
as described at the start of this section. To merge the results given by each
subdomain we use the additive Schwarz method (ASM), effectively overlapping
the subdomains at their boundaries by a given depth. In our methods, we chose
the depth 1.

Parallel vs. Numerical Scalability. AMG methods - if applied to proper problems
- are known to be scalable. In terms of numerical methods this means that the
computational effort to solve to a given accuracy grows linearly with the size
of the problem. However, this understanding of scalability often conflicts with
the definition of parallel scalability which is often used to measure the efficiency
of a parallel program in terms of speedups gained for increased numbers of
participating cores.

In theory the parallel scalability of the AMG based algorithms of section 5
should only be limited by amount of boundary points in comparison to the inner
points of each domain. Huge amounts of halo data will increase communication
cost within all sparse matrix vector operations as well as the local ILU compute
load via the ASM overlap. The numerical effects introduced by parallelizing
coarsening and smoothing can only be measured by looking at the convergence
rates. In Figure 3 the corresponding results are shown for the test case VELA
(see Table 2) running on the CASE cluster of the DLR. The (strong) parallel
scalability in terms of run time reduction can be shown up to moderate number
of processors, intuitively limited by the size of the model. In addition, numerical
scalability seems to be ensured for even higher processor counts.



10 M. Förster and A. Pal

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

3 6 9 12

ru
nt

im
e[

s]

number of processes

SAMG2

 0

 50

 100

 150

 200

 250

4 8 16 32 48 64

nu
m

be
r 

of
 it

er
at

io
ns

number of processes

SAMG2

Fig. 3. Strong scaling of VELA test case (EULER), solver accuracy eps=1d − 10.
Parallel scaling of runtime in seconds (left), numerical scaling in terms of iteration
count (right).

7 Results

7.1 Considered Configurations

In this section we present the results obtained from extensive testing of the
solvers for various configurations. The configurations, computational grids, flow
parameter settings as well as employed cost functions are summarized in Table 2.
As one can see from the table, one Euler example was considered, while the rest
of test cases covers the solution of RANS equations. Concerning computational
grids, all but one of RANS test cases are discretized on hybrid grids, and only one
(Dornier 728) is discretized on a structured grid, whereas the Euler equations are
solved on an unstructured grid. A transonic flow regime is considered in all the
test cases except for DLR F12 configuration, where a subsonic flow is simulated.
As a cost function we used either lift or drag.

Table 2. Summary information on considered test cases. Abbreviations used in the
table: U. - unstructured grid, H. - hybrid grid, S. - structured grid, M - million points.

Configuration Equations Grid type/size Mach nr. Reyn. nr. Angle Cost fn.
VELA Euler U. 1.1 M 0.85 - 1.8 drag
LANN1 RANS S. 1.1 M 0.82 3.7 · 106 0.6 drag
LANN2 RANS H. 5.2 M 0.82 5.4 · 106 0.59 drag

Dornier 728 RANS S. 1.9 M 0.8 20 · 106 0 lift
DLR F6 RANS H. 5.8 M 0.75 3 · 106 0.1 drag
DLR F12 RANS H. 9.6 M 0.21 1.3 · 106 0 lift
Megaflug RANS H. 5.8 M 0.9 3.3 · 106 2.0 lift
DPW 4 RANS H. 11.7 M 0.85 5 · 106 2.3 drag



AMG in TAU 11

7.2 Convergence

The following results are all based on the TAU-configurations in Table 2 in
combination with the algorithms SAMG1 and SAMG2 described in Section 5.
Additionally a 1-level approach based on SAMG2 is shown for comparison. More
precisely this approach only performs four steps of ILU(0) with RCM-reordering
within each defect correction step. Results are shown for scalar dissipation (SD)
and/or matrix dissipation (MD). Note that the matrix dissipation operator is
modified as compared to the standard one used in TAU code. Namely, the pres-
sure switch is computed differently, and moreover, the Martinelly coefficients
are omitted. The latter has a positive effect on performance of defect correc-
tion. Note that this modified dissipation operator is not a standard dissipation
operator used in TAU code and it is currently under evaluation.

As shown in Figure 4, test case LANN1 can be solved by all three methods.
SAMG1 needs only half of the iterations of SAMG2 to reach the desired accuracy.
However, due to the increased run time per iteration as explained in Section
5.3 the absolute run time benefit is much smaller. For LANN2 the convergence
advantage of SAMG1 disappeared, making SAMG2 the fastest method. Note
that in comparison to 1-level - due to the harsh coarsening - the computation
for a single SAMG2 iteration is only slightly more expensive.

Fig. 4. Convergence of LANN1(left) and LANN2(right)

Figure 5 shows the convergence histories for two large models, DPW4 and
MEGAFLUG. Results are shown for scalar dissipation (SD) and matrix dissipa-
tion (MD). Additionally, one test run for each model was computed with Green-
Gauss (GG) viscous flux discretization instead of default TSL. With MD fewer
defect correction steps are needed to reach the desired accuracy. However, the
corresponding 1st order system becomes harder to solve. While SAMG2 can still
handle the increased difficulty, the ILU(0) within the DC-Smoothing of SAMG1
is not sufficient anymore. Therefore the following results of MD based config-
urations did not converge with SAMG1 anymore. As for DPW4 the multilevel



12 M. Förster and A. Pal

approaches still have a large advantage in terms of convergence rates over their
1-level counterparts, looking at MEGAFLUG there is currently no alternative
for a hierarchical method.

Fig. 5. Convergence of DPW4(left) and MEGAFLUG(right)

Table 3 summarizes the results for all major test cases that were considered
within the project. Due to the best overall performance and stability absolute run
times are only shown for the SAMG2 approach. All benchmarks were computed
on the CASE-cluster at the DLR based on TAU revision 15915.

Table 3. Absolute run times of SAMG2 on CASE cluster (Accuracy 1e− 10)

Abs. runtimes
Configuration #points Jacobian #procs SD MD
Vela 1.1 M 20 GB 8 10m 6m
LANN1 1.1 M 11 GB 4 2h13m 8m
LANN2 5.2 M 83 GB 20 50m 16m
Dornier 728 1.9 M 20 GB 8 3h2m 21m
DLR F6 5.8 M 110 GB 24 3h26m 3h48m
DLR F12 9.6 M 190 GB 12 4h53m 2h7m
Megaflug 5.8 M 104 GB 24 2h2m 52m
DPW 4 11.7 M 170 GB 44 2h37m 46m

8 Mesh Deformation

8.1 Problem Description

In this part of our work, we are concerned with solving large sparse linear systems
generated by a mesh deformation tool. In this tool, displacements of mesh nodes



AMG in TAU 13

are governed by equations of linear elasticity. As input for this tool, a deformation
of mesh surface is provided, which supplies Dirichlet boundary conditions for the
elasticity problem. As output of this tool, from the original mesh and a deformed
mesh surface, a deformed volumetric mesh is generated. Furthermore, in order to
prevent collapsing of mesh cells during mesh deformation process, the magnitude
of deformation is made locally dependent on sizes and shapes of mesh cells. This
is achieved by introducing artificial element stiffness via an additional parameter,
which controls stiffness of elements in the elasticity system. For the details of
this particular elasticity model based on artificial element stiffness we refer to
[9]. The discretization of the system is performed by classical continuous finite
elements with linear shape functions on hybrid grids.

The resulting linear systems are often very stiff. The following factors increase
this stiffness even further. Firstly, cells in the thin boundary layer regions have
typically very high aspect ratios and introduce anisotropy into the linear system
and therefore have a negative effect on its conditioning. Secondly, the element-
based artificial stiffness induces further negative influence on the conditioning of
the linear system.

8.2 AMG Method

In order to solve arising linear systems we employ algebraic multigrid. In partic-
ular, we suggest the unknown-based AMG approach. Unknown-based approach
is a solution approach for coupled systems of PDEs, in which the coarsening
process is done separately for the physical quantities.

This means that for each physical unknown its own coarse grid hierarchy via
an individual coarsening process is built. The coarsening is performed via one-
stage classical Ruge-Stüben algorithm, and it is done aggressively on the finest
level. Interpolation is also done separately for each physical unknown, but the
Galerkin matrices are computed with respect to the full set of unknowns. As a
smoother we employ unknown-wise Gauss-Seidel, which causes that the resulting
error is smooth separately for each physical unknown. GMRES method is applied
as an accelerator in order to stabilize the solution approach.

8.3 Results

The test cases considered in this work are summarized in Table 4.
In case of three-element airfoil TC11, the deformation is induced only on the

flap, which is depicted on the left side in Figure 6. For DLR F6 test case, the
deformation is a 20 degrees rotation around y-axis as depicted on the right side
of Figure 6 (pitching motion). For both structured and unstructured Dornier 728
test cases, prescribed deformation corresponds to a 10 degrees rotation around
y-axis.

The test cases were converged until machine precision in order to demonstrate
that no stagnation of convergence occurs at lower residual values. Convergence
histories for all the test cases are gathered on the left and right side of Figure
7. For comparison, convergence of the corresponding one-level solution approach



14 M. Förster and A. Pal

Table 4. Summary information on mesh deformation test cases. Abbreviations used
in the table: U. - unstructured grid, H. - hybrid grid, S. - structured grid, M - million
points.

Configuration 2D / 3D Grid type / size
TC11 2D H. 1.1 M
DLR F6 3D S. 1.1 M
Dornier 728 3D S. 1.9 M
Dornier 728 3D U. 5.2 M

Fig. 6. Given surface deformation for TC11 (left) and DLR F6 (right) test cases

Fig. 7. Convergence of SAMG and of one-level solver for mesh deformation test cases

(unknown-wise Gauss-Seidel stabilized with BiCGStab) is presented in this figure
as well. Note that each BiCGStab iteration includes two steps of Gauss-Seidel,
while each step of GMRES includes only one step of AMG. As one can see, solver
based on algebraic multigrid converges very fast, reaching 15 orders reduction in



AMG in TAU 15

less than 100 iterations for all presented test cases. Moreover, from the conver-
gence plots one can see that convergence does not slow down much from iteration
to iteration. In the same time, convergence of the considered one-level solver is
not stable and very much test case dependent: while it shows fast convergence
for the DLR F6 case, a divergence occurs in case of structured Dornier 728. One
can also observe that convergence of the one-level solver in general deteriorates
from iteration to iteration.

9 Conclusion

Within ComFliTe AMG has been successfully employed in the CFD as well as
mesh deformation applications. A new method inspired by defect correction has
been described for the solution of the adjoint equations. This method has been in-
tegrated and extensively tested within the DLR TAU code. The resulting method
has been found to be very efficient. Without the need for complicated parame-
ter optimization a single solver configuration managed to handle all considered
test cases. Additionally, AMG has been integrated in the mesh deformation tool
provided by the DLR. Based on classical strategies we observed a significant
increase in performance compared to conventional one-level solvers. Both ap-
proaches were implemented and tested in parallel, therefore being capable of
meeting the challenge of even larger, state-of-the-art models.

References

1. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows.
La recherche aérospatiale 1(1), 5–21 (1994)

2. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-
dimensional configurations employing the dlr-tau-code. AIAA Paper 167 (1997)

3. Brandt, A., MacCormick, S., Ruge, J., Survey, N.G., of Scientific Research, A.F.O.,
Foundation, N.S.: Algebraic multigrid (AMG) for automatic multigrid solution with
application to geodetic computations (1983)

4. Stüben, K.: Algebraic multigrid (amg): experiences and comparisons. Applied Math-
ematics and Computation 13(3-4), 419–451 (1983)

5. Brandt, A.: Algebraic multigrid theory: The symmetric case. Applied Mathematics
and Computation 19(1), 23–56 (1986)

6. Ruge, J., Stüben, K.: Algebraic multigrid. Multigrid Methods 3, 73–130 (1987)
7. Böhmer, K., Hemker, P., Stetter, H.: The defect correction approach (1984)
8. Koren, B.: Multigrid and defect correction for the steady navier-stokes equations.

Journal of Computational Physics 87(1), 25–46 (1990)
9. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure

interactions with large displacements. Journal of Applied Mechanics 70, 58 (2003)


	AMG in TAU: Adjoint Equations and Mesh Deformation
	1 Introduction
	2 Adjoint Equations
	2.1 Governing Flow Equations and Their Discretization
	2.2 The Discrete Adjoint Equations

	3 Algebraic Multigrid
	4 Defect Correction
	4.1 The DC Algorithm
	4.2 The Choice of First-Order Accurate Operator

	5 AMG for Adjoint Equations
	5.1 AMG Components
	5.2 Outer Defect Correction (SAMG2)
	5.3 Inner Defect Correction (SAMG1)

	6 Parallelization
	7 Results
	7.1 Considered Configurations
	7.2 Convergence

	8 Mesh Deformation
	8.1 Problem Description
	8.2 AMG Method
	8.3 Results

	9 Conclusion
	References




