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Preface

This volume presents a set of papers accompanying the lectures of the 13th
International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems (SFM). This series of schools addresses the use
of formal methods in computer science as a prominent approach to the rigorous
design of the above-mentioned systems. The main aim of the SFM series is to
offer a good spectrum of current research in foundations as well as applications
of formal methods, which can be of help for graduate students and young re-
searchers who intend to approach the field. SFM 2013 was devoted to dynamical
systems and covered several topics including chaotic dynamics, information the-
ory, systems biology, hybrid systems, quantum computing, and automata-based
models and model checking.

The five papers collected in this volume represent the broad range of topics
of the school. The paper by Köpf and Rybalchenko addresses the automation
of the analysis of quantitative information-theoretic confidentiality properties
through approximation and randomization techniques. Gratie, Iancu, and Petre
introduce some of the basics of modeling with ODEs in biology by focussing on
computational, numerical techniques for reaction-based models. The paper by
Brim, Češka, and Šafránek presents a selection of approaches used for modeling
biological systems and formalizing their interesting properties in temporal log-
ics, together with high-performance model-checking techniques. Bortolussi and
Hillston describe recent work on the use of fluid approximation techniques in
the context of stochastic model checking for population models in which a large
number of individual agents interact. Finally, Pachos’s paper is an introduction
to topological quantum computation.

We believe that this book offers a useful view of what has been done and what
is going on worldwide in the field of formal methods for dynamical systems. We
wish to thank all the speakers and all the participants for a lively and fruitful
school. We also wish to thank the entire staff of the University Residential Center
of Bertinoro for the organizational and administrative support.

June 2013 Marco Bernardo
Erik de Vink

Alessandra Di Pierro
Herbert Wiklicky
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Automation of Quantitative Information-Flow Analysis

Boris Köpf1 and Andrey Rybalchenko2

1 IMDEA Software Institute, Spain
2 Technische Universität München, Germany

boris.koepf@imdea.org,
rybal@in.tum.de

Abstract. Quantitative information-flow analysis (QIF) is an emerging tech-
nique for establishing information-theoretic confidentiality properties. Automa-
tion of QIF is an important step towards ensuring its practical applicability, since
manual reasoning about program security has been shown to be a tedious and
expensive task. In this chapter we describe a approximation and randomization
techniques to bear on the challenge of sufficiently precise, yet efficient computa-
tion of quantitative information flow properties.

1 Introduction

The goal of an information-flow analysis is to keep track of sensitive information during
computation. If a program does not expose any information about its secret inputs to
unauthorized parties, it has secure information flow, a property that is often formalized
as noninterference. In many cases, achieving noninterference is expensive, impossible,
or simply unnecessary: Many systems remain secure as long as the amount of exposed
secret information is sufficiently small. Consider for example a password checker. A
failed login attempt reveals some information about the secret password. However, for
well-chosen passwords, the amount of leaked information is so small that a failed login-
attempt will not compromise the security of the system.

Quantitative information-flow analysis (QIF) is a technique for establishing bounds
on the information that is leaked by a program. The insights that QIF provides go be-
yond the binary output of Boolean approaches, such as non-interference analyzers. This
makes QIF an attractive tool to support gradual development processes, even without
explicitly specified policies. Furthermore, because information-theory forms the foun-
dation of QIF, the quantities that QIF delivers can be directly associated with operational
security guarantees, such as lower bounds for the expected effort of uncovering secrets
by exhaustive search.

Automation of QIF is an important step towards ensuring its practical applicability,
since manual reasoning about program security has been shown to be a tedious and
expensive task [45]. Technically, successful automation of QIF must determine tight,
yet efficiently computable bounds on the information-theoretic characteristics of the
program. For deterministic programs with uniformly distributed inputs, these charac-
teristics can be expressed by a partition of the secret program inputs. In this partition,
each block is defined by the preimage of some program output. The computation of
some information-theoretic characteristics, e.g., Shannon entropy, from this partition

M. Bernardo et al. (Eds.): SFM 2013, LNCS 7938, pp. 1–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 B. Köpf and A. Rybalchenko

requires the enumeration of all blocks and the estimation of their respective sizes. Other
measures, e.g., min-entropy, only depend on the number of blocks in the partition. Ex-
act computation for both kinds of characteristics is prohibitively hard, thus suggesting
the exploration of approximation-based approaches. In the presence of approximation,
characterizing the deviation from the exact result becomes an important question.

In this chapter, we describe approximation and randomization techniques to tackle
the challenge of automating QIF for deterministic programs. The presented approach
avoids the trap of block enumeration by a sampling method that uses the program it-
self to randomly choose blocks with probabilities corresponding to their relative sizes.
Each sample amounts to a program execution and indexes a block by the corresponding
program output. We obtain an under-approximation for each block using symbolic ex-
ecution and symbolic backward propagation along the sequence of program statements
traversed during a sample run. We obtain an over-approximation of each block in two
steps. First, we transform the given program such that the input state becomes explicitly
available in the set of reachable program states by memorizing it in an auxiliary vari-
able. Second, an over-approximation of the reachable states of the transformed program
that we obtain by applying abstract interpretation [24] delivers an over-approximation
of blocks indexed by program outputs. Finally, we use the indexing by program out-
puts to put together under- and over-approximations for each sampled block. Thus, we
obtain the necessary ingredients for the computation of information-theoretic guaran-
tees, namely, lower and upper bounds for the remaining uncertainty about the program
input.

The distinguishing feature of the presented technique is that it ensures fast conver-
gence of the sampling process and provides formal guarantees for the quality of the
obtained bounds. The proof builds upon a result by Batu et al. [9] stating that the en-
tropy of a random variable can be estimated accurately and with a high confidence level
using only a small number of random samples. Since Batu et al. [9] require an oracle
revealing the probability of each sample of the random variable, in the first step to-
wards the QIF setting we identify a correspondence between the sampling oracle and
the preimage computation for the program whose QIF properties are analyzed. In the
second step, we prove that the confidence levels and convergence speed of the exact
setting, which relies on the actual preimages, can also be obtained in the approxima-
tive setting where only over- and under-approximations of preimages are known. This
result allows our approach to replace the exhaustive analysis of all, say n-many, pos-
sible preimages with the treatment of a randomly chosen set of O((log n)2) preimage
samples.

This chapter extends and generalizes the results from [41]. In particular, the chap-
ter contains a discussion of non-uniformly distributed secrets and adversarially chosen
inputs.

Outline. In the next section, we illustrate our approach on example programs. Then,
we give basic definitions in Section 3. In Section 4, we present over- and under-
approximation techniques. Section 5 describes how randomization combines over- and
under-approximations to deliver a quantitative information flow analysis. Finally, we
discuss related work in Section 6.
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2 Illustration

We illustrate our method on two example programs whose quantitative information-
flow analysis is currently out of reach for the existing automatic approaches. The ex-
amples present the computation of Shannon entropy and min-entropy, respectively, and
require dealing with loops and data structures, which our method handles automatically
using approximation and randomization techniques. We computed certain intermedi-
ate assertions for the following examples using BoundGen, an automatic tool for the
discovery of resource usage bounds [23].

2.1 Estimating Shannon Entropy

As a first example we consider the electronic purse program from [2] as shown below.

1 l = 0;

2 // assume(h < 20);

3 while(h>=5){

4 h = h-5;

5 l = l+1;

6 }

The program receives as input the nonnegative balance of a bank account in the inte-
ger variable h and debits a fixed amount of 5 from this account until the balance is
insufficient for this transaction, i.e., until h < 5.

Our goal is to determine the remaining uncertainty about the initial value of h after
learning the final value of l, where we use Shannon entropy as a measure of uncertainty.
A high remaining uncertainty implies a large lower bound on the expected number of
steps that are required for determining the initial value of h by brute-force search [47],
which corresponds to a formal, quantitative confidentiality guarantee.

For uniformly distributed inputs, one can express the remaining Shannon entropy as
a weighted sum of the logarithms of the sizes of the preimages of the program [38]. A
large average preimage size corresponds to a large remaining uncertainty about the input
and implies a large expected effort for determining the program’s input after observing
the output.

One way to precisely compute the remaining Shannon entropy is to compute the
partition induced by the preimages of the program, which may require the enumeration
of all pairs of program paths. Moreover, it requires the enumeration of all blocks in
the computed partition [2]. Both enumeration problems severely limit the size of the
systems that can be analyzed using this precise approach.

For the purse program and nonnegative h, the partition induced by the preimages of
the program is

{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}, . . . }

and is represented by the following formula that states that two initial values, say h and
h, are in the same block.

∃k ≥ 0 : 5k ≤ h ≤ 5k + 4 ∧ 5k ≤ h ≤ 5k + 4
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The quantified variable k corresponds to the number of loop iterations that the program
executes when started on h and h. Such existentially quantified assertions are out of
reach for the existing automatic tools for reasoning about programs. The current ap-
proaches simplify the problem by (implicitly) bounding the number of loop iterations
and replacing the existential quantification with finite disjunction.

For example, the algorithm from [2] bounds the number of loop iterations by mak-
ing finite the set of possible valuations of h, which is achieved by introducing the as-
sumption in line 2. With this restriction, we obtain the following characterization of the
partition.

(0 ≤ h ≤ 4 ∧ 0 ≤ h ≤ 4) ∨
(5 ≤ h ≤ 9 ∧ 5 ≤ h ≤ 9) ∨
(10 ≤ h ≤ 14 ∧ 10 ≤ h ≤ 14) ∨
(15 ≤ h ≤ 19 ∧ 15 ≤ h ≤ 19)

As mentioned above, such solutions are only partial and overly restrictive, since the
program properties derived for values below the loop bound do not necessarily carry
over beyond this limit.

In this chapter, we show that the precise computation of each preimage can be re-
placed by the computation of the under- and over-approximation of the preimage. We
also show that, by running the program on randomly chosen inputs and approximat-
ing only the preimages of the corresponding outputs, one can derive upper and lower
bounds for the remaining uncertainty about the program’s secret input. These bounds
are valid with a provably high level of confidence, for a number of samples that is
poly-logarithmic in the size of the input domain.

Approximation. To compute over-approximations of preimages, we augment the pro-
gram by declaring copies of input variables (so-called ghost variables) and adding an
assignment from inputs into these copies as the first program statement. In our program,
we declare a new variable h and insert the initialization statement _h = h; before line
1. Let Freach be the set of reachable final states of the augmented program. Freach keeps
track of the relation between the ghost variables and the output of the original pro-
gram. As the ghost variables are not modified during computation, this set corresponds
to the input-output relation ρIO of the original program, i.e., Freach = ρIO. While the
exact computation of Freach is a difficult task, we can rely on abstract interpretation
techniques for computing its over-approximation [24]. In particular, we can bias the
over-approximation towards the discovery of the relation between the ghost variables
and low outputs by using constraints and borrow existing implementations originally
targeted for resource bound estimation, e.g. [23, 32]. We apply the bound generator
BoundGen [23] and obtain

Freach
�
= −5 + 5 l ≤ h ≤ −1 + 5 l .

The predicate Freach
�

represents an over-approximation of the input-output relation ρIO.
(Here, the outcome happens to be a precise description.) Hence for each low output

value l, the set of ghost input values h, such that l and h are related by Freach
�
, over-

approximates the preimage of l with respect to the original program. The size of these
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approximated preimages can be determined using tools for counting models, e.g., we
use LattE [43] for dealing with linear arithmetic assertions. In our example, we obtain
5 as an upper bound for the size of the preimage of each value of l.

To compute under-approximations of preimages, we symbolically execute the
program on a randomly chosen input and determine the preimage with respect to the
obtained path through the program. This computation relies on the relation between
program inputs and outputs along the path that the execution takes. We establish this
relation by combining the transition relations of individual steps. This technique can be
efficiently automated using existing symbolic execution engines both at the source code
level, e.g., KLEE [14] and DART [29], and at the binary level, e.g., BitScope [12].

For example, for an input of h = 37, this relation is determined to be

35 ≤ h ≤ 39 ∧ l = 8 .

(Again, the result happens to be a precise description.) Hence, the preimage size of
l = 8 is at least 5.

Randomization. The direct approximation of the leak as described above requires the
computation of bounds for the size of each preimage. Note that the number of preimages
can be as large as the input domain (e.g. when the program’s output fully determines the
input), which severely limits scalability. We overcome this limitation using a random-
ized approach, where we run the program on randomly chosen inputs and approximate
only the preimages of the corresponding outputs. Leveraging a result from [9], we show
how this set of preimages can be used for deriving bounds on the information-theoretic
characteristics of the entire program. These bounds are valid with a provably high level
of confidence, for a number of samples that is logarithmic in the size of the input
domain.

Technically, we show that, for an arbitrary δ > 0, the remaining uncertainty H about
the secret input is bounded by the following expression

1
n

n∑

i=1

log2 m�i − δ ≤ H ≤ 1
n

n∑

i=1

log2 m�i + δ ,

where n is the number of samples and m�i and m�i are the upper and lower bounds for the
size of the preimage corresponding to the ith sample. If the secret input is chosen from
a set I, these bounds hold with a probability of more than p for a number of samples n
such that

n =
(log2 #(I))2

(1 − p)δ2
.

For our example and I = {0, . . . , 264 − 1}, our analysis delivers coinciding lower and
upper bounds of 5 for the sizes of the preimages (except for the preimage containing
264 − 1, which is smaller). As a consequence, we obtain entropy bounds of

log2 5 − 0.1 ≤ H ≤ log2 5 + 0.1

that hold with a probability of more than 0.99 when considering 108 samples.
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2.2 Estimating Min-entropy

The following program implements an algorithm for the bit-serial modular exponen-
tiation of integers. More precisely, the program computes xk mod n, where n is the
constant modulus and k is maintained by the program in a binary array of constant
length len.

1 int m = 1;

2 for (int i = 0; i<len; i++) {

3 m = m*m mod n;

4 if ( k[i] == 1 ) {

5 m = m*x mod n;

6 }

7 }

Due to the conditional execution of the multiplication operation m=m*x mod n in line
5, the running time of this program reveals information about the entries of the array k.
Such variations have been exploited to recover secret keys from RSA decryption algo-
rithms based on structurally similar modular exponentiation algorithms [37]. We ana-
lyze an abstract model of the timing behavior of this program, where we assume that
each multiplication operation consumes one time unit. We make this model explicit in
the program semantics by introducing a counter time that is initialized with 0 and is
incremented each time a multiplication operation takes place.

Our goal is to quantify the remaining min-entropy about the content of k after ob-
serving the program’s execution time, i.e., given the final value of time. The min-
entropy captures the probability of correctly guessing a secret at the first attempt. In
contrast to Shannon entropy, computation of min-entropy does not require the enumer-
ation of blocks and estimation of their sizes. For min-entropy, we only need to esti-
mate how many blocks (or alternatively how many possible outputs) the program can
produce [59].

This simplification can be exploited when dealing with programs that manipulate
data structures. As the example shows, applications often keep secret the content of
data structures, while some of their properties, e.g., list length or even number of ele-
ments satisfying a Boolean query, are revealed as outputs. In such cases, our method
can estimate the input’s remaining min-entropy despite the difficulties of automatic
reasoning about data structures. To succeed, our method applies the over- and under-
approximation techniques presented in Section 2.1, however without the addition of
ghost variables. No ghost variables are needed, since the actual block content given by
the secret data structure elements is irrelevant for the min-entropy computation.

We extend a result from [59] to show that under-approximations of the remain-
ing min-entropy can be computed from over-approximations of the size of the set of
reachable states Freach, which in our example is the set of possible values of the vari-
able time. By applying the bound generator BoundGen [23], we obtain the following
over-approximation Freach

� of Freach,

Freach
� ≡ len ≤ time ≤ 2len ,
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which shows that #(Freach
�) ≤ len + 1. We use this bound to infer that, after observing

time, the remaining uncertainty about the exponent k is still larger than

log2
2len

len + 1
= len − log2(len + 1) ,

given that k is drawn uniformly from {0, . . . , 2len − 1}. An alternative interpretation is
that the expected reduction in uncertainty about the exponent k is at most log2(len+ 1)
bits.

3 Preliminaries

In this section, we give the necessary definitions for dealing with programs and
information-flow analysis.

3.1 Programs and Computations

Following [46] we treat programs as transition systems, and rely on existing translation
procedures from programs written in particular programming languages to transition
systems, e.g., [36]. A program P = (S , I,T ) consists of the following components.

– S - a set of states.
– I ⊆ S - a set of initial states.
– T - a finite set of transitions such that each transition τ ∈ T is given a binary

transition relation over states, i.e., ρτ ⊆ S × S .

For a program represented as source code, states are determined by the valuation of
the declared program variables and the program counter, and transition correspond to
program statements.

Let F be the set of final program states that do not have any successors, i.e.,

F = {s ∈ S | ∀s′ ∈ S ∀τ ∈ T : (s, s′) � ρτ} .

A computation of P is a sequence of program states s1, . . . , sn such that s1 is an initial
state, i.e., s1 ∈ I, sn is a final state, i.e., sn ∈ F, and each pair s and s′ of consecutive
states follows a program transition, i.e., (s, s′) ∈ ρτ for some τ ∈ T . We assume that
final states do not have any successors, i.e., there is no pair of states s and s′ such that
s ∈ F and (s, s′) ∈ ρτ for some τ ∈ T .

A program is deterministic if for each state s there is at most one transition that
assigns a successor to s and there is at most one such successor. Formally,

∀s ∀s′ ∀s′′ ∀τ ∀τ′ : ((s, s′) ∈ ρτ ∧ (s, s′′) ∈ ρτ′)→ (s′ = s′′ ∧ τ = τ′) .

In this chapter we only consider deterministic programs.
A path is a sequence of transitions. We write ε for the empty path, i.e., the path of

length zero. Let ◦ be the relational composition function for binary relations, i.e., for
binary relations X and Y we have X ◦ Y = {(x, y) | ∃z : (x, z) ∈ X ∧ (z, y) ∈ Y}. Then,
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a path relation is a relational composition of transition relations along the path, i.e., for
π = τ1, . . . , τn we have ρπ = ρτ1 ◦ . . . ◦ ρτn . A path π is feasible if its path relation is not
empty, i.e., ρπ � ∅.

Let ρ be the program transition relation defined as follows.

ρ =
⋃

τ∈T
ρτ

We write ρ∗ for the transitive closure of ρ. The input-output relation ρIO of the program
relates each initial state s with the corresponding final states, i.e.,

ρIO = ρ∗ ∩ (I × F) .

A final state s′ is reachable from an initial state s if (s, s′) ∈ ρIO. We write Freach for the
set of reachable final states, i.e.

Freach = {s′ ∈ F | ∃s ∈ I : (s, s′) ∈ ρIO}

Given a final state s′ ∈ F, we define its preimage P−1(s′) to be the set of all initial states
from which s′ is reachable, i.e.,

P−1(s′) = {s | (s, s′) ∈ ρIO} .

The preimage of an unreachable state is the empty set.

3.2 Qualitative Information Flow: What Leaks?

We characterize partial knowledge about the elements of a set A in terms of partitions
of A, i.e., in terms of a family {B1, . . . , Br} of pairwise disjoint blocks such that B1 �
· · ·�Br = A. A partition of A models that each a ∈ A is known up to its enclosing block
Bi such that a ∈ Bi. We compare partitions using the imprecision order � defined by

{B1, . . . , Br} � {B′1, . . . , B
′
r′ } = ∀i ∈ {1, . . . , r} ∃ j ∈ {1, . . . , r′} : Bi ⊆ B′j .

With the imprecision order, larger elements correspond to less knowledge about the
elements of A. Let � be the irreflexive part of �.

Knowledge about Initial States. We consider a deterministic program P that imple-
ments a total function, i.e., for each input state s there is one final state s′ such that
(s, s′) ∈ ρIO. We assume that the initial state of each computation is secret. Further-
more, we assume an attacker that knows the program, in particular its transition rela-
tion, and the final state of each computation. In our model, the attacker does not know
any intermediate states of the computation.

The knowledge gained by the attacker about initial states of computations of the
program P by observing their final states is given by the partition Π that consists of the
preimages of reachable final states, i.e.,

Π = {P−1(s′) | s′ ∈ Freach} . (1)
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There are two extreme cases. The partitionΠ = {I} consisting of a single block captures
that P reveals no information about its input. In contrast, the partition Π = {{s} | s ∈ I}
where each block consists of a single element captures the case that P fully discloses
its input. For the remaining, intermediate cases such that {{s} | s ∈ I} � Π � {I}, the
partition Π captures that P leaks partial information about its input.

Knowledge Refinement by Interaction. More generally, a program P may receive
and produce both secret (high) and public (low) inputs, where the low inputs may be
read or modified by an attacker. If the high input remains fixed over several runs of the
program, the attacker can use the low inputs to influence the computation and thereby
refine his knowledge about the high input. A restricted version of the above scenario
can be reduced to the setting of programs with only high inputs and can be analyzed
using the methods presented in this chapter.

Specifically, we consider the case where the attacker runs the program using a fixed
finite set of low inputs l1, . . . , ln. We model this scenario using a finite set of programs
P1, . . . , Pn where each Pi corresponds to the program P with the low input set to the
value li. An attacker running the program P with two low inputs li and l j and observing
the final states si and s j, respectively, can hence narrow down the set of possible secrets
to P−1

i (si) ∩ P−1
j (s j). More generally, the partition

Π = {P−1
1 (s1) ∩ · · · ∩ P−1

n (sn) | s1, . . . , sn ∈ F} (2)

characterizes what an attacker can learn about a fixed secret input after running P with
the low inputs l1, . . . , ln and observing the corresponding outputs, see e.g. [38].

Notice that the partition Π corresponds to the set of preimages of the function
f : I → Fn where each component fi is defined by the input-output behavior of program
Pi. This function f can be computed by the independent composition of the programs
P1, . . . , Pn, see e.g. [7]. For example, for the case n = 2 we obtain an independent com-
position by creating a copy P′ of P and replacing every program variable x that occurs
in P by a fresh variable x′. An analysis of the following program with input h′ and out-
put (l, l′) then corresponds to an analysis of P with respect to two runs with high input
h and low inputs l1 and l2, respectively.

l = l1; l′ = l2; h′ = h
P(h, l)
P′(h′, l′)
return (l, l′)

This construction easily generalizes to n > 2, however at the expense of an exponen-
tially growing state-space. In this way, analyzing a deterministic program with respect
to a fixed finite set l1, . . . , ln of low inputs can be reduced to the analysis of a program
without low inputs. For simplicity of exposition we will focus on programs without low
inputs in the remainder of the chapter.
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3.3 Quantitative Information Flow: How Much Leaks?

In the following, we use information theory to characterize the information that P re-
veals about its input. This characterization has the advantage of being compact and easy
to compare. Moreover, it yields concise interpretations in terms of the effort needed to
determine P’s input from the revealed information.

We assume that the program’s initial state is drawn according to a probability dis-
tribution p on I and we suppose that p is known to the attacker. For a random variable
X : I → Xwith rangeX, we define pX : X → R as pX(x) =

∑
s∈X−1(x) p(s), which we will

also denote by Pr(X = x). For analyzing the program P, there are two random variables
of particular interest. The first random variable U : I → I models the random choice
of an input in I, i.e., U(s) = s. The second random variable V : I → F captures the
input-output behavior of P, i.e., V(s) = s′ where (s, s′) ∈ ρIO.

Shannon Entropy. The (Shannon) entropy [58] of a random variable X : I → X is
defined as

H(X) = −
∑

x∈X
pX(x) log2 pX(x) .

The entropy is a lower bound for the average number of bits required for representing
the results of independent repetitions of the experiment associated with X. Thus, in
terms of guessing, H(X) is a lower bound for the average number of questions with
binary outcome that need to be asked to determine X’s value [13]. Given another random
variable Y : I → Y, we write H(X|Y = y) for the entropy of X given that the value of Y
is y. The conditional entropy H(X|Y) of X given Y is defined as the expected value of
H(X|Y = y) over all y ∈ Y, namely

H(X|Y) =
∑

y∈Y
pY (y)H(X|Y = y) ,

and it captures the remaining entropy about X when Y is observed.
Consider now a program P and the corresponding random variables U and V , as

defined above. Then H(U) is the observer’s initial uncertainty about the secret input
and H(U |V) is the observer’s expected uncertainty about the input after running the
program. We will use H(U |V) as a measure of information flow because it is associated
with operational security guarantees: The expected effort for determining the secret
input by exhaustive search is bounded from below by 2H(U|V)−2, see [47] and [11, 39].

Min-entropy. The min-entropy of a random variable X captures the probability of
correctly determining the value of X in a single guess using an optimal strategy, i.e.,
by choosing the most likely value. From this probability, it is straightforward to de-
rive bounds on the probability for correctly determining the value of X in an arbitrary
number of guesses. Formally, the min-entropy H∞ is defined as

H∞(X) = − log2

(
max
x∈X

pX(x)
)
.
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The conditional min-entropy H∞(X|Y) quantifies the expected probability of correctly
determining the secret in one guess after having observed the outcome of Y [59] and is
defined by

H∞(X|Y) = − log2

⎛⎜⎜⎜⎜⎜⎜⎝
∑

y∈Y
pY (y) max

x∈X
pX |Y=y(x)

⎞⎟⎟⎟⎟⎟⎟⎠ .

As before, H∞(U |V) quantifies the expected probability of correctly determining the
value of U in one guess after observing the output V of the program P.

Note that the success probability of a single guess can also be estimated using the
conditional Shannon entropy, e.g. using Fano’s inequality. However, as pointed out
in [59], this estimation is not always accurate. Hence, it is preferable to use min-entropy
to compute the success probability of single guesses.

Leakage vs. Security. The information leaked by P is the reduction in uncertainty
about the input U when the output V is observed. For the case of Shannon entropy, the
leakage L is given by

L = H(U) − H(U |V) , (3)

and it can be defined analogously using alternative measures of uncertainty. Many ap-
proaches in the literature focus on computing the leakage rather than the remaining
uncertainty. If the initial uncertainty H(U) is known, Equation (3) gives a direct cor-
respondence between the leakage L and the remaining uncertainty H(U |V). In the fol-
lowing, we focus on the remaining uncertainty rather than on the leakage, because the
remaining uncertainty enjoys a more direct interpretation in terms of an attacker’s diffi-
culty for recovering secrets and, hence, security.

(Non-)Uniform Input Distributions. For the important case where p is the uniform
distribution, we have

Pr(V = s′) =
#(P−1(s′))

#(I)
, (4)

i.e., one can characterize the distribution of V in terms of the sizes of the preimages
of P. Moreover, one can give formulas for remaining uncertainty about the input of P
in terms of the number and the sizes of the partition Π induced by the preimages of
P, see [38, 59]. These formulas provide the interface between the qualitative and the
quantitative viewpoints.

Proposition 1. If the input of P is uniformly distributed, we obtain the following ex-
pressions for the remaining uncertainty about the input after observing the output of P
in terms conditional Shannon and min-entropies, respectively.

H(U |V) =
1

#(I)

∑

B∈Π
#(B) log2 #(B) (5)

H∞(U |V) = log2
#(I)
#(Π)

(6)
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In scenarios where the input is distributed non-uniformly, Proposition 1 cannot be di-
rectly applied. However, a recent result shows that for Shannon entropy, the case of non-
uniform input distributions can be reduced to the case of uniform input distributions [1].
The key idea behind the reduction is to consider the non-uniform input distribution p as
being generated by a deterministic program D that receives uniformly distributed input.

The key requirement for this generator program is that, for each s ∈ I, the size of
D−1(s) be proportional to p(s). The following program satisfies this requirement by con-
struction. Here, we assume that I = {s1, . . . , s#(I)} and that the variable r is initialized by
values drawn uniformly from [0, 1]. For rational distributions, the program can be easily
adapted to one that receives uniformly distributed input from an integer range. While the

j � 1; c � p(s1)
while j < #(I) ∧ r > c

j � j + 1
c � c + p(s j)

return s j

above construction is obviously not practical for large I, efficient generator programs
often occur in practice. E.g., the Personal Identification Numbers (PINs) used in elec-
tronic banking are often not uniformly distributed, but derived from uniform bitstrings
using decimalization techniques [21]. Another example are the keys of a public-key
cryptosystem, which are typically not uniformly distributed bitstrings. However, they
are produced by a key generation algorithm that operates on uniformly distributed input.
More generally, a large number of randomized algorithms expect uniformly distributed
randomness. For a language-based perspective on distribution generators, see [54].

Given a generator program D, the remaining uncertainty about the inputs of a pro-
gram P can be expressed as the difference in the remaining uncertainty about the inputs
of P ; D and D. Modeling the uniformly distributed input by a random variable U and
interpreting program D as a random variable, one obtains the following connection [1].

Proposition 2.
H(D|V) = H(U |V ◦ D) − H(U |D)

Notice that (5) applies to both terms on the right hand side of Proposition 2 and com-
pletes the reduction to the uniform case. In the remainder of the chapter we hence focus
on the uniform case. For a more detailed treatment of the non-uniform case, refer to [1].
Furthermore, we will only consider logarithms with base two, and will omit the base
from the formulas to simplify notation.

3.4 Towards Automation

Proposition 1 immediately suggests the following approach for automatically determin-
ing the remaining uncertainty about the inputs of a program P.
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1. For computing H(U |V), first enumerate the elements of Π and then determine their
sizes.

2. For computing H∞(U |V), determine the number of elements in Π .

In [2] it was shown how the partitionΠ can be obtained by computing relational weakest
preconditions, how its blocks can be enumerated using SAT solvers, and how the sizes
of the blocks can be determined using model counting [30]. Unfortunately, the exact
computation of these properties can be prohibitively expensive (see also [15, 60]).

4 Bounding Information Leaks

In this section, we present a method for the automatic derivation of upper and lower
bounds on the remaining uncertainty about a program’s inputs.

We consider bounds that over- and under-approximate the remaining uncertainty
both qualitatively and quantitatively. On the qualitative side, we show how to compute
over- and under-approximations of the set of blocks in Π . Moreover, we show how to
compute over- and under-approximations for each block in Π . On the quantitative side,
we show how these over- and under-approximations can be used for computing bounds
on the remaining uncertainty in terms of min-entropy and Shannon entropy.

4.1 Bounding Block Count

Computation of min-entropy requires estimation of the number of blocks in the par-
tition Π , which is equal to the cardinality of the set of reachable final states Freach,
see (1) and (6). The set Freach can be over-approximated by applying abstract interpre-
tation techniques [24] on the program P. Abstract interpretation allows one to incre-
mentally compute an approximation of the set of reachable program states by relying
on the approximation of individual program transitions. The set Freach can be under-
approximated by symbolic execution and backward propagation along the sequence of
program statements traversed during the execution.

Over-approximation of Freach. For the computation of the over-approximation
Freach

� ⊇ Freach we will use an abstraction function α : 2S → 2S that over-approximates
a given set of states, i.e., for each X ⊆ S we have X ⊆ α(X). For simplicity of expo-
sition we assume that the abstract values are sets of program states, which leads to the
concretization function that is the identity function and hence is omitted. The presented
approach can use more sophisticated abstract domains without any modifications.

In theory, the set of reachable final states Freach can be computed by iterating the
one-step reachability function post : 2S×S × 2S → 2S defined below. Note that we put
the first parameter in the subscript position to simplify notation.

postρ(X) =
{
s′ | ∃s ∈ X : (s, s′) ∈ ρ

}

The iteration process applies postρ on the set I zero, one, two, . . . , many times, takes the
union of the results and restricts it to the final states. The resulting set is the intersection
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of the final states with the least fixpoint of postρ containing I by the Kleene fixpoint
theorem. Formally, we have

Freach = F ∩ (I ∪ postρ(I) ∪ postρ(postρ(I)) ∪ . . . )

= F ∩ lfp(postρ, I) .

Unfortunately, it is not practical to compute the result of iterating postρ arbitrarily many
times, i.e., the iteration may diverge for programs over unbounded (infinite) sets of
states.

Abstract interpretation overcomes the above fundamental problem of computing
Freach by resorting to an approximation of postρ using the abstraction function α. That
is, instead of iterating postρ we will iterate its composition with α, i.e., we will compute
the restriction of the abstract least fixpoint to the final states. Let • be a binary function
composition operator such that f • g = λx. f (g(x)). Then

Freach
� = F ∩ (α(I) ∪ (α • postρ)(α(I)) ∪ (α • postρ)

2(α(I)) ∪ . . . )
= F ∩ lfp(α • postρ, α(I)) .

Instead of computing the exact set Freach, we compute its over-approximation, i.e.,

Freach ⊆ Freach
� .

By choosing an adequate abstraction function α we can enforce termination of the iter-
ation process after a finite number of steps, as no new states will be discovered. In other
words, after some k ≥ 0 steps we obtain

(α • postρ)
k+1(α(I))) ⊆

k⋃

i=0

(α • postρ)
k(α(I)) ,

while maintaining the desired precision of the over-approximation. Here, we can rely
on an extensive body of research in abstract interpretation and efficient implementations
of abstract domains, including octagons and polyhedra [3, 25, 35, 50].

Under-Approximation of Freach. When computing the under-approximation Freach
� ⊆

Freach we follow an approach that is different from its over-approximating counterpart,
since we cannot rely on abstract interpretation for computing an under-approximation.
Despite the established theoretical foundation, abstract interpretation does not yet pro-
vide practical under-approximating abstractions.

Instead, we can resort to a practical approach for computing under-approximations
by symbolic execution of the program along a selected set of program paths. This ap-
proach has been successful for efficient exploration of state spaces (for finding runtime
safety violations), e.g., Verisoft, KLEE, DART, and BitScope [12, 14, 28, 29].

Let π1, . . . , πn ∈ T + be a finite set of non-empty program paths, which can be cho-
sen randomly or according to particular program coverage criteria. This set of paths
determines a subset of reachable finite states in the following way.

Freach
� =

⋃

π∈{π1 ,...,πn}

{
s′ | ∃s ∈ S : (s, s′) ∈ ρπ ∩ (I × F)

}
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3
4
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procedure MkPath
input

s ∈ I - initial state
begin
π � ε
while s � F do

(τ, s′) � choose τ ∈ T such that (s, s′) ∈ ρτ
s � s′

π � π · τ
done
return (π, s)

end.

Fig. 1. Function MkPath computes the program path and the final state for a given initial state

In Figure 1 we describe a possible implementation of a symbolic execution function
MkPath that creates a program path for a given initial state. The termination of MkPath
follows from the requirement that P implements a total function.

Given the over- and under-approximations Freach
� and Freach

�, we can bound the num-
ber of blocks in the partition Π as formalized in the following theorem.

Theorem 1. The over- and under-approximations of the set of reachable final states
yield over- and under-approximations of the number of blocks in the partition Π . For-
mally,

#(Freach
�) ≤ #(Π) ≤ #(Freach

�) .

Proof. The theorem statement is a direct consequence of the bijection between Freach

and Π under the inclusion Freach
� ⊆ Freach ⊆ Freach

�.

4.2 Bounding Block Sizes

Computation of block sizes in Π requires identification of the blocks as sets of initial
states. Our technique approaches the computation of Π through an intermediate step
that relies on the input-output relation ρIO. We formulate the computation of the input-
output relation as the problem of computing sets of reachable states, which immediately
allows one to use tools and techniques of abstract interpretation and symbolic execution
as presented above. Then, given ρIO, we compute Π following (1).

In order to compute the input-output relation ρIO we augment the program P such that
the set of reachable states keeps track of the initial states. We construct an augmented
program P = (S , I, F,T ) from the program P as follows.

– S = S × S .
– I = {(s, s) | s ∈ I}.
– F = S × F.
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– T = {τ | τ ∈ T }, where for each transition τ ∈ T we construct the transition
relation ρτ such that

ρτ =
{
((s′′, s), (s′′, s′)) | (s, s′) ∈ ρτ ∧ s′′ ∈ S

}
.

Similarly to P, we define ρ =
⋃
τ∈T ρτ.

Our augmentation procedure is inspired by the use of ghost variables for program
verification, see e.g. [5]. Note that when constructing P we do not apply the self-
composition approach [7], and hence we avoid the introduction of additional complexity
to P. In fact, the construction of P from P can be implemented as a source-to-source
transformation by declaring copies of input variables and adding an assignment from
inputs into these copies as the first program statement.

The set of reachable states of the augmented program P corresponds to the input-
output relation of the program P, as stated by the following theorem.

Theorem 2 (Augmentation). The input-output relation of P is equal to the set of reach-
able final states of its augmented version P, i.e.,

ρIO = Freach .

Proof. The augmented program manipulates pairs of states of the original program. We
observe that the augmented program does not modify the first component of its initial
state, which stays equal to the initial value. Furthermore, the second component follows
the transition relation of P. Thus, the theorem statement follows directly.

Now we apply abstract interpretation and symbolic execution techniques from Sec-

tion 4.1 to the augmented program P. We obtain the over-approximation Freach
�

by ab-
stract least fixpoint computation of postρ, where α over-approximates sets of S -states,

and its restriction to the final states of P, i.e.,

Freach
�
= F ∩ lfp(α • postρ, α(I)) .

The computation of the under-approximation Freach
�

requires a finite set of paths
π1, . . . , πn through the augmented program, however we could also use a set of paths
through P and adjust accordingly. Again we use the paths for performing symbolic

execution and applying existential quantification over the initial states to obtain Freach
�
.

We finally put together over- and under-approximations of preimages of P, indexed
by the corresponding final states.

Theorem 3 (Augmented Approximation). Projection of the over- and under-
approximations of reachable final states of the augmented program on the initial com-
ponent over- and under-approximates respective blocks in the partition Π for the pro-
gram P. Formally, for each s′ ∈ F we have

{s | (s, s′) ∈ Freach
�} ⊆ P−1(s′) ⊆ {s | (s, s′) ∈ Freach

�} .

Thus, given a reachable final state of P we can apply Theorem 3 to compute an over-
and under-approximation of the corresponding block in the partition Π .
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4.3 Information-Theoretic Bounds

We now show how, for uniformly distributed input, bounds on the size and the number
of the elements of Π can be used for deriving bounds on the remaining uncertainty of a
program in terms of Shannon entropy and min-entropy.

Shannon Entropy. For uniformly distributed inputs, one can express the probability
Pr(V = s′) of the program outputting s′ in terms of the size of P−1(s′), see (4). We define
upper and lower bounds p�(s′) and p�(s′) for Pr(V = s′) on the basis of the under- and
over-approximation of P−1(s′) given in Theorem 3.

Formally, we assume s′ ∈ Freach and define

p�(s′) = max

⎧⎪⎪⎨⎪⎪⎩
#({s | (s, s′) ∈ Freach

�})
#(I)

,
1

#(I)

⎫⎪⎪⎬⎪⎪⎭

p�(s′) =
#({s | (s, s′) ∈ Freach

�})
#(I)

.

From Theorem 3 then follows that

p�(s′) ≤ Pr(V = s′) ≤ p�(s′) (7)

for all s′ ∈ Freach
�. These bounds extend to all s′ ∈ Freach because for s′ ∈ Freach\Freach

�,
the value p�(s′) = 1/#(I) is an under-approximation of the probability p(V = s′).

The following theorem shows that we can bound H(U |V) in terms of combinations
of upper and lower bounds for the preimage sizes.

Theorem 4. If U is uniformly distributed, the remaining uncertainty H(U |V) is
bounded as follows

∑

s′∈Freach
�

p�(s′) log p�(s′) + log #(I)

≤ H(U |V)

≤
∑

s′∈Freach
�

p�(s′) log p�(s′) + log #(I) .

Proof. P implements a total function. As a consequence, V is determined by U. We
obtain H(U) = H(UV) = H(U |V)+H(V) and conclude H(U |V) = H(U)−H(V). As U
is uniformly distributed, we have H(U) = log #(I). By definition of Shannon entropy,

H(V) =
∑

s′∈Freach

Pr(V = s′)(− log Pr(V = s′)) . (8)
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Observe that − log is nonnegative and decreasing on (0, 1]. Together with the bounds
from (7), this monotonicity implies that replacing in (8) the occurrences of − log Pr(V =
s′) by − log p�(s′), replacing the remaining occurrences of Pr(V = s′) by p�(s′), and
dropping the summands corresponding to elements of Freach \ Freach

� will only decrease
the sum, which leads to the upper bound on H(U |V). The lower bound follows along
the same line.

Min-entropy. The following theorem shows that it suffices to over- and under-
approximate the size of the range of a program P in order to obtain approximations
for the remaining uncertainty about P’s input.

Theorem 5. If U is uniformly distributed, the remaining uncertainty H∞(U |V) of a
program P is bounded as follows

log
#(I)

#(Freach
�)
≤ H∞(U |V) ≤ log

#(I)

#(Freach
�)
.

Proof. Smith [59] shows that H∞(U |V) = log(#(I)/#(Π)). The assertion then follows
from Theorem 1 and the monotonicity of the logarithm.

5 Randomized Quantification

In Section 4 we showed how to obtain bounds on the remaining uncertainty about a
program’s input by computing over- and under-approximations of the set of reachable
states and the corresponding preimages.

While the presented approach for computing min-entropy bounds requires determin-
ing the size of (an approximation of) the set of reachable states (see Theorem 5), the
approach for computing Shannon-entropy bounds requires enumerating this set (see
Theorem 4). This enumeration constitutes the bottleneck of our approach and inhibits
scalability to large systems.

In this section, we show that the enumeration of the set of reachable states can be re-
placed by sampling the preimages with probabilities according to their relative sizes. To
this end, we run the program on a randomly chosen input and approximate the preim-
age of the corresponding output. We combine the sizes of the approximations of the
preimage and obtain upper and lower bounds for the remaining uncertainty. Moreover,
we give confidence levels for these bounds. These confidence levels are already close
to 1 for a number of samples of as small as O((log #(I))2).

On a technical level, our result makes use of the fact that the random variable given
by the logarithm of the size of randomly chosen preimages has small variance [9]. The
Chebyshev inequality implies that the estimations obtained from sampling this random
variable are likely to be accurate.
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5.1 Rant: A Randomized Algorithm for Quantitative Information Flow Analysis

Given a program P, our goal is to compute bounds H� and H� with quality guarantees
for the remaining uncertainty H(U |V) about the program’s input when the program’s
output is known. More precisely, given a confidence level p ∈ [0, 1) and a desired
degree of precision δ > 0, we require that

H� − δ ≤ H(U |V) ≤ H� + δ

with a probability of at least p.

Algorithm. Our procedure Rant computes such bounds in an incremental fashion.
After an initialization phase in lines 1 and 2, Rant randomly picks an initial state s ∈ I,
see line 4 in Figure 2. Then, Rant runs the program P on input s to determine the
final state s′ and the corresponding execution path π, see line 5. We use the technique
described in Section 4.2 for determining an over-approximation of the preimage of s′

in line 6. Note that Freach
�

only needs to be computed once and can be re-used for all
iterations of the while loop. We use the techniques described in 4.2 for determining an
under-approximation of the preimage of s′ in line 7. The variables H� and H� aggregate
the logarithms of the preimage sizes. After

n =
(log #(I))2

(1 − p)δ2

many iterations of while loop, H� and H� are normalized by n and returned as upper
and lower bounds for H(U |V), respectively.

Counting Preimage Sizes. The computations in lines 6 and 7 of Rant require an algo-
rithm that, given a set A, returns the number of elements #(A) in A. If A is represented
as a formula φ, this number corresponds to the number of models for φ. For exam-
ple, if A is represented in linear arithmetic, this task can be performed efficiently using
Barvinok’s algorithm [8]. The Lattice Point Enumeration Tool (LattE) [43] provides an
implementation of this algorithm.

Correctness. The following theorem states the correctness of the algorithm Rant.

Theorem 6. Let P be a program, δ > 0, and p ∈ [0, 1). Let U be uniformly distributed.
If Rant(P, δ, p) outputs (H�,H�), then

H� − δ ≤ H(U |V) ≤ H� + δ

with a probability of more than p.

We need the following lemma for the proof of Theorem 6. The proof of the lemma is
based on a result from [9].
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function Rant
input

P : program
δ > 0 : desired precision
p ∈ [0, 1) : desired confidence level

vars
π: program path

output
H�,H� : upper and lower bounds for H(U |V)

begin
n � 0
H� � H� � 0
while n < log(#(I))2/((1 − p)δ2) do

s � choose from I randomly
(π, s′) � MkPath(s)

H� � H� + log #({s′′ | (s′′, s′) ∈ Freach
�
})

H� � H� + log #({s′′ | (s′′, s′) ∈ ρπ})
n � n + 1

done
return (H�/n,H�/n)

end.

Fig. 2. Randomized procedure Rant for computing an approximation of the remaining uncer-

tainty about the input of a program. The relation Freach
�

is computed once and re-used for all
iterations of the while loop.

Lemma 1. Let X be a random variable with range of size m and let δ > 0. Let x1, . . . , xn

be the outcomes of n independent repetitions of the experiment associated with X. Then

−1
n

n∑

i=1

log Pr(X = xi) − δ ≤ H(X) ≤ −1
n

n∑

i=1

log Pr(X = xi) + δ

with a probability of more than 1 − (log m)2

nδ2 .

Proof. We define the random variable Y by Y(x) = − log Pr(X = x). Then we have
E(Y) = H(X) for the expected value E(Y) of Y. By additivity of the expectation, we
also have E(Z) = H(X) for the sum Z = 1

n

∑n
i=1 Yi of n independent instances Yi of Y.

In [9] it is shown that the variance Var[Z] of Z is bounded from above by

Var[Z] ≤ (log m)2

n
.

The Chebyshev inequality

Pr(|Q − E(Q)| ≥ δ) ≤ Var[Q]
δ2

(9)
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gives upper bounds for the probability that the value of a random variable Q deviates
from its expected value E(Q) by at least δ. We apply (9) to Z with the expectation and
variance bounds derived above and obtain

Pr (|Z − H(X)| ≥ δ) ≤
(log m)2

nδ2
.

Considering the complementary event and inserting the definition of Z we obtain

Pr

⎛⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣−
1
n

n∑

i=1

log Pr(X = xi) − H(X)

∣∣∣∣∣∣∣ ≤ δ
⎞⎟⎟⎟⎟⎟⎠ ≥ 1 −

(log m)2

nδ2
,

from which the assertion follows immediately.

We are now ready to give the proof of Theorem 6.

Proof (Proof of Theorem 6). Let s′i be the final state of P that is computed in line 5
of the ith loop iteration of Rant, for i ∈ {1, . . . , n}. For uniformly distributed U, we
have H(U) = log #(I) and Pr(V = s′i ) = #(P−1(s′i ))/#(I). As V is determined by U,
H(U |V) = H(U) − H(V). Replacing H(V) by the approximation given by Lemma 1 we
obtain

H(U) +
1
n

n∑

i=1

log Pr(V = s′i )

= log #(I) +
1
n

n∑

i=1

log
#(P−1(s′i ))

#(I)

=
1
n

n∑

i=1

log #(P−1(s′i ))

Lemma 1 now implies that

1
n

n∑

i=1

log #(P−1(s′i)) − δ ≤ H(U |V) ≤ 1
n

n∑

i=1

log #(P−1(s′i)) + δ

with a probability of more than

1 − (log #(Freach))2

nδ2
,

which is larger than

min

{
1 − (log #(I))2

nδ2
, 1 − (log #(F))2

nδ2

}
.

This statement remains valid if the preimage sizes on the left and right hand sides are
replaced by under- and over-approximations, respectively. Finally, observe that the loop
guard ensures that the returned bounds hold with probability of more than p, which
concludes this proof.
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Observe that the proof of Theorem 6 implies that in scenarios where #(Freach) is known
and smaller than I, a smaller number of samples is already sufficient for obtaining a
desired confidence level. For example, when analyzing a program with a single Boolean
output, the bounds delivered by Rant are valid with a probability of more than

1 − 1
nδ2
.

In general, however, the computation of #(Freach) requires an additional analysis step.
For simplicity, our presentation hence focusses on the weaker bounds in terms of #(I).

Note that, if the sizes of the preimages of P can be determined precisely, we have
H� = H�. Then Theorem 6 gives tight bounds for the value of H(U |V). In this way,
Rant can be used to replace the algorithm Quant from [2].

5.2 Complexity of Approximating Entropy

The algorithm Rant relies on the approximation of the sizes of the preimages for given
sampled outputs of the program. It is natural to ask whether bounds on the entropy can
be estimated by sampling alone, i.e. without resorting to structural properties of the
program.

A result by Batu et al. [9] suggests that this cannot be done. They show that there
is no algorithm that, by sampling alone, can approximate the entropy of every random
variable X with a range of size m within given multiplicative bounds. They also show
that, for random variables with high entropy (more precisely H(X) > log(m/γ2), for
some γ > 0) any algorithm that delivers approximations H with

1
γ

H ≤ H(X) ≤ γH

is required to take at least Ω(m1/γ2
) samples.

However, if in addition to the samples, the algorithm has access to an oracle that
reveals the probability Pr(X = x) with which each sample x occurs, the entropy can be
estimated within multiplicative bounds using a number of samples that is proportional
to (log m)/h, where h ≤ H(X).

Lemma 1 extends this result to obtain additive bounds for H(X). These bounds
hold without any side-condition on H(X), which allows us to determine the number
of samples that are required for obtaining confidence levels that hold for all X with
#(ran(X)) ≤ m. The algorithm Rant builds on this result and employs the techniques
presented in Section 4 for approximating the probabilities of events on demand, allow-
ing us to derive bounds on the information leakage of real programs.

6 Related Work

For an overview of language-based approaches to information-flow security, see the
survey by Sabelfeld and Myers [56].
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Denning is the first to quantify information flow in terms of the reduction in un-
certainty about a program variable [26]. Millen [49] and Gray [31] use information
theory to derive bounds on the transmission of information between processes in multi-
user systems. Lowe [44] shows that the channel capacity of a program can be over-
approximated by the number of possible behaviors.

The use of equivalence relations to characterize qualitative information flow was
proposed by Cohen [22] and has since then become standard, see e.g. [6, 7, 27, 57, 61].

Clark, Hunt, and Malacaria [18] connect equivalence relations to quantitative infor-
mation flow, and propose the first type system for statically deriving quantitative bounds
on the information that a program leaks [19]. The analysis assumes as input upper and
lower bounds on the entropy of the input variables and performs compositional reason-
ing on basis of those bounds. For loops with high guards, the analysis always reports
the complete leakage of the guard.

Malacaria [45] characterizes the leakage of loops in terms of the loop’s output and
the number of iterations. In our model, the information that is revealed by the number
of loop iterations can be captured by augmenting loops with observable counters, as
shown in Section 2. In this way, our method can be used to automatically determine this
information.

Mu and Clark [52] propose an automatic quantitative analysis based on probabilis-
tic semantics. Their analysis delivers precise results, but is limited to programs with
small state-spaces due to the explicit representation of distributions. An abstraction
technique [51] addresses this problem by partitioning the (totally ordered) domain
into intervals, on which a piecewise uniform distribution is assumed. Our approach
is also based on partitioning the input domain, however, without the restriction to inter-
vals. Furthermore, we avoid the enumeration of all blocks by the choice of a random
subset.

Köpf and Basin [38] characterize the leaked information in terms of the number of
program executions, where an attacker can adaptively provide inputs. The algorithms
for computing this information for a concrete system rely on an enumeration of the
entire input space and are difficult to scale to larger systems.

Backes, Köpf, and Rybalchenko [2] show how to synthesize equivalence relations
that represent the information that a program leaks, and how to quantify them by
determining the sizes of equivalence classes. Our approach shows that the exact com-
putation of the sizes of the equivalence classes can be replaced by over- and under-
approximations, and that the enumeration of equivalence classes can be replaced by
sampling. This enables our approach to scale to larger programs, e.g., those with un-
bounded loops.

McCamant and Ernst [48] propose a dynamic taint analysis approach for quantifying
information flow. Their method provides over-approximations of the leaked information
along a particular path, but does not yield guarantees for all program paths, which is im-
portant for security analysis. For programs for which preimages can be approximated,
our method can be used to derive upper and lower bounds for the leakage of all paths
without the need for complete exploration.
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Newsome, McCamant, and Song [53] use the feasible outputs along single program
paths as lower bounds for channel capacity, and they apply a number of heuristics to
approximate upper bounds on the number of reachable states of a program. They assume
a fixed upper bound on the number of loop unrollings. In contrast, our technique does
not require an upper bound on the number of loop iterations, and it comes with formal
quality guarantees for the estimated quantities.

Heusser and Malacaria [34] use model-checking to verify assertions about the num-
ber of feasible outputs of a program. A valid assertion translates to an upper bound on
the channel capacity of the program. In contrast, we apply model counting techniques
to immediately obtain upper and lower bounds on the number of feasible outputs.

Chatzikokolakis, Chothia, and Guha [16] use sampling to build up a statistical model
of a probabilistic program, which is treated as a black box. Based on this model, they
compute the maximum leakage w.r.t. all possible input distributions. In contrast, our
approach is based on the actual semantics of deterministic programs, as given by the
source code, and we use a randomized algorithm to compute the adversary’s remaining
uncertainty about the input.

A number of alternative information measures have been considered in the literature.
Di Pierro, Hankin, and Wiklicky [55] measure information flow in terms of the number
of statistical tests an attacker has to perform in order to distinguish two computations
based on different secrets. Clarkson, Myers, and Schneider [20] propose to measure in-
formation flow in terms of the accuracy of an attacker’s belief about a secret, which may
also be wrong. Reasoning about beliefs is out of the scope of entropy-based measures,
such as the ones used in this chapter. One advantage of entropy-based measures is the
direct connection to equivalence relations, which makes them amenable to automated
reasoning techniques. Finally, we mention that information-theoretic notions of leakage
are also used for analyzing anonymity protocols, see e.g. [17].

Our approach relies on abstract interpretation and symbolic execution techniques
for the approximation of the set of program outputs. There exist efficient implemen-
tations of abstract interpreters with abstraction functions covering a wide spectrum of
efficiency/precision trade-offs, see e.g. [4, 10, 33, 42]. In particular, for bounding the
block count one could apply tools for discovery of all valid invariants captured by nu-
meric abstract domains, e.g., octagons or polyhedra [3, 50]. Similarly, we can rely on
existing dynamic engines for symbolic execution that can deal with various logical
representation of program states, including arithmetic theories combined with unin-
terpreted function symbols and propositional logic, e.g., Verisoft, KLEE, DART, and
BitScope [12, 14, 28, 29].

7 Conclusions

The exact computation of the information-theoretic properties of programs can be pro-
hibitively hard. In this chapter, we presented algorithms based on approximation and
randomization that allow for a tractable yet sufficiently precise approximation of these
properties. As ongoing work, we are putting these algorithms to work for the automatic
analysis of microarchitectural side-channels [40].
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39. Köpf, B., Dürmuth, M.: A Provably Secure and Efficient Countermeasure against Timing
Attacks. In: Proc. IEEE Computer Security Foundations Symposium, CSF 2009, pp. 324–
335. IEEE (2009)
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Abstract. This chapter aims to introduce some of the basics of modeling with
ODEs in biology. We focus on computational, numerical techniques, rather than
on symbolic ones. We restrict our attention to reaction-based models, where the
biological interactions are mechanistically described in terms of reactions, re-
actants and products. We discuss how to build the ODE model associated to a
reaction-based model; how to fit it to experimental data and estimate the quality
of its fit; how to calculate its steady state(s), mass conservation relations, and its
sensitivity coefficients. We apply some of these techniques to a model for the heat
shock response in eukaryotes.

Keywords: Biomodeling, reaction-based models, ODE-based models, ODE anal-
ysis, parameter estimation, model identifiability, model refinement, heat shock
response.

1 Introduction

Mathematical modeling with ordinary differential equations (ODEs) has a very long
tradition in biology and ecology. Efforts to apply ODEs to understand population dy-
namics started already in the 18th century (see, e.g., Malthus’s growth model [40]) as
an effort to apply the principles of physical sciences to biological sciences as well.
This research area led to major developments both in biology and ecology, as well as
in mathematics. The field has long been called biomathematics, mathematical biology
or theoretical biology and it typically involved researchers from life sciences (biology,
biochemistry and ecology in particular), mathematics and more recently, from computer
science and engineering. It has recently witnessed an explosion of interest in the com-
puter science community due to the fast-paced developments in quantitative laboratory
technologies. The developments on the computational side have also been influential,
allowing for analyzing ever larger models and opening the door to new fields of research
such as computational drug design or personalized medicine.

This chapter is primarily targeting the computer science community. Many computer
scientists working in biomodeling seem to prefer a discrete stochastic approach rather
than one based on ODEs. Such a choice is in some ways natural for computer scientists
as it leads to new types of applications of formalisms that are well-studied in computer
science, such as Petri nets, process algebra, finite automata, etc. On the other hand, such
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methods come with their own limitations, especially in terms of numerical simulations
of large models and in parameter estimation. Moreover, ODE-based modeling offers
a huge array of analysis methods, some of which do not have a correspondent on the
discrete side. Our chapter aims to introduce some of the basics of modeling with ODEs
in biology, especially in terms of building such a model, analyzing some of its proper-
ties, and estimating its parameters. We focus on computational, numerical techniques,
rather than on symbolic ones. We restrict our attention to reaction-based models, where
the biological interactions are mechanistically described in terms of reactions, reactants
and products.

The chapter is structured as follows. We discuss in Section 2 the notion of reaction-
based models and introduce briefly the stochastic modeling approach in terms of con-
tinuous time Markov chains. We then discuss in more details the modeling with ODEs
in Section 3. The parameter estimation problem is discussed in Section 4. We then intro-
duce in Section 5 several analysis techniques, including steady state analysis, sensitivity
analysis, and identification of mass conservation relations. As a case-study we discuss
the modeling of the heat shock response in Section 6. We conclude with discussions in
Section 7.

2 Reaction-Based Models

Reaction-based models are formalized as sets of reactions that describe the given sys-
tem in terms of mechanistic interactions between the species of interest. We discuss
separately two types of reactions: reversible and irreversible. In the following we con-
sider a model M consisting of a set of m species Σ = {S1,S2, ...,Sm} and n (reversible
or irreversible) reactions R j, 1≤ j ≤ n.

Generalities. If reaction R j, 1≤ j ≤ n is irreversible, then it has the following form:

R j : c1, jS1 + c2, jS2 + . . .+ cm, jSm
kj−→ c′1, jS1 + c′2, jS2 + . . .+ c′m, jSm. (1)

On the other hand, if it is reversible, then it is of the following form:

R j : c1, jS1 + c2, jS2 + . . .+ cm, jSm

kj
+

�
k j
−

c′1, jS1 + c′2, jS2 + . . .+ c′m, jSm. (2)

In both cases, k j ≥ 0 (k+j ,k
−
j ≥ 0, resp.) is the kinetic rate constant of the irreversible (re-

versible, resp.) reaction R j and c1, j, . . . ,cm, j ,c′1, j, . . . ,c
′
m, j ≥ 0 are non-negative integers

that represent the quantitative proportion in which species participate in a reaction. The
stoichiometric coefficient of molecular species Si in reaction R j is ni, j = c′i, j− ci, j. The
stoichiometric coefficients can be represented in a stoichiometric matrix N = (ni, j)m×n.
The (i, j) entry of the matrix is the stoichiometric coefficient of species Si in reaction
R j. If ni, j > 0 (ni, j < 0, resp.), then we say that Si is produced (consumed, resp.) in
reaction R j.

The reactants (the species indicated on the left-hand side of the reaction) are referred
to as substrates, while the species produced as a result of the reaction being triggered
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(indicated on the right-hand side of the reaction) are called products. A species Si with
ci, j = 0 (c′i, j = 0, resp.) is usually omitted from the left- (right-, resp.) hand side of
reaction R j.

Note that a reversible reaction can be divided into two different irreversible reactions,
as follows:

R j
(1) : c1, jS1 + c2, jS2 + . . .+ cm, jSm

kj
+

−−→ c′1, jS1 + c′2, jS2 + . . .+ c′m, jSm

R j
(2) : c′1, jS1 + c′2, jS2 + . . .+ c′m, jSm

kj
−

−−→ c1, jS1 + c2, jS2 + . . .+ cm, jSm

The sum ∑m
i=1 ci, j for an irreversible reaction R j is called the molecularity of reaction

R j. We consider here only reactions with molecularity at most two. Reactions with
molecularity three are very rare, due to the high improbability of having three molec-
ular entities simultaneously colliding and forming a correct configuration that leads to
the constitution of a molecular complex; a molecularity greater than three for an ele-
mentary reaction is unattainable, since a number of molecules greater than three cannot
concomitantly collide [49].

Example 1. We consider here the representation of a simple ecological prey-predator
model through coupled chemical reactions: the Lotka-Volterra system, [39, 60]. The
model consists of species Prey and Predator and its reactions are shown in Table 1.

Table 1. The Lotka-Volterra model [39, 60]

Prey
k1−→ 2×Prey, growth of prey population

Prey+Predator
k2−→ 2×Predator, consumption of preys

Predator
k3−→ /0 death of predators

The dynamics of the Lotka-Volterra system is periodical: the population of preys
grows at a rate proportional to the current population, the presence of predators in the
system induces a decrease in the population of preys at a rate proportional to the number
of prey-predator encounters, the population of predators declines at a rate proportional
to the current population of predators. We return to this example in the next section
where we associate to it an ODE-based model. A plot of its numerical simulation is
shown in Figure 1.

Associating a mathematical model. After building a reaction-based model, one then
associates to it a mathematical model to facilitate quantitative analysis and simulation
of the model. There are many approaches available for this, see e.g. [9, 12]. The two
approaches that are most used (either in a direct way, or an indirect way, as the under-
lying semantic of a higher-level model) are the ODE-based approach and the one based
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on continuous time Markov chains (CTMCs). The modeling with CTMCs is described
in more details elsewhere in this book; we only give it here a very brief presentation
so that we can draw some comparison between the two in Section 7. We introduce the
modeling with ODEs in more details in Section 3.

The stochastic approach is typically argued for on the basis of physical difficulties
of ODE-based models with small populations [14,15], or in terms of the network being
too complex to describe in a deterministic way [61]. The stochastic formulation of a
biochemical reaction network assumes homogeneity of substances and thermal equilib-
rium, see [16]. In this case, the model is usually described mathematically as a continu-
ous time Markov chain, see [57]. Each species of the model becomes a time-dependent
discrete stochastic variable indicating the number of individuals in that species, where
time is modeled as a continuous variable. Formally, a stochastic process, {X(t), t ≥
0}, is a continuous-time Markov chain if for all s, t ≥ 0, the following property is
satisfied:

Pr{X(s+ t) = xs+t |X(s) = xs,X(u) = xu,0≤ u≤ s}= Pr{X(s+ t) = xs+t |X(s) = xs}.

Intuitively, we say that the Markov chain is memoryless: its future dynamics depends
only on the current state and not on the past states.

A continuous-time Markov chain is time-homogeneous if the following relation is
satisfied:

Pr{X(s+ t) = j|X(s) = i}= Pr{X(t) = j|X(0) = i}.

We discuss here only time-homogeneous systems.
Given a vector of non-negative integers X = (X1,X2, ...,Xm) and species S1,S2, ...,Sm

the grand probability function of the model, Pr(X, t), is the probability that there are
X1 species S1, X2 species S2, ..., Xm species Sm at time t. We consider all species to
be distributed randomly and homogeneously in the volume V . The central hypothesis
for the stochastic formulation of chemical kinetics is that the probability of a particular
combination of reactants to react according to a given reaction R in the next infinitesi-
mal time interval (t, t + dt) is cRdt, for a certain constant cR, called the stoichiometric
constant of the reaction. The probability of a reaction occurring in the interval (t, t+dt)
is given by the formula NR ·cR ·dt, where by NR we denote the number of combinations
of reactants in the current state. For instance, for reaction R(1) : S1 + S2 −→ S3, we have
NR(1) = X1 ·X2. For reaction R(2) : 2S1 −→ S3, NR(2) = X1 · (X1− 1)/2.

For an infinitesimally small dt, the probability of the system being in a certain state
at time t+dt may be given by the following two scenarios: the system was in the current
state at time t and no reaction occurred, or the system reached the current state as a result
of a single reaction being triggered (the probability of having had two or more reactions
is negligible). Denote by akdt the probability of a reaction Rk occurring in the interval
(t, t + dt), given the state characterized by X at time t, and by Bkdt the probability that
reaction Rk occurs in the time interval (t, t +dt) resulting in a state characterized by X.
The reasoning above can be formally written as follows:
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Pr(X, t + dt) = Pr(X, t)(1−
n

∑
k=1

akdt)+
n

∑
k=1

Bkdt, i.e.,

(Pr(X, t + dt)−Pr(X, t))/dt =−
n

∑
k=1

akPr(X, t)+
n

∑
k=1

Bk, and so,

∂Pr(X, t)
∂t

=
n

∑
k=1

(Bk− akPr(X, t)). (3)

Equation (3) is known in the literature as the Chemical Master Equation. A detailed
mathematical analysis of a complex system using the chemical master equation has
been proven to be intractable, see [61]. However, an alternative to the aforementioned
approach is Gillespie’s algorithm, introduced in [14, 15], that generates a random walk
through the state space of the model, avoiding the solving of the master equation.

3 ODE-Based Models

We discuss in this section how to associate an ODE-based model to a reaction model.
In this case, the dynamic behavior of the system is expressed in terms of the time-
dependent evolution of each species’ concentration. The deterministic framework of
ordinary differential equations (ODEs) is often chosen as the default mathematical
counterpart of a reaction-based system, sometimes followed-up by other modeling ap-
proaches. The basic quantities describing the ODE model are the concentrations [S1],
[S2], ..., [Sm] of the m species in the model, and the fluxes v1,v2, ...,vn of the n reactions
in the model. The concentration is generally expressed either in terms of particle num-
bers (i.e. the number of molecules of species S, denoted #S, in a solution with volume
V ), or in terms of moles of species S per volume V . The correspondence between the
number of molecules and the number of moles is given by the relation:

#S = [S] ·NA,

where NA ≈ 6.02214179 ·1023particles/mol. The unit of [S] is commonly denoted by M
= mol ·L−1, where L is litre.

Without loss of generality, we will assume that all reactions are reversible and have
the form in (2); an irreversible reaction is then a particular case, where one of the two
kinetic constants is zero.

Each species Si of the reaction model can be modeled as a function [Si] : R+ →
R+ representing the time evolution of its concentration. The dependencies between
the species can then be expressed in terms of a systems of ODEs in the variables [Si]
modeling the change in [Si] as a function of all other variables:

d[Si]/dt =
n

∑
j=1

ni, jv j,
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where v j is the flux of reaction r j and ni, j is the (i, j) stoichiometric coefficient. Here,
we make the assumption that the only factor affecting the concentrations of the species
are the reactions. Considering the vector of all reaction fluxes v = (v1,v2, ...,vn)

T , the
ODE representation of the entire reaction model can be written in a compact way as
follows:

d[S]/dt = Nv, (4)

where [S] = ([S1], [S2], ..., [Sm])
T is a vector of the concentrations of all species in the

reaction-based model, see [25].

Example 2. Consider the following reaction model:

2A→ B,
A+B�C.

Denote by v1 and v2 the fluxes of the two reactions in the model, respectively. (We
discuss in the next section how the flux of a reaction is defined, depending on the kinetic
law the modeler chooses.) Then the corresponding ODE model is:�

���
d[A]
dt

d[B]
dt

d[C]
dt

�
���=

�
�−2 −1

1 −1
0 1

�
� ·�v1

v2

�
.

While the stoichiometries in a reaction-based model are constant, the concentrations
of all species will vary in time as a function of the reaction fluxes, which are in turn
dependent on the kinetics of each reaction and on the concentrations of all reactants.
In the following, we describe in details two of the most common reaction kinetics: the
mass-action principle, and Michaelis-Menten kinetics.

3.1 Law of Mass-Action

The most common biochemical kinetics follow the mass action law. It was introduced
in [20,21], and it states that the flux (also called sometimes rate) of a reaction is propor-
tional to the probability of the reactants colliding. Assuming a well-stirred environment,
the probability of the substrates of a reaction colliding is proportional to their concen-
tration to the power of their molecularity.

Example 3. For a simple reaction of the form

S1 + S2
k+
�
k−

2P,

the reaction flux is
v = v+− v− = k+[S1][S2]− k−[P]2,

where v+ represents the left-to-right (forward) reaction rate, v− represents the right-to-
left (backward) flux, k+ is the left-to-right kinetic rate constant, and k− represents the
right-to-left kinetic rate constant. For the forward reaction, the molecularity of each of
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the two substrates S1,S2 is 1, and for the backward reaction the molecularity is 2. If
the time is measured in seconds (s), and the concentration in M, then the unit for the
reaction rates is M · s−1. It follows that for monomolecular reactions (e.g. S→ /0), the
rate constant has unit s−1, while for bimolecular reactions, the rate constant is measured
in (M ·s)−1.

Considering a general reversible reaction of the form (2), the reaction rate reads

v = v+− v− = k+j
m

∏
i=1

[Si]
ci, j − k−j

m

∏
i=1

[Si]
c′i, j .

The corresponding system of ODEs, following (4), is

d[Si]

dt
= ni, jv = (c′i, j− ci, j)

	
k+j

m

∏
l=1

[Sl ]
cl, j − k−j

m

∏
l=1

[Sl ]
c′l, j



,1≤ l ≤ m.

For reversible reactions, the ratio of substrate and product at steady state (i.e., when the
forward and backward reaction rates are equal, v+ = v−) is a constant, Keq, called the
equilibrium constant:

Keq =
k+j
k−j

=

m
∏
i=1

[Si]
c′i, j
eq

m
∏
i=1

[Si]
ci, j
eq

,

where [Si]eq represents the equilibrium concentration of species Si.
The time course for a species S is obtained by integrating the corresponding ODE.

For a simple decomposition reaction S
k−→ P1+P2, the time dynamics is described by the

ODE d[S]/dt =−k[S]. Integrating over the interval [0, t) yields the analytical solution

S∫

S0

d[S]/dt =−
t∫

t=0

kdt ⇒ [S](t) = S0e−kt .

Calculating the analytical solution for more complex models is however rarely possible.

Example 4. For the Lotka-Volterra model introduced in Example 1, the mass-action
reaction fluxes for the three reactions in the system are the following:

v1 = k1[Prey], v2 = k2[Prey][Predator], v3 = k3[Predator].

The system of ODEs describing the dynamics of the Lotka-Volterra model is:

d[Prey]/dt = v1− v2 = k1[Prey]− k2[Prey][Predator]
d[Predator]/dt = v2− v3 = k2[Prey][Predator]− k3[Predator].

(5)

The periodic dynamics of the Lotka-Volterra model is depicted in Figure 1.



36 D.-E. Gratie, B. Iancu, and I. Petre

� � �� �� ��
�

���

���

���

��	


�
�
�

�
��
���
�

Fig. 1. The periodic time dynamics of the Lotka-Volterra model. The solid line represents the
concentration of Predator, while the dotted line represents that of Prey. As the Prey population
grows, the Predator population also grows; then there are more encounters Predator-Prey that
reduce the Prey population; this reflects on the Predator, as they only multiply as long as they
find food. When the size of Predator drops, the Prey population starts to grow, and the cycle
repeats.

3.2 Kinetics of Enzymatic Reactions

Enzymatic reactions are a special class of biochemical reactions, where an enzyme is
required for a reaction to take place, but the enzyme itself is not consumed during
the reaction. The general form of an enzymatic reaction, as proposed in [7] based on
previous experimental results of [28, 43], is:

S+E
k1
�
k2

S : E
k3→ P+E,

where E is an enzyme, S is the substrate of the reaction, S : E is a substrate-enzyme
complex, and P is the product. This system of reactions represents in fact the reac-
tion S→ P, catalyzed by enzyme E . The system can be represented using mass-action
kinetics, considering the following irreversible reactions:

S+E
k1→ S : E, S : E

k2→ S+E, S : E
k3→ P+E. (6)

The system of ODEs describing the mass-action dynamics of the reaction-based model
(6) is the following:

d[S]
dt

=−k1[S][E]+ k2[S : E]; (7)
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d[E]
dt

=−k1[S][E]+ k2[S : E]+ k3[S : E]; (8)

d[S : E]
dt

= k1[S][E]− k2[S : E]− k3[S : E]; (9)

d[P]
dt

= k3[S : E]. (10)

Michaelis-Menten kinetics. Because the system of ODEs (7) - (10) cannot be solved an-
alytically, simplifying assumptions have been proposed. For example, the kinetic con-
stants k1,k2 could be assumed to be much greater than k3 (k1,k2 	 k3, see [43]), i.e.
[S : E] is negligible compared to [S] and [P], because the substrate-enzyme complex
concentration is very low. This is called the quasi-equilibrium between the free enzyme
E and the compound S : E .

This assumption has been further extended (see [7]) to considering that the sys-
tem will eventually reach a state where the concentration of substrate-enzyme com-
plex remains unchanged (quasi-steady state of S : E); the assumption only holds when
S0 	 E0. In this case we obtain:

d[S : E]/dt = 0, i.e., k1[S][E]− k2[S : E]− k3[S : E] = 0. (11)

Note that the right hand side of (8) is the complement of the right hand side of (9).
Adding them we get that d[E]/dt + d[S : E]/dt = 0. Equivalently,

[E]+ [S : E] = Etot ,or equivalently [E] = Etot − [S : E], (12)

where Etot is constant, standing for the total amount of enzyme in the system, either
free or as part of the substrate-enzyme complex.

Considering the quasi-steady state assumption and (12), equation (11) can be rewrit-
ten as follows:

k1[S]Etot = k1[S][S : E]+ k2[S : E]+ k3[S : E], i.e.,

[S : E] =
k1[S]Etot

k1[S]+ k2+ k3
, i.e.,

[S : E] =
[S]Etot

[S]+ k2+k3
k1

(13)

Introducing (13) into (10) yields the result

d[P]
dt

=
k3[S]Etot

[S]+ k2+k3
k1

. (14)

The Michaelis-Menten equation relates the reaction rate v of synthesizing the product
P to the concentration of the substrate, [S], by the relation:

v =
d[P]
dt

=
Vmax[S]
[S]+Km

, (15)
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where Vmax represents the maximum rate achieved by the system, for saturated values of
[S]. The Michaelis constant Km is the concentration of substrate for which the reaction
rate is half-maximal. Identifying the parameters of (15) into (14) yields the connec-
tion between the Michaelis-Menten kinetics and the mass-action deduced kinetics of an
enzymatic reaction:

Vmax = k3Etot , Km =
k2 + k3

k1
.

Assuming the quasi-equilibrium, the quantity k3/k1 is negligible, thus Km
∼= k2/k1.

Figure 2 shows the dependency of the reaction rate v with [S]. For more details on
Michaelis-Menten kinetics, we refer the reader to [37].
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Fig. 2. Dependency of the reaction rate v with [S] for Michaelis-Menten kinetics. vmax represents
the maximum velocity, and Km is the concentration of substrate for which the reaction rate is
half-maximal.

Reversible Michaelis-Menten kinetics. Enzyme kinetics can often be reversible, and the
Michaelis-Menten equation can be extended to a reversible reaction of the form

S+E
k1
�
k2

X
k3
�
k4

P+E, (16)

where S and P are substrates, E is the enzyme, and X represents the intermediary
enzyme-substrate compound. The mass-action irreversible reactions describing this sys-
tem are:
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S+E
k1→ X ;

X
k2→ S+E;

X
k3→ P+E;

P+E
k4→ X .

(17)

The system of ODEs describing the dynamics of the reaction-based model (17) is:

d[S]
dt

=−k1[S][E]+ k2[X ]; (18)

d[E]
dt

=−k1[S][E]+ k2[X ]+ k3[X ]− k4[P][E]; (19)

d[X ]

dt
= k1[S][E]− k2[X ]− k3[X ]+ k4[P][E]; (20)

d[P]
dt

= k3[X ]− k4[P][E]. (21)

Following the reasoning for simple Michaelis-Menten equations, adding (19) and (20)
yields

d[E]
dt

+
d[X ]

dt
= 0⇒ [E]+ [X ] = Etot .

For the quasi-steady state, d[X ]/dt = 0, i.e., k1[S](Etot− [X ])− [X ](k2+k3)+k4[P](Etot−
[X ]) = 0, which leads to

[X ] =
k1[S]Etot + k4[P]Etot

k1[S]+ k4[P]+ k2 + k3
. (22)

Introducing (22) into equation (21), after a few computations the formula reads

v =
k1k3[S]Etot − k2k4[P]Etot

k1[S]+ k4[P]+ k2+ k3
=

k3Etot
k1[S]

k2+k3
− k2Etot

k4[P]
k2+k3

1+ k1[S]
k2+k3

+ k4[P]
k2+k3

=

Vf w
KmS

[S]− Vbw
KmP

[P]

1+ [S]
KmS

+ [P]
KmP

,

where KmS = (k2 + k3)/k1 and KmP = (k2 + k3)/k4 are the Michaelis-Menten constants
(i.e. for half-maximal forward and backward rate) for the substrate and product, re-
spectively, and Vf w(Vbw) denotes the maximal rate in forward (backward) direction.
An exact solution to this equation can be found in [44]. For details on the reversible
Michaelis-Menten kinetics, we refer the reader to [22].

Other kinetic laws. Mass action and Michaelis-Menten are not the only existing ki-
netics. Some enzymatic reaction can follow Hill kinetics, Goldbeter-Koshland kinetics,
or be subject to inhibition. We only introduce them briefly, discussing the types of
reactions that are typically modeled in this way, and skipping the derivation of their
mathematical formulations.

Goldbeter-Koshland kinetics, introduced in [18], applies to reversible reactions from
substrate to product and back, catalyzed by different enzymes (e.g. phosphorylation and
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Fig. 3. Goldbeter-Koshland kinetics. P is produced from S in presence of enzyme E1 and S is
produced from P in presence of enzyme E2.

dephosphorylation of proteins). The forward and backward reactions have Michaelis-
Menten kinetics. The general form of such reactions is shown in Figure 3.

Hill kinetics, introduced in [29], are suitable for reactions where the enzyme can
bind more molecules from the substrate S. Usually, the binding of the first S molecule
changes the binding rate of the second molecule. The rate can either increase (called
positive cooperativity), or decrease (called negative cooperativity). A general form of
such reactions is the following:

E + S1

k+1
�
k−1

ES1;

ES1
k2→ P+E;

ES1 + S2

k+3
�
k−3

ES1S2;

ES1S2
k4→ P+E.

Inhibition in a system with Michaelis-Menten kinetics (see (16)) can occur at different
levels. An inhibitor I can bind to an enzyme in different states of the enzyme. When it
binds (in a reversible reaction) to the free enzyme, the inhibition is called competitive,
as both the substrate and the inhibitor are competing for binding the enzyme. When I
binds reversibly to the enzyme-substrate complex, the reaction is called uncompetitive
inhibition, as the enzyme is already bound to the substrate. When the inhibitor binds
both to the free enzyme and to the enzyme-substrate complex, the inhibition is called
noncompetitive. For a more detailed description of enzyme inhibition reactions, we refer
the reader to [37].

4 Parameter Estimation

We discuss in this section the parameter estimation problem, including aspects of model
identifiability, quantitative measures for model fit quality, model validation, and meth-
ods for model fitting.

4.1 Generalities: Relating the Mathematical Model to the Experimental Data

Relating the mathematical model to the experimental data is an essential step in the
process of model building. This includes the validation of the model in terms of how
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well it can explain existing (quantitative or qualitative) experimental data and how well
its predictions correspond to existing (non-quantitative) knowledge. There are several
ways to approach this problem.

1. The modeler might have no a-priori hypothesis regarding the mathematical form
and is instead strongly guided by data. The focus here is to capture the trend of the
data and to predict the behavior in-between the data points and the emphasis is on
the data. This approach is called interpolation.

2. The modeler has a clear hypothesis regarding the mathematical form she is build-
ing. For example, she might start from a reaction-based model and then associate
to it an ODE-based model with mass-action kinetics as discussed in Section 3. The
focus here is on finding values for all model parameters and the emphasis is on the
model. This approach is called model fitting.

3. The modeler might replace a fitted model with an interpolating curve because of
a need for better mathematical properties in further manipulations/analsysis of the
model. This approach is called sometimes model approximation.

We only focus in this section on aspects related to model fitting. For a basic introduction
to other approaches we refer to [17].

The main focus in model fitting is on the estimation of the unknown kinetic param-
eters of the model so that its predictions are consistent with a given set of data, usually
presented in terms of time series. This step is often followed by a model validation step,
where the model is compared with another set of data, that was not used in the fitting
stage. In both cases, the task can be formulated as a mathematical optimization problem
to minimize a cost function that quantifies the differences between the model predic-
tions and the experimental measurements. The cost function can be seen as a distance
measure between two vectors with non-negative real numbers as entries, one holding
the experimental data, the other the model prediction for the time points where the data
was collected. Some of the most widely used cost measures in this context are based
on the Chebyshev criterion, sums of absolute deviations, and least-squares. We intro-
duce briefly each of them in the following. In all cases, we are given a data set (xi,yi),
1 ≤ i ≤ m and a model y = f (k,x), where f : Rn×R→ R and k ∈ Rn is the vector of
parameters, often with non-negative values.

In the Chebyshev criterion, the goal is to find k ∈ Rn that minimizes max{|yi−
f (k,xi)|,1 ≤ i ≤ m}. In other words, the goal is to minimize the largest absolute devi-
ation of a model value from the corresponding experimental value. The effect is that
more weight is given to the worst outlier.

Another approach is to find k ∈ R
n that minimizes ∑1≤i≤m|yi− f (k,xi)|. In other

words, the goal is to minimize the sum of absolute deviations. The effect is to treat each
data point equally and to average the deviations over all experimental points.

In the third approach we mention here, the goal is to find k ∈ Rn that minimizes
∑1≤i≤m|yi− f (k,xi)|2. This is the most widely used criterion in model fitting because the
resulting optimization problem can be approached using calculus if f is a differentiable
function (such as those obtained through the methods in Section 3).

The problem of estimating the parameters of kinetic models in systems biology is
computationally difficult, see e.g., [4,42,45]. Regardless of which fitting criterion (score
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function) is used, the high number of variables in a typical biomodel makes an exact
solution to the problem unfeasible in practice. There are however many approximation
methods. Some of them are based on local approximation algorithms; they are faster
in practice, but tend to converge to local optima. Others are based on global optimiza-
tion algorithms; they are in general slower, but tend to converge to a global optimum.
The global optimization methods can be based on deterministic searches [19, 33] or on
stochastic ones [2,6]. Even though the deterministic methods guaranty the convergence
to a global optimum, the speed of the convergence is typically a major concern and in
general, these methods cannot ensure the termination of the algorithm within a given
finite time interval [45]. On the other hand, the intrinsic randomness of the stochastic
approaches does not guarantee their convergence to an optimum [45]. However, many
stochastic methods exhibit a good performance in practice – they are often capable of
efficiently identifying a point in the vicinity of global solutions, see [45].

There are many modeling software environments, some commercial, others offer-
ing free access, that are used for model fitting. In most of our projects we chose CO-
PASI [31] as a computational environment for parameter estimation. This software is
a widely used tool in computational systems biology, having a documented good per-
formance, see [4, 42, 45]. It includes a suite of various local and global, deterministic
and stochastic parameter estimation algorithms, such as simulated annealing, genetic
algorithms, evolution strategy using stochastic ranking, and particle swarm.

4.2 Alternative Model Fits and Model Identifiability

The problem of model identifiability adds to the difficulty of model fitting; it has to do
with a model having several (sometimes very) different sets of parameter values, all
yielding good model fits. The problem is that some numerical properties of the model,
such as sensitivity coefficients, might be drastically different in different numerical se-
tups, even if they all fit well the available data. This implies that there exist several mod-
els (or model setups) offering equally good, but different explanations for the available
data. In such a situation, additional data is needed, focusing on the domains where the
candidate models exhibit different behavior.

Even when only one model fit has been achieved, the modeler should evaluate the
uniqueness of the parameter set. One way of doing this is to repeat the parameter esti-
mation procedure, using some other available algorithms but the same data set. Such a
procedure can in principle yield several different results, as demonstrated e.g. in [8,53].

When searching for alternative numerical model fits, one can sample the distribution
of the score functions measuring the distance between the model predictions through a
simultaneous sampling on the range of all parameter values. For each parameter, one
can generate a large sample, e.g. through partitioning its value range into a large number
of equal sized subintervals (say, on the scale of tens of thousands) and randomly select
a value from each of them. For all combinations of values for all parameters, one can
then calculate the score of the model fit and thus sample the distribution of the score
function. However, the direct implementation of this idea is clearly intractable for mod-
els with more than a few parameters due to the combinatorial explosion of the number
of model simulations that need to be run. A fast, practical solution to this problem is the
Latin Hypercube Sampling method (LHS) of [41]. This is a method to generate samples
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which are uniformly distributed over each parameter space, with the number of samples
being independent of the number of parameters, see [26,27,50] for several applications.
Let p be the number of parameters. The first step is to choose the size of the sample, N;
this will also serve as the number of samples for each parameter. The range of each pa-
rameter is then partitioned into N intervals, with the length of each interval proportional
to the probability of the parameter’s value to fall in that interval; in particular, if the pa-
rameter is uniformly distributed in its range, then all subintervals are equal-sized. We
then randomly select a value from each subinterval to generate a sample of N values for
each parameter. The N values for parameter i are then stored on the i-th column of an
N× p matrix. Finally, we randomly shuffle the values on all the columns of the matrix.
The result is read from the matrix row-by-row, giving a sample of N combinations of
parameter values. For a detailed description of this sampling scheme we refer to [41].
We discuss this method in the case of the heat shock response model in Section 6.

4.3 Fit-Preserving Model Refinement

Altering an already-fitted model, for example by adding a new component to it, replac-
ing a module with another one, or adding new variables and reactions to it, will lead
to losing its numerical fit. The problem is especially difficult in cases where the num-
ber of parameters in the new model is much larger than in the starting model. Rather
then attempting to re-estimate all parameters, including those that were already fitted
in the starting model, a computationally more efficient way is to build the larger model
in an iterative way, ensuring in each step that its quantitative model fit is preserved.
This method is called quantitative model refinement and has already been investigated
in several different setups in [3, 34, 46]. We follow here the presentation of [34].

A given reaction-based model can undergo several types of refinement, for instance
depending whether the focus lies on the reactants or reactions of the model. If one’s
focus lies on model’s data, then the model could be refined so as to include more details
regarding a species by having it substituted for several of its subspecies. The main
interest in this type of refinement originates in the analysis of the possible behavioral
intricacies the model refined as such would depict. This type of refinement is called data
refinement and it consists in refining a set of variables so as to include more details about
their internal states, attributes, etc. If the interest lies on the reactions of the model, one
could refine the model by replacing for instance a reaction in the model describing a
certain process by a set of reactions detailing on some intermediate steps of the process.
This type of refinement is called process refinement.

Formal refinement arose from the field of software engineering as a necessity to em-
bed an elementary set of specifications in a system’s final implementation. The problem
of quantitative model refinement has been addressed before in systems biology in partic-
ular related to rule-based modeling, which integrates data refinement through the notion
of agent resolution ( [23]). The focus lies here on rule refinement, a method designed
to refine rules ensuring model fit preservation. Nevertheless, the refinement technique
must preserve the quantitative systemic properties of the model, such as numerical fit
and validation, see [46].

A model M consisting of a set of reactions of the form (1) could be formalized
through a discrete or continuous approach, a deterministic or non-deterministic
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evolution, etc. This discussion focuses on a continuous mass-action formulation. To
each variable Si,1 ≤ i ≤ m we associate a time-dependent function [Si] : R+→ R+,
which denotes the concentration of the species over time. According to the principle of
mass action, see [37], the time evolution of the system may be specified by a system of
ODEs as follows:

d[Si]

dt
=−

n

∑
j=1

	
k jci, j

m

∏
l=1

[Sl ]
cl, j



+

n

∑
j=1

	
k jc

′
i, j

m

∏
l=1

[Sl ]
c′l, j



, 1≤ i≤ m. (23)

Assume now model M is refined discerning among various subspecies of S1. The dis-
tinction among the subspecies of S1 can be made by either different classes of S1 or
several biochemical configurations of S1, as a result of various post-translational modi-
fications such as acetylation, phosphorylation, etc. All subspecies characterized as such
participate in all reactions S1 took part in (in model M), with possible variations in
the kinetics. Replacing species S1 in model M by subspecies V1, . . . ,Vl brings about a
new model MR, whose set of species consists of the new variables {S′2,S′3, ...,S′m}∪
{V1, ...,Vl}, for some l ≥ 2, where variables S′j, 2≤ j ≤m of MR, match variables S j of
model M and V1, ...,Vl replace species S1 in MR. Moreover, each reaction R j of model
M is substituted for in model MR by a reaction R′j as follows:

R′j : (T1, jV1 + ...+Tl, jVl)+ c2, jS′2 + ...+ cm, jS′m
k′j−→

(T ′1, jV1 + ...+T ′l, jVl)+ c′2, jS
′
2 + ...+ c′m, jS

′
m,

where k′j is the kinetic rate constant, and T1, j, ...,Tl, j ,T ′1, j, ...,T
′

l, j are nonnegative inte-
gers so that T1, j + ...+Tl, j = c1, j and T ′1, j + ...+T ′l, j = c′1, j.

Model MR is a data refinement of model M on variable S1 if and only if the subse-
quent conditions hold, see [34]:

[S j](t) = [S′j](t), for all 2≤ j ≤ m, (24)

[S1](t) = [V1](t)+ . . .+[Vl](t), for all t ≥ 0. (25)

The refined model, MR, involves a number of m+ l− 1 species, while model M com-
prises only m species, MR evolving linearly in the size of its data set. The number of
reactions in MR substituting for reaction R j of M is the number of non-negative integer
solutions of the subsequent system of equations:

T1, j +T2, j + ...+Tl, j = c1, j;

T ′1, j +T ′2, j + ...+T ′l, j = c′1, j;

over the independent unknowns Tk, j,T ′k, j ,1≤ k≤ l. The number of solutions of the first
equation is given by the multinomial coefficient “l multichooses c1, j”, see [13]:		

l
c1, j




=

�
l + c1, j− 1

c1, j

�
=

(l + c1, j− 1)!
c1, j!(l− 1)!

.

Some values for the new kinetic parameters of MR may be attained from the literature
or they can be estimated experimentally. The parameters not attained as such require
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calculation through computational methods so that conditions (24) and (25) are ful-
filled. The reiteration of the parameter estimation process is however computationally
expensive. As an alternative, the method proposed in [34] describes an approach for
setting the values of the unknown parameters in the refined model so that relations (24)
and (25) hold. The approach promotes a choice of parameters symmetrical in V1, ...,Vl .

4.4 Quantitative Measures for the Model Fit Quality

Given parameter estimation may yield several different outputs, depending on the meth-
ods that were used in the fitting, it is important to quantify the goodness of a model
fit. In this way, the results of different parameter estimation rounds can be compared.
Moreover, through a suitable normalization, even the fitting of different models, using
different sets of data, may also be compared. Part of the challenge here is to avoid to dis-
criminate against models deviations that may be large in absolute values, but relatively
small compared to the experimental data.

We discuss here briefly a notion of model fit quality introduced in [38]. Their fit
quality only takes into account one set of experimental data at a time and aims to give
a measure of the average deviation of the model from the data, normalized on the scale
of the numerical values of the model predictions. For a given experimental data set
E = {(xi,yi) | 1≤ i≤ n} and a model M = f (k,x), the quality of M’s fit with respect to
E is denoted as q(M,E) and is defined as follows:

q(M,E) =


∑n

i=1( f (k,xi)− yi)2/n

∑n
i=1 f (k,xi)/n

·100%.

It was argued in [38] that a low (say, lower than 15− 20%) value of q(M,E) could be
considered as an indicator of a successful fit. We discuss the quality of the best fit for the
heat shock response model in Section 6 and refer to [10] for more details on applying
this measure.

5 Analysis of ODE-Based Models

We discuss in this section several computational analysis techniques for ODE-based
models. We apply some of these techniques in the next section, on the heat shock re-
sponse model.

5.1 Steady State Analysis

Steady states (also called stationary states, fixed points, equilibrium points) have the
property that when taken as initial values for the model, they yield a constant dynamics;
in other words, there is no change in the concentration of any of the species when
starting from steady state values. This is one of the basic concepts in dynamical systems
theory, extensively employed in modeling biological systems. There are several types
of steady states: stable, asymptotically stable, unstable etc.
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Consider a dynamical system dx/dt = f (x(t)), x(0) = x0, where f : Rn → Rn is a
continuous function with equilibrium point xe. The equilibrium is stable if for every
ε > 0 there exists δε such that, if ��x0− xe�� < δε, then ��x(t)− xe�� < ε,∀t ≥ 0. A steady
state is called asymptotically stable if there exists δ > 0 such that if ��x0− xe��< δ, then
limt→∞ ��x(t)− xe�� = 0. A steady state is unstable if the conditions for stability are not
met.

For a reaction-based model, the steady state behavior is characterized by the equation

d[S]
dt

= 0,

or equivalently, considering Equation (4),

Nv = 0. (26)

The rate vector v that satisfies the steady state condition (26) can be obtained by solving
the corresponding system of algebraic equations with the variables [S1], [S2], . . . , [Sm].
The equation has nontrivial solutions (not all variables are zero) only if rank(N) < n,
where n is the number of reactions in the system, i.e. matrix N contains at least one
pair of linearly dependent columns. The dependencies can be expressed by a so-called
kernel matrix K, such that

NK = 0, (27)

where K has c = n−rank(N) columns. The columns ki of matrix K are the vectors that
span the null space (also termed kernel) of N, i.e. the subspace of the reaction rates
space that contains all solutions to Equation (26), see [24]. Consequently, any vector J
of steady-state fluxes can be expressed as a linear combination of K’s columns,

J =
c

∑
i=1

αiki.

The kernel matrix K is not uniquely determined. Another kernel matrix K′ could be
obtained for example by a multiplication K′ = KQ, where Q has dimensions [n−
rank(N)]× [n− rank(N)]. Since K is a solution to Equation (27), so is K′. For details on
how to determine the kernel matrix using Gauss’s algorithm, we refer the reader to [37].

Example 5. Consider the following system of reactions:

2A
k1→ B;

A+B
k+2
�
k−2

C.

To compute the steady state, one needs to solve Equation (26), which reads as the fol-
lowing system of algebraic equations:�

�0
0
0

�
�

�������
0

=

�
�−2 −1

1 −1
0 1

�
�

�����������
N

·
�

v1

v2

�
�������

v

.



ODE Analysis of Biological Systems 47

Considering mass action kinetics and denoting by [A]0, [B]0, [C]0 the steady-state con-
centrations for the species in the model, the system reads:

−2k1[A]20− k+2 [A]0[B]0 + k−2 [C]0 = 0,

k1[A]20− k+2 [A]0[B]0 + k−2 [C]0 = 0,

k+2 [A]0[B]0− k−2 [C]0 = 0.

Solving the steady-state system of equations gives the solution [A]0 = 0, [B]0 =α, [C]0 =
0, where α > 0 is arbitrary.

Example 6. Let us consider the Lotka-Volterra model expressed in Table 1. The ODEs
characterising the system’s dynamics are expressed in Equation (5). The steady state
analysis leads to the system

k1[Prey]− k2[Prey][Predator] = 0,

k2[Prey][Predator]− k3[Predator] = 0.

Solving this system of two equations gives the steady state points

([Prey]s, [Predator]s) ∈ {(0,0),(k3/k2,k1/k2)}.

To study the behavior of the Lotka-Volterra model around the steady states, one needs
to examine the behavior of the concentrations around each equilibrium point, i.e. their
tendency to increase or decrease. To do that, one studies the sign of the derivatives:

d[Prey]
dt ≥ 0⇒ k1− k2[Predator]≥ 0⇒ [Predator]≤ k1

k2
;

d[Predator]
dt ≥ 0⇒ k2[Prey]− k3 ≥ 0⇒ [Prey]≥ k3

k2
.

(28)

The behavior around the steady states is depicted in Figure 4.

5.2 Mass Conservation Relations

In this section we introduce mass conservation relations and their importance in mod-
eling reaction-based systems. For a more detailed presentation and additional examples
we refer to [24].

Identifying the mass conservation relations in a given model is one of the first an-
alyzes that a modeler typically performs. It gives an insight into the dynamics of the
model, but at the same time it reduces the number of free variables in the model. Math-
ematically, a mass conservation relation is a linear combination of concentrations of
species that is constant in time:

gT S =C, (29)

where g is a vector with some constant entries, S is the species concentrations vector,
and C is some constant. An implication of mass conservation relations is that some of
the stoichiometric matrix rows are linearly dependent, i.e.

gT N = 0T . (30)
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Fig. 4. Steady-state analysis of the Lotka-Volterra system. The blue dots are the two steady states
of the system. The black arrows indicate how the concentration of each species increases or
decreases (as established in (28)). The blue arrows are the combination of Predator and Prey
concentrations tendencies, and they show how the dynamics of the system changes between the
four areas delimited by the dotted lines. The behavior around the (k3/k2,k1/k2) point suggests
periodicity; this is confirmed by Figure 1. Both equilibrium points are unstable, as indicated by
the blue arrows.

Equations (29) and (30) are equivalent. Derivating the former equation and taking into
account Equation (4) yields

(gT S)′ = gT �S = gT Nv = 0.

There may be more linearly independent vectors g that satisfy Equation (30), each de-
noting a different mass conservation relation. The number of mass conservation rela-
tions is given by m− rank(N), where m is the number of species in the system. The full
set of vectors g describing these mass conservation relations form a so-called conser-
vation matrix G , see [24], with the property

GN = 0.

Consequently, GT is a kernel matrix for NT . A conservation matrix G can be determined
using the Gauss algorithm, and it is not unique (any other matrix G′ = PG, where P is
any nonsingular matrix of appropriate dimensions, is a valid conservation matrix).

Example 7. Consider the following system of biochemical reactions:

2A� A2;
A2 +B� A2 : B;
A2 : B→C+A2 : B;
C→ /0.
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The species vector, stoichiometric coefficients matrix and the conservation matrix read:

S =

�
�����

A
A2

B
A2 : B

C

�
����� , N =

�
���
−2 0 0 0
1 −1 0 0
0 −1 0 0
0 0 1 −1

�
��� , G =

�
1 2 0 2 0
0 0 1 1 0

�
.

The mass conservation relations induced by G are:

[A]+ 2[A2]+ 2[A2 : B] =C1,
[B]+ [A2 : B] =C2,

(31)

for some constants C1,C2.
The mass conservation relations are important for reducing the system of differen-

tial equations �S = Nv that describe the dynamics of the model. Each mass conservation
relation introduces one dependent variable, which can be expressed in terms of the in-
dependent variables, and thus eliminated from the system of ODEs. The two mass con-
servation relations in Equation (31) could be used to express the dependency between
[A], [B] and the rest of the species concentrations:

[A] =C1− 2[A2]− 2[A2 : B],

[B] =C2− [A2 : B].

This reduces the initial system of ODEs from 5 to 3 equations.

5.3 Sensitivity Analysis

Sensitivity analysis is a method of estimating the changes that small perturbations in the
parameters of a model induce in the system. With this type of analysis, one can estimate
the robustness of a model against small changes, and also identify ways of inducing a
desired change into the model. There exist many methods for sensitivity analysis, some
suitable for spatially homogeneous constant-parameter reaction-based models, others
suitable for systems with space- and time-dependent parameters, or stochastic models.
For a review of multiple methods, we refer the reader to [59, 62]. One of the questions
often encountered in biochemical systems is what changes should the system undergo
such that the new steady state satisfies certain properties.

There are two types of sensitivity analysis: local sensitivity analysis, and global sen-
sitivity analysis. In the global approach, all parameters are varied at once, and the sen-
sitivity is measured over the entire range of each parameter. In the local analysis, only
one parameter is varied at a time, within a small interval around some nominal value.
Generally, it is assumed that input-output relationships are linear. We only focus here
on local sensitivity analysis.

We consider the system of ODEs describing a system to be expressed as a function
of the concentrations of all species and all the parameter values:

d[Si]

dt
= fi([S1], [S2], ..., [Sm],κ), (32)
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where κ = (k1,k2, ...,kn)
T is the rate constants vector (assuming without loss of gen-

erality that the system comprises n irreversible reactions). Let S(t,κ) = ([S1](t,κ),
[S2](t,κ), ..., [Sm](t,κ))T be the solution of Equation (32) with respect to κ, also called
sensitivity matrix. The elements of the matrix are the partial derivatives ∂[Si]/∂k j, also
called first-order local sensitivity coefficients.

There are many ways of determining the local sensitivity of the concentrations.
The simplest method is the brute force method (also called indirect method, or finite-
difference method), that uses the finite difference approximation. The j-th parameter,
k j, changes with the amount δk j at time point t1, and all other parameters remain un-
changed. One can compute the new matrix [S] using the change between the initial and
the perturbed solution, see Equation (33). The method requires n+ 1 runs, one for the
initial values of the parameters and n modifying each of the parameters at a time.

∂[S](t2)
∂k j(t1)

=
[S](t2,k j + δk j)− [S](t2,k j)

δk j
,1≤ j ≤ n. (33)

This method is widely used because of its simplicity, but other more efficient meth-
ods exist, e.g. the direct method. This method solves the differential equations for the
sensitivity coefficients ∂[Si]/∂k j, by differentiating Equation (32). This results in the
following set of sensitivity equations:

d
dt

∂[S]
∂k j

= J
∂[S]
δk j

+
∂ f
∂k j

,1≤ j ≤ n,

where J is the Jacobian for Equation (32). For a complete mathematical derivation of
this result, see [62].

Perturbations should be small enough to yield small errors in the indirect method,
and large enough to surpass the simulation inaccuracies of ODE solvers, for the direct
method, see [62]. Other methods of computing the sensitivity of a model to parameter
changes exist, e.g. the Green function method, polynomial approximation method, AIM
method, detailed in [54, 59].

Very often, sensitivity analysis is focused on the steady states, when concentrations
are constant. In this case, the sensitivity coefficients are computed as solutions to the
system

d
dt

∂[S]
∂k j

= 0,

and reflect the dependency of the steady state on the parameters. If the steady state is
asymptotically stable, then one can consider the limit limt→∞(∂[S]/∂k j)(t),1 ≤ j ≤ n,
called stationary sensitivity coefficients. The system can be written as

∂[S]
∂k j

=−J Fj,1≤ j ≤ n,

where J is the value of the jacobian at steady state, and Fj is the j-th column in the
matrix F = (∂ fr/∂ks)m×n computed at steady state. Sensitivity coefficients can be com-
puted in many software applications, e.g. in COPASI [31].
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6 The Heat Shock Response Model

We consider in this section a larger modeling case-study to which we apply some of the
techniques discussed in the chapter. The eukaryotic heat shock response is an evolu-
tionarily conserved bio-regulatory network, crucial to cell survival. It acts as a defence
mechanism that regulates the cellular response to proteotoxicity induced by diverse
physiological and environmental stressors, such as elevated temperatures. Exposure of
proteins to elevated temperatures causes protein misfolding, which results in the con-
stitution of large aggregates that eventually induce apoptosis (controlled cell death).
Protein homeostasis is promoted by augmenting the level of molecular chaperons.

6.1 The Reaction-Based Model

We consider here the basic molecular model for the heat shock response introduced
in [53]. Elevated temperatures cause protein misfolding and accumulation of misfolded
proteins in large conglomerates that induce cell death. The key role in homeostasis
restoration is played by heat shock proteins (hsp), which chaperone the misfolded pro-
teins, promoting the folding of proteins. The transactivation of hsp-encoding genes reg-
ulates the heat shock response. Heat shock factors (hsf) activate gene transcription. In
the absence of stress, heat shock factors are present in a monomeric conformation and
they are bound to a great extent to heat shock proteins. However, heat stress actuates
the dimerization (hsf2) and consequently trimerization (hsf3) of heat shock factors, a
DNA binding-competent conformation. Due to their high affinity toward the heat shock
element (hse), hsf trimers bind to the heat shock elements, promoting the transcrip-
tion and translation of the gene. Consequently, DNA binding activates hsp synthesis,
see [53, 55].

Once the heat stress is removed, hsp synthesis is turned off as follows: hsp’s seques-
trate free hsf’s (residing in the constitution of hsp:hsf complexes), break hsf2 and hsf3
and induce DNA unbinding, see [53,55]. Subsequently, DNA transcription is turned off
and the formation of new hsf trimers repressed. The heat shock response mechanism
is switched back on when the temperature is again elevated, impelling the proteins in
the cell (prot) to misfold and hsp:hsf complexes to break down. The reactions of the
molecular model in [53] are shown in Table 2.

Table 2. The molecular model for the eukaryotic heat shock response proposed in [53]

2hsf � hsf2 hsp+hsf3 → hsp:hsf+2hsf
hsf+hsf2 � hsf3 hsp+hsf3:hse→ hsp:hsf+2hsf+hse
hsf3+hse� hsf3:hse hsp→ /0
hsf3:hse→ hsf3:hse+hsp prot→mfp
hsp+hsf � hsp:hsf hsp+mfp� hsp:mfp
hsp+hsf2 → hsp:hsf+hsf hsp:mfp→ hsp+prot
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This molecular model is clearly on a high level of abstraction, for the sake of easing
its analysis. For example, note that the eukaryotic cell presents various classes of heat
shock proteins, denominated according to their molecular weight, e.g., Hsp60, Hsp70,
Hsp90. However, in this molecular model, they are all referred to as belonging to the
same class, with Hsp70 as common denominator. The same assumptions are made for
hsf and hse. Furthermore, the model considers all proteins uniformly, distinguishing
only between the ones that are correctly folded (prot) and the misfolded ones (mfp).
The model contains also simplified representations of some cellular mechanisms, e.g.,
protein synthesis and degradation, see [53] for more details.

The molecular model in [53] satisfies the following three mass-conservation rela-
tions, for the total amount of hsf, the total amount of proteins (excluding hsp and hsf)
and for the total amount of hse:

– [hsf]+ 2[hsf2]+ 3[hsf3]+ 3[hsf3:hse]+ [hsp:hsf] =C1,
– [prot]+ [mfp]+ [hsp:mfp] =C2,
– [hse]+ [hsf3:hse] =C3,

where C1, C2 and C3 are constants.

6.2 The Mathematical Model

Given the molecular model in Table 2, we consider a mathematical model derived
through the principle of mass action, formulated as a system of ordinary differential
equations ( [37]). The rate coefficient for protein misfolding (prot→mfp) is described
by the following formula:

ϕ(T ) = (1− 0.4
eT−37 ) ·1.4

T−37 ·1.45 ·10−5s−1,

where T is the temperature of the environment, expressed in ◦C, in accordance to [52].
Each species X in the molecular model is associated to a continuous, time-dependent
function [X ](t), expressing the concentration of the respective reactant. The dynamics
of the system is described through the system of differential equations in Table 3.

The initial values of all species and the kinetic rate constants were estimated in [53],
by imposing the following three conditions:

(i) At 37◦C the system is in a steady state, since the model should not reveal any
response in the absence of the heat stress;

(ii) At 42◦C, the numerical predictions for DNA binding ([hsf3:hse](t)) should be in
accordance with the experimental data reported in [36];

(iii) At 42◦C, the numerical prediction of the model for [hsp](t) should confirm the data
obtained in [53] through a de-novo fluorescent reporter-based experiment.

The numerical setup obtained in [53] for the heat shock response model is shown in
Table 4.

The estimation of parameters was based on the experimental data in [36] on DNA
binding in HeLa cells for a temperature of 42◦C. Moreover, the model should also be in
a steady state at 37◦C. Hence, seven more independent algebraic relations on the set of
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Table 3. The system of ODE’s associated with the biochemical model proposed in [53]

d[hsf]/dt =−2k+1 [hsf]2 + 2k−1 [hsf2]− k+2 [hsf][hsf2]+ k−2 [hsf3]

− k+5 [hsf][hsp]+ k−5 [hsp:hsf]+ k6[hsf2][hsp]
+ 2k7[hsf3][hsp]+ 2k8[hsf3:hse][hsp];

d[hsf2]/dt = k+1 [hsf]2− k−1 [hsf2]− k+2 [hsf][hsf2]+ k−2 [hsf3]

− k6[hsf2][hsp];
d[hsf3]/dt = k+2 [hsf][hsf2]− k−2 [hsf3]− k+3 [hsf3][hse]+ k−3 [hsf3:hse]

− k7[hsf3][hsp];
d[hse]/dt =−k+3 [hsf3][hse]+ k−3 [hsf3:hse]+ k8[hsf3:hse][hsp];
d[hsf3:hse]/dt = k+3 [hsf3][hse]− k−3 [hsf3:hse]− k8[hsf3:hse][hsp];
d[hsp]/dt = k4[hsf3:hse]− k+5 [hsf][hsp]+ k−5 [hsp:hsf]− k6[hsf2][hsp]

− k7[hsf3][hsp]− k8[hsf3:hse][hsp]− k+11[hsp][mfp]
+ (k−11 + k12)[hsp:mfp]− k9[hsp];

d[hsp:hsf]/dt = k+5 [hsf][hsp]− k−5 [hsp:hsf]+ k6[hsf2][hsp]
+ k7[hsf3][hsp]+ k8[hsf3:hse][hsp];

d[mfp]/dt = ϕ(T )[prot]− k+11[hsp][mfp]+ k−11[hsp:mfp];
d[hsp:mfp]/dt = k+11[hsp][mfp]− (k−11+ k12)[hsp:mfp];
d[prot]/dt =−ϕ(T )[prot]+ k12[hsp:mfp].

parameters and initial values are derived. Therefore, the model comprises 17 indepen-
dent values that require estimation. The above-mentioned conditions are satisfied by the
values in Table 4. These values have been attained by means of parameter estimation
in COPASI [31]. The model is fit with regard to the DNA binding experimental data
in [36]. The model predictions regarding hsf3:hse compared with the experimental data
of [36] are shown in Figure 5.

6.3 Model Validation

The model exhibits a very low rate for protein misfolding for a temperature of 37◦C and
a high rate for protein folding, in compliance with [5] and [35]. The model also predicts
a transient increase in the level of hsf trimers, in accordance with [30]. The model
confirms that dimers are only a transient form between monomers and trimers, and that
the level of dimers is low throughout the simulation, regardless of the temperature.

Another validation test consisted in applying the heat shock response twice subse-
quently. The second heat shock was applied after the heat shock proteins had attained
a maximal level. The model in [53] predicted the response to the second heat shock to be
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Table 4. The numerical values of the parameters (A) and the initial values of the variables (B) of
the heat shock response model proposed in [53]

A B
Param. Value Units Variable Initial conc.

k+1 3.49 ml
#·s [hsf] 0.67

k−1 0.19 s−1 [hsf2] 8.7 ·10−4

k+2 1.07 ml
#·s [hsf3] 1.2 ·10−4

k−2 10−9 s−1 [hse] 29.73
k+3 0.17 ml

#·s [hsf3:hse] 2.96
k−3 1.21 ·10−6 s−1 [hsp] 766.88
k4 8.3 ·10−3 s−1 [hsp:hsf] 1403.13
k+5 9.74 ml

#·s [mfp] 517.352
k−5 3.56 s−1 [hsp:mfp] 71.65
k6 2.33 ml

#·s [prot] 1.15× 108

k7 4.31 ·10−5 ml
#·s

k8 2.73 ·10−7 ml
#·s

k9 3.2 ·10−5 s−1

k+11 3.32 ·10−3 ml
#·s

k−11 4.44 s−1

k12 13.94 s−1

greatly diminished in intensity. Indeed, a diminished response for the second heat shock
could be anticipated since the level of heat shock proteins (hsp’s) is already elevated as
a consequence of the first heat shock. A similar result was reported in [52].

Another validation method consisted in simulating the model for a temperature of
43◦C and comparing the results with those of [55]. The model in [53] predicts a pro-
longed transactivation for DNA binding, as opposed to the model in [55], but it is con-
sistent with the experimental data in [1]. An experiment consisting in the removal of
the heat shock at 42◦C at the peak of the response exhibited an accelerated attenuation
phase, complying with the results reported by [55].

An alternative verification scenario focused on the prediction of the evolution of heat
shock proteins (hsp’s) over time. This method required the use of a quantitative reporter
system founded on yellow fluorescent proteins (yfp’s). This method was based on the
assumption that fluorescence intensity is virtually linear reported to the level of yfp’s.
As yfp’s transactivation is regulated by their own heat shock elements, denoted in [53]
by hse′, transcription and degradation kinetics (k4

′ and k9
′ respectively), their evolution

in time may be described by the following differential equation:

d[yfp]/dt = k′4[hsf3:hse′]− k′9[yfp], (34)

for some positive constants k′4,k
′
9 accounting for the kinetic rate constants of yfp syn-

thesis and of yfp degradation. The extended model, including equation (34), takes into
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Fig. 5. The dynamic behavior of hsf3:hse in the best fitted model. The continuous line is the
model prediction and the crossed points indicate the experimental data of [36].

account all numerical values from the basic model, described in Table 2, and the nu-
merical values for the new rate constants k4

′ and k9
′ were estimated so that the fit for

yfp’s complies with the experimental data.

6.4 Model Analysis

Sensitivity analysis. The first analysis approach consisted in estimating the scaled
steady state sensitivity coefficients, see [59], of all variables against reaction rate con-
stants and initial concentrations. Given a variable X and a parameter p, the scaled steady
state sensitivity coefficient of variable X against parameter p is defined by:

lim
t→∞

∂ln(X)

∂ln(p)(t)
.

The coefficients described above represent the relative variance of the steady state when
the model undergoes infinitesimal changes in parameter p. The sensitivity coefficients
of all variables against reaction rate constants k1

−,k2
−,k3

−,k7 proved to be all insignif-
icant, suggesting that the reactions corresponding to those rate constants may not be
crucial to the global behavior of the model. For this aim, the model was altered so as
to exclude the reactions corresponding to the aforementioned kinetic rate constants,
namely the backward reactions for dimerization, trimerization, DNA binding and DNA
unbinding. The new model attained as such satisfies the validation tests described in
Section 6.3. This suggests that hsf dimers and trimers are steady configurations and
that non-hsp-mediated DNA unbinding is negligible. While the breaking of trimers
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(by hsp) does not affect greatly the overall behavior of the model, the reaction describ-
ing the breaking of trimers (by hsp) proved to have a substantial impact on the evolution
of hsp and mfp.

The variation between the steady state levels of hsp and mfp are correlated, see [53],
which is consistent with the biological knowledge that hsp’s have a major role in chap-
eroning mfp’s. Table 5 shows the largest sensitivity coefficients for hsp and mfp. The
coefficients with respect to k5

+ and k5
− are the highest, suggesting that the reaction

describing hsf sequestration (forward)/dissipation of hsp:hsf (hsp+hsf � hsp:hsf) is
the main feedback loop. The forward direction, hsf sequestration, hereafter compels the
ceasing of transcription, inducing an augmentation in the level of mfp and a decrease in
that of hsp. The backward direction (dissipation of hsp:hsf), however, actuates an in-
crease in the level of hsp and hsf and a reduction of mfp. Considering the coefficients in
Table 5 in descending order, the next set of coefficients to discuss consists of k1

+, k2
+

and k4, corresponding to the forward directions of dimer(trimer) formation and DNA
binding respectively, suggesting the augmentation of the transcription level and there-
upon the level of hsp. On the contrary, the reactions describing the breaking of dimers,
hsp degradation and protein misfolding, diminish the transcription level. The reactions
influencing the level of mfp alone are the reactions corresponding to the sequestration
of mfp’s/dissipation of hsp:mfp (see coefficients corresponding to k11

+ and k11
− in

Table 5) and protein refolding (same for k12).
Among the sensitivity coefficients of hsp and mfp with respect to the initial concen-

trations, the one dependent on the initial level of hsp:hsf (hsp:hsf(0)) was the most
relevant. On the other hand, the sensitivity coefficients of hsp and mfp with respect to
the level of any of the hsf species (monomers, dimers or trimers) were insignificant.
This is to be expected since initially the majority of hsf’s is sequestrated by hsp’s and
the initial levels of dimers and trimers are reduced, which is consistent with [30]. Con-
sequently, the sensitivity coefficient with respect to hsp:hsf(0) should be conceived as
describing a dependency over the total initial amount of hsf.

The sensitivity coefficients with respect to the initial amount of hse were insignif-
icant, which is justified by the consideration of the sensitivity coefficients around the
steady state. For instance, for a lower initial amount of hse, the response reaches here-
after the same steady state. A higher level of hsf(0) brings no change in the evolution
of the response. The sensitivity coefficients of hsp and mfp with respect to hsp(0) were
also insignificant.

Model identifiability. Looking into the model identifiability problem, alternative good
numerical fits were searched for, using the same fitting data as in the model fitting pro-
cedure described above. Several were found, but none of them passed the additional
validation tests described in the previous section. Then the Latin Hypercube Sampling
method was applied to sample the distribution of the fitting score function. The first
step was to generate a sample of N = 100000 combinations of parameter values, as
described in Section 4. For each of them, the initial values were chosen so that they
are a steady state of the model at 37◦C. Out of these, the analysis was continued only
for those combinations that were “responsive”, where a model was declared responsive
if hsf3:hse(900) ≥ 20 (note that the experimental data indicated that the peek of the
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Table 5. The largest scaled steady state sensitivity coefficients of hsp and mfp. The coefficients
are identical for both 37◦C and 42◦C [53]

Parameter description p ∂ln(hsp)
∂ln(p) |t→∞

∂ln(mfp)
∂ln(p) |t→∞

Sequestration of hsf k5
+ −0.50 0.50

Dissipation of hsp:hsf k5
− 0.50 −0.50

Formation of dimers k1
+ 0.17 −0.17

Formation of trimers k2
+ 0.17 −0.17

Transcription, translation k4 0.17 −0.17
Affinity of hsp for hsf2 k6 −0.17 0.17
Affinity of hsp for hsf3:hse k8 −0.17 0.17
Degradation of hsp k9 −0.17 0.17
Affinity of hsp for mfp k11

+ 0.00 −1.00
Dissipation of hsp:mfp k11

− 0.00 0.24
Protein refolding k12 0.00 −0.24
Initial level of hsp:hsf hsp:hsf(0) 0.50 −0.50

response is reached after 900 time units). The result was interesting: there were only
31506 models satisfying the constraint, already suggesting that finding suitable alter-
native model fits is a difficult problem. For each of these models we calculated the fit
quality as discussed in Section 4; the result is plotted in Figure 6, showing clearly our
best fit as an outlier in the fit quality distribution. More details on the identifiability of
the heat shock response model can be found in [53]. This suggests that fitting the sim-
ple heat shock response model in Table 2 to the experimental data in [36] and to the
steady-state condition for the initial values is indeed a difficult numerical problem.

7 Discussion

The focus of our chapter has been on the practical use of modeling with ordinary differ-
ential equations in biology. Our choice of topics to discuss has been driven by targeting
primarily the computer science community and by the space limitations. This chapter
should only be seen as a “teaser” for modeling with ODEs in biology; for a more com-
prehensive reading on this topic, many excellent textbooks exist, such as [11,32,47,48,
56, 58]. We only considered in this chapter reaction-based models and started by dis-
cussing how to associate to them an ODE-based model; we presented briefly several
laws for biochemical kinetics: mass-action, Michaelis-Menten, Goldbeter-Koshland,
Hill, and inhibition. One should note that many other types of models exist, see, e.g., [9].
We then discussed the parameter estimation problem, including model identifiability,
measures for fit quality, and fit-preserving model refinement. We then introduced sev-
eral analysis methods for ODE-based models: steady state analysis, mass conservation,
and sensitivity analysis. In addition to some smaller examples discussed throughout the
chapter, we dedicated a separate section to a larger case-study on the eukaryotic heat
shock response.
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Fig. 6. The distribution of the model fit quality among 31506 model variants obtained through
the Latin hypercube sampling method. Most models exhibit a constant level of hsf3:hse, very
different from the dynamic behavior in Figure 5; these models yield a numerical value for the fit
quality around 30%. The quality of our best fit is around 10−30.

There are many computational benefits that modeling with ODEs brings, including
fast numerical simulations, many methods for parameter estimation, several highly use-
ful static and dynamic analysis techniques, such as mass conservation, steady state anal-
ysis, flux-balance analysis, metabolic control analysis, sensitivity analysis, etc. At the
same time, the ODE-based approach also suffers from several difficulties. The one that
is most discussed is the inability to account for stochastic noise in a system, which might
be problematic especially in cases where there are relatively small species; a detailed
discussion about the physical limitations of the ODE-based approach is in [14, 15].
Another difficulty is in the need for knowing a potentially large number of kinetic pa-
rameters; measuring them experimentally is sometimes impossible, while estimating
them computationally suffers from model identifiability issues. A partial solution here
is the approach based on quantitative model refinement, see [34]. Another partial so-
lution is in terms of static, rather than dynamic analysis, often performed around the
steady states; such an approach is modeling based on flux balance analysis, see [51].

The stochastic approach, either in terms of continuous time Markov chains (CTMC)
and the chemical master equation, or in terms of higher-level formalisms (such as Petri
nets or process algebra) based on a CTMC semantic, is often offered as a solution to the
physical limitations of the ODE-based approach. It is important however to understand
the limitations of both approaches so that we can take advantage of the benefits of
either one, whenever they are applicable. In Table 6 we summarized several aspects
about modeling with ODEs and with CTMCs, and placed them in mirror for an easy
comparison. It is also important to point out that in the case of very large models, both
approaches are insufficient, see Figure 7.
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Table 6. Some of the differences between the deterministic and the stochastic modeling ap-
proaches

Deterministic approach Stochastic approach

Fundamental as-
sumptions

the system is well-stirred and at
thermodynamical equilibrium

the system is well-stirred and at
thermodynamical equilibrium

Modeling goal
it models the average behavior
of the system

it models individual runs of the
system

Concept
based on the concept of
diffusion-like reactions

based on the concept of reactive
molecular collisions

Type of model
the time evolution of the model
is a continuous process

the time evolution of the model
is a random-walk process
through the possible states

Math model governed by a set of ODEs
governed by a single ODE: the
chemical master equation

Analytic solution
the system of ODEs is often
impossible to solve analytically

the chemical master equation is
often impossible to solve

Small popula-
tions

conceptual difficulties when
small populations are involved

no difficulties with small popu-
lations

Numerical simu-
lations

fast
Gillespies algorithm is slow;
many runs are needed

ODE-based 
models 

Non-mechanistic 
models 

Chemical 
master 

equation 
Rule-based models 

Event wall 

Combinatorial 
wall 

Number of 
molecular 

species 

Number of  
molecules 
per species 

500 106 

100 

106 

Fig. 7. Modeling limitations depending on the size of the model. Adapted from Walter
Fontana http://fontana.med.harvard.edu/

http://fontana.med.harvard.edu/
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The ODE-based approach to computational modeling is (still) arguably the standard
choice for biomodelers, especially on the biological side of the community. There are
many advantages that it brings, as there are clear limitations. Even in cases where an-
other modeling approach is taken, the corresponding ODE-based model is often also
built to serve as comparison to related (ODE-based) models and to make available
tools such as parameter estimation or steady state analysis. Moreover, on top of the
ODE-based semantic there are many other discrete techniques that can be added to give
further insight into the model: Petri net tools, control analysis, network motif identifi-
cation, etc. In the continuing debate of ‘discrete vs. continuous biomodeling’ we argue
that it is good to retain the advantages of both worlds and use them to their full potential
whenever applicable.
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Botanická 68a, 602 00 Brno, Czech Republic

{brim,xceska,safranek}@fi.muni.cz

Abstract. Model checking together with other formal methods and
techniques is being adapted for applications to biological systems. We
present a selection of approaches used for modeling biological systems
and formalizing their interesting properties in temporal logics. We also
give a brief account of high performance model checking techniques and
add a few case studies that demonstrate the use of model checking in
computational systems biology. The primary aim is to give a reference
for further reading.

1 Introduction

All biological systems, from single pathways to multicellular organisms, can be
seen as complex systems of interacting components. Biological systems can also
be seen as reactive systems, as they continuously interact with their environment.
Systems biology thus studies complex interactions in biological systems, with the
aim to understand better the processes that happen in such a system, as well as
to grasp the emergent properties of such a system as a whole.

Computational systems biology can, by drawing upon mathematical
approaches developed in the context of computer science and engineering [87,144],
contribute to the creation of powerful simulation, analysis and reasoning tools
for working biologists. These tools can be used in devising new experiments and
ultimately, for understanding functional properties of genome, proteome, cells,
and organisms.

We are experiencing growing collaboration between biologists and computer
scientists in the area of systems biology in recent years. This is because it has
turned out that formal mathematical approaches to modeling and analysis, that
have been developed for distributed computer systems and are referred to as
formal methods, are applicable to biological systems as well as both kinds of
systems have a lot in common.
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In particular, automated formal verification (model checking) is one of the
most promising formal methods that have the potential to be exploited in com-
putational systems biology, because model checking is in principle an excellent
methodology to verify/refute interesting biological hypotheses.

In this tutorial review, we would like to briefly describe some of the issues
related to the application of model checking to the analysis of biological systems.

2 Setting the Context

2.1 Model Checking of Computer Systems

Model checking is a computer science and engineering technique that grew up
from a purely academic research technique to a well-accepted industrial verifica-
tion method. Nowadays, model checking is widely considered as an enhancement
and complement to existing validation and verification techniques such as simu-
lation and testing.

The roots of model checking lay in our never-ending quest to build computer
systems that would be bug-free and correct. Our dependency on computer-based
applications (both hardware and software) have motivated researchers to develop
new techniques to increase our confidence in correctness of developed systems.

Testing is the basic verification technique that is widely used and extremely
useful in practise. Another solution is to simulate the behavior of the system
on a computer. Simulation does not work directly on the real system, but on a
model. A model is an abstract representation of the real system. An advantage
of simulation is that one does not need to build the real system and thus it is
usually much cheaper than testing.

Both testing and simulation are widespread in industrial applications and their
utilization has been shown to be very useful. One drawback, however, is that it is
not possible, in general, to simulate or test all the possible scenarios or behaviors
of a given system. That is, these techniques are in general not exhaustive and
the failure cases may appear among those not tested or simulated.

Formal verification is a technique that complements testing and simulation.
Even though the introduction of formal verification is rather costly, it pays off
after all as it results in significant reduction in verification time as well as devel-
opment costs and time-to-market. Attempts are being made to integrate formal
verification techniques and tools with other design approaches to support engi-
neering of complex industrial systems.

Model checking is a distinguished technique of formal verification of complex
hardware and software designs. Founders of the technique, Edmund M. Clarke
jr. (CMU, USA), Allen E. Emerson (Texas at Austin, USA), and Joseph Sifakis
(IMAG Grenoble, France), were awarded ACM Turing Award in 2007 for their
roles in developing model checking into a highly effective verification technol-
ogy, widely adopted in the hardware and software industries. Unfortunately, the
model checking procedure is computationally demanding and memory-intensive
in general, hence, its applicability to large and complex systems routinely seen in
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practise these days is still limited. The major hampering factor is the state space
explosion problem [61] due to which large industrial models cannot be efficiently
handled, unless more sophisticated and scalable methods are used.

A lot of attention has been paid to the development of approaches to fight the
state space explosion problem in the field of automated formal verification [139].
Many techniques, such as state compaction [93], compression [107], state space
reduction [140,58,81], symbolic state space representation [41], etc., were in-
troduced to reduce the memory requirements needed to handle the verification
problem with standard sequential algorithms. These techniques allowed to verify
larger systems without the need of increased computing power.

However, for large industrial models, the state space, even if significantly
reduced using the above mentioned techniques, does not completely fit into the
main memory of a computer and hence the model-checking algorithm becomes
very slow as soon as the memory is exhausted and the system starts swapping.
A typical approach to dealing with these practical limitations is to increase
the computational power (especially the amount of random-access memory) by
building a powerful parallel computer as a network (cluster) of workstations.
Individual workstations communicate through a message-passing interface such
as MPI. Observed from outside, a cluster appears as a single parallel computer
with high computing power and a large amount of memory. In recent years, a
lot of effort has been invested into using parallel and distributed environments
in order to solve the computational and space complexity bottlenecks in model
checking and therefore we devote a special section to review some parallel and
distributed approaches (Section 3.4).

2.2 On the Role of Model Checking in Systems Biology

There are many ways how we can improve correctness of computer systems.
The used methods and techniques are generally classified as verification and/or
falsification approaches. The role of verification techniques, typically theorem
proving, is to guarantee there is no bug in the system while the role of falsification
techniques, typically testing, is to demonstrate the presence of errors. Model
checking is primarily a verification technique which is, however, often used for
falsification (as a bug hunting method).

We might tend to a similar position of model checking when applied to biolog-
ical systems. The situation is, however, different for many reasons (see Fig. 1).
The most important difference is that in biology, the system under investigation
already exists. It is not the primary role of biology to create life (at least to some
extent). On the other hand, computer systems are man-made. In computer engi-
neering the models are used as abstractions that are step-wise transformed into
the final system. This contrasts to experimental sciences where models serve as
hypotheses. The role of verification in computer engineering is to ensure the sys-
tem that was constructed from the model has the same behavior as prescribed
by the model. If the verification fails, the system has to be corrected. In the case
of successful verification, we are done – the engineer has completed his task. On
the other hand, in experimental sciences the goal is to show that the hypothesis
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correctly captures some aspects of the real system. Scientific ideas are tested by
generating multiple possible hypotheses, coming up with predictions for each of
them, and then designing tests (experiments) by which we can falsify the hy-
potheses. Typically, we test hypotheses in order to refute them, not to try to
support them. In computer engineering the model is thus always correct, while
in science the system is.
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Fig. 1. Knowledge discovery in biology and computer engineering

Now let us have a closer look at the possible position of model checking in com-
putational systems biology. Systems biology can be characterized as an approach
to the understanding of life through the study of how the properties of biological
systems arise through interactions between the system components [137]. From
this point of view, biological systems are similar to complex computer systems.
Namely, in both kinds of systems the interaction of components is a source of
various emergent system properties that are not explicitly encoded in individual
system parts. The common problem related to the analysis of such systems is
that the emergent properties are difficult to identify and quite often hard to
understand because the causes and effects are not obviously related.

For complex parallel and distributed software and hardware systems the pro-
cess of detection and analysis of emergent properties relates closely to the process
of formal verification. It is often the case that the emergent properties of dis-
tributed systems, such as deadlocks or non-progressive cycles, are properties that
the designers of the system have not the intention to introduce. Methods of au-
tomated formal verification, model checking in particular, can be thus used to
detect such properties and to prove their absence.

Going beyond verification and/or falsification of properties of biological sys-
tems, there are many other interesting questions having sometimes no direct
counter-part in computer systems, that can be solved by application of model
checking techniques. An example is the problem of parameter identification (also
called parameter estimation or model calibration). Parameter identification is a
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key issue in systems biology, as it represents the crucial step to obtaining better
models of biological systems that give more precise predictions. This issue is
usually addressed by fitting the model simulations to the observed experimental
data. In biological models, the control parameters used to define the behavior
of models are kinetic or rate parameters. Some of these parameters usually can-
not be experimentally determined which leads to the need to estimate these
parameters by computational methods. To this end, model checking provides a
promising alternative to fitting – parameters can be identified or fine tuned to
satisfy given set of properties. Parameter identification by model checking has
been referred to as parameter synthesis [76,13,25].

In [40,147,76], comprehensive parameter exploration techniques are intro-
duced. They are based on the construction (usually approximation) of a land-
scape function that maps every model parametrization to a value quantitatively
characterizing validity of the properties. Landscape function has direct appli-
cation in robustness analysis. Robustness can be understood as a feature of a
system to maintain a property in the face of parameter perturbation.

3 Description of Technique and Tools

In this section we give more technical details about models used in systems
biology and their biological properties. We also introduce some parallel and
distributed approaches to model checking as high performance techniques to
support analysis of complex biological systems.

3.1 Models of Biological Systems

Most of the models currently developed in systems biology focus on complex
interactions among system components. State-of-the-art biological knowledge is
being reconstructed and organized in the form of biological networks. Biologi-
cal networks are built from biological knowledge databases, experimental data
and generally understood principles based on many simplifying assumptions.
There are two fundamental types of biological networks – reaction networks and
regulatory networks. Recent network reconstructions typically mix the two. Re-
action networks provide a detailed view of underlying biochemical interactions
– nodes are chemical species and stoichiometry-labeled (multi-)edges represent
elementary chemical reactions. Regulatory networks are higher level and focus
on feedbacks among individual system components – nodes are species or ab-
stract biological objects and edges represent positive or negative influence. Gene
regulatory networks make a typical example [115].

Computational systems biology studies the dynamics of biological networks,
in particular, how a population of components affected by network interactions
evolves in time. To this end, biological model is defined as a biological network as-
sociated with a suitable semantics reflecting the system dynamics at a particular
level of abstraction. The semantics fulfils the following tasks:
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– Network components are given a mathematical interpretation as variables
(numbers of molecules or molar concentrations),

– Network interactions are given a mathematical interpretation as rules spec-
ifying dynamical changes in variables.

Both variables and rules can be understood as model quantities modeled at differ-
ent levels of abstraction. Variables can be treated as either discrete or continuous.
Discrete-value semantics can capture either a microscopic or mesoscopic view of
biological particles (e.g., number of molecules) or abstract qualitative interpre-
tations of selected qualities of modeled components (e.g., absence/presence of
a species). Continuous-value semantics represents a so-called macroscopic view
where the modeled objects are expected to appear in large quantities provided
that it is inconvenient to distinguish small differences (e.g., molar concentration
of a species in a cell).

Quantities that can be associated with rules are time and probability. Since
each interaction occurs in time with a specific rate, the respective rule is exe-
cuted with this rate implying the inherent time aspect of the system dynamics.
Naturally, time is considered as continuous, dense quantity. When the informa-
tion on rate is unknown or abstracted out due to simplifications, discrete-time
semantics is employed. It deals with the shortest (discrete) time step which can
represent an arbitrary finite time horizon. Discrete-time abstraction allows to
treat qualitative models as untimed, i.e., the exact duration of a single time step
is left unspecified. It is worth noting that in the most of cases the occurrence of
any rule is modeled as instantaneous and it occurs immediately after the condi-
tions for occurrence are satisfied. There exist models that refine these aspects of
semantics (e.g., delayed interactions [45] or non-instantaneous interactions [11]).

With respect to execution of interactions, rules can be either deterministic
or stochastic. Deterministic rules represent interactions that occur each time all
preconditions are satisfied (e.g., if there is a non-zero amount of all reactants,
the reaction occurs). There is no noise affecting the interaction. Stochastic inter-
actions reflect noisy environment by assuming a certain probability with which
they occur.

Finally, there is yet another notion of quantity that can enhance the model
semantics. In particular, interactions and even variable values can be assigned
quantitative costs and rewards, e.g., time spent in particular concentration levels,
energy consumed by particular reactions, etc. By adding this kind of informa-
tion (if available), models can be adjusted to provide interesting and detailed
quantitative predictions resulting from complex dynamics.

Types of semantics mentioned above can be suitably combined resulting in
several classes of models varying in the level of abstraction employed, as is
overviewed in Fig. 2. On the right side of the scheme, there are models con-
sidering continuous component quantities and deterministic interactions. These
inherently quantitative models are currently the most widely used in compu-
tational systems biology since they have deep roots in mathematical biology.
In fact, from the semantics point of view they are purely denotational [87]
and thus we call them mathematical. On the left side of the scheme, there are
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discrete-value models which can be either quantitative (incorporating real-time
and/or stochasticity of interactions) or qualitative (abstracting from the timed
nature and stochasticity of interactions). These models are closer to computer
science or they directly originate from computer science. Fisher and Henzinger [87]
classify these models as executable, since for any of them the semantics can be
considered either denotational or operational. The operational view allows to
understand biological systems in the similar way as programs or any formal
models in computer engineering. That way these models naturally bring the
model checking technique to biology.
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Fig. 2. Model types sorted according to different level of details captured in their
semantics

Mathematical models are used to represent actual quantitative relations be-
tween components in the system. Generally, a system of ordinary differential
equations (ODEs) [118,110] and/or differential algebraic equations (DAEs) [37]
is used to represent the interaction and processes among the various components.
Determinism and continuity reflect the modeled phenomena in high chemical
species concentrations or large cell populations (the macroscopic level) while
completely neglecting the noise and differences in individual components and
interactions. These models can be simulated, analyzed, and possibly solved, but
require detailed knowledge of the biological system, i.e., quantitative parameters
identifying the physical aspects of system interactions (e.g., kinetic coefficients
of chemical reactions).

On the other hand, executable models employ abstract representations to ex-
plain biological phenomena. Examples of widely used formalisms are Boolean
networks [159,50,121], Petri Nets [103,32,49,143], timed automata [27,153,97],
compact process algebraic representations such as BioPEPA [56], Kappa [68] or
suitable adaptations of π-calculus [141,145]. These formalisms have an inherent
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execution scheme attached to the models, and relate different qualitative config-
urations (states) of model components to each other. The relation among states
can be either qualitative or quantitative (with real-time bounded or even stochas-
tic rules). The advantage is the capability to effectively represent the logic behind
biological systems dynamics without precise quantitative knowledge about the
component interactions. Executable models are inherently discrete provided that
the dynamics (execution) occurs in terms of a series of discrete events. In the
untimed setting, nondeterminism allows to capture all possible “timings” (or-
derings) of concurrent events. To quantitatively differentiate among all possible
executions in a particular state, rules can be assigned probabilities, resulting in
discrete stochastic models [36,163] most typically represented by discrete-time
Markov chains (DTMC). When set appropriately, executable models can be used
at any level of view of biological systems dynamics.

Stochastic models allow to incorporate noise which causes fluctuations in com-
ponent quantities and that way affects the biological system dynamics [80,120].
In physics, chemistry and related fields, the probabilistic time-evolution of a sys-
tem with discrete component quantities is described by so-called master equa-
tions. In the case of biological phenomena, the chemical master equation (CME)
provides an exact mathematical model for stochastic dynamics [95]. It is formal-
ized as a set of differential equations, providing a denotational representation of
component quantities distribution in continuous-time. Gillespie [94,96] has made
an important breakthrough in stochastic modeling by introducing techniques for
exact simulation of CME. From the computer scientific viewpoint, the CME can
be equivalently represented by continuous-time Markov chains (CTMC) which
provide operational semantics and allow us to consider continuous-time stochas-
tic models as executable [72].

Although outside the scope of this paper, it is worth mentioning that a signif-
icant and general class of models is that of hybrid models most typically repre-
sented by means of hybrid automata [105] or process algebraic techniques [90,34].
Hybrid models allow to mix discrete-value components with continuous-value
components and discrete-time dynamics with continuous-time dynamics. Such
a complicated semantics limits the model analysis [106,44]. Hybrid models can
be satisfactorily used for modeling and simulation [75] and, when simplifying
assumptions are employed (e.g., considering linear dynamics of continuous com-
ponents), also for a more advanced analysis of biological processes [67,89]. To in-
corporate noise, stochastic hybrid models [154] (i.e., stochastic hybrid automata)
allow both discrete-time and continuous-time dynamics to evolve randomly. Cou-
pling of both kinds of dynamics while keeping their stochasticity complicates
analysis even more. To this end, simulation-based (statistical) [70] or fluid-flow
approximation techniques [34,65] are typically employed.

Model Simplification. It is important to note that component quantities in
biological models most typically do not evolve unlimitedly. In particular, con-
centration (or number of molecules) is always limited by degradation processes.
However, it might not be easy to identify the bounds without a deeper analysis
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of the model. From the context of an observed phenomenon and the time-scale
of relevant model behavior, it can be possible to identify the time-horizon (or
the number of steps in the untimed case) for which it is guaranteed that the phe-
nomenon occurs. Even periodically repeating phenomena, e.g., circadian clock,
can be approximately detected and analyzed in finite time in the order of an ap-
propriately selected time-scale. Again, a non-trivial analysis has to be performed
in some cases to estimate or overapproximate correctly the time horizon. In any
case, some hypotheses on maximal (extreme) bounds on component quantities
or time can be always considered.

From the computational point of view, there exist many well developed and
efficient techniques for exhaustive analysis of models appearing in the top left
quadrant of the scheme in Fig. 2. The assumptions stated above imply finite
number of model states. However, models in other quadrants incorporate con-
tinuous or dense quantities which significantly complicate or even disallow the
direct exhaustive analysis. We focus on continuous-time discrete-value models
first. Reduction of timed automata into untimed finite automata [2] is the cru-
cial procedure enabling exhaustive analysis for continuous-time discrete-value
models. A continuous-time stochastic model represented by a continuous-time
Markov chain is reduced to a discrete-time Markov chain and a Poisson process
(or a birth process) by uniformization techniques [161,72]. All reductions at this
level are exact, provided that no information is lost.

There are techniques to abstract (or approximate) continuous-value models
by discrete-value models. Formally defined abstractions allow specific properties
to be preserved by means of over-approximation (resp. under-approximation) of
model behavior. However, the effect of behavior spuriously added (resp. lost) by
the abstraction is usually large. Over-approximative abstractions are conserva-
tive in the sense that each execution of the original model is also present in the
abstract model but there can appear a new behavior, not present in the original
model. Underapproximative abstractions ensure that no execution is added to
the abstract model but some can be ignored.

Besides formal abstraction, there are approximations that distort the original
behavior rather than adding or removing some. Such approximations do not
guarantee preservation of dynamics properties but the deviation of behavior is
ensured not to exceed a certain (specified) approximation error.

In the case of continuous-time deterministic models, typically non-linear, the
most widely used approximation is provided by numerical simulation (inte-
gration) methods. For certain classes of ordinary differential equations, there
are also formal abstraction techniques providing a discrete-time discrete-value
over-approximation in terms of non-deterministic finite automata [116,30,99,62]
or a continuous-time discrete-value over-approximation in terms of timed
automata [133]. In the former case, the extent of falsely added executions is
usually large whereas the latter case prevents addition of any executions with
non-realistic timing and therefore the number of false executions can be reduced.

Some classes of continuous-time deterministic models can be also approx-
imated by continuous-time stochastic models provided that continuous-value
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variables are approximated by a suitable number of uniformly distributed dis-
crete levels. If calibrated properly, averaged stochastic executions converge to
the deterministic solution [42] (see [103] for tutorial).

In reverse direction, some classes of continuous-time stochastic models can
be approximated by deterministic continuous-time models (ODEs) by means
of fluid-approximation techniques [69]. Based on these techniques, more sophis-
ticated analysis methods for stochastic models, combining fluid-approximation
with CTMC analysis have recently been proposed [33]. The advantage of these
techniques is that they avoid the state-explosion problem.

In this text we focus on well-established methods developed for discrete- and
continuous-time discrete-value models, in particular, we consider techniques tar-
geting the exhaustive analysis of temporal properties of systems dynamics based
on qualitative and quantitative model checking. Brief description of concrete
techniques is presented in Section 3.3. Properties of biological interest are de-
scribed in Section 3.2. Examples of models and the application of model checking
techniques is presented on several case studies in Section 4.

Model Parameters. Biological model of any type is determined by a fixed
topology (biological network) where the interactions (rules) are parametrized.
Parameters provide degrees of freedom in which the model dynamics can be
adjusted. In contrast to the network topology which stands on common princi-
ples, finding a correct model parametrization is a non-trivial task which makes
a critical part of the so-called inverse problem [82].

Parameters appear in all kinds of models. In the case of qualitative models, a
parameter most typically affects the logic behind a rule, i.e., adjusting the effect
of the respective interaction on model components. Sets of possible parmeter
values (parametrizations) for qualitative models are finite and discrete, but can
be very large (e.g., the number of parametrizations for setting the dynamics
of a gene A in a Boolean model of a gene regulatory network is exponential
wrt the number of genes affecting the expression of A). In quantitative models,
parameters represent the quantitative aspects associated with the semantics of
rules, i.e., how the respective interaction evolves in time. In continuous-time
stochastic (resp. deterministic) models the parameters describe the rate (resp.
velocity) of respective interactions. In real-time models, the parameters describe
time delays (minimal or maximal) between particular interactions. In all these
cases, parametrization sets are are uncountable and bounded by laws of physics.

3.2 Biologically Relevant Properties

With respect to the nature of phenomena generated by dynamics of biological
processes, typical properties studied on biological models can be organized into
six elemental categories: reachability properties, temporal ordering of events,
variable correlations, (multi)stability properties, monotonic trends, and oscil-
lation properties. To reason about the model types presented in the previous
subsection, properties have to be expressed with different levels of detail.
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Qualitative Properties. Qualitative properties abstract away from any
quantitative information like time aspects or energy costs of targeted biologi-
cal phenomena. Qualitative properties are in general interpretable on all types
of models, especially on untimed discrete-value models. Computer science of-
fers two basic logical formalisms allowing to express qualitative properties of
systems dynamics: linear-time temporal logics, interpreted on individual model
executions (paths), and branching-time temporal logics, interpreted on trees of
(non-deterministically) branching model executions.

The basic linear-time temporal logic is Linear Temporal Logic (LTL) [142].
LTL has been proved to be the basic formal language that is most suitable for
qualitatively expressing properties of the six elemental categories. LTL can be
interpreted on all kinds of models.

The most basic branching-time logic is Computational Tree Logic (CTL) [57].
In contrast to LTL, CTL allows to reason about non-determinism and, therefore,
is used for properties dealing with non-determinism. CTL is also interpretable
on all kinds of models, yet, the expressiveness of CTL is limited in the case of de-
terministic models. Below we give several examples of biologically-relevant prop-
erties. Unless otherwise mentioned, these properties will be expressed in LTL.

Qualitative reachability properties express reachability of specified concentra-
tion levels in given model variables. For example, the formula F(2 ≤ B ≤ 3)
expresses the property that B reaches the concentration level between 2 and
3 at some point during the progress of the model dynamics. The linear-time
formula Fϕ containing the operator F (Future) has the intuitive meaning that,
on a given path, there must eventually exist a state where ϕ is satisfied. Note
that the property tells nothing regarding the moment at which the event oc-
curs. Reachability properties are useful especially for expressing global bounds
of reachable concentration values.

To capture the qualitative temporal patterns in the dynamics of inspected
variables, the properties expressing temporal ordering of events are used. These
properties are based on linear-time operator U (Until), i.e., the formul ϕ1Uϕ2,
with an intuitive meaning that, on a given path, ϕ2 must eventually hold in
some ith state on the path and for all states from the beginning of the path
until the ith state, ϕ1 must hold. An example of such property is the formula
(A ≤ 2) U [(2 < A ≤ 5) U (A > 5)] representing the following temporal pattern:
species A is initially kept below 2 until it reaches 5 and finally exceeds 5.

Variable correlations make important observations revealing cooperations and
dependencies in biological processes, e.g., co-expression of certain genes. These
properties can be expressed by combining several temporal ordering formulae
into a single formula using traditional logical operators. Following this approach,
mutual dependencies in the dynamics of inspected variables can be captured. For
example, the formula [(A ≤ 2)U ((2 < A ≤ 5)U (A > 5))]⇒ [(B ≥ 10)U ((5 ≤
B < 10) U (B < 5))] expresses the following correlation in concentration of
species A and B: if A increases according to the temporal pattern from the
previous paragraph then B decreases from a level above 10 to a level below 5.
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A specific kind of temporal properties deals with the analysis of presence of
stable concentration levels. An example of an elementary stability property is
the formula G(A ≤ 2) stating that concentration below 2 is stable (attractor)
for species A. The formula Gϕ, with the operator G (Globally), expresses the
requirement that ϕmust hold in each state of a given path, the intuitive meaning
is “forever”. Stability properties can be effectively combined with reachability
properties and relativized with respect to a specific initial condition. For exam-
ple, the formula (A ≥ 0) ⇒ FG(A ≤ 2) states that the stable concentration
below 2 is reached from any non-negative initial concentration of A. To query
for existence of several different stable states (multi-stability), the LTL formula
[(A ≤ 5) ⇒ G(A ≤ 5)] ∧ [(A > 5) ⇒ G(A > 5)] can be employed. It expresses
the fact that there are two different stable concentration levels in the dynamics
of A: the first is below the level 5 and the second is above 5. Note that this for-
mula expresses only the existence of the two stable attractors, there is nothing
specified with respect to reachability of both stable attractors from a particular
part of the state space (the so-called basin of attraction). To this end, CTL has
to be employed: EFAG(A ≤ 5)∧EFAG(A ≥ 5). The branching-time operator
EFϕ requires the existence of a branch where ϕ is eventually satisfied, whereas
AGϕ requires ϕ to hold in only those states. Therefore, the bistability formula
is satisfied in every state from which the execution can eventually branch into
both attractors.

Important observations of biological dynamics are monotonous trends in sys-
tem variables [9]. Monotonicity is an indicator of robust increasing or decreasing
phases observed in individual species dynamics. In the qualitative setting inter-
preted on discrete-value models, the non-strict monotonicity can be expressed as
a special case of temporal ordering property, e.g., (A = 1)U [(A = 2)U (A = 3)].

Finally, an interesting dynamics phenomenon appearing in biology is oscil-
lation, e.g., circadian rhythms. A simple example of an oscillation property is
expressed by the formula (G[(A ≤ 3)⇒ F(A > 3)])∧ (G[(A > 3)⇒ F(A ≤ 3)])
representing a permanent oscillation of A around the concentration level 3. Os-
cillation properties require linear-time operators, they cannot be expressed in
CTL. Finer specification of oscillations can be realized by extending the formula
with additional constraints identifying the qualitative aspects of the oscillation,
e.g., the maximal and minimal amplitude levels.

Quantitative Properties. Quantitative properties including time aspects, en-
ergy consumptions and the stochasticity of a system are essential in the analyses
of the dynamics of biological systems. Hence, a wide variety of logical formalisms
allowing to reason about quantitative system aspects have been used to study
biological systems. These formalisms usually extend the aforementioned logics
and can be roughly divided into deterministic and stochastic logics. Determinis-
tic logics are mostly focusing on a quantitative notion of time. The time extension
of CTL called Timed Computational Tree Logic (TCTL) has been introduced
in [2] and its simplified version is used as a specification language in the tool
UPPAAL [29]. The extension allows to specify additional clock constrains, e.g,
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the TCTL formula EF(ϕ ∧ t ≤ 3), where t is a clock, requires the existence of
an execution branch where ϕ is satisfied within 3 time units. A popular dense
time extension of LTL is Metric Interval Logic (MITL) introduced in [3] as a
restriction of Metric Temporal Logic (MTL) [123]. It is based on the timed until
modality UI where the interval I is a nonempty convex subset of R≥0. The for-
mula (A = 1) U[a,b] (A = 2) is satisfied at any time instant t such that A = 2 at
some t′ ∈ [t+ a, t+ b], and A = 1 continuously from t to t′. Another time exten-
sion of LTL called Timed Propositional Temporal Logic (TPTL) [4] is based on
freeze-quantification where extra clocks are used to specify temporal constraints.
These clocks can be reset at some point and later we can compare their values to
some integers. The TPTL formula G[(A = 1)⇒ x.F(B = 3 ∧ x ≤ 5)] expresses
that whenever the population of species A reaches 1, the population of species
B will reach 3 in 5 time units.

Motivated by the application of verification and monitoring techniques to
continuous-value and hybrid systems, Signal Temporal Logic (STL) has been in-
troduced [134]. It combines the dense time modalities of MITL with the numer-
ical predicates over real numbers. The predicates are given as a real-value signal
describing the evolution of the system, e.g, a function from time to a Cartesian
product over reals. The formula G[0,300][(x1 > 0.7) ⇒ F [3,5](x2 > 0.7)], where
x1, x2 are some signals, expresses that for each time point t ∈ [0.300] it holds
that if the value of the signal x1 in t is greater than 0.7 then there exists time
t′ ∈ [t + 3, t + 5] such that the value of the signal x2 in t′ is also greater than
0.7. For example, the tool Breach [76] employs STL to define temporal logic
formulae and check whether they are satisfied on simulated trajectories. A ver-
sion of LTL with constraints over the reals, named LTL(R), has been proposed
in [5] to express the temporal properties of molecular concentrations and their
derivatives. The quantifier free fragment of the first-order extension of LTL(R),
named QFLTL(R) has been considered in [86]. It allows to use free variables in
the atomic propositions and, thus, it enables to analyze numerical data time se-
ries in temporal logic and to automatically compute LTL(R) specifications from
experimental traces. The formula F(A ≥ p) expresses the question what thresh-
old p species A attain in the trace. These two extensions of LTL are used in the
tool BIOCHAM [84] to formalize numerical temporal properties.

Stochastic logics provides means to specify the probability and performance
measures on Markov chains. In the case of DTMCs, a probabilistic extension of
CTL, named PCTL, can be employed [100]. The logic is based on the probabilis-
tic operator P∼p[φ] expressing that the probability of the path formula φ being
satisfied from a given state meets the bound ∼ p. As a path formula it allows
standard bounded and unbounded temporal operators. Note that, PCTL is a
discrete-time logic and thus the path formulae are interpreted over discrete time
steps. The PCTL formula P≥0.9[F

≤5(A = 3)] expresses that the probability that
the population of species A will be equal to 3 within 5 time steps is at least 0.9.

To formalize properties of CTMC, Continuous Stochastic Logic (CSL) [6] has
been introduced. It is a probabilistic extension of CTL with continuous-time
semantics. In contrast to PCTL, the path formulae in CSL uses an interval of
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non-negative reals, rather than simply an integer upper bound. The CSL formula
P≥0.9[F

[1,2](A = 3)] expresses that the probability that the population of species
A will be equal to 3 between 1 and 2 time units is at least 0.9. The logic also
includes the steady-state operator S describing the steady-state behavior of a
CTMC. The CSL formula S≤0.05[A > 10] expresses that the long run probability
that the population of species A will be higher than 10 is at most 0.05.

To further broaden the scope of possibly expressible behavior, PCTL and
CSL have been extended to allow the specification over reward-based stochastic
models, i.e., Markov chains with real-valued rewards/costs attached to states
and transitions [126]. The extension enables to express properties such as the
expected time a system spends in a specified set of states over a time interval or
the expected number of times that a particular reaction occurrs.

The only way to combine temporal operators in PCTL and CSL is to use a
nested formula whose meaning can be too subtle. Therefore, a probabilistic ex-
tension of LTL has been introduced in [64] allowing to express the probability of
more complex events. The semantics of the logic is defined over Markov Decision
Processes (MDPs) [71] which are a widely used formalism for modeling systems
that exhibit both probabilistic and nondeterministic behavior, see e.g., [88] for
more details.

Expressing biological phenomena can require extensions of existing logics.
Biologically relevant temporal logic extensions target precise quantitative de-
scription of oscillations [74,24] or qualitative properties combining linear-time
properties with branching-time [136].

3.3 Model Checking Techniques for Analysis of Biological Systems

Model checking techniques for the analysis of biological systems can be roughly
divided into exhaustive techniques and monitoring techniques. The exhaustive
techniques consist of checking whether all executions – state-event sequences –
generated by a given system S, satisfy the inspected property described as the
formula ϕ, i.e., they effectively decide the language inclusion ‖S‖ ⊆ ‖ϕ‖ (‖ϕ‖ is
the set of all executions that satisfy ϕ). In order to generate all executions, the
whole state-space has to be stored and evaluated. This is why the exhaustive
techniques generally suffer from the state-space explosion problem. There exist
several techniques allowing to reduce this problem, e.g., efficient symbolic repre-
sentation, state-space reductions or iterative abstraction refinement. For systems
which are outside the scope of exhaustive techniques, either due to the incorpo-
ration of continuous and/or unbounded values or simply due to the state-space
explosion problem, the monitoring techniques are the only feasible validation
method. Unlike the inclusion, test the monitoring techniques are based on the
membership test ω ∈ ‖ϕ‖ of an individual simulation trace ω ∈ ‖S‖, where the
responsibility for exhaustive coverage is delegated to the procedure that gener-
ates the traces. The key observation behind their efficiency is that for large and
complex systems, the simulation is generally easier and faster than building a
concise representation of global transition systems required for the exhaustive
model checking approach. However, since a single simulation generates a single
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trajectory out of all the possible executions of a system, usually the average
values among several simulations need to be considered to achieve the necessary
level of confidence in the results obtained.

A possible way to improve the accuracy of monitoring techniques is to em-
ploy the statistical model checking that addresses general stochastic systems in
terms of statistical inference. It samples the behaviors (simulations) of a model,
verifies their conformance with respect to a temporal formula (i.e. performs the
membership test), and finally applies a statistical estimation technique to com-
pute an approximate value for the probability that the formula is satisfied. The
accuracy of statistical model checking is affected by the accuracy of stochastic
simulations techniques that are employed and also by the structure of the model
or more precisely by the level of details (initial conditions, parameters, etc.) we
have about the system under study.

Exhaustive model checking, statistical model checking and monitoring tech-
niques have been applied to the study of biological systems. They allow re-
searchers to make predictions and test hypotheses on models of different kinds
(see Fig. 2). For deterministic models with continuous-value semantics the ex-
haustive techniques cannot be used due to the infinite number of possible ex-
ecutions. Therefore, advance monitoring techniques for various temporal logics
have been designed in order to analyze complex non-linear systems, see [135]
for a survey. These techniques have been further extended for application in
systems biology. For example, the tool Breach [76] provides a coherent set of
simulation-based techniques aimed at the analysis and parameter identification
of deterministic models of complex biological and hybrid systems. Its primary
features facilitate the computation and the property investigation of a large set
of trajectories and also provide information about the sensitivity with respect to
parameter perturbations. A successful application of this approach to systems
biology has been demonstrated in [77] where a model of the acute inflammatory
response to bacterial infection is analyzed.

A similar extension to monitoring techniques has been proposed in [86] where
the authors generalize the trace-based model checking algorithm [43] to a con-
straint solving algorithm for QFLTL(R) with numerical constraints over the
reals. Given an ODE model and a temporal property to verify within a finite
time horizon, the computation of a finite simulation trace by numerical inte-
gration provides a linear Kripke structure (each state has a single successor).
Afterwards, the QFLTL(R) generalization provides the ability to compute those
instantiations of a formula that are true in a finite trace, by giving the complete
domain of the real-valued variables occurring in the formula for which it is true.
This approach has been implemented in the tool BIOCHAM [84]

Techniques for the verification of a temporal logic property against stochastic
models can be either exact, based on probabilistic model checking, or approx-
imate, based on statistical model checking using stochastic simulation such as
Gillespie’s algorithm [94] or Monte Carlo sampling [114,8]. Probabilistic model
checking answers quantitative temporal queries by performing an exhaustive ex-
ploration of all the possible paths through the system. The probabilistic model
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checking techniques can be roughly divided into the techniques for discrete-time
and forcontinuous-time systems. A discrete-time system is usually described by
discrete-time Markov chain (DTMC) where the transitions between the states
are governed by a probability distribution. The inspected properties of such sys-
tems are mostly specified in PCTL. The model checking algorithm for PCTL
over DTMC constructs the parse tree of a given formula Φ and for each node it
recursively computes the set of states satisfying the corresponding subformula.
For more details, see, e.g., [64].

As mentioned in Section 3.1 a continuous-time system is usually described by
a continuous-time Markov chain (CTMC). While each transition between states
in a DTMC corresponds to a discrete-time step, transitions in a CTMC occur
in real time. The transitions between the states in CTMC are governed by the
transition rate matrix. It assigns a rate λ to each pair of states in the CTMC,
which are used as parameters of the exponential distribution, i.e., the probability
of the transition being triggered within t time-units equals 1−e−λ·t. To reflect the
real time aspects, the inspected properties of such systems are mostly specified in
CSL. Efficient model checking algorithm for CSL over CTMC has been proposed
in [7]. It reduces the model checking problem to the transient analysis, i.e., to the
computation of transient probability, having started in state s, of being in state
s′ at time instant t. The reduction is based on a modification of the rate matrix
such that certain states are made absorbing (all outgoing transitions are ignored)
according to their validity with respect to the inspected formula. A standard
technique for computing transient probabilities is based on uniformization. The
key idea is for a given CTMC to construct the uniformized DTMC where all
exponential delays in the CTMC are normalized with respect to the fastest
transition rate q. Then each step of the uniformized DTMC corresponds to a
single exponentially distributed delay with the parameter q. The ith matrix
power of the uniformized DTMC gives the probability of jumping between each
pair of states in the DTMC in i steps. The transient probability in time t is
computed as the sum of the matrix powers weighted by Poisson probabilities
giving the probability of i such steps occurring in time t. For more details about
the probabilistic model checking techniques, see, e.g., [126].

The exact probabilistic model checking suffers from the state-space explosion
problem, which is even more critical than in the non-probabilistic case. Therefore,
for systems with too many states (more that 1010) the described techniques
become intractable. As result, additional reduction techniques or the statistical
model checking have to be used in order to effectively analyze complex biological
systems. In [42], the authors consider signal transduction in the RKIP-inhibited
ERK pathway. They overcome the state-space explosion problem of probabilistic
model checking by rescaling model component quantities to lower numbers of
population levels. Probabilistic model checking has also been employed to the
analysis of gene regulatory circuits where an automatized translation of models
into a CTMC, based on quasi-steady-state approximation (QSSA), has been
proposed [132].
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The main problem with statistical model checking is caused by rare events, i.e.,
temporal formulae whose satisfaction probability is very small. When estimating
the probability of such formulae, the number of simulations needed to ensure a
good estimate becomes unfeasible. In [60], the authors show that the importance
sampling, a variance-reduction technique for the Monte Carlo method, and the
cross-entropy method, a general Monte Carlo approach to combinatorial and
continuous multi-extremal optimization and importance sampling, can efficiently
address this problem. They use Bounded Linear Temporal Logic, a variant of
LTL where the temporal operators are equipped with time bounds, to reason
about biochemical reactions in systems biology.

Both exact and approximate model checking techniques have been imple-
mented in several tools, e.g., PRISM [125], MARCIE [152]. These tools have
been successfully employed in the analysis of biological systems, e.g., in [102]
the authors apply PRISM to analyze the complex FGF (Fibroblast Growth Fac-
tor) signalling pathway, in [151], the authors analyze stochastic Petri nets model
of a biological network using efficient state-space representation based on inter-
val decision diagrams. Advanced techniques for exact CSL model checking that
allow to reduce the state-space explosion problem for some classes of biological
systems have been implemented in the prototype tool SABRE [73].

For real-time models, model checking techniques are based on transforming
the uncountable continuous-time model into an equivalent finite discrete struc-
ture (the so-called zone automaton). The two main real-time model checking
tools, UPPAAL [29] and KRONOS [164], have also been used for the analysis
of biological models. In the case of UPPAAL, applications to gene regulatory
networks [153,97] and signaling pathways [150] have been realized. KRONOS
was applied to gene regulatory networks [27] and to real-time abstractions of
continuous-time deterministic models [133].

At the end of this section we briefly introduce model checking techniques for
qualitative models of biological systems. These techniques have been extensively
studied, see [59] for a good starting point, and there also exist several matured
tools providing their efficient implementations.

Application of the qualitative model checking to systems biology is highly-
relevant for Boolean models of genetic regulatory networks [50,31] and signaling
networks [149,79], provided that symbolic verification techniques are usually
employed. In [43], the tool BIOCHAM is used to verify the qualitative properties
(specified in CTL) of asynchronous state transitions with Boolean semantics
using standard symbolic model checker NuSMV [55].

Explicit model checking techniques are used in [121] where the authors propose
new methodology for parameter identification and the analysis of discrete gene
networks based on colored LTL model checking [13]. They improve the standard
automata-based algorithm for LTL model checking [160] that consists of the
following steps. The inspected LTL formula ϕ is negated and translated into a
Büchi automaton A¬ϕ describing all the executions violating ϕ. Afterwards, the
synchronous product of A¬ϕ and a finite state automaton describing the system
under study is constructed. The system satisfies the formula ϕ if and only if the
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language of the product automaton is empty, which is if and only if there is no
reachable accepting cycle (cycle containing an accepting state) in the underlying
graph of the product automaton. Instead of employing this standard algorithm
for each possible parametrization individually, the authors propose a heuristics
reducing the computation effort by means of operating on entire parametrization
space. A concrete application of these techniques is presented in Section 4.

Another formal method for qualitative analysis of biological systems is pre-
sented in [103], where Petri nets have been used to describe the mitogen-activated
protein kinase. The authors study general properties (boundedness, liveness, re-
versibility, invariants), structural properties (reflecting the modeling approach)
and also properties specified in temporal logic.

Model checking is also employed to qualitative abstractions of quantitative
models, examples are given in Section 4. Techniques for finite discrete abstraction
of the continuous state space are used in the tool BioDiVinE [18] to analyze
biological models specified in terms of a set of chemical reactions. Chemical
reactions are transformed into a system of multi-affine differential equations
that are further discretized to a finite state automaton in order to employ the
standard LTL model checking techniques including property-driven parameter
identification.

3.4 Parallel and Distributed Model Checking

As already stated above model checking is a computationaly demanding pro-
cedure and techniques to fight the state explosion problem are an unavoidable
ingredient of it. To verify even larger systems, however, no option was left out
than to employ combined computing power of multiple computing devices. At-
tempts to use hard drives or parallel computers for the verification of large sys-
tems have appeared in the very early years of the automated formal verification
era. However, the inaccessibility of cheap parallel computers with sufficiently
fast external memory devices together with the negative theoretical complexity
results excluded these approaches from the main stream in formal verification.
Moreover, due to the Moore’s law, the performance of software tools kept im-
proving continuously for years as the power of a single-cored CPU grew. The
situation changed dramatically with the introduction of multi-core CPU chips.
The progress in computer design over the past decades had measured several
orders of magnitude with respect to various physical parameters such as power
consumption, efficiency, physical size or cost. As a result, it became more effi-
cient for chip producers to introduce multiple CPU cores on a single chip rather
than to increase the speed of a single core. As the speed of a single core vir-
tually stopped growing, every piece of software that was built upon a serial
algorithm could not take the advantage of technological progress anymore. The
focus of parallel and distributed-memory computing community shifted away
from unique massively parallel systems competing for world records towards
smaller and more cost-effective systems built up from small and cheap personal
computer parts. Suddenly, the need for parallel processing became rather general
and widespread in all science fields relying on complex computation operations,
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automated formal verification being not an exception. As a matter of fact, the
interest in the platform-dependent formal verification has been revived.

Unfortunately, some verification techniques cannot preserve their efficiency if
adapted to non-sequential models of computation, and therefore an urgent need
for new and quite different verification procedures emerged. Many new tech-
niques have been introduced. There were attempts to consider both the symbolic
as well as the enumerative techniques, theorem-provers as well as sat-solvers,
etc. Some of those approaches are applicable across a broad range of computing
platforms, some of them are tailored to the specific capabilities of a particular
hardware architectures. Examples include techniques to fight the memory limits
with an efficient utilization of external memory devices [156], techniques that
introduce cluster-based algorithms to employ the aggregate power of network-
interconnected computers [155,129,92], techniques to speed-up the verification
process on multi-core processors [109,14,128], etc.

Parallel Algorithms for LTL Model Checking. The need for parallel pro-
cessing in automated formal verification stemmed from the desire to fight the
state space explosion problem by employing the aggregate memory of multiple
network interconnected workstations. The crucial problem is how to distribute
the work among participating processors in order to take advantage of the ag-
gregate memory and parallel processing at the same time.

Based on a parallel algorithm for state space generation [47], a static parti-
tioning scheme relying on a hash function was introduced [52]. As observed by
multiple researchers, the hash-based partitioning yields better space locality if
only some parts of the state descriptor are used as the input to the partition-
ing function. There were considered approaches requiring the user of the tool
to specify the concrete parts of the state descriptor to be used for partition-
ing [52], other approaches employed automated or semi-automated techniques
to do it [53]. Techniques for load balancing the set of visited states, also known
as re-partitioning techniques, have been suggested [1,130,124] as well as state
space generation schemes employing probability aspects [122].

The first known public implementation of a distributed memory tool for the
verification of communication protocols was the parallel implementation of the
Murϕ tool [155]. Murϕ’s parallel work-flow relied on the standard MPI-like ap-
proach to messaging, nevertheless, active messages were later introduced into
Murϕ to improve its efficiency. The successful story of Murϕ was followed by
other verification tools: SPIN [130], CADP [92], DiVinE [19], UPPAAL [28],
etc. Distributed-memory techniques of automated formal verification also ap-
peared in the context of Petri Nets [52,104], Markov chains [101], and symbolic
BDD-based model checkers [98,83].

As a demonstration of distributed-memory approaches to verification we con-
sider explicit state parallel LTL model checking. The LTL model checking prob-
lem can be reformulated as a cycle detection problem in an oriented graph and
the basic principles behind presented algorithms rely on efficient solutions to
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detecting cycles in a distributed environment. The best known enumerative se-
quential algorithms for the detection of accepting cycles are the Nested DFS
algorithm [63] (implemented, e.g. in the model checker SPIN [107]) and SCC-
based algorithms originating in Tarjan’s algorithm for the decomposition of the
graph into strongly connected components (SCCs) [158]. While Nested DFS is
more space efficient, SCC-based algorithms produce shorter counterexamples in
general. The linear time complexity of both algorithms relies on the postorder as
produced by the depth-first search traversal. It is a well known fact that comput-
ing depth-first search postorder is P-complete [146], hence probably inherently
sequential. This means that none of the two algorithms can be easily adapted
to work on a parallel machine. A few fundamentally different cluster-based tech-
niques for accepting cycle detection appeared, though. They typically perform
repeated reachability over the graph. Unlike the postorder problem, reachability
is a graph problem which can be parallelized, hence the algorithms might be
transformed to cluster-based algorithms that work with reasonable increase in
time and space.

The algorithms employ specific structural properties of the underlying graphs
(often pre-computed in advance from the system specification), use additional
data structures to divide the problem into independent sub-problems, or trans-
late the model-checking problem to another one, which admits efficient parallel
solution. Several of the algorithms are based on sequentially less efficient but
well parallelizable breadth-first exploration of the graph or on placing bounds
limiting the size of the graph to be explored.

The first parallel algorithm for LTL model checking employed the so-called
dependency structure [17] to record the reachability relation among accepting
states of a distributed graph and applied the topological sort algorithm [117] to
detect the presence of a self-reachable accepting state. Other parallel algorithms
appeared with the time, building upon various ideas. They have differed in the-
oretic complexity as well as practical efficiency, see [39] for a survey. The two
most successful parallel algorithms for LTL model checking are the OWCTY
algorithm [48] based on explicit-state implementation of symbolic SCC hull de-
tection and the MAP algorithm [38] based on value propagation.

Distributed-memory processing cannot attack the state space explosion prob-
lem alone and must be combined with other techniques. One of the most success-
ful techniques to fight the state space explosion in explicit-state model checking
is Partial Order Reduction [140]. DiVinE is able to perform this reduction, even
though a new topological sort proviso had to be developed in order to maintain
efficiency of parallel and distributed-memory processing [16].

Another important algorithmic improvement relates to the classification of
LTL formulas. For some classes of LTL formulas (weak LTL), the parallel al-
gorithms may by significantly improved. With this observation the OWCTY
algorithm can be improved so that its complexity even meets the complexity of
the optimal sequential Nested DFS algorithm and it allows for on-the-fly verifi-
cation in most verification instances [15].
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Parallelism in Distributed and Shared-Memory. The general idea in dist-
ributed-memory explicit state model checking is to aggregate the computational
power of multiple network interconnected workstations (clusters) in order to fa-
cilitate the verification of large model checking instances [17]. The set of vertices
of the graph to be processed is partitioned among participating computation
nodes using a static partitioning function. When a computation node processes
a vertex, it enumerates all its immediate successors and checks them for their
ownership. If a newly generated vertex is local according to the partitioning
function, it is pushed to the local queue where it waits for further processing.
Otherwise a network message containing the vertex is created and sent to the
queue of the owning computation node. With this work-flow, a message is gener-
ated with every edge connecting vertices from different partitions of the graph.

Message aggregation and buffering are the standard techniques in parallel
computing to alleviate the burden of network communication overhead. There-
fore, the model checker maintains buffers of messages to be sent to individual
computing nodes. A buffer is flushed (messages sent to network) upon one of the
following situations: 1) the buffer was explicitly flushed by the executed graph
algorithm, 2) the maximal number of messages for the buffer has been reached,
and 3) the local computing node was (otherwise) idle.

Most techniques and results known from the distributed-memory setting are
straightforwardly applicable to shared-memory architectures. In particular, the
graph to be processed is partitioned among individual parallel shared-memory
threads in the same way as it would be in the distributed-memory setting. Each
individual thread maintains its own hash table and its own pool of vertices to
be processed. Vertices belonging to different threads are pushed to their local
pools by means of lock-free shared-memory queues [14]. Relative advantages
and disadvantages of shared versus private hash tables, within the context of
thread-private pools of vertices to be processed, have been discussed in [22].

Nevertheless, the scalability of parallel distributed-memory solutions to shared-
memory is often limited. Therefore, shared-memory specific techniques are needed
to improve the efficiency and scalability of existing parallel distributed-memory
solutions on shared-memory architectures. Examples of successful shared-memory
specific techniques include, e.g. shared communication data structures [111,14],
specific termination detection techniques [14], dual-core algorithms [109], or quite
a unique partitioning scheme [108].

Many-Core Parallelism. After NVIDIA’s CUDA technology [66] was intro-
duced, a lot of computational demanding tasks have been accelerated by GPU-
aware algorithms. Examples of GPU accelerated procedures include, but are not
limited to, sorting [148], sparse matrix-vector multiplication [51], or numerous
biological and physical simulations, such as protein folding [113]. As for the
graph theory, successful adaptation of general graph traversal algorithms have
been reported too [138] demonstrating the tremendous computational power of
the CUDA device. On the other hand, graphs to be explored efficiently with a
CUDA accelerated algorithm must be encoded explicitly in a compact way.
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The CUDA technology as a computing platform, attracted also researches
in the field of automated formal verification. The key challenge, for which no
satisfactory solution is known yet, is how to accelerate the generation of explicitly
encoded state space graph from implicit definition. Preliminary attempts to do
so relate to explicit model checking. They suggest to employ a massively parallel
check for enabled transitions emanating from the vertices on the frontier of the
search and their massively parallel execution [78].

Once the state space is generated and explicitly represented in an appropriate
sparse matrix-like structure, many verification tasks can be accelerated using
CUDA technology. This has been successfully demonstrated, e.g. on verification
of probabilistic systems [35], LTL model checking [23] or the acceleration of
strongly connected components decomposition [12].

3.5 Model Checking Tools for Biological Systems

There are several specialized tools for the analysis of biological systems that
employ model checking. Some of these tools are well accepted by the community
and routinely used in the process of model development. In addition, several
model checking tools were experimentally used for the analysis of models in
systems biology. In this section we point to three of them that we found to be
closest to our own interest in exhaustive model checking. For richer reviews we
would like to refer to [46,10,112].

BioCham (Fages et al. [85], see [84] for tutorial)

BioCham stands for BIOCHemical Abstract Machine. The tool provides a mod-
eling environment for systems biology, with some unique features for static
analysis or for inferring unknown model parameters from temporal logic con-
straints. BioCham covers qualitative (Boolean) models as well as quantitative
models (continuous-time deterministic and continuous-time stochastic). Models
are specified in its native rule-based language. An important feature is that quan-
titative models specified at the level of reaction networks can be automatically
analyzed at the level of qualitative (Boolean) semantics.

Qualitative Models. CTL is employed to formalize the temporal properties of a
biological system and validate models with respect to such specifications. Sym-
bolic model checker NuSMV [54] is used to handle this analysis task. Moreover,
BioCham has an update component for automatically modifying a network that
does not satisfy a given CTL formula. The algorithm of this component is based
on the counterexamples computed by NuSMV. Although incomplete (in the sense
of sometimes not being able to find the appropriate changes to networks), such
a component is useful because of being able to handle large networks [43].

Continuous-time Deterministic Models. BioCham introduces LTL with numeri-
cal constraints (LTL(R)) to specify properties of numerical simulations of ODE
models. Since simulations always produce finite discretely-sampled trajectories
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bounded by the requested time horizon, there is a natural monitoring algorithm
built in. Furthermore, the tool is able to compute the violation degree of a for-
mula. Intuitively, a violation degree is the distance between a particular behavior
of a system, given as a path, and the expected behavior, given as a temporal-
logic formula [147]. Such a violation measure can be used to estimate a fitness
function with evolutionary optimization methods. This is done by finding kinetic
parameter values satisfying a set of biological properties formalized in temporal
logic. In addition, such a measure can be used to estimate the robustness of a
biological model with respect to its temporal specification.

Finally, probabilistic model checking is also provided. BioCham estimates the
probability of an LTL formula satisfaction by sampling stochastic simulations.

GNA (de Jong et al. [116])

Genetic Network Analyzer (GNA) provides support for modeling and simulation
of genetic regulatory networks using knowledge about regulatory interactions in
combination with gene expression data. GNA operates on piece-wise affine mod-
els providing a clear relation between quantitative and qualitative semantics.
Instead of exact numerical values for the parameters, which are often not avail-
able for gene networks, the piece-wise affine models allow to specify inequality
constraints. This information is sufficient to generate a state transition graph
that describes the qualitative dynamics of the network overapproximating the
ODE model.

GNA is able to export the resulting qualitative model to the finite state tran-
sition system and check properties by means of standard model-checking tools,
either locally installed or accessible through a remote web server. The tool is
connected with NuSMV and CADP (Garavel et al. [91]) model checkers. GNA
supports an extension of CTL logic, CTRL [136], allowing to express a significant
set of biologically relevant properties not expressible in plain CTL.

Additionally, parameter identification techniques have also been introduced
for GNA [26]. Based on symbolic model checking, the method avoids enumerating
all possible parametrizations in searching for parametrizations satisfying the
given temporal specification.

BioDiVinE (Barnat et al.[18,20])

BioDiVinE1 is a tool-box for automated analysis of biological systems by means
of applying model checking to qualitative and quantitative biological models.
Emphasis is put on the computational aspects and algorithms are adapted to
enable their effective distribution and/or parallelization. Currently, the tool-box
contains the following tools:

BioDiVinE 1.0 is a tool created for model checking LTL properties over
continuous-time deterministic biological models given by means of multi-affine
ODEs ([18], see Section 3.1), which are abstracted by employing the rectangu-
lar abstraction [62], translating the continuous model into a finite automaton.

1 http://sybila.fi.muni.cz/tools

http://sybila.fi.muni.cz/tools
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The tool makes an evolutionary branch of enumerative LTL model checker Di-
VinE [19] by adapting the OWCTY [48] and MAP [38] algorithms for distributed
analysis of biological models. Properties are specified by means of Büchi au-
tomata allowing even more flexibility than is provided by LTL.

Parsybone and PEPMC are tools for property-driven identification of biologi-
cal models. Parsybone focuses on logical parameters in qualitative models [121],
in particular, in gene regulatory networks encoded using the formalism of R.
Thomas [159]. PEPMC provides parameter identification for quantitative mod-
els [13], in particular, continuous-time deterministic models represented as piece-
wise multi-affine ODEs (this model class generalizes multi-affine models to cap-
ture regulatory dynamics). Both tools are based on colored LTL model checking
technique providing a heuristics for effective exploration of models with finite
parametrizations. As in BioDiVinE 1.0, specification of the temporal properties
is realized by means of Büchi automata.

PARASIM is a tool for approximative analysis of robustness of continuous-
time deterministic models. For sets of perturbations of kinetic parameters (or
initial conditions) and temporal properties specified in Signal Temporal Logic
(STL) [134], the so-called landscape function, giving the property’s validity for
parametrizations in the required perturbation set, is computed.

Usage of the BioDiVinE toolset is demonstrated in Section 4.

4 Model Checking in Action – Application Examples

In this section we give case studies on qualitative and quantitative representa-
tions of two biologically relevant models. The main purpose is to demonstrate the
application of selected techniques based on model checking. We focus on tech-
niques implemented in the BioDiVinE tool set, in particular, explicit LTL model
checking and parameter identification techniques built on the top of it. Addi-
tionally, we provide a demonstration of probabilistic model checking recently
extended to property-driven exploration of model parameters.

4.1 E. coli Ammonium Transport Model

We consider a simple biological model that describes ammonium transport from
the external environment into the cells of Escherichia Coli. This simplified
model is based on a published model of the E. Coli ammonium assimilation
system [131].

The model is a typical example of the dynamical models appearing in current
computational systems biology. In particular, the model is represented as a re-
action network associated with a continuous-time deterministic semantics given
in terms of (non-linear) ODEs. Parameters were taken from the literature.

We employ model checking to explore the model dynamics from a global
perspective. The term global has two meanings here. First, we want to analyze
the model dynamics starting at any possible initial concentration of the species,
not only at a single initial condition, as allowed by traditionally used simulation
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methods. Second, we want to explore the model dynamics without restricting
ourselves to a given parametrization. In particular, we want to explore how
parameters affect the expected (or required) behavior of the model.

As stated in Section 3.1, exhaustive exploration of the system states cannot
be directly employed on continuous-time deterministic models due to the un-
countability of time and variable domains. In order to allow the model checking
analysis, the model must be simplified in terms of Section 3.1. In this particular
case, we employ the rectangular abstraction technique [62] that allows to trans-
form an ODE model of a specific class into a finite automaton provided that the
dynamics properties are (conservatively) preserved.

Fig. 3. E. Coli ammonium transport mechanism and the respective pathway

Model Description. E. coli can express membrane-bound transport proteins
for the transportation of small molecules from the environment into the cy-
toplasm at certain conditions. At normal ammonium concentration, the free
diffusion of ammonium can provide enough flux for the growth requirement of
nitrogen. When ammonium concentration is very low, E. coli cells express AmtB
(an ammonium transporter) to complement the deficient diffusion process. Three
molecules of AmtB (trimer) form a channel for the transportation of ammonium.
Protein structure analysis revealed that AmtB binds NH4+ at the entrance gate
of the channel, deprotonates it and conducts NH3 into the cytoplasm as illus-
trated in Figure 3 (left) [119]. At the periplasmic side of the channel there is a
wider vestibule site capable of recruiting NH+

4 cations. The recruited cations
are passed through the hydrophobic channel where the pKa of NH+

4 was shifted
from 9.25 to below 6, thereby shifting the equilibrium toward the production of
NH3. NH3 is finally released at the cytoplasmic gate and converted to NH+

4

because the intracellular pH (7.5) is far below the pKa of NH+
4 .

In addition to the above mentioned AmtB mediated transport, the bidirec-
tional free diffusion of the uncharged ammonium through the membrane is also
included in the simplified model. The intracellular NH+

4 is then metabolised by
Glutamine Synthetase (GS). The whole model is depicted in Figure 3 (right). The
external ammonium is represented in the uncharged and charged forms denoted
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Table 1. The model of ammonium transport

AmtB +NH4ex
k1←k2→ AmtB : NH4 k1 = 5 · 108, k2 = 5 · 103

AmtB : NH4
k3→ AmtB : NH3 +Hex k3 = 50

AmtB : NH3
k4→ AmtB +NH3in k4 = 50

NH4in
k5→ k5 = 80

NH3in+Hin
k6←k7→ NH4in k6 = 1 · 1015, k7 = 5.62 · 105

NH3ex
k8←k9→ NH3in k8 = k9 = 1.4 · 104

NH3ex and NH+
4 ex. Analogously, the internal ammonium forms are denoted

NH3in and NH+
4 in. The reaction network that combines AmtB transport with

NH3 diffusion is given in Table 1.
The reaction network is assigned a set of ODEs as listed in Table 2 (employing

the law of mass action kinetics). It is worth observing that the form of the ODE
right-hand sides is in all cases made by polynomials of degree one. Since we are
especially interested in how the concentrations of internal ammonium change
with respect to the external ammonium concentrations, we employ the following
simplifications:

– We do not consider the dynamics of the external ammonium forms, thus
we take NH3ex and NH+

4 ex as constants (the input parameters for the
analysis).

– We assume constant intracellular pH (7.5) and extracellular pH (7.0), thus
Hex andHin are calculated to be 3·10−8 and 10−7. Based on the extracellular
pH and the total ammonium concentration, concentrations of NH3ex and
NH+

4 ex can be calculated.

Without loss of correctness, we simplify the notation of the cationNH+
4 as NH4.

Table 2. The mathematical model of ammonium transport

d[AmtB]
dt

= −k1 · [AmtB] · [NH4ex] + k2 · [AmtB : NH4] + k4 · [AmtB : NH3]
d[AmtB:NH3]

dt
= k3 · [AmtB : NH4]− k4 · [AmtB : NH3]

d[AmtB:NH4]
dt

= k1 · [AmtB] · [NH4ex]− k2 · [AmtB : NH4]− k3 · [AmtB : NH4]
d[NH3in]

dt
= k4 · [AmtB : NH3]− k7 · [NH3in] + k6 · [NH4in]

d[NH4in]
dt

= k5 · [NH4in] + k7 · [NH3in] · [Hin]− k6 · [NH4in]

Model Simplification. The restricted polynomial form of ODEs implies that
the model falls into the class of so-called multi-affine systems for which a sim-
plification, the so-called rectangular abstraction, is defined [30] (see [62] for the
relation with model checking). Each variable is assigned a set of specific (arbi-
trarily defined) points, the so-called thresholds, expressing concentration levels of
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A
k1←k2→ B

dA
dt

= −k1 · A+ k2 ·B
dB
dt

= k1 ·A− k2 ·B
thresholds on A: 0, 5, 6, 10
thresholds on B: 0, 2, 3, 5

A

B

Fig. 4. Example of a rectangular partition of a two-dimensional system (left) and the
intuition behind the construction of the abstracted transition system (right)

special interest. This set contains two specific thresholds – the maximal and the
zero concentration level (bounding of the state space has been discussed in Sec-
tion 3.1). The intermediate thresholds then define a partition of the (bounded)
continuous state space. The individual regions of the partition are called rectan-
gles. An example of a partition is given in Figure 4.

The partition of the system gives us directly the finite discrete abstraction of
the dynamic system. In particular, the BioDiVinE tool implements a (discrete)
state space generator that constructs a finite automaton representing the rect-
angular abstraction of the system dynamics. Since the states of the automaton
are made by the rectangles in the phase-space partition, the automaton is called
rectangular abstraction transition system (RATS). The main point is that for
each rectangle the exit faces are determined. The intuition is depicted in Fig-
ure 4(right). There is a transition from a rectangle to its neighbouring rectangle
only if, in the vector field considered in the shared face, there is at least one
vector whose particular component agrees with the direction of the transition.
The important result is that in a multi-affine system it suffices to consider only
the vector field in the vertices of the face. In Figure 4(right), the exit faces of
the central rectangle are emphasised by bold lines. In Figure 5 there is depicted
the rectangular abstraction transition system constructed for the affine system
from Figure 4(left). It is known that the rectangular abstraction is an overap-
proximation with respect to trajectories of the original dynamic system.

There is one specific issue when considering the time progress of the abstracted
trajectories. If there exists a point in a rectangle from which there is no trajectory
diverging out through some exit face, then there is a self-transition defined for
the rectangle. In particular, this situation signifies an equilibrium inside the
rectangle. Such a rectangle is called non-transient. For affine systems, a sufficient
and necessary condition is known, that characterizes non-transient rectangles by
the vector field in the vertices of those rectangles. However, for multi-affine
systems, only the necessary condition is known. Hence, for multi-affine systems
BioDiVinE treats as non-transient some states which are not necessarily non-
transient.
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Fig. 5. Example of a rectangular abstraction transition system. The emphasized state
and transition make a counterexample contradicting the property F(B > 3).

We use LTL logic to encode the dynamics properties of the model. Given
a dynamic system S with a particular initial state we can then say that S
satisfies a formula ϕ, written S |= ϕ, only if the trajectory starting at the initial
state satisfies ϕ. In the context of automata, LTL logic is interpreted universally
provided that a formula ϕ is satisfied by the automaton A, written A |= ϕ, only
if each execution of the automaton starting from any initial state satisfies ϕ.
The following theorem characterizes the relation between validity of ϕ in the
rectangular abstraction automaton and in the original dynamic system, taken
from [62].

Theorem 1. Consider a dynamic system S and the associated RATS A. If A |=
ϕ then S |= ϕ.

The theorem states that when the model checking of a particular property on
a RATS returns true, we are sure that the property is satisfied in the origi-
nal dynamic system. However, when the result is negative, the counterexample
returned does not necessarily reflect any trajectory in the original system.

The system in Figure 5 satisfies a formula FG(B ≤ 3) expressing the tem-
poral property stating that whatever the choice of the initial state, the system
eventually stabilizes at states where concentration of B is kept below 3. Now
let us consider a formula F(B > 3) expressing the property that whatever the
initial settings, the concentration of B will eventually exceed the concentration
level 3. In this case the model checking returns one of the counterexamples as
emphasized in Figure 5(right) stating that if initially A < 5 and B < 3 then B
is not increased while staying indefinitely long in the emphasised state.

We apply the rectangular abstraction method to the ammonium transport
model. We consider the set of states from which we want to explore the dynamics
given by the following intervals of concentration values:

AmtB ∈ 〈0, 1·10−5〉, AmtB : NH3 ∈ 〈0, 1·10−5〉, AmtB : NH4 ∈ 〈0, 1·10−5〉,
NH3in ∈ 〈1 · 1−6, 1.1 · 10−6〉, NH4in ∈ 〈2 · 10−6, 2.1 · 10−6〉
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Table 3. Partitioning of the continuous state space

AmtB 0, 10−12, 10−10, 9.9 · 10−8, 10−7, 5 · 10−6, 10−5

AmtB : NH3 0, 10−7, 10−5

AmtB : NH4 0, 10−7, 10−5

NH3in 0, 10−6, 1.1 · 10−6, 3 · 10−6, 8 · 10−6, 10−5

NH4in 0, 2 · 10−6, 2.1 · 10−6, 10−5, 5 · 10−4, 5.3 · 10−4, 5.4 · 10−4, 10−3

The upper bounds as well as the intervals of internal ammonium forms have
been set with respect to the available data obtained from the literature. The
partition used for rectangular abstraction has been set by thresholds as given in
Table 3.

Model Checking Analysis. From the essence of biophysical laws, it is clear
that the maximal reachable concentration level accumulated in the internal am-
monium forms directly depends on the ammonium sources available in the en-
vironment. However, it is not directly clear what particular maximal level of
internal ammonium is achievable at given amount of external ammonium (dis-
tributed into the two forms). In the analysis we have focused on just this phe-
nomenon. More precisely, the problem to solve was to analyze how the setting
of the model parameters NH3ex and NH+

4 ex affects the maximal concentration
level of NH3in and NH+

4 in reachable from given initial conditions.
It is very difficult to provide in vitro measurements of AmtB concentration

(and also the concentration of dimers AmtB : NH3 and AmtB : NH4). This
gives a strong motivation to analyze the model globally (with uncertain initial
conditions).

We have conducted several model checking experiments in order to determine
the maximal reachable concentration levels ofNH3in and NH+

4 in. In particular,
we have searched for the lowest α satisfying the property G(NH3in < α) and
the lowest β satisfying G(NH4in < β). The property G p requires that all
paths available in the rectangular abstraction from the states specified by the
initial condition must satisfy the given proposition p at every state. Note that
if the model checking method finds the property G p false in the model, it also
returns a counterexample for that. The counterexample satisfies the negation
of the checked formula, which is in this case F¬p. Interpreting this observation
intuitively for the above formulae, we use model checking to find a path on which
the species NH3in (resp. NH4in) exceeds the level α (resp. β).

The procedure was the following: At the starting point, we substituted for
α (resp. β) the upper initial bounds of the respective variables. Then we found
the requested values by iteratively increasing and decreasing α (resp. β). The
obtained results are summarized in Table 4.

The results have shown that NH3in does not exceed its initial level no matter
how the external ammonium is distributed between NH3ex and NH+

4 ex. The
upper bound concentration considered for both NH3ex and NH4+ex has been
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Table 4. Experiments on detecting maximal reachable levels of internal ammonium

α G(NH3in < α) # states Time

1.1 · 10−6 true 1081 0.36 s

β G(NH4in < β) # states Time

1 · 10−3 true 2161 0.45 s
5 · 10−4 false 4753 1.9 s
6 · 10−4 true 2161 0.43 s
5.4 · 10−4 true 1441 0.27
5.3 · 10−4 false 3421 1.2 s

set to 1 · 10−5 which corresponds to common concentration level of the gas in
the cell environment.

In the case of NH4in we have found that the upper bound to maximal reach-
able level is in the interval β ∈ 〈5.3 · 10−4, 5.4 · 10−4〉. Since the counterexample
achieved can be a spurious one due to the overapproximating abstraction, the
exact maximal reachable value may be lower. This can be explored by numerical
simulation, an important fact is that the range for setting β is now limited to
the detected interval.

The results have been achieved by running the OWCTY algorithm on a single
computation node. In [18], there is presented a refined variant (a finer partition)
of the model leading to 105 reachable states. For that variant, distributing of
the computation to 36 nodes was needed to achieve good times (in the order of
seconds).

Parameter Exploration. Owing to the membrane location of AmtB, in vitro
measuring of the concentration of AmtB-based species is impossible and there-
fore the estimation of kinetic parameters of this model is very difficult.

To identify parameter values computationally, we employ the colored model
checking technique [13] implemented in the PEPMC tool of the BioDiVinE
toolset (see Section 3.5). If we denote each parametrization by a distinct color
and assume that the respective (parametrization-specific) state space has all its
transitions marked by this color, we can construct a global state space as a union
of all the parametrization-specific state spaces. Since a change in parameter val-
ues affects the model dynamics, which is entirely represented by state transi-
tions, the parameter space is completely projected onto the transition relation
defined on the universal state space. In this setting, our solution to the parame-
ter identification problem is based on analysis of mono-colored paths in a graph
with multi-colored edges. Since in many parametrizations small perturbations
in parameter values lead to small locally distributed variations in the transi-
tion relation, the respective mono-colored graphs can exhibit significant simi-
larity. For parametrizations amenable to such property, the algorithm achieves
good efficiency. In Fig. 6, the basic idea of solving the parameter identification
problem by automata-based LTL model checking is illustrated. The automaton
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we decide on all parameterizations at once

check if the product accepts an empty language

YES NO

is the maximal set of valid parameters  
inverse of P in entire parameter space

property is robust return set P of parameter values
violating the property

never claim Buchi automaton

GF ([A]>2.5 | [B]>2.5)

FG ([A]<=2.5 & [B]<=2.5)

parameterized Kripke structure of the model

naively for each parameterization separately 

[A]

[B]

5

0 2.5 5

2.5

Fig. 6. Intuition behind colored model checking

representing the model dynamics can be extended with colored edges, where
each color corresponds to a certain parametrization. We expect that transitions
are to a large extent shared among individual colors. This allows us to accelerate
the computation.

It is important to note that in the considered model the parameters are quan-
titative and their domain is uncountable (but bounded). However, as shown
in [25], the rectangular abstraction partitions the parameter domains into a fi-
nite number of intervals where each interval contains parameter values producing
an isomorphic state transition system. Intuition behind the application of this
result is illustrated in Fig. 7.

In our model, we investigate the effect of different parameter settings to the
production of the model output – the internal ammonium forms NH3in and
NH4in. In particular, we look for perturbations in individual kinetic parameters
that lead to an increase of internal ammonium concentration above the standard
values. In the terms of LTL model checking, we formulate the negation of this re-
quirement – we check whether the standard value is never exceeded. We formalize
the discussed requirement by safety LTL properties ϕ1 = G(NH3in < 1.1 · 106)
and ϕ2 = G(NH4in < 2.1·106) stating thatNH3in (resp.NH4in) never exceeds
the given concentration. We performed two sets of parameter identification tasks.
In the first group, each single parameter was considered unknown ( remaining
parameters were set w.r.t. literature [131]). In the second group, we considered a
collection of three unknown parameters. In all experiments, the range for every
parameter was set to (1 · 10−12, 1 · 1012). In Table 5, the most interesting results
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Fig. 7. Partitioning of uncountable parameter space into a finite number of intervals.
Parameter k1 is considered to be unknown. Rectangular abstraction of the model is
determined by thresholds 0, 2.5, 5 imposed on both species A and B producing five
intersection points. By substituting any of these points into the ODEs while setting
the left-hand sides to zero (equilibrium), we can solve the resulting homogeneous system
of linear equations for k1. The solution gives us those values of k1 where the sign of
any of the derivatives changes. By iterating this procedure for each of the points, the
domain of k1 is partitioned into four intervals as can be seen in the table above. Each
of the intervals makes a class of equivalence with respect to the derivative sign in a
particular intersection point. Accordingly, in this example we get four (qualitatively)
different automata abstracting the model dynamics.



Model Checking of Biological Systems 95

Table 5. Parameter exploration experiments

P prop. intervals of validity
#

states
reached

time

k4 ϕ1 (1 · 10−12, 2.7 · 106) 124580 30 s
k5 ϕ2 (1.5 · 107, 1 · 1012) 3068 0.40 s
k6 ϕ1 (5.2 · 106, 1 · 1012) 67572 22 s
k6 ϕ2 ∅ 6319 1.8 s
k7 ϕ1 (1 · 10−12, 3.3 · 106) 126458 33 s
k7 ϕ2 (1.6 · 107, 1 · 1012) 12523 3.5 s
k9 ϕ1 (1 · 10−12, 2.7 · 106) 97495 20 s
k9 ϕ2 ∅ 5779 1.5 s

k1,6,9 ϕ1
k9 ∈ (1 · 10−12, 2.7 · 106) ∨

[k9 ∈ (2.7 · 106, 3.2 · 106) ∧ k6 ∈ (1 · 10−12, 1.07 · 106)] 202638 51 min

k1,6,10 ϕ2
[k1 ∈ (1 · 10−12, 1 · 107)∧ k6 ∈ (1 · 10−12, 1.4 · 105)∧ k10 ∈ (1.18 · 106, 1 · 1012)]

∨[k6 ∈ (1.4 · 105, 1.07 · 106) ∧ k10 ∈ (1 · 10−12, 1.18 · 105)] 19473 19 min

are summarized. The presented data show the scanned parameter set, the an-
alyzed property with the computed valid parametrizations, number of reached
states, and computation times. Note that if a parameter is not mentioned it led
trivially to validity on the entire (1 · 10−12, 1 · 1012).

Of special interest are individual scans of k6 and k9 for ϕ2. In particular, the
results show that, in the given parameter value range, there is no perturbation
which would satisfy the property. With respect to both parameters, the model
is robust in the negative property F(NH4in > 2.1 · 106) stating that NH4in
eventually exceeds the given concentration. Thus, regardless the setting of k6, k9,
on each trajectory leading from the range specified by initial conditions, NH4in
must exceed the standard concentration range.

4.2 Gene Regulation of Mammalian Cell Cycle

In the second case study, we focus on parameter identification by model checking
for a model of a regulatory network. In particular, we investigate a model repre-
senting the central module of the genetic regulatory network governing the G1/S
cell cycle transition in mammalian cells [157]. In particular, the model considers
a two-gene network describing interaction of the tumor suppressor protein pRB
and the central transcription factor E2F1 (see Fig. 8(left)).

This simple model demonstrates the feature of bistability, i.e., the occurrence
of two stable states. Bistable networks can drive the systems response to some
stimulus: With no stimulus, the system keeps (once reaching it) a certain stable
state. In particular, in the stable state, the concentrations of the species does
not change, because production and degradation had reached an equilibrium. A
stimulus, which is in the form of a change of some protein concentration caused
from outside the system, evokes deflection from the stable state. If the deflection
is weak enough, the system returns to the previous stable state afterwords. But
when it overruns some threshold, the system approaches the other stable state,
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with no chance of returning to the first one, even after the end of the stimu-
lus. That way the system can decide whether a stimulus is strong enough to
permanently switch to a particular mode. The first stable state of our system
represents the low level of the E2F1 protein concentration. In this state, the cell
stays in G1-phase. When increased enough, the concentration of E2F1 grows
higher, to the level of the second stable state, which causes the cell approaches
to S-phase.

Qualitative Model. First, we consider a Boolean model of the network, we
formulate the required properties, and we employ the parameter identification
algorithm to find parametrizations of unknown parameters (denoted by question
marks in Fig. 8).

We employ the Boolean model of gene regulatory networks as introduced by
Thomas [159]. The concrete modeling approach including the parametrization is
taken from [13]. The Boolean model is determined by the structure (topology)
of the GRN and the regulatory logic that controls the network dynamics. The
Boolean model is defined as a tuple B = 〈G, σ, θ, ρ, L〉 where

– G = (V,E) is a directed graph with vertices V = {g1, ..., gn} denoting genes
and set of edges E ⊆ V × V denoting regulations.

– σ(e) ∈ {+,−} denotes the type of regulation e ∈ E: positive (+) or negative
(−),

– θ(e) ∈ N≥1 denotes the activation threshold of e ∈ E,
– ρ(gi) ∈ N≥1 denotes the maximum expression level of gi ∈ V determining

the expression domain {0, ..., ρ(gi)},
– L is the regulatory logic defined as the set L = {Ki,R | 1 ≤ i ≤ n,R ⊆ {v ∈

V | 〈v, gi〉 ∈ E}} where Ki,R denotes the target expression level of gi when
regulated by all genes in R, 0 ≤ Ki,R ≤ ρ(gi).

In our example, the model, depicted in Fig. 8, consists of two genes pRB and
E2F1. To differentiate between the two outgoing regulations from both E2F1
and pRB, we choose the genes maximal activity levels ρ(pRB) = ρ(E2F1) = 2.
Negative and positive interactions together with thresholds are set with respect
to data presented in [157]. The regulatory logic is known only for the basal gene
activity, in particular, pRB under the empty context (no incoming regulation
active) has the tendency to attain the expression level 1. A significant role for
the model behavior has the positive autoregulation of E2F1. In order to become
active (i.e., the resource for E2F1, since E2F1 is not a target of any other positive
regulation), we need to set KE2F1,∅ = 2. We do not know target levels for other
regulatory contexts of both genes, therefore we consider them as parameters.
Note that since the expression levels of both genes is bounded by the maximal
activity levels, the number of possible parametrizations is finite.

Once the regulatory logic is set (all parameters are assigned), the seman-
tics in terms of a finite automaton capturing the dynamics of a network B can
be defined as the tuple BTS(B) = 〈S, T, S0〉 where S =

∏n
i=1{0, ..., ρ(gi)} is set
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of states with S0 ⊆ S initial states and T ⊆ S × S is the transition relation
defined as follows.

First we denote the level of gi in the state s ∈ S by li(s). Assume there is a
regulation e = 〈gi, gj〉 ∈ E between genes gi, gj . We say that gi is a resource for
gj in s if σ(e) = + and li ≥ θ(e), or σ(e) = − and li < θ(e). Let Re(s, gi) denote
the set of all resources of gi in s. There is a transition s → s′ according to the
following rules:

– If there exists u such that Ku,Re(s,gu) > lu then lu(s
′) = lu(s) + 1.

– If there exists u such that Ku,Re(s,gu) < lu then lu(s
′) = lu(s)− 1.

The presented semantics requires that the level of at most one gene can be
affected in a single transition. This represents the so-called asynchronous se-
mantics [159] that models all possible time-orderings of individual expression
level updates by the means of non-determinism (an update on a single gene is
considered an atomic operation).

The formulae specifying behavior of E2F1 are built over the following atomic
propositions:

AP = {E2F1 < x | 1 ≤ x ≤ ρ(E2F1)}
For the purpose of our analysis, we establish the set of initial states S0 as those
satisfying lpRB = 0 and lE2F1 ∈ {0, 1, 2}.

To filter out certain trivial executions, the concept of explicitly stated ac-
cepting states in the Büchi automaton (BA) representing the LTL property is
used. Such a restriction is called a fairness constraint as is frequently used in
formal verification by model checking [59]. From the above regulatory logic set-
tings follows the selection of accepting states with lpRB ≥ 1, denoted F1. A more
restricting filter may be created by choosing states satisfying lpRB = 2, de-
noted F2. The former fairness constraint can be formulated in LTL as a formula
GF(pRB ≥ 1), the latter one as GF(pRB = 2).

We understand bistability as the following set of properties (described in the
form of LTL formulae). These properties are used to detect certain paths in the
model state space with respect to the behavior observed in vitro. In the following
we assume θ ∈ {1, 2}:
– expression of E2F1 begins below the threshold and does not exceed it

(G(E2F1 < θ))
– expression of E2F1 begins above the threshold and remains such

(G(E2F1 ≥ θ))
– expression of E2F1 begins under the threshold and at certain moment ex-

ceeds it and stays above the exceeded level ((E2F1 < θ)→ FG(E2F1 ≥ θ))

We used the colored model checking algorithm implemented in the Parsybone
tool of the BioDiVinE toolset (see Section 3.5) to identify admissible parametriza-
tions for these properties with the setting of accepting states F1. In particular,
the properties listed above have been used as an observer (BA) that makes
a witness for the respective dynamic phenomenon. Only a small parameter
restriction was synthesized by employing the observer (BA) for both settings
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θ = 1 and θ = 2: KpRB,{E2F1} �= 0. When employing the accepting states F2, the
observer demandedKpRB,{pRB,E2F1} = 2 as well and, additionally,KpRB,{pRB} =
2 for θ = 1. Apparently, the regulatory network is considerably robust regarding
the choice of θ and the setting of regulatory logic on E2F1 (i.e. KE2F1,R where
R ⊆ {E2F1, pRB}).

Continuous-Time Deterministic Model. Now we consider a quantitative
model of the gene regulatory network traditionally formalized by means of so-
called Hill kinetics that abstracts from unknown elementary reactions occurring
during processes of protein identification and its regulation. However, from the
perspective of computer analysis, Hill kinetics introduces rational polynomial
functions into the right-hand sides if ODEs. Course of the Hill function modeling
positive regulation is shown in Fig. 9.

pRB E2F1

−1

−2

+1

+2
KpRB, ∅ = 1
KpRB,{pRB} =?
KpRB,{E2F1} =?
KpRB,{E2F1,pRB} =?

KE2F1, ∅ = 2
KE2F1,{E2F1} =?
KE2F1,{pRB} =?
KE2F1,{E2F1,pRB} =?

d[pRB]
dt

= k1
[E2F1]

0.5+[E2F1]
0.5

0.5+[pRB]
− γpRB[pRB]

d[E2F1]
dt

= kp + k2
a2+[E2F1]2

16+[E2F1]2
5

5+[pRB]
− γE2F1[E2F1]

Fig. 8. (left) Genetic regulatory network controlling the G1/S transition. (right) Reg-
ulatory logic employed for the qualitative model. (bottom) The original ODE model
system that makes the quantitative model of the network.

To analyze the model at the level of quantitative kinetics, we again need to
simplify the continuous-time deterministic model. Similarly as in the previous
case study, we translate the model into the discrete-time discrete-value domain.
To this end, we employ the piece-wise multi-affine abstraction (PMA) of the
non-linear ODE model shown in Fig. 8. This abstraction has two consecutive
steps:

– transforming the non-linear ODE model into a piece-wise multi-affine (PMA)
model and

– performing rectangular abstraction to transform the PMA model into a finite
automaton (the so-called rectangular abstraction transition system)

The first step has been defined in [25], the main idea is to get rid of the rational
polynomial functions appearing in right-hand sides of ODEs. As illustrated in
Fig. 9, this is done by approximating each of them by a so-called ramp function
defined in the following way:
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r+(xi, θi, θ
′
i) =

⎧⎪⎨
⎪⎩
0, if xi ≤ θi,
xi−θi
θ′
i−θi

, if θi < xi < θ′i,

1, if xi ≥ θ′i.

The ramp function approximates the non-linear sigmoid function by a piece-wise
affine curve. A sum of scaled ramp functions approximating individual segments
of the original non-linear curve can be employed.

Second, the PMA model is abstracted by using the rectangular abstraction
as introduced in Section 4.1. Since Theorem 1 extends to piece-wise multi-affine
models with no restrictions [25], the abstraction procedure is the same as in the
case of multi-affine systems. Again, the rectangular abstraction partitions the
domain of every unknown parameter domain into a finite number of intervals.

Fig. 9. Sigmoid (Hill) function for positive regulation abstracted by a corresponding
ramp function. The steepness is affected by the exponent appearing in Hill functions,
here denoted n.

The parameters in the original ODE model have been estimated by employ-
ing the bifurcation analysis [157]. We show how our alternative method based
on model checking can be employed for identification of parametrizations satis-
fying the required specification. Our PMA abstraction of this system is shown in
Fig. 10. Each function i(x) is defined as a sum of several ramp-functions that
gradually approximate the respective regulatory Hill curve by a polyline.

Since we detected bistability by using the qualitative model above, it follows
to find how this phenomenon is affected by the setting of (quantitative) kinetic
parameters. As shown in [157], the steady behavior of this system is strongly
influenced by the degradation coefficient γpRB . Fig. 11 shows the vector field of
the above system for two different values of γpRB.

Similarly to the previous case, to express dynamical properties of paths in
rectangular abstraction of an n-dimensional model M we employ traditional
Linear Temporal Logic (LTL) built over atomic propositions AP :

AP =
{
xi � θij | 1 ≤ i ≤ n, 1 ≤ j ≤ ζi},� ∈ {<,>}

}
.
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d[pRB]
dt

= k1�1(pRB,E2F1)− γpRB[pRB]
d[E2F1]

dt
= kp + k2�2(pRB,E2F1)− γE2F1[E2F1]

�1(pRB,E2F1) = (0.85r+(E2F1, 0, 3) + 0.1r+(E2F1, 3, 10) + 0.05r+(E2F1, 10, 50))
·(0.85r−(pRB, 0, 2) + 0.1r−(pRB, 2, 5) + 0.05r−(pRB, 5, 80))

�2(pRB,E2F1) = (0.85r+(E2F1, 0, 10) + 0.1r+(E2F1, 10, 20) + 0.05r+(E2F1, 20, 80))
·(0.5r−(pRB, 0, 5) + 0.2r−(pRB, 5, 10) + 0.15r−(pRB, 10, 30) + 0.15r−(pRB, 30, 130))

Fig. 10. Piece-wise multi-affine abstraction (PMA model) for the G1/S transition reg-
ulatory network

Our goal is to determine the set of parameters in the range [0.01, 1] for which
the concentration of E2F1 is greater than 8 in the stable state. This phenomenon
can be specified in terms of an LTL formula ϕ = FG([E2F1] > 8).

We executed the colored model checking algorithm implemented in the
PEPMC tool (see Section 3.5) for the model described above and the prop-
erty ϕ. Since the abstraction technique has the overapproximative character,
some of counterexamples found by model checking can be false-positive paths.
Therefore the result is an under-approximated set of parameter valuations un-
der which the property ϕ is satisfied. Owing to the fact that the property ϕ is a
liveness property, many of the counterexamples can be paths on which the time
does not really proceed (the so-called time-convergent paths). In [21] we have
shown a way of how the model checking procedure for this specific model can be
elaborated to avoid unwanted time-convergent paths. By applying the algorithm
to the model described above we were able to prove that for γpRB > 0.053, the
system stabilizes with E2F1 > 8.
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(a) γpRB = 0.01, the system stabilizes
with E2F1 < 3
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(b) γpRB = 0.1, the system stabilizes
with E2F1 > 11

Fig. 11. Vector field of the liveness model
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Gene a interactions Gene b interactions

a → a+ A 1 b → b+B 0.05
aB → aB + A 1 bB → bB +B 1

A+ a ↔ aA 100; 10 A+ b ↔ bA 100; 10
B + a ↔ aB 100; 10 B + b ↔ bB 100; 10

Protein degradation

A → γA B → γB

Property # iter. # subsp. time[h]

(1a) 1.2·106 153 9
(2a) 2.0·106 69 5.5
(3a) 2.0·106 66 4.5
(1b) 4.0·106 159 10.5
(2b) 4.0·106 132 8
(3b) 4.0·106 80 5

(a) (b)

Fig. 12. (a) Stochastic mass action model of the G1/S regulatory circuit – A denotes
the protein pRB, B denotes E2F1, a, b represent genes, aA, aB, bA, bB represent tran-
scription factor-gene promoter complexes (b) Computation results

Continuous-Time Stochastic Model. We have translated the original ODE
model into the framework of stochastic mass action kinetics [94]. The result-
ing reactions are shown in Fig. 12a. Since the detailed knowledge of elementary
chemical reactions occurring in the process of transcription and translation is
incomplete, we use the simplified form as suggested in [80]. In the minimalistic
setting, the reformulation requires addition of rate parameters describing the
transcription factor–gene promoter interaction while neglecting cooperativeness
of transcription factors activity. Our parametrization is based on time-scale or-
ders known for the individual processes [162]. Moreover, we assume the numbers
of A and B are bounded by 10 molecules. The bound is calibrated with respect
to the original ODE model and reflects the character of the two steady states.
All other species are bounded by the initial number of DNA molecules (genes a
and b) which is conserved and set to 1. The model is translated into a CTMC
which has 1078 states and 5919 transitions.

An interesting biologically relevant problem is to predict how the population
of cells implements this regulatory circuit in reaction to mitogenic stimulation
and under presence of noise. Low molecular numbers typical for DNA and pro-
teins molecules make the gene regulation highly sensitive to noise. Since mito-
genic stimulation influences the degradation rate of A, our goal is to study the
population distribution around the low and high steady state.

In particular, we consider three hypotheses: (1) stabilization in the low mode
where B < 3, (2) stabilization in the high mode where B > 5, (3) stabilization
in the high mode where B > 7 ((3) is more focused than (2)). All the hypotheses
are expressed within time horizon 1000 seconds reflecting the time scale of gene
regulation response. We employ two alternative CSL formulations to express
each of the three hypothesis.

First, we express the property of being inside the given bound during the
time interval I = [500, 1000] using globally operator: (1a) P∼?[G

I (B < 3)], (2a)
P∼?[G

I (B > 5)] and (3a) P∼?[G
I (B > 7)]. The interval starts from 500 seconds

in order to bridge the initial fluctuation region and let the system stabilize.
For the fixed valuations of parameters, quantitative CSL model checking can

be used to answer the above mentioned questions. For this purpose, PRISM
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provides the most suitable tool [125]. The papers on applying PRISM to bio-
logical models [102,127], the book [112], and the tutorials available at the tool
webpage provide a good source for this topic.

Here we focus on analysing the above stated properties with respect to the
potential uncertainty in parameters. In particular, we explore the effect of the
parameter γA on the probability of the properties. According to [157], we consider
the parameter space γA ∈ [0.005, 0.5].

The technique employed for the parameter exploration is described in [40], it
is implemented on the top of PRISM. The basic notion is the landscape function
that for each parameter point from the inspected parameter space returns the
quantitative model checking result for the respective CTMC determined by the
parameter point and the given property. Computation of the landscape function
is based on automatic decomposition of the given parameter space with respect
to how it influences the model dynamics. The computation is approximative and
provides the result within a required absolute error bound.
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Fig. 13. Landscape functions of properties (1a,1b,2b,3b) for parameter γA ∈ [0.005, 0.5]
and initial states #0, #997 and #1004. The left Y-axis scale corresponds to (1a), the
right to (1b,2b,3b).

Since the stochastic noise causes molecules to repeatedly escape the requested
bound, the resulting probability is significantly lower than expected. Namely, in
cases (2a) and (3a) the resulting probability is close to 0 for the whole parameter
space. Moreover, the selection of an initial state has only a negligible impact on
the result. Therefore, in Fig. 13 only the resulting probability for case (1a) and
a single selected initial state is visualized.

Second, we use a cumulative reward property [126] to capture the fraction of
the time the system has the required number of molecules within the time interval
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Fig. 14. Landscape function for property (3b), initial state #0 (A = 0, B = 0, a =
0, b = 0, aA = 0, aB = 1, bA = 0, bB = 1) and two-dimensional parameter space
(γA, γB) ∈ [0.005, 0.1] × [0.05, 0.1] (represented by X and Y axes, respectively). The
upper bound of the landscape function is illustrated.

[0, 1000]: (1b) R∼?[C
≤t](B < 3), (2b) R∼?[C

≤t](B > 5), (3b) R∼?[C
≤t](B > 7)

where t = 1000 and R∼?[C
≤t](B ∼ X) denotes that state reward ρ is defined

such that ∀s ∈ S.ρ(s) = 1 iff B ∼ X in s. The result is visualized for three
selected initial states in Fig. 13.

Fig. 13 also illustrates inaccuracy of our approach with respect to the absolute
error bound Err = 0.01 by means of small rectangles depicting approximations
of the resulting probabilities and expected rewards. The analyses predict that
the distribution of the low steady mode interferes with the distribution of the
high steady mode. It confirms bistability predicted in [157] but in contrast to
ODE analysis our method shows how the population of cells distributes around
the two stable states. Results of computations including the number of iterations
performed during parametrized uniformization, numbers of resulting subspaces
and execution times in hours, are presented in Fig. 12b.

Finally, to see how degradation rates of A and B cooperate in affecting prop-
erty (3b), we explore two-dimensional parameter space (γA, γB) ∈ [0.005, 0.1]×
[0.05, 0.1]. Fig. 14 illustrates the computed upper bound of the landscape func-
tion for initial state #0. The result predicts antagonistic relation between the
degradation rates which is in agreement with the ODE model [157].
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40. Brim, L., Česka, M., Dražan, S., Šafránek, D.: Exploring parameter space of
stochastic biochemical systems using quantitative model checking. Tech. rep., Fac-
ulty of Informatics, Masaryk University (2013),
http://sybila.fi.muni.cz/TR-01-2013.pdf

41. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. Information and Computation 98(2),
142–170 (1992)

42. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using continuous time markov chains. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220,
pp. 44–67. Springer, Heidelberg (2006)

43. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning bio-
chemical networks from temporal logic properties. In: Priami, C., Plotkin,
G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI),
vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

44. Campagna, D., Piazza, C.: Hybrid automata in systems biology: How far can we
go? In: From Biology to Concurrency and Back (FBTC). ENTCS, vol. 229, pp.
93–108 (2009)

45. Caravagna, G., Hillston, J.: Modeling biological systems with delays in Bio-PEPA.
In: Proceedings Fourth Workshop on Membrane Computing and Biologically In-
spired Process Calculi 2010. EPTCS, vol. 40, pp. 85–101 (2010)
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48. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection (Set based ap-
proach). In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
49–73. Springer, Heidelberg (2003)

49. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinfor-
matics 8(4), 210–219 (2007)
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82. Engl, H.W., Flamm, C., Kügler, P., Lu, J., Müller, S., Schuster, P.: Inverse prob-
lems in systems biology. Inverse Problems 25(12), 123014 (2009)
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Abstract. In this chapter, we will describe, in a tutorial style, recent
work on the use of fluid approximation techniques in the context of
stochastic model checking. We will discuss the theoretical background
and the algorithms working out an example.

This approach is designed for population models, in which a (large)
number of individual agents interact, which give rise to continuous time
Markov chain (CTMC) models with a very large state space. We then
focus on properties of individual agents in the system, specified by Con-
tinuous Stochastic Logic (CSL) formulae, and use fluid approximation
techniques (specifically, the so called fast simulation) to check those prop-
erties. We will show that verification of such CSL formulae reduces to
the computation of reachability probabilities in a special kind of time-
inhomogeneous CTMC with a small state space, in which both the rates
and the structure of the CTMC can change (discontinuously) with time.
In this tutorial, we will discuss only briefly the theoretical issues behind
the approach, like the decidability of the method and the consistency of
the approximation scheme.

Keywords: Stochastic model checking, fluid approximation, mean field
approximation, reachability probability, time-inhomogeneous Continu-
ous Time Markov Chains.

1 Introduction

In recent years there has been a growing interest in the use of mean field or
fluid approximation techniques in the analysis of large scale models of dynamic
behaviour. In particular there have been a number of attempts to integrate these
mathematical approximations with formal modelling techniques originating in
theoretecial computer science. Specifically, fluid approximation techniques are
cross-fertilising with quantitative formal methods, mainly Stochastic Process
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Algebras (SPA), giving birth to a new class of quantitative analysis techniques
for large scale population models, described by continuous time Markov chains
(CTMC) [7,8,31,27,16,9].

Whereas process algebra models can be viewed as agent-based descriptions
in which the behaviour of each entity in the system is described in detail, fluid
or mean field methods focus instead on the more abstraction population view
of the system. In order to move from the process algebra description to a mean
field approximation, individuality of agents must be abstracted and a collective
or counting abstraction employed [27]. This leads to an aggregated state rep-
resentation, in which the system is described by variables counting the number
of agents in each possible state. Then, the discrete state space of the CTMC is
approximated by a continuous one, and the stochastic dynamics of the process
is approximated by a deterministic one, meaning that states no longer evolve
through discrete jumps based on the interleaved state changes of individuals.
Instead the state variables are assumed to be subject to continuous change ex-
pressed by means of a set of differential equations. The correctness of this ap-
proach is guaranteed by limit theorems [34,21,22], showing the convergence of
the CTMC to the fluid ODE for systems of increasing population size.

On the one hand, fluid approximation has been used in the context of stochas-
tic process algebras mainly to approximately compute the average transient dy-
namics, or to approximate the average steady state, when possible [49,48]. It has
also been used to estimate fluid passage times [25,26].

On the other hand, stochastic process algebra models can also be analysed
using quantitative model checking. These techniques have a long tradition in
computer science and provide powerful ways of querying a model and extract-
ing information about its behaviour. In the case of stochastic model checking,
there are some consolidated approaches, principally based on checking Contin-
uous Stochastic Logic (CSL) formulae [5,4,45], and these are supported by soft-
ware tools which are in widespread use [36,37]. All these methods, however,
suffer (in a more or less relevant way) from the curse of state space explosion,
which severely hampers their practical applicability particularly for population
models.

One possibility to mitigate the state space explosion problem is to combine
fluid approximation techniques with stochastic model checking, obtaining effi-
cient approximate algorithms for checking formulae against population models.
In this tutorial, we will present a first attempt in this direction [12,13], in which
mean field approximation is used to carry out approximate model checking of
behaviours of individual agents in large population models, specified as CSL for-
mulae. This is made possible by a corollary of the fluid convergence theorems,
known by the name of fast simulation [24,22], which characterises the limit be-
haviour of a single agent in terms of the solution of the fluid equation: the agent
senses the rest of the population only through its “average” evolution, as given
by the fluid equation. The idea of [12,13] is to check individual properties in this
limit model, rather than on the full model with N interacting agents. In fact,
extracting metrics from the description of the global system can be extremely
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expensive from a computational point of view. Fast simulation, instead, is a very
compact abstraction of the system and the evolution of a single agent (or of a
subset of agents) can be computed efficiently, by decoupling its evolution from
the evolution of its environment and hence reducing the dimensionality of the
state space by several orders of magnitude. A central feature of the abstraction
based on fluid approximation is that the limit model of an individual agent is
a time-inhomogeneous CTMC (ICTMC). This introduces some additional com-
plexity in the approach, as model checking of ICTMC is far more difficult than
the homogeneous-time counterpart. Nevertheless we can learn from the previ-
ous techniques for model-checking CSL properties on time-homogeneous CTMC,
and developed suitable approaches for ICTMCs.

In this tutorial, we will present the work of [12,13] in detail, using a network
epidemic model as a simple running example. We will start by setting the context
by presenting a simple modelling language for population CTMC (Section 2),
discussing CSL and properties for individual agent (Section 3), and introducing
some fundamental concepts about fluid approximation and fast simulation (Sec-
tion 4). We will then turn to explain in detail the model checking procedure for
ICTMC, considering first non-nested properties (Section 5), and then turning to
nested CSL formulae (Section 7). The difficulty in this case is that the truth of
a formula depends on the time at which the formula is evaluated, hence we need
algorithms to compute this functional dependence (Section 6). The algorithms
to model check nested formulae are presented only informally, by means of the
running example (Section 7). We also discuss briefly two theoretical aspects of
the work in [12,13], namely decidability of the model checking algorithm for
ICTMC and convergence of the truth value of CSL formulae for an individual in
a system with a finite population level to the truth for the limit individual model
(Section 8). We discuss the related work in Section 9 and finally, we sketch some
conclusions in Section 10.

2 Population Models

In this section, we will introduce a simple language to construct Markov mod-
els of populations of interacting agents. We will consider models of processes
evolving in continuous time, although a similar theory can be considered for
discrete-time models (see, for instance, [14]). In principle, we can have different
classes of agents, and many agents for each class in the system. Furthermore, the
number of agents can change at runtime, due to birth or death events. Models of
this kind include computer networks, where each node (e.g. server, client) of the
network is an agent [38], biological systems (in which molecules are the agents)
[47], ecological systems (in which individual animals are the agents) [11], and
so on. However, to keep notation simple, we will assume here that the num-
ber of agents is constant and equal to N (making a closed world assumption).
Furthermore, in the notation we do not distinguish between different classes of
agents.
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In particular, let us assume that each agent is a finite state machine, with in-
ternal states taken from a finite set S, and labeled by integers: S = {1, 2, . . . , n}.
We have a population of N agents, and denote the state of agent i at time t, for

i = 1, . . . , N , by Y
(N)
i (t) ∈ S. Note that we made explicit the dependence on N ,

the total population size.

A configuration of a system is thus represented by the tuple (Y
(N)
1 , . . . , Y

(N)
N ).

This represention is based on treating each agent as a distinct individual with
identity conferred by the position in the vector. However, when dealing with pop-
ulation models, it is customary to assume that single agents in the same internal
state cannot be distinguished, hence we can move from the individual represen-
tation to the collective representation by introducing n variables counting how
many agents are in each state. Hence, we define

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}. (1)

Note that the vector X(N) = (X
(N)
1 , . . . , X

(N)
n ) has a dimension independent of

N , and will be equivalently referred to as the collective, population, or counting

vector. The domain of each variable X
(N)
j is obviously {0, . . . , N}, and, by the

closed world assumption, it holds that
∑n

j=1 X
(N)
j = N . Let us denote with S(N)

the subset of vectors of {1, . . . , N}n that satisfy such constraint.
Up to now, we just described the state space of our population models. In order

to capture their dynamics, we will specify a set of possible events, or transitions,
that can change the state of the system. Each such event will involve just a small,
fixed, number of agents, usually one or two, but we will in any case describe it
from the perspective of the collective system.

Events are stochastic, and take an exponentially distributed time to happen,
with a rate depending on the current global state of the system. Hence, each
event will be specified by a rate function, and by a set of update rules, telling
us how many and which agents are involved and how they will change state.

The set of events, or transitions, T (N), is made up of elements τ ∈ T (N),

which are pairs τ = (Rτ , r
(N)
τ ). More specifically, Rτ is a multi-set of update

rules of the form i→ j, specifying that an agent changes state from i to j when
the event fires. As Rτ is a multiset, we can describe events in which two or more
agents in state i synchronise and change state to j. The exact number of agents
synchronising can be extracted looking at the multiplicity of rule i → j in Rτ ;
let us denote such a number by mτ,i→j . Note also that Rτ is independent of N ,
so that each transition involves a finite and fixed number of individuals.

In order to model the effect of event τ on the population vector, we will
construct from Rτ the update vector vτ in the following way:

vτ,i =
∑

(i→j)∈Rτ

mτ,i→jej −
∑

(i→j)∈Rτ

mτ,i→jei,
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ext inf infect
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inactivate

patch high

patch low

patch low

loss

Fig. 1. States and transitions of a single computer in the p2p network epidemic model

where ei is the vector equal to one in position i and zero elsewhere. Then, event
τ changes the state from X(N) to X(N) + vτ .

The other component of event τ is the rate function r
(N)
τ : S(N) → R≥0,

which depends on the current state of the system, and specifies the speed of the
corresponding transition. It is assumed to be equal to zero if there are not enough
agents available to perform a τ transition, and it is required to be Lipschitz
continuous (when interpreted as a function on real numbers).

All these bits of information are collected together in the population model

X (N) = (X(N), T (N),x
(N)
0 ), where x

(N)
0 is the initial state. Given such a model,

it is straightforward to construct the CTMC X(N)(t) associated with it, exhibit-
ing its infinitesimal generator matrix. First, its state space is S(N), while its
infinitesimal generator matrix Q(N) is the |S(N)| × |S(N)| matrix defined by

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x+ vτ}.

Remark 1. We note here that in this formalism we can still easily model multiple
classes of agents. This can be done by partitioning the state space S into subsets,
and allowing state changes only within a single subset. Furthermore, the rule set
can be easily modified to include the possibility of birth and death events: we
just need to add rules of the form ∅ → i (birth of an agent in state i) or i → ∅
(death of an agent in state i). Most of the theory presented below works for open
models as well, see [13] for further details, but here we stick to the closed world
assumption to simplify the presentation.
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2.1 Running Example: A Worm Epidemic in a P2P Network

We introduce now the running example of this tutorial, which will be used to dis-
cuss the main ideas and algorithms. We consider a model of a worm epidemic in
a peer-to-peer (P2P) network, which is comprised of N computers. For simplic-
ity, we ignore new connections and disconnections, so that the number of nodes
is constant (thus keeping the closed world assumption). Initially, nodes are vul-
nerable to the infection (susceptible S), and they can be infected by the worm
in two ways, either by external infection (ext inf), for instance by receiving an
infected email message, or by the malicious action of an active infected node
(infect). Infected nodes can themselves be in two states: active and inactive.
An inactive infected node remains dormant and does not spread infection. In
this way, the worm is harder to detect. An active node, instead, spreads the in-
fection by sending messages to other computers in the network. The worm policy
is to alternate between active and inactive states (activate and deactivate),
to minimise the chances of being patched. All newly infected nodes start in
the inactive state. Patching happens in all computers of the network (patch s,
patch d, and patch i), but we assume that the patching rate is higher for active
nodes (patch i), due to their anomalous activity in the P2P network. Patched
nodes are immune, and cannot be infected by the worm. However, after some
time the worm mutates, and immunity is lost (loss). A diagrammatic view of a
network node is given in Figure 1.

To describe this system in the modelling language of this section, we need to
specify the collective variables, which in this case are four: Xs, for susceptible
nodes, Xd, for infected and dormant nodes, Xi for infected and active nodes,
and Xp for patched nodes. Furthermore, we need 8 transitions or events whose
rate and rule sets are described below:

ext inf: Rext inf = {s→ d}, r
(N)
ext inf = kextXs;

infect: Rinfect = {s→ d, i→ i}, r(N)
infect =

kinf

N XsXi;

activate: Ractivate = {d→ i}, r
(N)
activate = kactXd;

deactivate: Rdeactivate = {i→ d}, r
(N)
deactivate = kdeactXi;

patch s: Rpatch s = {s→ p}, r
(N)
patch s = klowXs;

patch d: Rpatch d = {d→ p}, r
(N)
patch d = klowXd;

patch i: Rpatch i = {i→ p}, r
(N)
patch i = khighXi;

loss: Rloss = {p→ s}, r
(N)
loss = klXp;

In the previous list, the symbols k· appearing in the rate functions are model
parameters that describe the rate of an action involving a single object or a
single pair of objects (for infect). Note that the parameter for the internal in-
fection rate is divided by N . This corresponds to the classical density dependent
assumption for epidemic models: each infected node sends messages to other
random network nodes with rate ki, thus hitting a susceptible node with proba-
bility Xs/N . The total rate of infection is then obtained by multiplying kiXs/N
by the number of infected nodes Xi.
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3 Individual Agents Properties

We turn now to discuss the class of properties we are interested to check. As
announced in the introduction, we will focus on individual agents, asking ques-
tions about the behaviour of an arbitrary individual agent in the system. These
properties are quite common in performance models and in network epidemics
[26], whenever we are interested in checking some aspect of the system from the
point of view of a single user. For instance, in client/server systems, we may
be interested in quality-of-service metrics, like the expected service time [38]. In
network epidemics, instead, we may be interested in properties connected with
the probability of a single node being infected in a certain amount of time, or in
the probability of being patched before being infected [31]. Other classes of sys-
tems can be naturally queried from the perspective of a single agent, including
ecological models [46] (survival chances of an individual or foraging patterns),
single enzyme kinetics in biochemistry [43] (performance of an enzyme), but also
crowd models [39] or public transportation models in a smart city.

Running Example. Some properties of interest of individual nodes in the worm
epidemic model are listed below:

– What is the probability of a node being infected within T units of time?

– Is the probability of a single node remaining infected for T units of time
smaller than p1?

– Is the probability of a node being patched before getting infected larger than
p2?

– What is the probability of being patched within time T1, and then remaining
uninfected with probability at least p3 for T2 units of time?

What is shared by all those properties is the fact that they can be expressed in
Continuous Stochastic Logic (CSL) [5], a well known extension to the stochastic
setting of the non-deterministic Computational Tree Logic [20], which is also
supported by the probabilistic model checker PRISM [37]. We will now intro-
duce CSL, and then show how the previous properties can be expressed in this
language.

3.1 Continuous Stochastic Logic

In this section we consider generic labelled stochastic processes [4,5]. A labelled
stochastic process is a random process Z(t), with state space S and a labelling
function L : S → 2P , associating with each state s ∈ S, a subset of atomic
propositions L(s) ⊂ P = {a1, . . . , ak . . .} true in that state: each atomic propo-
sition ai ∈ P is true in s if and only if ai ∈ L(s). We require that all subsets of
paths considered are measurable1.

1 Measurability is a technical condition that guarantees that the probability of a set
is defined.
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This is a very general definition, and encompasses all the cases we will en-
counter in the rest of the paper: CTMC, time-inhomogeneous CTMC, projections
of CTMC on a subset of variables. In particular, the condition on measurability
will always be satisfied. From now on, we always assume we are working with
labelled stochastic processes.

A path of Z(t) is a sequence σ = s0
t0−→ s1

t1−→ . . ., such that the probabil-

ity of going from si to si+1 at time tσ[i] =
∑i

j=0 tj , is greater than zero. For
CTMCs, this condition is equivalent to qsi,si+1(tσ[i]) > 0, where Q = (qij) is the
infinitesimal generator matrix. We denote by σ@t the state of σ at time t, with
σ[i] the i-th state of σ, and with tσ[i] the time of the i-th jump in σ.

A time-bounded CSL formula ϕ is defined by the following syntax:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | P��p(ψ)

ψ ::= X[T1,T2]ϕ | ϕ1U
[T1,T2]ϕ2

where a is an atomic proposition, p ∈ [0, 1] and ��∈ {<,>,≤,≥}. ϕ are known
as state formulae and ψ are path formulae.

The satisfiability relation of ϕ with respect to a labelled stochastic process
Z(t) is given by the following rules:

– s, t0 |= a if and only if a ∈ L(s);

– s, t0 |= ¬ϕ if and only if s, t0 �|= ϕ;

– s, t0 |= ϕ1 ∧ ϕ2 if and only if s, t0 |= ϕ1 and s, t0 |= ϕ2;

– s, t0 |= P��p(ψ) if and only if P{σ | σ, t0 |= ψ} �� p.

– σ, t0 |= X[T1,T2]ϕ if and only if tσ[1] ∈ [T1, T2] and σ[1], t0 + tσ[1] |= ϕ.

– σ, t0 |= ϕ1U
[T1,T2]ϕ2 if and only if ∃t̄ ∈ [t0 +T1, t0 +T2] s.t. σ@t̄, t̄ |= ϕ2 and

∀t0 ≤ t < t̄, σ@t, t |= ϕ1.

Note that the restriction to the time-bounded fragment of CSL means that we do
not consider the steady state operator and we allow only time-bounded proper-
ties. This last restriction is connected with the nature of the fluid approximation
(see Theorems 1 and 2 below), which hold only on finite time horizons. See [12,13]
and Section 7 for further details.

Running Example. Consider the informal properties of the network epidemic
model listed at the beginning of this section. We can easily rephrase them as CSL
formulae (either state or path formulae), using the following atomic propositions,
interpreted in the obvious way on the states of Figure 1: ainfected, apatched. In
the following, we use the convention that path formulae are denoted by ψ and
state formulae are denoted by ϕ.

– ψ1 = F [0,T ]ainfected (a node is infected within T units of time);

– ϕ1 = P<p1(G
[0,T ]ainfected) (the probability of a single node remaining in-

fected for T units of time is smaller than p1);
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– ϕ2 = P>p2(¬ainfectedU[0,T ]apatched) (the probability of a node being patched
before getting infected is larger than p2);

– ψ2 = F [0,T1](apatched ∧ P≥p3(G
[0,T2]¬ainfected)) (a node is patched within

time T1, and then remains not infected with probability at least p3 for T2

units of time).

Model checking of CSL formulae for time-homogeneous CTMC proceeds bottom-
up on the parse tree of the formula [5]. Checking atomic propositions and boolean
operators is trivial. The difficult part is to compute the probability of path
formulae. Then this probability is compared with the threshold in the quan-
tifier operator to establish the truth of quantified path formulae. Computing
the probability of a next CSL formula P��p(X

[T1,T2]ϕ) is usually reduced to the
computation of the integral, based on the probability of making a jump in the
time interval and the probability that the new state satisfies ϕ. For a time-
homogeneous CTMC this can be solved analytically. Dealing with until CSL
formula P��p(ϕ1U

[T1,T2]ϕ2) is more complex. For a time-homogeneous CTMC
Z(t), it can be reduced to the computation of two reachability problems, which
themselves can be solved by transient analysis [5]. In particular, consider the sets
of states U = �¬ϕ1� and G = �ϕ2� and compute the probability of going from
state s1 �∈ U to a state s2 �∈ U in T1 time units, in the CTMC in which all U -states
are made absorbing, π1

s1,s2(T1). Furthermore, consider the modified CTMC in
which all U and G states are made absorbing, and denote by π2

s2,s3(T2−T1) the
probability of going from a state s2 �∈ U to a state s3 ∈ G in T2 − T1 units of
time in such a CTMC. Then the probability of the until formula in state s can
be computed as Ps(ϕ) =

∑
s3∈G,s2 
∈U π1

s1,s2(T1)π
2
s2,s3(T2−T1). The probabilities

π1 and π2 can be computed using standard methods for transient analysis (e.g.
by uniformisation [28] or by solving the Kolmogorov equations [42]).

4 Fluid Approximation

In this section we will introduce some concepts of fluid approximation and mean
field theory. The basic idea is to approximate a CTMC by an Ordinary Dif-
ferential Equation (ODE), which can be interpreted in two different ways: it
can be seen as an approximation of the average of the system (usually a first
order approximation, see [15,50]), or as an approximate description of system
trajectories for large populations. We will focus on this second interpretation,
which corresponds to a functional version of the law of large numbers: instead
of having a sequence of random variables, like the sample mean, converging to a
deterministic value, like the true mean, in this case we have a sequence of CTMC
(which can be seen as random trajectories in Rn) for increasing population size,
which converge to a deterministic trajectory, the solution of the fluid ODE.

In order to properly speak about convergence, we need to formally define the
sequence of CTMC to be considered. The collective model of Section 2 depends
on the total population N , yet models of different population sizes cannot be
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directly compared, as it would not make sense to compute a distance between
a population of the size of hundreds with a population of the size of billions:
the distance will be astronomically large because of the difference in population
sizes. Hence, to make the comparison meaningful, we normalise the populations,
by dividing each variable for the total population N . In this way, the normalised

population variables X̂(N) = X(N)

N , or population densities, will always range
between 0 and 1 (for the closed world models we consider here), and so the
behaviour for different population sizes can be compared. In the case of a con-
stant population, normalised variables are usually referred to as the occupancy
measure, as they represent the fraction of agents in each state.

When we perform the normalisation, we need to impose an appropriate scal-
ing to update vectors, initial conditions, and rate functions of the normalised
models. Let X (N) = (X(N), T (N),X0

(N)) be the non-normalised model with to-

tal population N and X̂ (N) = (X̂(N), T̂ (N), X̂
(N)
0 ) the corresponding normalised

model. We require that:

– initial conditions scale appropriately: X̂
(N)
0 = X0

(N)

N ;

– for each transition (Rτ , r
(N)
τ (X)) of the non-normalised model, define r̂

(N)
τ (X̂)

to be the rate function expressed in the normalised variables (obtained from

r
(N)
τ by a change of variables). The corresponding transition in the nor-

malised model is (Rτ , r̂
(N)
τ (X̂)), with update vector equal to 1

N vτ .

We further assume, for each transition τ , that there exists a bounded and Lip-
schitz continuous function fτ (X̂) : E → Rn on normalised variables (where E

contains all domains of all X̂ (N)), independent ofN , such that 1
N r̂

(N)
τ (x)→ fτ (x)

uniformly on E. In accordance with the previous subsection, we will denote the
state of the CTMC of the N -th non-normalised (resp. normalised) model at time

t as X(N)(t) (resp. X̂(N)(t)).

Running Example. Consider again the network epidemic model, which is eas-
ily seen to satisfy all the assumptions before. The conditions for the rate func-
tions are easily verified. They hold trivially for linear rate functions, for instance
kextXs = Nkext

Xs

N , and they also hold for the non-linear rate function modelling
internal infections, due to the density dependent scaling of the rate constant with
respect to the total population N , i.e.

kinf

N XsXi = Nkinf
Xs

N
Xi

N .

4.1 Deterministic Limit Theorem

In order to present the “classic” deterministic limit theorem, consider a sequence
of normalised models X̂ (N) and let vτ be the (non-normalised) update vectors.

The drift F (N)(X̂) of X̂ , which is formally the mean instantaneous increment of

model variables in state X̂, is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂) (2)
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Furthermore, let fτ : E → Rn, τ ∈ T̂ be the limit rate functions of transitions
of X̂ (N). The limit drift of the model X̂ (N) is therefore

F (X̂) =
∑
τ∈T̂

vτfτ (X̂), (3)

and F (N)(x)→ F (x) uniformly, as easily checked. The fluid ODE is

dx

dt
= F (x), with x(0) = x0 ∈ S.

Given that F is Lipschitz in E (since all fτ are), this ODE has a unique solution
x(t) in E starting from x0. Then, one can prove the following theorem:

Theorem 1 (Deterministic approximation [34,21]). Let the sequence

X̂(N)(t) of Markov processes and x(t) be defined as before, and assume that

there is some point x0 ∈ S such that X̂(N)(0) → x0 in probability. Then, for
any finite time horizon T <∞, it holds that:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

Running Example. Focus on the internal infection infect. It can be easily
seen that the update vector associated with the rule set Rinfect is vinfect =
(−1, 1, 0, 0), given the ordering (s, d, i, p) of S. Similarly for each of the other
transitions. Hence, we obtain the following set of fluid ODEs, whose solution
is compared with single trajectories of the CTMC, for different populations, in
Figure 2: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxs(t)

dt
= −kextxs − kinfxsxi − klowxs + klossxp

dxd(t)

dt
= kextxs + kinfxsxi − kactxd − klowxd + kdeactxi

dxi(t)

dt
= kactxd − kdeactxi − khighxi

dxp(t)

dt
= klowxs + klowxd + khighxi − klossxp

(4)

4.2 Fast Simulation

We now consider what happens to a single individual in the population when
the population size goes to infinity. Even if the collective behaviour tends to a
deterministic process, an individual agent will still behave randomly. However,
the fluid limit theorem implies that the dynamics of a single agent, in the limit,
becomes independent of other agents, and it will sense them only through the
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(a) N = 100
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(b) N = 1000

Fig. 2. Comparison between the limit fluid ODE and a single stochastic trajectory
of the network epidemic example, for total populations N = 100 and N = 1000.
Parameters of the model are kext = 0.01, kinf = 5, kact = 0.1, kdeact = 0.1, klow =
0.005, khigh = 0.1, kloss = 0.005, while initial conditions are X̄s(0) = 1, X̄d(0) = 0,
X̄i(0) = 0, and X̄p(0) = 0.

collective system state, described by the fluid limit. This asymptotic decoupling
allows us to find a simple, time-inhomogenous, Markov chain for the evolution
of the single agent, a result often known as fast simulation [22,24].

Let us explain this point formally. We focus on a single individual Y
(N)
h (t),

which is a (Markov) process on the state space S = {1, . . . , n}, conditional on
the global state of the population X̂(N)(t). Denote by Q(N)(x) the infinitesimal

generator matrix of Y
(N)
h , described as a function of the normalised state of the

population X̂(N) = x, i.e.
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P{Y (N)
h (t+ dt) = j | Y (N)

h (t) = i, X̂(N)(t) = x} = q
(N)
i,j (x)dt.

We stress that Q(N)(x) describes the exact dynamics of Y
(N)
h , conditional on

X̂(N)(t), and that this process is not independent of X̂(N)(t). In fact, the marginal

distribution of Y
(N)
h (t) is not a Markov process.

This means that in order to capture its evolution in a Markovian setting, one

has to consider the whole Markov chain (Y
(N)
h (t), X̂(N)(t)).

The rate matrix Q(N)(x) can be constructed from the rate functions of global
transitions by computing the fraction of the global rate seen by an individual

agent that can perform it. To be more precise, let r
(N)
τ (X) be the rate function

of transition τ , and suppose i → j ∈ Rτ (and each update rule in Rτ has

multiplicity one). Then, transition τ will contribute to the ij-entry q
(N)
ij (X) of

the matrix Q(N)(X) with the term 1
Xi

r
(N)
τ (X) = 1

X̂i
r̂
(N)
τ (X̂), which converges

to 1
X̂i

fτ (X̂). Additional details about this construction (taking multiplicities

properly into account) can be found in [12,13], see also the example below. From
the previous discussion, it follows that the local rate matrix Q(N)(x) converges

uniformly to a rate matrix Q(x), in which all rate functions r̂
(N)
τ are replaced

by their limit fτ . We now define two processes:

– Z(N)(t), which is the stochastic process describing the state of a random

individual Y
(N)
h (t) in a population of size N , marginalised with respect to

the collective state X̂(N)(t).

– z(t), which is a time-inhomogeneous CTMC (ICTMC), on the same state
space S of Z(N), with time-dependent rate matrix Q(x̂(t)), where x̂(t) is the
solution of the fluid equation.

The following theorem can be proved [22]:

Theorem 2 (Fast simulation theorem). For any T < ∞, P{Z(N)(t) �=
z(t), for some t ≤ T } → 0, as N →∞.

This theorem states that, in the limit of an infinite population, each agent will
behave independently from all the others, sensing only the mean state of the
global system, described by the fluid limit x(t). This asymptotic decoupling of
the system, which can be generalised to any subset of k ≥ 1 agents, is also known
in the literature under the name of propagation of chaos [9].

Running Example. Consider again the worm epidemic, and focus on a single
node in the network. In order to construct the local rate matrix Q(N)(x), we
need to consider each single transition and compute the portion of rate function
seen from a single node, dividing by the population variable corresponding to
the local state involved in the transition. With reference to Figure 1, we obtain
the following local rate functions:
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Fig. 3. Comparison between the solution of the Kolmogorov equations for the limit
model of an individual agent and an estimate of the solution for an individual agent
in a finite population, of size N = 100 or N = 1000. The estimate for the finite
population has been obtained by statistical means, taking the sample average of the
indicator functions of each local state, for a grid of 1000 time points. Averages have
been taken from 10000 samples. Parameters of the model are as in Figure 2.

ext inf: s→ d,
1

Xs
r
(N)
ext inf = kext;

infect: s→ d,
1

Xs
r
(N)
infect =

1

N
kinfXi = kinf X̂i;

activate: d→ i,
1

Xd
r
(N)
activate = kact;

deactivate: i→ d,
1

Xi
r
(N)
deactivate = kdeact;

patch s: s→ p, frac1Xsr
(N)
patch s = klow;
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patch d: d→ p,
1

Xd
r
(N)
patch d = klow;

patch i: i→ p,
1

Xi
r
(N)
patch i = khigh;

loss: p→ s,
1

Xp
r
(N)
loss = kloss;

Note that all the local rate functions are independent of N , and so Q(N)(x) =
Q(x). Ordering S as (s, d, i, p), it follows that

Q(x) =

⎛
⎜⎜⎝

−kext − kinfxi − klow kext + kinfxi 0 klow
0 −kact − klow kact klow
0 kdeact −kdeact − khigh khigh

kloss 0 0 − kloss

⎞
⎟⎟⎠

Therefore, the limit ICTMC of an individual agent depends on the solution of
the fluid equation only via the fraction of infected and active nodes, xi(t). A
numerical comparison of the transient probability for the limit individual agent
z(t) and an individual agent Z(N)(t) in a finite population model (for N = 100
and N = 1000) is shown in Figure 3. For N = 1000, it is almost impossible to
distinguish between the two transient probabilities.

5 Checking CSL Properties for Individual Agents

CSL model checking is computationally expensive and can become prohibitively
so for large CTMC models, such as population models. The same is true of
transient analysis of CTMCs but fluid approximation has provided a highly
efficient means to obtain high quality approximations for population models in
this case. Therefore it is natural to consider whether fluid approximation can
also be exploited to find good, efficient approximations in CSL model checking.
For properties that relate to a single arbitrary agent in a population model, we
will demonstrate that this is indeed the case if we exploit the fast simulation
property established in Theorem 2.

In the fluid approximation of a CSL property ϕ for an arbitrary individual
agent Z(N)(t) in a population of size N we exploit Theorem 2 and replace Z(N)(t)
by its fluid limit z(t), checking ϕ on z(t). The essential advantage in doing this is
that, in order to properly compute the satisfaction of CSL formulae for Z(N)(t)

we need to take into account the whole population model X̂(N)(t). This results in
a huge state space that is out of reach of CSL model checkers. Simulation-based
methods, like statistical model checking [29], may be exploited for this purpose
for moderately sized populations (this is what we do to compare our approximate
method with the results for the proper stochastic model), but simulation becomes
extremely costly when the population increases.

As we will show in the rest of the chapter, checking properties on z(t) is much
more efficient, and the error seems to remain small. In addition to experimental
validation, Theorem 2 provides us with the means of formally showing that
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the result of checking CSL properties on z(t) and on Z(N)(t) will be the same,
provided N is sufficiently large.

In replacing Z(N)(t) with z(t), however, we have to face the fact that z(t) is
a time-inhomogeneous CTMC. It turns out that working with ICTMC is much
more complex, because of the dependency of the satisfaction of a formula on
time. In fact, if we inspect the definition of CSL semantics in Section 3.1, we can
observe that the satisfaction relation depends on a state of the model and on the
time at which the formula is evaluated. This particularly affects the computation
of the probabilities of path formulae. In the case of time-homogeneous CTMC,
time dependency is not an issue, as rates are constant, hence starting the system
at time t0 > 0 is the same as starting it at time 0. But when rates depend on
time, this is no longer the case. What can happen is schematically depicted in
the figure below.

p

true

false

T(ϕ, s, t)

Ps(ψ, t)

t

In this figure, we show a hypothetical scenario in which the probability of a
path formula ψ is plotted against the time t at which the formula is evaluated.
When we compare this function with the threshold p in the probability operator
of ϕ = P��p(ψ), it can happen that this function is above p for some time
instants and below it for some other time instants. It follows that the truth
T(ϕ, s, t) of a CSL temporal formula in a state s ∈ S, can itself depend on the
time at which the formula is evaluated. This makes CSL model checking for
time-inhomogeneous CTMC a much more delicate business: we need to compute
not a single probability for a path formula, but its probability as a function of
time, and we further need to take into account the time-dependent truth of CSL
formulae when checking nested formulae.

In the rest of the chapter, we will first discuss how to compute next state
and reachability probabilities (the two main building blocks of CSL algorithms)
when the next-state set or the goal/unsafe sets are independent of time (Sec-
tions 5.1 and 5.2), facing also the problem of computing the dependency of such
probabilities on the initial time (Section 6). Then, we will move to nested CSL
formulae, and give an intuition on how to compute path probabilities in the case
of nested temporal operators (Section 7). Finally, in Section 8 we will briefly dis-
cuss theoretical properties, like decidability of the algorithms and convergence
of CSL truth as population increases.

5.1 Next State Probabilities

In this section, we will show how to compute the probability that the next state
in which an agent jumps belongs to a given set of states S0 ⊆ S, constraining the
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jump to happen between time [t0 + T1, t0 + T2], where t0 is the current time. This
is clearly at the basis of the computation of the probability of next path formulae.

Let Z(t) be a CTMC with state space S and infinitesimal generator matrix
Q(t). We indicate with Pnext(Z, t0, T1, T2, S0)[s] the probability of the set of
trajectories of Z jumping into a state in S0, starting at time t0 in state s, within
time [t0 + T1, t0 + T2]. Hence, Pnext(Z, t0, T1, T2, S0) is a vector of probabilities,
one for each state s ∈ S.

For any fixed t0, the probability Pnext(Z, t0, T1, T2, S0)[s] is given by the fol-
lowing integral [51,30]

Pnext(Z, t0, T1, T2, S0)[s] =

∫ t0+T2

t0+T1

qs,S0(t) · e−Λ(t0,t)[s]dt, (5)

where Λ(t0, t)[s] =

∫ t

t0

−qs,s(τ)dτ is the cumulative exit rate of state s from time

t0 to time t, and qs,S0(t) =
∑

s′∈S0,s′ 
=s qs,s′(t) is the rate of jumping from s to
a state s′ ∈ S0, s

′ �= s, at time t.
Equation 5 can be explained as follows: first of all, remember that for an

exponential distribution, the probability density of the first jump happening
at time t, given that we are in state s at time t0, is Λ(t0, t)[s]e

−Λ(t0,t)[s]. For
a time homogeneous CTMC, it holds that Λ(t0, t)[s] = λs(t − t0), where λs

is the exit rate from state s, hence the density takes the more common form.
Furthermore, if we jump at time t, then the probability of landing in a state of
S0 is qs,S0(t)/Λ(t0, t)[s]. Multiplying this for the probability density above, we
obtain the probability density of jumping in a state of S0 at time t, which is the
argument of the integral (5). Then we only need to integrate it from time t0+T1

to time t0 + T2 to compute the desired quantity.
In order to practically compute Pnext(Z, t0, T1, T2, S0)[s] for a given t0, we

can either numerically compute the integral, or transform it into a differential
equation, and integrate the so-obtained ODE with standard numerical methods.
This second method is preferrable, as it can be extended to compute the next
probability as a function of the initial time, see Section 6. More specifically, we
can introduce two variables, P (giving the desired probability) and L (giving the
cumulative rate Λ), initialise P (t0+T1) = 0 and L(t0+T1) = Λ(t0, t0+T1), and
then integrate the following two ODEs from time t0 + T1 to time t0 + T2:⎧⎪⎪⎨

⎪⎪⎩
d

dt
P (t) = qs,S0(t) · e−L(t)

d

dt
L(t) = −qs,s(t)

(6)

Running Example. We consider the path formula ψ = X[T1,T2]ainfected, which
expresses the fact that a node of the network will change state between time
t0 + T1 and t0 + T2, and it will become (or remain) infected. In Figure 4, we
show the probability of the path formula for the fluid limit model of a single
node in the network, initially in the susceptible state s, for t0 = 0 and T1 = 0,
as a function of T2 = T .
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Fig. 4. Path probability of X[0,T ]ainfected, as a function of T , starting in state s at
time 0. The fluid approximation (continuous line) is compared with the statistical
estimate (computed using statistical model checking out of an ensemble of 10000 runs)
for population levels of N = 100 and N = 1000. Binomial confidence intervals are
reported in the plot (they are quite narrow) and parameters of the model are as in
Figure 2.

5.2 Reachability Probabilities

We now turn to the computation of reachability probabilities of an individual
agent. Essentially, we want to compute the probability of the set of traces reach-
ing some goal state G ⊆ S within T units of time, given that we are in state
s ∈ S at time t0, and avoiding unsafe states U ⊆ S, which will be denoted by
Preach(Z, t0, T,G, U)[s], where Z(t) is a ICTMC on S, with rate matrix Q(t) and
initial state Z(0) = Z0 ∈ S.

The computation of reachability probabilities is the key operation needed
to compute probabilities of until formulae. In fact, the probability of the path
formula ϕ1U

[0,T ]ϕ2 is the probability of reaching a goal set G = {s | s |= ϕ2},
avoiding unsafe states U = {s | s |= ¬ϕ1}. Here we are assuming the satisfaction
of ϕ1 and ϕ2 does not depend on time. We will solve this reachability problem
in a standard way, by reducing it to the computation of transient probabilities
in a modified ICTMC [5], similarly to [18].

Let Π(t1, t2) be the probability matrix of Z(t), in which entry πs1,s2(t1, t2)
gives the probability of being in state s2 at time t2, given that Z was in state
s1 at time t1. The Kolmogorov forward and backward equations [42] describe the
time evolution ofΠ(t1, t2) as a function of t2 and t1, respectively. More precisely,
the forward equation is

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2),
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while the backward equation is

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

The probability Preach(Z, t0, T,G, U), for a given initial time t0, can be solved
integrating the forward Kolmogorov equation (with initial value given by the
identity matrix) in the ICTMC Z ′(t) in which all unsafe states and goal states are
made absorbing [5]. The infinitesimal generator matrix Q′(t) of Z ′(t) is obtained
from Q(t) by setting q′s1,s2(t) = 0, for each s1 ∈ G ∪ U .

In particular, Preach(Z, t0, T,G, U) = Π ′(t0, t0 + T )eG, where eG is an n× 1
vector equal to 1 if s ∈ G and 0 otherwise, and Π ′ is the probability matrix
of the modified ICTMC Z ′.2 We emphasise that, in order for the initial value
problem defined by the Kolmogorov forward equation to be well posed, the
infinitesimal generator matrix Q(t) has to be sufficiently regular (e.g. bounded
and integrable).

Running Example. Consider again the running example, and the path formula
ψ1 = F [0,T ]ainfected, expressing the fact that a node will be infected within T
units of time, starting from time t0. The path probability of ψ1 can be recast
into the computation of a reachability probability, with goal set G = {d, i} and
unsafe set U = ∅. Applying the method discussed above, we just need to compute
the transient probability for the ICTMC with rate matrix

Q′(x) =

⎛
⎜⎜⎝
−kext − kinfxi − klow kext + kinfxi 0 klow

0 0 0 0
0 0 0 0

kloss 0 0 − kloss

⎞
⎟⎟⎠

in which states d and i are made absorbing. The result, starting from t0 = 0 and
as a function of T , is shown in Figure 5(a).
In Figure 5(b), instead, we show the result of computing the probability of the
path formula ψ3 = anot infectedU

[0,T ]apatched, for t0 = 0, as a function of T . Here,
we just need to compute the reachability probability for the goal set G = {p}
and unsafe set U = S \ {s, p} = {d, i}.

6 Time Dependent Path Probabilities

In this section we will present a method to compute next state and reachability
probabilities as a function of the time t0 at which the property is evaluated. As
we have already discussed, this is the crucial step to check nested CSL formulae.
In fact, the satisfaction of a CSL formula depends on the time at which the
formula is evaluated. This is particularly the case for a quantified path formula
like ϕ = P≤p(ψ), where ψ can be an until or a next formula. In this case, the

2 Clearly, alternative ways of computing the transient probability, like uniformization
for ICTMC [3], could also be used. However, we stick to the ODE formulation in
order to deal with dependency on the initial time t0.
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(a) F [0,T ]ainfected
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Fig. 5. Path probability of the formulas F [0,T ]ainfected and ¬ainfectedU
[0,T ]apatched, as

a function of T , starting in state s at time 0. The fluid approximation (continuous line)
is compared with the statistical estimate (computed using statistical model checking
out of an ensemble of 10000 runs) for population levels of N = 100 and N = 1000.
Binomial confidence intervals are reported in the plot, and parameters of the model
are as in Figure 2.

probability of the path formula ψ from state s ∈ S, P (t0, ψ)[s], depends on the
initial time t0 at which we start evaluating such a formula. Hence, P (t0, ψ)[s] is
a function of t0, and when we evaluate the inequality P (t0, ψ)[s] ≤ p, needed to
establish the truth of ϕ, we may find that the inequality holds for some t0 and
is falsified for other t0 (see again the figure in Section 5).

Hence, we need a way to compute the probability of a path formula as a
function of time. The starting point for this will be the formulation of next state
and reachability probabilities as solutions of a differential equation. In fact, we
will derive other differential equations whose solution will return the probability
of path formulae as a function of the initial time.
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Before presenting the derivation of the ODE more formally, let us comment
on the choice of using ODE-based methods to compute transient probabilities,
rather than more standard unifomisation-based algorithms. The first and more
fundamental reason is precisely connected with the dependency of path prob-
abilities on the initial time: uniformisation algorithms do not generalise easily
to such scenarios. Moreover, the size of the state space of a single individual
is usually very small, even when the collective system has a huge state space.
Hence, numerical solvers for ODEs will work fine and will be efficient. Addition-
ally, the fluid limit for an individual agent depends on the solution of the fluid
ODE, so in any case we need to resort to ODE solvers. Coupling all the ODEs
together allows us to exploit adaptive solvers [17] in order to control and reduce
the global error.

Time-Dependent Next Probabilities. We will start by showing how to
compute the next-state probability Pnext(Z, t0, T1, T2, S0)[s] as a function of t0:
P̄s(t0) = Pnext(Z, t0, T1, T2, S0)[s]. Computing the integral (5) for any t0 is ob-
viously not feasible. However, we can exploit the differential formulation of the
problem, and define a set of ODEs with the initial time t0 as an independent
variable. First, we can compute the derivative of P̄s(t0) with respect to t0 and
obtain

d

dt0
P̄s(t0) = qs,S0(t0 + T2) · e−Λ(t0,t0+T2) − qs,S0(t0 + T1) · e−Λ(t0,t0+T1)

+

∫ t0+T2

t0+T1

∂

∂t0
qs,S0(t) · e−Λ(t0,t)dt

= qs,S0(t0 + T2) · e−Λ(t0,t0+T2) − qs,S0(t0 + T1) · e−Λ(t0,t0+T1)

− qs,s(t0)P̄s(t0)

Consequently, we can compute the next-state probability as a function of t0 by
solving the following set of ODEs:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
P̄s(t) = qs,S0(t+ T2) · e−L2(t) − qs,S0(t+ T1) · e−L1(t) − qs,s(t)P̄s(t)

d

dt
L1(t) = qs,s(t)− qs,s(t+ T1)

d

dt
L2(t) = qs,s(t)− qs,s(t+ T2)

(7)

where L1(t) = Λ(t, t+ T1) and L2(t) = Λ(t, t+ T2).
Initial conditions are Ps(t0) = Pnext(Z, t0, T1, T2, S0)[s], L1(t0) = Λ(t0, t0 + T1),
and L2(t0) = Λ(t0, t0 + T2), and are computed solving the equations (6).

Running Example.We consider again the next path formula ψ = X[0,T ]ainfected,
fix T = 7.5, and compute its path probability P̄s(t0), from the susceptible state
s, as a function of t0. In order to do this, we need to first solve the ODEs (6) for
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Fig. 6. Fluid estimate of the path probability of the formula X[0,T2]ainfected, for T2 =
7.5, as a function of the initial time t at which the formula is evaluated. We assume
we start in state s at time t. The red dotted line represents the time-dependent truth
value of the formula P≤0.8(X

[0,7.5]ainfected) in state s. Parameters of the model are as
in Figure 2.

t0 = 0 and T = 7.5, in order to obtain the initial conditions of the ODEs (7).
Then, we need to solve the following ODE system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
P̄s(t) = (kext + kinfxi(t+ T ))e−L2(t) − (kext + kinfxi(t)) + . . .

+ (kext + kinfxi(t) + klow)P̄s(t)

d

dt
L2(t) = kinf (xi(t+ T )− xi(t))

L1(t) = 0

Its solution is shown in Figure 6, together with the truth of the formula
P≤0.8(X

[0,T2]ainfected) in state s, for t0 ∈ [0, 10]. As we can see, the formula
is initially true and then, at time t = 2.26, it changes truth status and becomes
false.

Time-Dependent Reachability. We now turn to the problem of computing
P (t) = Preach(Z, t, T,G, U) as a function of t ∈ [t0, t1]. Recall that in Section
5.2 we reduced the computation of P (t), for a fixed initial time t, to the solution
of the Kolmogorov forward equation of the modified ICTMC, in which goal and
unsafe sets are made absorbing. Stated otherwise, we used the forward equation
to compute Π(t, t′), from t′ = t to t′ = t + T . To compute the reachability
probability as a function of the initial time t ∈ [t0, t1], for T fixed, we need
to compute Π(t, t + T ) for t ∈ [t0, t1]. We can do this using the chain rule and
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combining the forward and the backward Kolmogorov equation to obtain the
following ODE for Π(t, t+ T ):

dΠ(t, t+ T )

dt
=

∂Π(t, t+ T )

∂t
+

∂Π(t, t+ T )

∂(t+ T )

d(t+ T )

dt

= −Q(t)Π(t, t+ T ) +Π(t, t+ T )Q(t+ T ).

(8)

Here the initial condition is Π(t0, t0+T ), and it can be computed by solving the
Kolmogorov forward equation. Using a numerical ODE solver, we can integrate
this equation and obtain Π(t, t+T ) for t ∈ [t0, t1]. This gives the basic algorithm
to compute probabilities Ps(ψ, t) of until path formulae like ψ = ϕ1U

[0,T ]ϕ2 from
a state s: we just need to compute the reachability probability πs,s′(t, t+T ) and
add it over states s′ ∈ G.3 Once the until probability is computed, we can
check if state s satisfies P��p(ψ) at time t by comparing the value Ps(t) with the
threshold p. Doing this for all times t ∈ [t0, t1] requires us to find all zeros of the
function Ps(t)− p. This can be done during the integration of the ODEs, using
event detection routines, provided the number of zeros is finite and the function
Ps(t)− p always changes sign around a zero. This does not hold in all cases, and
further restrictions on the rate functions and the thresholds p have to be made,
see [12,13] and Section 8 below for more details.

Running Example. Consider the formula ψ4 = G[0,T2]¬ainfected, fix T2 to 10,
and evaluate it as a function of the initial time. In order to apply the reach-
ability algorithm above, we need to turn the always operator into an until.
This is done in the standard way, as G[0,T2]¬ainfected ≡ ¬F [0,T2]ainfected ≡
¬(trueU[0,T2]ainfected). Hence, we need to compute the reachability probability
for the goal set G = {i, d} and the unsafe set U = ∅, and then compute 1 minus
this probability. The result for the patched state p is shown in Figure 7, for the
initial time varying between 0 and 150.

If we now consider the state formula P≥0.97(ψ4) and focus again on the patched
state p, then we see in Figure 7 that the formula is false from time 0 to time
T ≈ 81.8 and then becomes true.

7 Nested CSL Formulae

Computing the truth of nested CSL formulae for time-homogeneous CTMC is
the same as for non-nested formulae. For an until or next temporal operator, we
first solve the model checking problem for its subformulae, hence establish if a
state satisfies or falsifies them, and then we use this information in the standard
algorithms (e.g. the reachability algorithm based on transient analysis for the un-
til case). Unfortunately, this simple recipe does not work for time-inhomogeneous

3 More general until formulae ϕ1U
[T1,T2]ϕ2, for T1 > 0, can be dealt by a minor

modification of the approach, see [12,13] for further details.
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Fig. 7. Fluid estimate of the path probability of the formula G[0,T2]¬ainfected, for
T2 = 10, as a function of the initial time t at which the formula is evaluated, starting
from the patched state p at time t (continuous black line). Then the path probability
is compared with the threshold p = 0.97, and the truth value of the CSL state formula
P≥0.97(G

[0,10]¬ainfected) is computed, as a function of the time t at which it is evalu-
ated. The time-dependent truth is depicted in the red dotted line. Parameters of the
model are as in Figure 2.

CTMC. The problem is that a state satisfies a subformula containing a tempo-
ral operator depending on the time in which the formula is evaluated. This fact
introduces an extra dimension of complexity into the algorithms.

To give a flavour of the problems involved, let us discuss the nested path for-
mula ψ = F [0,T ](P≥p(ϕ1U

[0,T1]ϕ2)), where ϕ1 and ϕ2 are boolean combinations
of atomic propositions, so that their truth in a state does not depend on the
time at which we evaluate them. Clearly, using the procedure put forward in the
previous section, we can compute, for each state s ∈ S, the probability Ps(t) of
the path formula ϕ1U

[0,Ta]ϕ2, as a function of the time at which we evaluate
it. Therefore, we can compute the time-dependent truth function T(ϕ, s, t) of
the state formula ϕ = P≥p(ϕ1U

[0,Ta]ϕ2) by finding the zeros of Ps(t) − p, for
each state s ∈ S. Specifically, we obtain that T(ϕ, s, t) = true if and only if
s, t |= ϕ, and false otherwise. In general, this function will keep jumping be-
tween 0 (false) and 1 (true), and we can represent it by identifying and storing
in a list all time instants Td at which a change in the truth of s, t |= ϕ happens.

Fix now a state s̄, and assume that at time Td the function T(ϕ, s̄, t) has a
discontinuity, and that ϕ was false in s̄ before time Td and it is true afterwards.
Now, focus the attention on the path formula ψ = F [0,T ](ϕ). To compute its path
probability, we need to compute the probability of reaching a state satisfying ϕ
within T time units. This is done by making ϕ-states absorbing, and computing
the transient probability in the so-modified Markov chain. If Td < T , then s̄ is
not a goal state from time 0 to time Td, and becomes a goal state at time Td, as
shown in the figure below.
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The first consequence of this fact is that the modified Markov chain in which
goal states are made absorbing has a structure that changes in time, according
to the truth of formula ϕ. In particular, s̄ is not absorbing from time 0 to Td,
and becomes absorbing at time Td.

Now fix a non-goal state s′ (remaining non-goal for the whole time interval
[0, T ]) and focus on the reachability probability starting from this state. In par-
ticular, there can be a non-null probability to go from s′ to s̄ in Td units of
time, starting at time 0. This means that the probability of the set of trajecto-
ries starting at s′ at time 0 and being in s̄ at time Td, without passing from a
goal state, has non-null probability. Pick one such trajectory, which clearly does
not contribute to the reachability probability form s′. At time Td, however, the
structure of the modified CTMC changes, and this trajectory suddenly satisfies
the reachability condition. In particular, this holds at time Td for all the tra-
jectories that are in s̄. Hence, at time Td the probability πs′,s̄(0, Td) has to be
added to the reachability probability Ps′(T

−
d ), as computed before s̄ becomes a

goal state.
Stated otherwise, a change in the truth status of the formula ϕ not only forces

us to change the topology of the modified CTMC, by altering the set of absorbing
states, but it may also induce a discontinuity in the path probability.

Computing Reachability Probabilities for Time-Varying Sets. We will
quickly sketch now an algorithmic procedure to compute reachability probabil-
ities when the goal and unsafe sets vary with time. This will provide the key
procedure to compute path probabilities for nested until formulae of the form
ϕ1U

[0,T ]ϕ2, for general CSL formulae ϕ1 and ϕ2. For more general until formulae
ϕ1U

[Ta,Tb]ϕ2, and for next path formulae, we refer the reader to [12,13].
We first discuss the case in which the unsafe set U is always empty, corre-

sponding to eventually path formulae. To compute the reachability probability,
we need to take the double nature of states into account: a state s can be either
goal or non-goal, and its status can vary with time. To better describe this sce-
nario, we will double the state space, creating for each state s ∈ S a shadow copy
s̄, which represents the goal version of s. Shadow states s̄ are always absorbing.
Each transition in the CTMC entering an s state, instead, is directed towards
s if and only if s is non-goal. Otherwise, it is rerouted towards s̄.4 This routing
has to be changed whenever we hit a discontinuity in the time-dependent truth
function. The situation is depicted below.

4 Alternatively, we can add a new goal state s∗, as done in [32], and redirect all
transitions entering any goal state to s∗.
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Let T1, . . . , Tk, Tk+1, . . . be the times in which any state of S changes status
(from goal to non-goal, or vice versa). Note that these time instants are fixed,
and we can assume them to be known. To compute the reachability probability
within time [0, T ], we start in T0 = 0 by constructing the modified CTMC
according to the goal set G(0) at time 0. In between T0 and T1, the structure
of the modified CTMC does not change, hence we can integrate the forward
Kolmogorov equations, until the time t hits the first discontinuity time T1. At
this time, we need to perform some operations, according to whether the state
s changes status to become a goal state or a non-goal state.

Goal to non-goal: in this case, we only need to reroute the transition matrix
of the CTMC: all transitions entering s̄, the shadow version of s, must now
point to s. This is obtained by modifying the Q-matrix accordingly, deleting
entries in the column s̄ and adding entries in the column s.

Non-goal to goal: In this case, we need to reroute transitions which enter s to
now point at s̄entering s, and also add the probability πs′,s(0, t) to πs′,s̄(0, t),
afterwards set πs′,s(0, t) to zero.

Once these bookkeeping operations have been performed, and the new probabil-
ity matrix Π(0, T+

1 ) has been computed if needed, we can restart the integration
of the forward Kolmogorov equations, with initial conditions given by precisely
byΠ(0, T+

1 ). We can then iterate this procedure, until the final time T is reached.

Running Example. We consider the running example, and compute the proba-
bility of the nested path formula ψ = F [0,T ](apatched∧P≥p(G

[0,Ta]¬ainfected)), for
Ta = 10. The time dependent truth of the inner temporal formula
ϕ = P≥p(G

[0,Ta]¬ainfected) has already been computed in the previous section
(see Figure 7). Furthermore, the formula apatched∧P≥p(G

[0,T1]¬ainfected) is false
for any state different from p, and equal to T(ϕ, p, t) for the patched state p.
Hence, we state p will be non-goal until time Td = 81.8, and then it will become
a goal state.

Thus, when computing the probability of the path formula ψ, we have that no
state is goal until time Td, and after Td p will be the only goal state. If we look
at the path probability of ψ as a function of T (Figure 8), we observe that this
probability is zero for T < Td, and then suddenly jumps at time Td to πx,p(0, Td),
for x ∈ S, and keeps on increasing afterwards.

The algorithm to compute the path probability for a general reachability
problem, with both unsafe and goal states, is similar to the one sketched above.
In general, for an unsafe state s we disable all outgoing transitions, making it
absorbing. The only difference resides in the bookkeeping operations that need
to be performed when a state s changes its unsafe status.
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Fig. 8. Fluid estimate of the path probability of the formula F [0,T ](apatched ∧
P≥0.97(G

[0,10]¬ainfected)), as a function of T , starting from state p at time 0 (con-
tinuous black line). We can see that the probability is discontinuous, and there is
a jump at time T = 81.8, corresponding to the time at which the truth value of
P≥0.97(G

[0,10]¬ainfected) changes for state p, see Figure 7. Parameters of the model are
as in Figure 2.

Unsafe to safe: in this case, we just need to re-enable all the outgoing transi-
tions from s.

Safe to unsafe: In this case, we disable all outgoing transitions from s, but we
also discard the probability πs′,s(0, t), setting it to zero. This is because all
trajectories started from s′ at time 0 and being in s when it becomes unsafe
become trajectories that can no longer reach a goal state avoiding unsafe
ones, because they suddenly find themselves in an unsafe state.

A minor caveat when we have both unsafe and goal sets is to decide how a state
that is both goal and unsafe behaves. In this case, by the definition of the until
semantics, its goal nature will prevail.

Reachability Probabilities as a Function of Time. Up to now, we sketched
an algorithm to compute the reachability probability starting from time zero up
to time T , call it Υ (0, T ). In order to extend the method to compute Υ (t, t+T ),
as a function of the initial time t, we will follow a similar approach to that of
Section 6, finding an expression for Υ (t, t+T ) and applying a generalised version
of the forward and backward Kolmogorov equations to it, in order to obtain an
ODE for Υ .

In this tutorial, we will just present this expression for Υ , which is obtained by
combining Chapman Kolmogorov equations [42] with suitable matrices encoding
the bookkeeping operations. Further details on the algorithm can be found in
[12,13].
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The first step is the definition of a matrix ζ encoding the bookkeeping op-
erations. Let G(t) and U(t) be the time-varying goal and unsafe sets, and let
T1, . . . , truek, . . . be the time instants in which one state changes status. Define
the set of safe states W (t) = S \ (G(t) ∪U(t)). We define the following matrices
for each discontinuity time Ti:

– ζW (Ti) is the n×n matrix, |S| = n, equal to 1 only on the diagonal elements
corresponding to states sj belonging to both W (T−

i ) and W (T+
i ) (i.e. states

that are safe and not goals both before and after Ti), and equal to 0 elsewhere;
– ζG(Ti) is the n×n matrix equal to 1 in the diagonal elements corresponding

to states sj belonging to W (T−
i )∩G(T+

i ) (safe and non-goal states becoming
goal), and zero elsewhere;

– ζ(Ti) is the 2n× 2n matrix defined by:

ζ(Ti) =

(
ζW (Ti) ζG(Ti)

0 I

)
.

Now, assume in [t1, t2] no discontinuity occurs, so that the Q-matrix of the
modified CTMC does not change structure in [t1, t2], and let Π̃(t1, t2) be the
probability matrix computed by solving the forward Kolmogorov equations, with
Π̃(t1, t1) = I. Then, recalling that the Chapman Kolmogorov equations state
that Π̃(t1, t3) = Π̃(t1, t2)Π̃(t2, t3), we can compute Υ as follows [12,13]:

Υ (t, t+ T ) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · · · ζ(TkI )Π̃(TkI , t+ T ), (9)

where T1, . . . , TkI are all the discontinuity points between t and t+T . From this
equation, observing it depends on t only in the first and last factor and using the
backward and forward Kolmogorov equations, we can derive an ODE similar to
equation (8), with Π replaced by Υ :

dΥ (t, t+ T )

dt
= −Q̃(t)Υ (t, t+ T ) + Υ (t, t+ T )Q̃(t+ T ), (10)

where Q̃(t) is the modified Q-matrix according to the goal and unsafe sets at
time t. See [12,13] for further details, and for a sketch of the algorithms that can
be used to integrate the so-obtained equation.

Steady State Properties. In this tutorial, like in [12,13], we have considered
only time bounded operators. This limitation is a consequence of the very nature
of the Theorem 2, which holds only for a finite time horizon. However, there are
situations in which we can extend the validity of the theorem to the whole time
domain, but this extension depends on properties of the phase space of the
fluid ODE [10,14]. In those cases, we can prove convergence of the steady state
behaviour of Z(N) to that of z, hence we can incorporate also operators dealing
with steady state properties.

Checking these properties is relatively simple: we need to compute the unique
fixed point x∗ of the fluid ODE, which will be also the steady state measure of the
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Table 1. Comparison of running times of the Fluid Model Checking algorithm of some
properties discussed in the paper, with the running time for their statistical estimate
(statistical model checking), for different population levels, computed from 10000 runs

Checked property Fluid MC Stat MC (N = 1000) Stat MC (N = 100)

Kolmogorov Equations ∼ 0.1 sec ∼ 64 sec ∼ 101 sec

X[0,T ]ainfected ∼ 0.06 sec ∼ 6 sec ∼ 24 sec

¬ainfectedU
[0,T ]apatched ∼ 0.05 sec ∼ 5 sec ∼ 20 sec

limit fluid agent z(t), assuming it is irreducible. When at steady state, the rates
of z(t) do not depend on time anymore, hence it becomes a time-homogeneous
CTMC. Therefore, to model check a formula like S��(ϕ), we just need to model
check ϕ against this time-homogeneous CTMC, with standard algorithms, and
then compute the satisfaction of the steady state operator as in the standard
model checking for CTMC [5] (see also [32]).

Running Example. As an example, consider the steady state property
S≥0.75(P≤0.1(F

[0,10]ainfected)). The fluid ODE for our example has a unique,
globally attracting, fixed point x∗ = (0.0209, 0.0767, 0.0383, 0.8641). Substi-
tuting this into the time-dependent Q matrix of the fluid agent z we obtain
a time-homogeneous CTMC, for which the probability of F [0,10]ainfected) is
(0.8526, 1, 1, 0.0276) and so the formula P≤0.1(F

[0,10]ainfected) is true in state
p and false in states s, d, i. By using ergodicity of z and the fact that x∗ is
also the limit steady state measure of an individual agent, hence the steady
state measure of z, we can compute the steady state probability of satisfying
P≤0.1(F

[0,10]ainfected) as 0∗0.0209+0∗0.0767+0∗0.0383+1∗0.8641 = 0.8641,
which makes the steady state property true in all states.

8 Decidability and Convergence

In this section we will briefly discuss some theoretical features of the approximate
model checking algorithm presented.

We will consider two main issues related to decidability and accuracy. Firstly,
we will discuss the decidability of the algorithm to model check CSL specifica-
tions against ICTMC models. The fluid approximation of single agent properties
is based on this as we have shown, and it is important to assess that this al-
gorithm will yield an answer. Secondly, we must also consider the relationship
between the truth of a CSL formula with a single agent derived through consid-
eration of the fluid limit (i.e. representing the rest of the population only through
the mean field) and the truth of the CSL formula for the single agent in a finite
population model (i.e. with all agents represented explicitly). The approach is
only useful if this relationship is close to identity.

Efficiency and Decidability. Two desirable features of any model checking
algorithm are decidability and computational efficiency. Efficiency, in particular,
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was the practical motivation of this work. Indeed, as can be seen in Table 1,
already for the simple running example, the gain in computational time is re-
markable: the fluid model checking approach is between 500 and 1000 times
faster than statistical model checking for a population of 1000 nodes, with a
negligible loss in accuracy. Furthermore, its complexity is independent of the
population size, so that it can scale to very large systems.

The issue about decidability, instead, is more delicate, and depends heavily
on the rate functions of the collective model and on the solution of the fluid
ODE. In particular, the problem is with the nesting of CSL formulae. In order
to model check a next or an until formula, containing nested temporal operators,
we need to be able of performing a certain set of operations, specifically:

1. compute the set of zeros of P (ψ, s, t)− p as a function of the time at which
the formula ϕ = P��p(ψ) is evaluated;

2. check whether P (ψ, s, t) < p, P (ψ, s, t) = p, or P (ψ, s, t) > p (to compute
the truth function T(ϕ, s, t) for ϕ = P��p(ψ));

3. store in memory the truth function T(ϕ, s, t);

In order to deal with point 3 above, we need to guarantee that the number of
zeros of the function P (ψ, s, t)− p is finite in any finite time interval [0, T ]. This
is not true in general, but can be enforced by imposing additional regularity as-
sumptions on the rate functions of the population model. Specifically, in [12,13]
we restricted the rate functions of the collective model to be (piecewise) real an-
alytic functions [33]. This class of functions has nice closure properties (they are
closed for arithmetic operations, integration, differentiation, and so on), which
guarantees that all probability functions Ps(t) will remain (piecewise) analytic.
Furthermore, they are reasonably general, including most of the functions used
in practice (for instance, polynomials, exponentials, and so on). Finally, they
enjoy the property that either they are identically zero, or have only a finite
number of zeros in any finite time interval. This settles point 3.

Points 1 and 2 above, instead, are much more delicate. First of all, finding
all zeros of an analytic function is not an easy task, and in general may not
be decidable. In particular, finding simple zeros (those around which a function
change sign) is decidable (using interval methods [2,41]), but we may not be
able to find non-simple zeros, i.e. those in which the derivative is null, like local
maxima or minima, see figure below.

p

Ps(t)

t

Also the decidability of point 2 above, called the zero test problem, is unknown
for analytic functions (in fact, its decidability is not known even for functions
constructed using polynomials and the exponential, see [44]).
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The way out this problem is to characterise precisely all the situations in
which something bad can happen, and show that this are sufficiently rare. More
precisely, we fixed a formula structure and the model parameters, and looked at
what happens in terms of the thresholds p of the probability operators P��p. If
we have a formula with k temporal operators, than we have k such thresholds,
which can take values in the hypercube [0, 1]k. We then looked at the subset R
of points of [0, 1]k for which we can guarantee that the algorithm terminates,
and characterised it from a topological viewpoint. It turns out [12,13] that R
is an open subset of Lebesgue measure one of [0, 1]k. This means that almost
any formula will be decidable, and furthermore that decidability is robust with
respect to small perturbations of the probability thresholds. In [12,13] this is
termed quasi-decidability, and the CSL formulae which have thresholds proba-
bilities that belong to the set R are called robust.

Convergence. We also investigated the limit behaviour of path probabilities
and truth values of CSL formulae, evaluated for an individual agent Z(N)(t) in
a finite population model, in the limit of N → ∞. We proved that, in almost
all cases, they converge to path probabilities and truth values computed for the
limit individual agent z(t). Convergence, however, does not hold always; it can
fail exactly in those situations in which the limit model checking problem is not
decidable. Given a CSL formula ϕ = ϕ(p), with probability threshold arranged
in a vector p, we characterised the subset of [0, 1]k of threshold for which con-
vergence surely holds, obtaining that it coincides with the set R of thresholds
making ϕ robust. More precisely, we have proved the following theorem [12,13]:

Theorem 3. Let X (N) be a sequence of CTMC models and let Z(N)(t) and z(t)
be defined from X (N) as in Section 4.2. Assume that Z(N)(t), z(t) have piecewise
analytic infinitesimal generator matrices.
Let ϕ(p1, . . . , pk) be a robust CSL formula. Then, there exists an N0 such that,
for N ≥ N0 and each s ∈ S

s, 0 �Z(N) ϕ⇔ s, 0 �z ϕ.

This theorem states that, for a given robust CSL formula ϕ, we can find an index
N0 such that, for populations larger than N0, ϕ will hold in the limit model if
and only if it holds in a model with population N . This shows that the method
presented here is consistent with respect to asymptotic approximation. Unfor-
tunately, characterising such N0 is extremely difficult, see also the discussion in
[12,13] about erorr bounds.

9 Related Work

As this is a very new direction of research there is, as yet, only a small amount
of related work. Model checking (time homogeneous) Continuous Time Markov
Chains (CTMC) against Continuous Stochastic Logics (CSL) specifications has a
long tradition in computer science [5,4,45]. At the core of our approach to study
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time-bounded properties there are similarities to that developed in [5], because
we consider a transient analysis of a Markov chain whose structure has been
modified to reflect the formula under consideration. But the technical details of
the transient analysis, and even the structural modification, differ to reflect the
time-inhomogeneous nature of the process we are studying.

To the best of the authors’ knowledge, there has been no previous proposal
of an algorithm to model check CSL formulae on a ICTMC. Nevertheless model
checking of ICTMCs has been considered with respect to other logics. Specifi-
cally, previous work includes model checking of HML and LTL logics on ICTMC.

In [30], Katoen andMereacre propose amodel checking algorithm forHennessy-
Milner Logic on ICTMC. Their work is based on the assumption of piecewise
constant rates (with a finite number of pieces) within the ICTMC. The model
checking algorithm is based on the computation of integrals and the solution of
algebraic equations with exponentials (for which a bound on the number of zeros
can be found).

LTL model checking for ICTMC, instead, has been proposed by Chen et al.
in [18]. The approach works for time-unbounded formulae by constructing the
product of the CTMC with a generalized Büchi automaton constructed from the
LTL formula, and then reducing the model checking problem to computation of
reachability of bottom strongly connected components in this larger (pseudo)-
CTMC. The authors also propose an algorithm for solving time bounded reach-
ability similar to the one considered in this paper (for time-constant sets).

Our work is underpinned by the notion of fast simulation, which has previ-
ously been applied in a number of different contexts [22]. One recent case is a
study of policies to balance the load between servers in large-scale clusters of
heterogeneous processors [24]. These ideas also underlie the work of Hayden et
al. in [25]. Here the authors extend the consideration of transient characteristics
as captured by the fluid approximation, to approximation of first passage times,
in the context of models generated from the stochastic process algebra PEPA.
Their approach for passage times of individual components is closely related
to the fast simulation result and the work presented in this paper. The main
difference is that they consider just path properties, described by deterministic
automata (formally treated in [26]), which they solve by integrating ODEs.

10 Conclusions

In this tutorial we presented a new method to approximatively model check
properties of individual agents in a large population, exploiting mean field theory.
This theory predicts that in the limit of an infinite population individual agents
will decouple, evolving as independent CTMC connected only through the mean
state of the system, described by the fluid ODE. This independence frees us
from the necessity of representing the whole state space of the population, and
instead we need only represent the state space of the individual agent. However,
since the behaviour of this agent depends on the mean state of the system, its
transition rates are not constants, but instead vary with time. Thus, in order to
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check properties for this limit model, we need to deal with a time-inhomogeneous
CTMC. In this chapter we have presented a method to model check CSL formulae
against ICTMC, whose complexity stems from the time dependency of truth
values of temporal sub-formulae.

Our objective here has been to introduce the main ideas in an informal man-
ner, explaining them by means of a simple example of a peer-to-peer network
epidemic, in order to give the reader an intuition of how the approach works.
The reader interested in the formal details is invited to study the fuller account
given in the recent CONCUR paper [12] or its extended version [13].

The development of a fluid approximation for model checking, albeit only
currently for time-bounded properties of individual agents opens the possibil-
ity of carrying out model checking on a wide range of population models that
were previously extremely computationally costly or even beyond the scope of
existing tools. Moreover there is a lot of potential of expanding the reach of
model checking still further. Currently, we are extending the approach in several
directions, including:

– moving beyond CSL to consider more complex path properties, for instance
those expressed by Deterministic Timed Automata [19] (DTA), obtaining a
logic for individual properties similar to asCSL [6] and CSL-TA [23];

– the lifting of individual specifications to the collective level, similarly to [32].
In this paper, the authors consider atomic collective properties stating that
the expected fraction of agents satisfying a local CSL property meets a given
bound �� p. Instead of the expectation, we are considering approximations
of the probability that the fraction of agents satisfying a local CSL property
meets a given bound �� p, using higher order fluid approximations, like the
functional central limit [35] or linear noise approximation [50].
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A Integrating the Combined Backward-forward
Kolmogorov Equation

In this appendix we will look more closely at the problem of numerically in-
tegrating the combined backward-forward Kolmogorov equation (8), needed to
compute the time-dependent reachability probability for until formulae, see Sec-
tion 6. Integrating this equation is necessary to check nested formulae. A result
of this integration, for the running example, has been shown in Figure 7. We
recall that the equation is

dΠ(t, t+ T )

dt
= −Q(t)Π(t, t+ T ) +Π(t, t+ T )Q(t+ T ),

which has to be solved from time t0 to time t1, with initial conditions Π(t +
0, t0 + T ) computed using the forward equation.

In principle, this could be done by using one of the many ODE solvers avail-
able, e.g. those of MatlabTM [40] or Octave [1]. Practically, using one of those
solvers, we have observed that in most of the cases, we obtain a plot like the one
shown in Figure 9, in which the numerical error explodes. This is an indicator
that equation (8) is, in general, very stiff [17], hence a stiff integration method
has to be used. Unfortunately, this blow up phenomenon persisted even using
the most accurate stiff integrators of MatlabTM or Octave, even with very high
accuracy. We only obtained a reduction in the blow up speed.

In order to compute the trajectory in Figure 7, therefore, we need a different
strategy. We present the idea in the following, showing how to compute the
time-dependent reachability probability with time horizon T , without resorting
to equation (8). The idea is to exploit the Chapman-Kolmogorov (CK) semigroup
equations [42], Π(t, t′) = Π(t, t′′)Π(t′′, t′), t′′ ∈ [t, t′], in order to integrate the
backward and the forward equations separately. The advantage of this is that
the forward and the backward equations alone are, in general, quite stable.

For simplicity, we assume in the following that t0 = 0 and t1 = k ·T . The first
operation is to split the time interval [0, kT ] into smaller time intervals, each of
length T , as shown in the figure below:

time

T0 = 0 T1 = 1 · T T2 = 2 · T Tk = k · T· · ·

Call Tj the time instant j · T , fix j ≥ 1, and pick t ∈ [Tj−1, Tj]. Applying the
CK to times t, Tj , t+ T , we get

Π(t, t+ T ) = Π(t, Tj)Π(Tj , t+ T ).
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Fig. 9. Integration with a ODE numerical solver of the equation (8) for the formula
G[0,T2]¬ainfected, for T2 = 10. Due to the high degree of stiffness of the equation and
numerical instabilities, the error blows up.

As Tj is a constant, in order to compute Π(t, t+T ) for t ∈ [Tj−1, Tj], we can in-
tegrate separately the backward equation for Π(t, Tj), t ∈ [Tj−1, Tj ], with initial
value Π(Tj−1, Tj), and the forward equation for Π(Tj , t

′), t′ ∈ [Tj, Tj+1], with
initial value the identity matrix. These two equations can be solved simultane-
ously. Then, we can take the product of the so obtained matrices to compute
Π(t, t+ T ).

The full algorithm is a simple loop over j, observing that the initial conditions
needed to integrate the backward equation are the last point computed by the
forward equation in the previous iteration.

Practically, if we want just to visualize the result, we need to compute the
product of Π(t, Tj) and Π(Tj , t+T ) only at the sampled points of the function,
generally a fixed grid of stepsize h. If, instead, we want to solve the equation
P (t)− p = 0, in order to obtain the truth value, we need to take the product of
the two matrices every time the root finding function (usually embedded in the
ODE solver) needs to know the value of the function P (t)− p.
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Abstract. This pedagogical introduction to topological quantum com-
putation includes the following parts. First we provide an introduction to
anyons and topological models. In particular we consider the properties
of anyons and their relation to topological quantum computation. Then
we present the quantum double models. These are stabiliser codes, that
can be described very much like quantum error correcting codes. They
include the toric code and various Abelian and non-Abelian extensions.
Next the Jones polynomials are presented, which are topological invari-
ants of links and knots that are related to anyons. Their evaluations by
classical algorithms is computationally complex, but their approximation
by quantum algorithms is efficient. Finally, we presenter an overview of
the current state of topological quantum computation and present some
open questions.

1 Introduction

1.1 Statistics for Quantum Computation

Physics should remain unchanged if we exchange two identical particles. This is
a fundamental symmetry with far reaching consequences. In three dimensions
it dictates the existence of bosons and fermions. Their wave function acquires
a +1 or a −1 phase, respectively, whenever two particles are exchanged. In one
dimension the exchange of particles causes them inevitably to collide. When one
considers two dimensions, a variety of statistical behaviours is possible. Apart
from bosonic and fermionic behaviours, arbitrary phase factors, or even non-
trivial unitary evolutions, can be obtained when two particles are exchanged [1].
Particles with such an exotic statistics are called anyons.

The study of anyons started as a theoretical construction of two dimensional
models [2]. It was soon realised that they can be encountered in physical systems
with effective two dimensional behaviour. For example, confined gases of electrons
in two dimensions in the presence of sufficiently strongmagnetic field and low tem-
peratures give rise to the FractionalQuantumHall Effect [3–5]. The low energy ex-
citations of these systems are localised quasiparticle excitations that can actually
exhibit anyonic statistics. Alternatively, one can engineer two dimensional spin
lattice models with quasiparticles that exhibit anyonic statistics.

Systems that support anyons are called topological as their properties depend
on global characteristics and not on local details. They have highly entangled
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degenerate ground states that give rise to their exotic behaviour. The order pa-
rameters that detect the topological phases of systems are non-local, in contrast
e.g. to magnetisation. Various smoking guns exist for topological order, such as
ground state degeneracy, topological entropy or the explicit detection of anyons.
As topological order comes in various forms [6], the study and characterisation
of topological systems in their generality is complex and still an open problem.

Quantum computation requires the encoding of quantum information and its
manipulation with quantum gates [7]. Qubits, the quantum version of classical
bits, provide a two dimensional Hilbert space. Quantum gates are necessary to
manipulate information and to perform a computation. A universal quantum
computer employs a sufficiently large set of gates in order to perform arbi-
trary quantum algorithms. In recent years, there have been two main quests
for quantum computation: to find new algorithms, i.e. beyond searching [8] and
factorizing [9], and to perform fault-tolerant evolutions.

There have been several proposals of quantum computation that are concep-
tually different, but equivalent to the circuit model. One way quantum compu-
tation [10] starts from a large entangled state. Information is processed by single
qubit measurements, which contrasts the popular belief that quantum compu-
tation must be reversible. Adiabatic quantum computation is another way of
processing information [11]. There, the answer to the problem is encoded into
the unique ground state of a Hamiltonian. Then an adiabatic evolution of a sim-
ple starting Hamiltonian with a known ground state is considered. The ground
state of the final Hamiltonian is a bit string encoding the answer to a problem.

In the nineties a surprising connection was made. It was argued that anyons
could be employed to perform quantum computation [12]. Kitaev [13] demon-
strated that anyons could actually be used to perform fault-tolerant quantum
computation. This was a very welcomed advance as errors are present in any
physical realisation of quantum computation, coming from the environment or
from control imperfections. Shor [14] and Steane [15] independently demon-
strated that for sufficiently isolated quantum systems and for sufficiently precise
quantum gates, quantum error correction can allow fault-tolerant computation.
However, the required limits are too stringent and demand a large overhead in
qubits and quantum gates. In contrast to this, anyonic quantum computation
promises to resolve the problem of errors from the hardware level.

Topological systems can serve as quantum memories and as quantum comput-
ers. One can encode quantum information in simple topological systems in such
a way that it is shielded from environmental perturbations. This is an important
property for constructing quantum hard disks. Complex enough topological sys-
tems can realise quantum computation. They can manipulate information with
very accurate quantum gates, while keeping the information protected at all times.
In these systems, information is encoded in the possible outcomes when bringing
two anyons together. The exchange of anyons gives rise to statistical logical gates.
Fundamental properties of the quasiparticles can thus become the means to per-
form quantum computation. Fault-tolerance stems from the ability to keep the
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quasiparticles intact. The result is a surprisingly effective and aesthetically ap-
pealing method for performing fault-tolerant quantum computation.

1.2 Anyons Anyone?

Braiding in Three and Two Dimensions. It is commonly accepted that
point-like particles, elementary or not, come in two species: bosons or fermions.
These statistical behaviours can be obtained by circulating a particle around
an identical one and observing the topological characteristics of their evolution.
In three dimensions this evolution spans a path γ1 that can be continuously
deformed to γ2, as seen in Figure 1.1, and then to a trivial path. As a consequence
the wave function, |Ψ(γ1)〉, of the system after the circulation has to be exactly
the same as the original one |Ψ(0)〉, i.e.

|Ψ(γ1)〉 = |Ψ(γ2)〉 = |Ψ(0)〉 . (1)

It is easily seen that a full circulation is effectively equivalent to two successive
particle exchanges. Thus, a single exchange can result in a phase factor eiϕ that
has to square to unity in order to be consistent with (1), giving, finally, ϕ = 0, π.
These two cases correspond to the bosonic and fermionic statistics, respectively.

Fig. 1. A particle spans a loop around another one. In three dimensions it is possible
to continuously deform the path γ1 to the path γ2 which is equivalent to a trivial path.

When we restrict ourselves to two spatial dimensions, then there are more
possibilities in statistical behaviours. If the particle circulation γ1 of Figure 1 is
performed on a plane, then it is not possible to continuously deform it to the
path γ2. Still the evolution that corresponds to γ2 is equivalent to the trivial
evolution as seen in Figure 2. As we are not able to deform the evolution of path
γ1 to the trivial one the above argument does not apply. Actually, it is possible
to assign an arbitrary phase factor, or even a whole unitary, to this evolution.
Thus, particles in two dimensions can have richer statistical behaviours, possibly
different from bosons or fermions.

Aharonov-Bohm Effect and Berry Phases. The statistical phases of anyons
can be viewed as Aharonov-Bohm phases or as Berry phases. While these de-
scriptions might inspire some readers they are not fundamental in understanding
the properties of anyons. To visualise the behaviour of anyons one should think
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Fig. 2. In two dimensions the two paths γ1 and γ2 are topologically distinct. This
gives the possibility of having non-trivial phase factors appearing when one particle
circulates the other. This can be visualized by having the particles carrying electric
charge as well as magnetic flux giving rise to the Aharonov-Bohm effect.

of them as being composite particles consisting of a magnetic flux Φ and a ring of
electric charge q, as depicted in Figure 2. If particle 1 circulates particle 2, then
its charge q goes around the flux Φ, thereby acquiring a phase factor U = eiqΦ.
This is known as the Aharonov-BohmEffect [16], which gives rise to the magnetic
field B = ∇×A and the corresponding flux, Φ, through

Φ =

∮
γ

A · dl =
∫∫

S

∇×A · ds =
∫∫

S

B · ds. (2)

Here γ is the spanned looping path, dl is an elementary segment of the path, S
is a surface enclosed by γ and ds is its element. Even though the vector field,
A, can be non-zero on the whole plane, the magnetic flux is confined at the
neighbourhood of the anyon 2. Hence the resulting phase factor U = eiqΦ does
not depend on the details of the path of particle 1. It depends only on the
number of times it circulates around it. Hence, it is topological in nature and it
can faithfully describe the mutual statistics of the particles. The statistical angle
of these anyons is ϕ = qΦ/2.

Non-Abelian charges and fluxes generate unitary matrices U instead of phase
factors. In this case a circulation of one anyon around another can lead to its
final state being in superposition. The anyons that have such statistics are called
non-Abelian, while anyons that obtain a simple phase factor are called Abelian.
In reality the presence of charge and flux come from an effective, emerging gauge
theory that describes the low energy behaviour of the model [17].

The connection between the physical system and the effective gauge theory
is best formulated in terms of the geometrical Berry phase [18, 19]. To define
the Berry phase consider a Hamiltonian H(t) that changes in time through
a set of time dependent parameters λa with a = 1, ..., n. For simplicity, we
initiate the system in its ground state with energy E0 = 0 and assume there is
a finite energy gap ΔE separating it from the excited states. If one changes the
parameters slowly in time compared to the energy gap ΔE then the evolution
is adiabatic, causing no population transfer to the excited states. If there are
many degenerate ground states,{|ψα〉 , α = 1, ..., n} then the spanning of a loop
γ in the parameters λ results in a non-Abelian Berry phase given by

ΓA(γ) = P exp

∮
γ

A · dλ, (3)
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where P denotes path ordering. The resulting evolution is an element of U(n)
evolving the ground state of the system in the following way Ψ(γ) = ΓA(γ)Ψ(0).
The connection is a matrix with components given by

(Aμ)
αβ = 〈ψα(λ) | ∂

∂λμ
|ψβ(λ)〉 (4)

This is the non-Abelian generalisation of the usual Berry phase which was first
presented by Wilczek and Zee [20] and reduces to the usual Berry phase for
non-degenerate ground states.

Topological systems are many-body systems with localised quasiparticle exci-
tations. The control parameters λμ of topological systems are identified with the
coordinates of the quasiparticle. When these quasiparticles are braided, their
evolution can be described by a geometrical phase that is independent of the
shape of the path, thus simulating the Aharonov-Bohm effect. This topologi-
cal characteristic makes the corresponding evolutions to be representations of
the braid group. It has been explicitly demonstrated by Arovas, Schrieffer and
Wilczek [21], how the statistics of Abelian anyons, appearing in the Fractional
Quantum Hall Effect, can be expressed as such a Berry phase. The non-Abelian
statistics from Berry phases was considered by Read [22] and Lahtinen and Pa-
chos [23].

1.3 Fusion and Braiding Properties of Anyons

As the statistical properties dominate the behaviour of the anyonic states, it
is convenient to employ the world lines of the particles to keep track of their
positions (see Figure 3). We assume that we can trap and move the anyons
around the plane leading to world lines in 2 + 1 dimensions. Exchanges of the
anyons can be easily described by just braiding their world lines. We can also
depict the pair creation of anyons from the vacuum as well as their fusion when
they are brought together. The fusion gives new anyons that correspond to the
possible outcomes when the original anyons are combined together.

To illustrate these properties let us consider the Ising anyonic model with
particle types 1 (vacuum), σ (non-Abelian anyon) and ψ (fermion). These can be
thought of as conserved quantum numbers of the quasiparticles. The conservation
of these quantum numbers is given by the following fusion rules

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1,

with 1 fusing trivially with the rest of the particles (σ × 1 = σ and ψ × 1 = ψ).
The first fusion rule signifies that if we bring two σ anyons together they might
annihilate (i.e. σ is its own antiparticle) or they can give rise to the fermion
ψ depending on their total state. Hence, the fusion of two σs has two possible
channels. The second fusion rule indicates that fusing a ψ with a σ gives back a
σ. The third states that when two fermions are brought together they are fused
to the vacuum.

Assume that one creates from the vacuum two pairs of anyons (σ, σ), as seen
in Figure 3(a). Then the fusion rules imply that the generation of anyons results
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Fig. 3. Figure 1.3: The world lines of the Ising anyons where the third dimension
depicts time running downwards. (a) From the vacuum two pairs of Ising anyons are
generated depicted by (σ, σ) and (σ, σ). Then an anyon from each pair are braided by
circulating one around the other. Finally, the anyons are pairwise fused, but they do not
necessarily return to the vacuum. In the case of Ising anyons the fusion outcomes are
fermions ψ. (b) A similar evolution, where two pairs of σ Ising anyons are created from
a fermion ψ and the vacuum 1. The braiding causes the teleportation of the fermion
between the two pairs.

in a well defined pair of anyon anti-anyon. The state of these anyons can be
denoted as |σ, σ → 1〉 indicating that if we fuse back these anyons their fusion
outcome is known. In general, when two arbitrary anyons are fused, it is possi-
ble to have various outcomes depending on their total state. In Figure 3(a), one
can see that the fusions result in ψ anyons. For this fusion outcome we define
the state |σ, σ → ψ〉. It corresponds to the case where two anyons of type fuse
to the fermion ψ when brought together. The states |σ, σ → 1〉 and |σ, σ → ψ〉
give rise to a two dimensional Hilbert space, the fusion space. As seen in Figure
3(a) it is possible to evolve the initially prepared state of anyons from the state
|σ, σ → 1〉⊗ |σ, σ → 1〉 to the state |σ, σ → ψ〉⊗ |σ, σ → ψ〉. Due to the conser-
vation of the total type of particles we need to keep track of the particles of one
pair only. Hence, the braiding evolution can be described by a two dimensional
matrix that rotates the fusion states from |σ, σ → 1〉 to |σ, σ → ψ〉 up to an
overall phase.

In general, the fusion rules are given by

a× b = N c
abc+Nd

abd+ ... (5)
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where anyons a and b are fused to produce anyon c or d or any other possible
outcome. The integers Njlk denote the multiplicity with which the particles l are
generated when fusing particles j and k. This procedure is similar to the tensor
product notation of spins that results in a new spin basis, e.g. 1

2 ⊗
1
2 = 0 ⊕ 1.

Abelian anyons, in particular, have only a single fusion channel a×b = c so their
fusion space is one dimensional. Non-Abelian anyons have necessarily multiple
fusion channels that gives rise to higher dimensional fusion spaces.

The Hilbert spaceM(n) corresponding to n anyons (a1, ..., an) has dimension

dim(M(n)) =
∑

b1...bn−2

N b1
a1a2

...N c
bn−2an

(6)

The representation of the fusion states is given by | a, b→ c;μ〉 where μ =
1, ..., N c

ab parameterises possible multiplicity in a certain fusion channel. In the
case of the Ising anyons where the only non-zero coefficients are N1

σσ = 1,
Nψ

σσ = 1, Nσ
1σ = 1 and Nσ

ψσ = 1. For example, substituting a1 = a2 = a3 =
c = σ in equation (6) and having the summation running over b1 = 1, ψ gives
dim(M(4)) = 2 as expected.

There is an alternative way to compute the dimension of M(n) correspond-
ing to n identical anyons, a, using the concept of quantum dimension. The
quantum dimension da quantifies the rate of growth of Hilbert space dimension
dim(M(n))→ dna when one additional a particle is inserted for large n. Starting
from the fusion rules one can show that the quantum dimension satisfies the
following relation

dadb =
∑
c

N c
abdc.

For the case of the Ising model the quantum dimension of the ψs is given by
d2ψ = 1⇒ dψ = 1. For the σs we have d2σ = 1 + dψ ⇒ dσ =

√
2.

It is possible to access the fusion space by certain operations on the anyons.
These are physically allowed operations given by changes in the fusion order,
that correspond to basis change, and exchanges, or braids, leading to non-trivial
evolutions. For example, one can fuse the anyons a, b and c in two distinctive
ways. One can first fuse a with b and then their outcome with c or first fuse
b with c and then their outcome with a. As shown in Figure 4(a), these two
processes are related by a unitary matrix with elements (F d

abc)
i
j . The F matrix

facilitates between the change of basis in the fusion space. For the case of the
Ising model, the F matrix is given by

F σ
σσσ =

1√
2

(
1 1
1 −1

)
(7)

in the {1, ψ} basis.
To manipulate the states of the fusion space, one can braid the anyons be-

fore fusing them. This operation is described by the diagonal R matrix, depicted
in Figure 4(b). In the case of two σ Ising anyons the components of the R matrix
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Fig. 4. Fusion and braiding properties. (a) When the order of fusion between three
anyons, a, b and c with outcome d is changed then a rotation in the fusion space is
performed given by the matrix F d

abc. This corresponds to a change of basis in the fusion
space. (b) A braiding operation between anyons a and b with fusion outcome c gives
the phase Rab

c .

are given by Rσσ
1 = e−iπ/8 and Rσσ

ψ = e−i3π/8 [24]. That is, the fermionic fusion
channel acquires an additional phase π/2 during the π rotation due to the spin
1/2 nature of the fermion. The superposition of multiple fusion outcomes in the
braiding process results in unitary operations.

Return now to Figure 3(a). Initially, we pair create two anyonic pairs. Then
two anyons, one from each pair, are braided by circulating one around the other.
Finally, the corresponding pairs are fused. The fusion may not result in the
vacuum as the braiding process could change the internal state of the anyons.
Indeed, for the case of the Ising anyons the outcome of the fusion is ψ in both
cases. These ψs can be further fused giving the vacuum that we had started with
in agreement with the conservation of the total quantum numbers. Nevertheless,
the braiding has dramatically changed the internal fusion space of each pair,
even though they have not been in contact. Figure 3(b) shows the generation of
one pair of Ising anyons from a fermion and another one from the vacuum. The
braiding process causes the fermion to be teleported from one pair to the other.
Such non-trivial unitary rotations of the fusion space are possible in the case of
non-Abelian anyons by braiding operations.

Finally, one can show that consistency equations can be considered that give
a relation between statistical processes and fusion relations. These consistency
equations are called pentagon and hexagon equations [25] due to their geometri-
cal interpretation (see Figure 5 and Figure 6, respectively). They are the subject
of study of Topological Quantum Field Theory [26]. From the pentagon rule, the
following relation between the elements of the F matrices is obtained,
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12c)

d
a(F

5
a34)

c
b =
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e
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Similarly, from the hexagon rule∑
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Fig. 5. The pentagon identity. Starting from a four anyon combination, a sequence of
five fusion rearrangements returns to the original configuration. It is taken as an axiom
that this sequence is the identity mapping.

Fig. 6. The hexagon identity. It is relating the fusion of three anyons by a sequence of
fusion rearrangements and braiding operations.

Consistent anyon models are characterised by some R- and F -matrices. which
have to satisfy these polynomial equations. Conversely, the solutions of these
two polynomial equations give a discrete set of F and R matrices. This property,
known as the Ocneanu rigidity, makes the R and F unitaries immune against
small perturbations [24].

The interpretation of the anyons with world lines, and in particular with
world ribbons makes apparent the connection between statistics and spin [27].
In Figure 7 we see the schematical equivalence between the process of exchang-
ing two Abelian anyons and the rotation of an anyon by 2π. The first is evolved by
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Fig. 7. The equivalence between spin and statistics. The anyons are depicted here as
ribbons to keep track of their spin rotation. Two anyons, each one from two anyon
anti-anyon pairs, are exchanged and then fused to the vacuum. This process can be
continuously deformed to rotating one anyon from a pair by 2π and recombining them
causing an evolution due to the spin of the anyon.

the statistical unitary R (a phase factor for Abelian anyons) and the second is
expected to obtain a phase factor ei2πJ , where J is the spin of the anyon. A
direct application leads to the connection between the integer spins for bosons
and half integer spins for fermions. This is in agreement with the interpretation
of anyons as a composite object of charge and flux. In this case the rotation of
an anyon by 2π will rotate the charge around the flux, thereby leading to the
Aharonov-Bohm effect.

1.4 Anyonic Quantum Computation

To implement universal quantum computation consider n non-Abelian anyons
of the same type a. Apart from degrees of freedom that can be measured locally,
the system possesses non-local anyonic fusion degrees. The corresponding fusion
Hilbert space M(n) encodes the outcomes when the anyons are pairwise fused.
The dimension of M(n) grows exponentially with the number n of anyons, i.e.
dim(M(n)) = dna , though, this does not necessarily admit a tensor product
structure. Nevertheless, a qubit tensor product subspace can always be identified,
where quantum information can be encoded in the usual way.

Logical gates can be performed by braiding the anyons that gives rise to
applications of the R-matrix. This operation does not affect the type of anyons
neither their local degrees of freedom, but it can have a non-trivial effect on the
fusion space. In combination with the F -matrices one can evolve the encoded
information in a non-trivial way.When these two matrices efficiently span a dense
set of unitaries acting on the qubits, the corresponding non-Abelian model can
support universal quantum computation. If two anyons are brought next to each
other, then part of the information of the anyonic fusion space is accessible,
as their fusion channel can be determined. This procedure can be employed to
finally measure the computational outcome.
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The information encoded in the fusion space is not at all accessible by local
operations. Hence, the environment, assumed to act in a local way, cannot al-
ter it. This is the fault-tolerant characteristic that makes anyons a favourable
medium for performing quantum computation. The environmental errors that
can be avoided efficiently by the topological systems are local perturbations to
the Hamiltonian. Nevertheless, probabilistic errors on the system due to a finite
temperature do affect the encoded space. It is still an open problem of great
interest to device a method that can efficiently overcome temperature errors.

1.5 Example: Fibonacci Anyons

In this section we will present probably the most celebrated non-abelian anyonic
model not only due to its simplicity and richness in structure, but also due to its
connection to the Fibonacci series. In this model there are two different types of
anyons, 1 (vacuum) and τ (non-Abelian anyon), that have the following fusion
rules

1× 1 = 1, 1× τ = τ, τ × τ = 1 + τ (10)

Fig. 8. Depiction of the fusion process for anyons. (a) A series of τ anyons are fused
together ordered from left to right. The first two τ anyons are fused and then their
outcome is fused with the next τ anyon and so on. (b) Four Fibonacci anyons in state
τ created from the vacuum can be used to encode a single logical qubit.

It is interesting to study all the possible outcomes when we fuse n+1 anyons
of type τ arranged as in Figure 8. For this we initially fuse the first two anyons,
then their outcome is fused with the third τ anyon and the single outcome is
fused with the next one and so on. At each step i we assign an index ai that
indicates the outcome of the fusion at that step. The states | a1, a2, ..., an−2〉
belong to the fusion Hilbert space of the anyons, M(n). These states are not
all independent. As the τ anyons have two possible fusion outcome states, it is
natural to ask, in how many distinct ways, dτ (n), can one fuse n+ 1 anyons of
type τ to yield finally a τ . At the first fusing step the possible outcomes are 1
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or τ , giving dτ (2) = 1. When we fuse the outcome with the next anyon then
1×τ = 1 and τ×τ = 1+τ , resulting to two possible τs coming from two different
processes and a 1, i.e. dτ (3) = 2. Taking the possible outcome and fusing it with
the next anyon gives a space of τs which is three dimensional, dτ (4) = 3. One
soon notices that the dimension of the fusion space dim(M(n)) when n anyons
of type τ are fused, is actually the Fibonacci series. This dimension is given
approximately by the following formula

dim(M(n)) ∝ φn

where φ ≡ (1 +
√
5)/2 is the golden mean. The quantum dimensions for the two

particles types can easily be solved for from the fusion rules in Eq. (10): d21 = d1
and d2τ = d1 + dτ giving d1 = 1 and dτ = φ. The golden mean has been used
extensively by artists, such as Leonardo Da Vinci, in geometrical representations
of nature (plants, animals or humans) to describe the ratios that are aesthetically
appealing.

The Fibonacci anyonic model is a good example for realising quantum compu-
tation. We are interested in encoding information in the fusion space of anyons
and then processing it appropriately. The encoding of a qubit can be visualised
by employing four τ anyons as in Figure 8(b). There are two distinguishable ways
the particles can be fused together that can encode the qubit | 0〉 = | τ, τ → 1〉
and | 1〉 = | τ, τ → τ〉. To determine the quantum gates one needs to evaluate the
F and R matrices. From the fusion rules of Fibonacci anyons and the pentagon
identity one finds the non-zero values
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These solutions are unique up to a choice of gauge. Inserting these values into
the relations demanded by the hexagon identity, one obtains the following R
matrix describing exchange of two particles

R =

(
e4πi/5 0

0 −e2πi/5
)
. (11)

It can be shown that the unitaries b1 = R and b2 = F τ
τττR(F τ

τττ)
−1 acting in

the logical space | 0〉 and | 1〉 are dense in SU(2) in the sense that they can
reproduce any element of SU(2) with accuracy ε in a number of operations
that scales like O(poly(log(1/ε)) [28]. Thus an arbitrary one qubit gate can be
performed as follows. Begin from the vacuum and prepare four anyons labelled
a1, a2, a3, a4. Braiding the first and second anyons implements b1 and braiding
the second and third anyons implements b2. A measurement of the outcome
upon fusing a1 and a2 projects onto logical | 0〉 or | 1〉. Similarly, by performing
braiding over 8 anyons in state 1, one obtains a dense subset of SU(d(7)). Since
SU(4) ⊂ SU(13), we can also implement any two logical qubit gate, e.g. the
CNOT gate, with arbitrary accuracy. Hence the Fibonacci anyon model allows
for universal computation on n logical qubits using 4n physical anyons [29].
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1.6 Exercises

– Exercise 1: Show that the Ising model F and R matrices satisfy the pen-
tagon and hexagon identities. Conversely, solve the pentagon and hexagon
equations given the Ising type of anyons and their fusion rules.

– Exercise 2: Construct the qubit space with Ising anyons and demonstrate
that the F and R matrices do not provide a universal set of gates. What
gates are missing? (see [30]).

– Exercise 3: Solve the pentagon and hexagon equations for the the F and R
matrices of the Fibonacci model.

– Exercise 4: From the spin statistics theorem demonstrate what is the spin of
the Ising and Fibonacci anyons.

– Exercise 5: Bratteli diagrams give a pictorial representation of the fusion
outcomes of n anyons of the same type. Their horizontal axis gives the in-
creasing number of anyons involved in the fusion and the vertical axis gives
the fusion outcome. There are many distinct paths that start from the first
anyon and evolve according to the choice of the fusion channels at each step.
Draw all the distinct Bratteli diagrams for the Ising and Fibonacci models
involving six anyons.

– Exercise 6: Starting from the initial vacuum state with Ising anyons can you
generate entangled states?

– Exercise 7: Generalise the spin statistics theorem for the non-Abelian anyonic
case.

2 Quantum Double Models

2.1 From Error Correction to Topological Models

Quantum Error Correction. Quantum error correction is the means we have
to combat environmental and control errors when performing quantum com-
putation. As errors infest any physical realisation of a quantum computer the
importance of quantum error correction cannot be overstated. Much in parallel
to classical error correction quantum error correction works on the principle of
employing a large Hilbert space to encode information in a redundant way. The
goal is to perform complex encoding and decoding of information so that for
low enough error rates the effect of the environment is eventually neutralised. In
the following we shall review some basic properties of quantum error correction.
It is pedagogical and conceptually appealing to approach topological models
from the quantum error correction point of view. Consider a Hilbert space H of
a quantum system spanned by n finite dimensional complex subsystems V , i.e.
H = V⊗ ...⊗V . For simplicity, and unless it is otherwise stated, we shall initially
consider a set of qubits, i.e. dim(V) = 2. The code space C is a linear subspace
of H where the logical information is encoded. A general k-local operator O is
an operator that acts non-trivially to at most k subsystems of H (also known as
operator of length k). Then C is called a k-code if

ΠCOΠC ∝ ΠC (12)
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where ΠC is the projector on C. Hence, the operator ΠCO is a mapping C #→ C
up to a multiplicative scalar for any k-local operator O. It has been shown [31]
that such a code can effectively protect against errors that act on less than k/2
qubits. The code is also called [[n, d, k]] where n is the total number of qubits
and 2d is the dimension of the k-code C. This code requires n physical qubits
to encode d logical ones protected against errors that are at most $k/2%-local.
Quantum error correcting codes are commonly expressed in stabiliser formalism
introduced in the following.

Stabiliser Formalism. A stabiliser Tn is a set of hermitian operators, Ti, with
i = 1, ..., n that commute with each other, [Ti, Tj ] = 0 for all i, j. The stabilised
space consists of all eigenstates |Ψ〉 with eigenvalue +1 for all operators Ti.
A particularly example of stabilisers can be constructed from the Pauli group,
Pn, generated by the Pauli matrices σx, σy, σz and the identity 11 acting on n
qubits. As different Pauli operators acting on the same qubit anticommute only
a subset of the Pauli group commute with each other and hence form a stabiliser
set. These operators are Hermitian and they square to the identity, so they
have eigenvalues ±1. Such a maximal stabiliser set could admit a common set
of 2n eigenstates uniquely identified by the pattern of the stabiliser eigenvalues.
Generalisations of stabilisers to qudits are also possible. These will play a special
role in the definition of the quantum double topological models presented in the
following section.

One can define an error correcting code with the stabiliser formalism e.g.
based on the Pauli group Pn. Consider a certain commuting subgroup S of the
group Pn. Then the set of eigenstates of all elements of S with eigenvalue +1
is the stabiliser code C, where information can be stored. If S has s elements, it
can encode d = n− s qubits. Any operation acting on C that does not commute
with S can be detected by measurements of the S observables and it can be
corrected. The set of operators that commute with all the elements of S is called
the centraliser Z(S). The centraliser naturally includes S, but in general will
have extra elements. The distance k of the code C is the minimal length among
the elements of Z(S)\S up to a sign. Such elements serve as the encoded logical
operations. For an efficient encoding we thus assume that the errors are less than
$k/2%-local.

Topological Models. One can obtain topological models that support anyons
by employing the error correction formalism. This facilitates the presentation
of the fault-tolerant encoding of information in a physical system. Consider
a general two dimensional lattice defined on a surface M and a Hamiltonian
H = −

∑
i hi with local interaction terms hi acting on the links of the lat-

tice. Assume that the hi are the elements of the subgroup S. Then the ground
state space of H is the stabiliser code C which is 2d-dimensional and it is sep-
arated from the rest of the states by a finite energy gap. Turning an error cor-
recting code into a Hamiltonian is a dramatic conceptual step which was first
taken by Kitaev [13]. Apart from the fault- tolerant characteristics it provides a
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geometrical interpretation of quantum error correction, thus bringing it closer to
its physical realisation. Its drawback is an overhead in the number of employed
qubits. We should bear in mind that, as the error correcting procedure has been
substituted by a gapped. Hamiltonian that aims to penalise the generation of
errors, the errors we consider here are coherent, i.e. they are perturbations to the
Hamiltonian. The latter can cause virtual excitations which are automatically
suppressed by keeping the characteristic size of the system large compared to the
length of the perturbation. The size of the system corresponds to having a large
distance k for the C code, as it will become apparent in the following section. If
the errors are generated by thermal noise, then the mechanism described above
cannot automatically correct them. Alternative methods have to be considered
that are the subject of ongoing research.

We can demonstrate now with general arguments that particular Hamiltonians
described by the error correcting formalism can actually support quasiparticles
with anyonic statistics [34]. These quasiparticles are localised excitations of a
Hamiltonian H . Their location i is determined from the violation of the stabiliser
condition hi |Ψ〉 = |Ψ〉 which corresponds to the ground state. We shall focus on
the space C of states that corresponds to the presence of a number of excitations.
Assume that one can change the position of the quasiparticles in time by making
the Hamiltonian time dependent, Ht. In particular, we are interested in the
evolution of the state space C when one quasiparticle is braided around another.
For simplicity we discretise the time evolution of the punctures in small steps.
Consider such a small step with corresponding Hamiltonians Hti and Hti+1 .
Assume that these Hamiltonians are related by a $k/2%-local Hermitian operator
Oi in an isospectral way

Hti+1 = e−iOiεHtie
iOiε (13)

for some small value of ε. We are interested to see, what is the action of Oi on
the corresponding code spaces given by Cti and Cti+1 . If both of the Hamiltonians
Hti and Hti+1 correspond to k-codes, then the rotation of the Hamiltonian acts
on the space Cti+1 with the projector ΠGti

Oi. This gives rise to an adiabatic
transport. The total evolution of the system from time 0 to time T is given by

U(0, T ) = T lim
N→∞

N∏
i=1

ΠCUie−iHt=0ΔtU†
i ΠC (14)

where Ui =
∏

j≤i e
−iOjε. Assuming that the adiabaticity condition takes place at

each time step, then an initially prepared system in the code space C will remain
there. Nevertheless, states in the code space evolve in general. One can explicitly
show [19] that the operator U(0, T ) evolves the code space by the Holonomy
ΓA(γ) given in (3) for the case of cyclic adiabatic evolutions of the Hamiltonian.
Hence, by carefully engineering Hamiltonians one can obtain evolutions that give
rise to an Abelian or a non-Abelian geometrical phase ΓA(γ). In the following
we shall present a systematic way how to develop Hamiltonians that support
quasiparticles with a variety of anyonic statistical behaviours.
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2.2 Quantum Double Models

The Simple Case of the Toric Code. The toric code [13] is the simplest
topological lattice model that supports Abelian anyons. It is one of the most
studied topological models serving as a platform to develop new computational
schemes and as a test bed to probe the properties of topological systems. It
comprises of a square lattice with qubits positioned at its links and interaction
terms that act at the vertices, A(v), and plaquettes, B(p), of the lattice. They
are given by

A(v) = σx
v,1σ

x
v,2σ

x
v,3σ

x
v,4, B(p) = σz

p,1σ
z
p,2σ

z
p,3σ

z
p,4 (15)

where the indices 1, ..., 4 of the Pauli operators, σz and σx, enumerate the vertices
of each plaquette or vertex in a clockwise fashion. The defining Hamiltonian is

H = −
∑
v

A(v) −
∑
p

B(p) , (16)

Each of the interaction terms commute with the Hamiltonian as well as with
each other. Thus, the model is exactly solvable and its ground state is explicitly
given by

|gs〉 =
∏
v

1√
2

(
11 +A(v)

)
|00...0〉 , (17)

with σz|0〉 = |0〉. The state |gs〉 represents the anyonic vacuum state and it is
unique for systems with open boundary conditions.

Starting from this ground state one can excite pairs of anyons connected by a
string on the lattice using single qubit operations. More specifically, by applying
σz on some qubit of the lattice a pair of so called e-type anyons is created on
the two neighbouring vertices (see Figure 9(a)). The system is described by the
state |e〉 = σz |gs〉. An m pair of anyons lives on the plaquettes and is obtained
by a σx operation. The combination of both creates the composite quasiparticle
ε with |ε〉 = σzσx|gs〉 = iσy|gs〉. These excitations are detected by measuring
the eigenvalues of the corresponding A(v) or B(p) operators. Two equal Pauli
rotations applied on qubits of the same plaquette or vertex create two anyons on
this plaquette or vertex, respectively. The fusion rules, 1× 1 = e× e = m×m =
ε × ε = 1, e ×m = ε, 1 × e = e, etc., where 1 is the vacuum state, describe the
outcome from combining two anyons. In the above example, if two anyons are
created on the same plaquette or vertex then they annihilate. This operation also
glues two single strings of the same type together to form a new string, again
with a pair of anyons at its ends (Figure 9(b)). If the string forms a loop, the
anyons at its end annihilate each other, thus removing the anyonic excitation.
In case that only a part of the string forms a loop, the string gets truncated
(Figure 9(c)). For non-compact systems with boundaries a string may end up at
the boundary describing a single anyon at its free endpoint.

Anyonic statistics is revealed as a non-trivial phase factor acquired by the
wave function of the lattice system after braiding anyons, e.g., after moving an
m anyon around an e anyon (Figure 9(d)) or vice versa. Consider the initial
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Fig. 9. The toric code lattice with qubits at the links of a square lattice. Qubit rotations
enable manipulations of anyons on neighbouring plaquettes or vertices. (a) Application
of σz on a single qubit yields two e-type anyons placed at neighbouring vertices, where
the string passes trough the rotated qubits. Similarly, m anyons are created on plaque-
ttes by σx rotations. (b) Two σx rotations create two pairs of m-type anyons. If one
anyon from each pair is positioned on the same plaquette then they annihilate, thereby
connecting their strings. (c) When a part of a string forms a loop around unpopulated
plaquettes, the loop cancels (dashed). (d) Anyon e is produced by a σz on qubit 1,
|e〉 = σz

1 |gs〉. Subsequently an m anyon is circulated around the e anyon giving rise to
a non-trivial phase.

state |Ψini〉 = σx
5σ

z
1 |gs〉 with neighbouringw and m anyons. One m anyons is

then moved around an e along the path generated by successive applications of
σx rotations on the four qubits of v where e resides. The final state is

|Ψfin〉 = σx
1σ

x
2σ

x
3σ

x
4 |Ψini〉 = −σz

1(σ
x
1σ

x
2σ

x
3σ

x
4 |gs〉) = −|Ψini〉 . (18)

Such a minimal loop, which vanishes the moment it is closed, is analogous to
the application of the respective interaction term A(v) = σx

v,1σ
x
v,2σ

x
v,3σ

x
v,4 (or

B(p) = σz
p,1σ

z
p,2σ

z
p,3σ

z
p,4) of the Hamiltonian. This operator has eigenvalue +1

for all plaquettes of the ground state |gs〉. It signals an excitation, e.g., |Ψini〉,
with eigenvalue −1, when applied to the plaquette where an anyon resides, which
is our case. However, (18) is much more general, as the actual path of the loop
is irrelevant. It is worth noticing that the e and m anyons are distinguishable
as they reside exclusively on vertices or plaquettes of the lattice, respectively.
Hence, their exchange is not possible only their braiding (double exchange). This
still gives a behaviour that is different from the braiding of bosons or fermions.
More complicated anyonic models can give rise to anyonic statistics between
indistinguishable particles.

Alternatively, we can interpret (18) as a description of twisting ε, the com-
bination of an e and an m-type anyon, by 2π. The phase factor of −1 thereby
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reveals its 4π-symmetry, which is characteristic for half spin, fermionic parti-
cles [32]. Note that the e (m) anyons exhibit bosonic statistics with respect to
themselves [13].

The properties mentioned above do not need a torus configuration for the
lattice Hamiltonian. This becomes necessary only when one wants to employ
the toric code to encode quantum information. Indeed, non-trivial genus can
give rise to degeneracy that can serve as a quantum memory. This is a general
property that holds for other Abelian models as well. For example, moving from
one ground state to another on a torus with genus one involves creating a pair of
anyons and then moving them along non-contractible loops before re-annihilating
them, as seen in Figure 2.2. Denoting two non-equivalent trajectories on the torus
as 1 and 2 then one can define the states

|Ψ1〉 , |Ψ2〉 = C1
e |Ψ1〉 , |Ψ3〉 = C2

e |Ψ1〉 , |Ψ4〉 = C1
eC

2
e |Ψ1〉 . (19)

The operators C1
e and C2

e correspond to generating a pair of e anyons, moving
then along the directions 1 or 2 respectively and then annihilating them. Contin-
uously deformed anyonic loops correspond to the same states. So only four states
can be created in this way. A linearly dependent set of states can be obtained
by employing the loop operators that correspond to m or combinations of e and
m anyons. Hence, a four dimensional Hilbert space arises that can encode two
qubits. If the toric code is defined on a surface with genus g, then it can encode
2g qubits.

Fig. 10. The torus with genus g = 1 with the toric code model defined on it. The
ground state has fourfold degeneracy |Ψi〉 for i = 1, ..., 4. Starting from the vacuum
state |Ψ1〉 one can create a pair of m anyons and wrap them around two non-trivial
inequivalent loops on the torus giving the states |Ψ2〉 and |Ψ3〉. State |Ψ4〉 corresponds
to generating two inequivalent loops.

One should note the similarity with error correcting codes: the operators A(v)
and B(p) are the commuting operators that detect errors, while operators that
create a pair of anyons, move one of them around a non-contractible loop and
re-annihilate them correspond to encoded logical gates. When anyonic errors are
detected, then a string of operations is performed along the shortest distance
between the anyons that annihilates them. This elimination of errors can affect
the logical space only if the two errors have propagated at distance larger than
L/2, where L is the linear size of the torus. In that case the error correction
step might result in a non-contractible loop that corresponds to a logical gate.
Hence, the toric codes corresponds to a [[L2, 2, L]] error correcting code. With
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the Hamiltonian present, the generation of errors is penalised by an energy gap.
Errors in the form of virtual anyonic excitations are exponentially suppressed
from going around the torus. Hence, large tori sizes are favourable. Such Abelian
models can serve only as memories as the encoded logical gates are not sufficient
to perform universal quantum computation.

General D(G) Quantum Double Models. Quantum double models are
particular two dimensional lattice models with Hamiltonians that support a
rich variety of anyonic excitations [13, 33]. The toric code is a special case of a
quantum double model, D(Z2), based on the group Z2 = {1, e; e2 = 1}. Consider
the orthonormal basis {| g〉 : g ∈ G} that produces a Hilbert space, H, with
dimensionality |G|. Assign a space H to each link of the lattice which can be
thought of as a spin or qudit. In the case of the toric code, this space is two
dimensional corresponding to a qubit.

Fig. 11. Quantum double models can be defined on a square lattice where qudits are
places at the links. The lattice is oriented with vertical links pointing upwards and
horizontal ones rightwards. The enumeration for the links of a vertex (a) and of a
plaquette (b) is also given.

To define the Hamiltonian we need the linear operators Lg
+, L

g
−, T

h
+ and T h

−
acting on H with g, h ∈ G acting as

Lg
+ | z〉 = | gz〉 , Lg

− | z〉 =
∣∣ zg−1

〉
, T h

+ | z〉 = δh,z | z〉 , T h
− | z〉 = δh−1,z | z〉

(20)
These operators satisfy the following commutation relations

Lg
+T

h
+ = T gh

+ Lg
+, Lg

−T
h
+ = T hg−1

+ Lg
−, Lg

+T
h
− = T hg−1

− Lg
+, Lg

−T
h
− = T gh

− Lg
−

(21)
Let us consider an orientation for each edge of the lattice. For concreteness
we take a square lattice were the vertical links are oriented upwards and the
horizontal ones rightwards, as seen in Figure 11. For each vertex v of the lattice
we assign a vertex operator defined by
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A(v) =
1

|G|
∑
g∈G

Lg
+(e1)L

g
+(e2)L

g
−(e3)L

g
−(e4), (22)

where the ei’s correspond to the four edges connected to vertex v, as seen in
Figure 11. Similarly for a plaquette p one can define

B(p) =
∑

h1...h4=1

T h1
− (e1)T

h2
− (e2)T

h3
+ (e3)T

h4
+ (e4). (23)

A(v) projects out the states that are gauge invariant at vertex v and B(p)
projects out the states with vanishing magnetic charge at plaquette p. All of the
operators A(s)’s and B(p)’s commute with each other. Hence, the Hamiltonian

H = −
∑
v

A(v)−
∑
p

B(p) (24)

is in the stabiliser formalism and can be easily diagonalised. The ground state
| gs〉 satisfies

A(v) | gs〉 = | gs〉 , B(p) | gs〉 = | gs〉 (25)

for all v and p. The excitation states of this Hamiltonian are quasi-particles
that live on the vertices or the plaquettes of the lattice or simultaneously on
a vertex and a neighbouring plaquette, where the conditions (25) are violated.
It is possible to find the projectors that identify the type of quasi-particles and
their properties, but this problem is complex in its generality. The quasiparticles
can be Abelian, arising for example from the toric code model with Z2 group,
or non-Abelian arising e.g. from the S3 group.

The main property of the non-Abelian anyonic Hamiltonians that is of inter-
est for quantum computation is their large fusion space degeneracy created by
the presence of non-Abelian anyons. There quantum information can be encoded
which is protected from errors by the finite energy gap above it. Moreover, the
encoding can be performed in a non- local way making it inaccessible to envi-
ronmental decoherence. The advantage over the Abelian anyon encoding, as we
have seen for example with the toric code, is that now one can manipulate the
information by braiding the anyons together, rather than by creating anyons and
circulating them around the torus. In addition, the dimension of the encoding
space can be increased by creating more anyons rather than changing the topol-
ogy (genus) of the surface. This dramatically simplifies the control procedure
and can give rise, for certain types of non-Abelian models, to universal quantum
computation.

2.3 Exercises

– Exercise 1: Develop explicitly the Quantum Double theory for the Z2 group.
D(Z2) is the toric code.

– Exercise 2: Demonstrate the anyonic properties of the Abelian D(Zn) model.
– Exercise 3: Write down all the anyonic particles for D(S3) and demonstrate

their non-Abelian fusion and statistics.
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3 Jones Polynomials

3.1 A New Quantum Algorithm!

The study of anyonic systems for performing quantum computation has led to the
exciting discovery of a new quantum algorithm that evaluates the Jones polyno-
mials [38]. These polynomials are topological invariants of knots and links. They
were first connected to topological quantum field theories by Witten [26]. Since
then they have found far reaching applications in various areas such as in biology
for DNA reconstruction and in statistical physics [39]. The best known classical
algorithm for the exact evaluation of Jones polynomials demands exponential
resources [40]. Employing anyons only a polynomial number of resources is re-
quired to produce an approximate answer of this problem [41]. The techniques
used by manipulating anyons resemble an analogue computer. Indeed, the idea is
equivalent to the classical setup, where a wire is wrapped several times around a
solenoid that confines magnetic flux: by measuring the current that runs through
the wire one can obtain the number of times the wire was wrapped around the
solenoid. The translation of the corresponding anyonic evolution to a quantum
algorithm was explicitly demonstrated in [42].

3.2 Braid Group and Traces

To better understand the structure of the computation, let us first introduce a
few necessary elements. The main mathematical structure behind the evolution
of anyons is the braid group Bn on n strands. Its elements bi for i = 1, ..., n− 1
can be viewed as braiding the world lines of anyons. Specifically, if n anyons are
placed in a certain order, then the element bi describes the effect of exchanging
the position of anyons i and i + 1, e.g. in a counterclockwise fashion. Thus all
possible manipulations between the anyons can be written as a combination of
the bis. The elements of the group Bn satisfy the following relations

bibj = bjbi, for |i− j| ≥ 2, (26)

bibi+1bi = bi+1bibi+1, for 1 ≤ i < n, (27)

bib
−1
i = b−1

i bi = e, (28)

where e is the identity element of the group. These relations have a simple
diagrammatic interpretation, which can be found in Figure 12. Even though we
can represent the braids with diagrams we should not forget that we are actually
interested in their matrix representation.

The next element we need for the quantum algorithm is the introduction of
a trace that establishes the equivalence between braidings and knots or links. A
version of this tracing procedure called the Markov trace consists of connecting
the opposite endpoints of the braids together, as shown in Figure 13(a). Alterna-
tively, one might connect neighbouring strands in a pairwise fashion. This gives
rise to the Plat trace shown in Figure 13(b). Hence, a braid with a trace gives
a knot or a link. Surprisingly, every knot or link is equivalent to a braid with a
trace due to Alexanders theorem [43]. Hence, one can simulate a knot or a link
by simply braiding anyons of the same type.
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Fig. 12. Schematic representation of the Yang-Baxter equations. (a) Exchanging the
order of two braids does not have an effect if they are sufficiently far apart, i.e.
bibj = bjbi when |i − j| ≥ 2. (b) Two braidings are equivalent under simple con-
tinuous deformations of the strands, bibi+1bi = bi+1bibi+1 for 1 ≤ i < n. (c) Undoing
a braid gives the identity bib

−1
i = e.

3.3 Reidemeister Moves and Skein Relations

To demonstrate the relation between anyons and the Jones polynomials we need
to introduce a way of assigning topological invariant polynomials to links. First
we need to define equivalency classes between links that can be continuously
deformed into each other. Surprisingly three elementary moves are sufficient to
establish these equivalencies. They are called the Reidemeister moves depicted
in Figure 14. Topologically equivalent links can be related by these moves.

Next we want to assign polynomials to links that are insensitive to Reidemeis-
ter moves. As seen in Figure 15(a,b), the Skein relations reduce the crossings of
the links to a combination of avoided crossings and coefficients parameterised by
A. If this is applied to all crossings, then the only left components are unlinked
loops. By substituting each loop with d as seen in Figure 15(c) we obtain a Lau-
rent polynomial in A. This polynomial is called the Kauffman bracket 〈L〉(A) of
the link L. Kauffman brackets have the following properties 〈LO〉 = d〈L〉 for L
being a general non-empty link and O being the trivial link, while 〈O〉 = 1.
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Fig. 13. (a) The Markov trace performed by linking the opposite ends of the strands.
(b) The Plat trace connects pairwise neighbouring strands. The Plat trace can be
expressed as a Markov trace with the addition of the Φ graph element.

Fig. 14. (a) The first Reidemeister move undoes a twist. (b) The second Reidemeister
move separates two unbraided strands. (c) The third Reidemeister move slides a strand
under a crossing.

One can show that the Kauffman bracket satisfies the Reidemeister moves
(a,b). Indeed, by employing the Skein relations we see that the last two Rei-
demeister moves are identically satisfied. To satisfy the first Reidemeister move
one needs to rescale the Kauffman bracket in the following way

VL(A) = (−A)3w(L)〈L〉(A) (29)

The parameter w(L) is the writhe or twist of the link. For an oriented link assign
a +1 to a clockwise crossing and a −1 to an anticlockwise crossing. The writhe
is then the sum of these signs for all crossings. One can show that the Jones
polynomial, VL(A), is an invariant with respect to the first Reidemeister move.
It is hence a topological invariant of links.

Finally, one can show that the trace of unitary representations of the braid-
ing group corresponds to the Kauffman bracket of the Markov trace of braided
strands [42]. Thus one has

tr(B(A)) = 〈(B)Markov〉(A). (30)

where the braid B have been Markov traced and then the corresponding Kauff-
man bracket has been evaluated.
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Fig. 15. (a) and (b) depict the Skein relations. (c) For every closed loop we assign the
number d.

3.4 Analog Evaluation of Jones Polynomials

Consider the following anyonic evolution. Create n anyons of quantum dimension
d from the vacuum state in pairs. In the following, |α〉, denotes the fusion state
corresponding to the case where the fusion of the anyons in the pairwise fashion
in which they were created results in the vacuum for each pair. Assume we
perform an arbitrary braiding B among these anyons before we pairwise fuse
them with the same ordering as the pair creation. The probability of obtaining
the vacuum state at the final fusion is a measurable quantity given by

〈α |B(A) |α〉 = 1

dn/2−1
〈(B)Plat〉(A) (31)

Here B has been Plat traced and then the corresponding Kauffman bracket has
been evaluated. Hence one can obtain the Kauffman bracket from the prob-
ability of finally obtaining the vacuum state. The evaluation of the writhe is
a polynomially easy task. So the above prescription efficiently gives the Jones
polynomial. The choice of braid representation B(A), associated to a particular
type of anyons, depends on the parameter A that also appears as a variable of
the Jones polynomial.

The Jones polynomial has been shown to be a topological invariant [38], i.e. its
value for a given link L is unchanged under continuous deformations. Consider
two links L1 and L2. If VL1 �= VL2 then L1 and L2 are inequivalent, i.e. they
cannot be mapped to each other by continuous deformations. Note, however,
that inequivalent links may have the same Jones polynomial. Computation of the
Jones polynomial by a classical computer appears to be exponentially hard due
to the fact that there are exponentially many terms to sum and no closed form
for the number of loops as a function of the resolution of the link exists. On the
other hand it is rather easy to approximate its value by employing anyons. The
translation of the anyonic evolution to algorithms was performed by Aharonov,
Jones and Landau in [42].

3.5 Exercises

– Exercise 1: Demonstrate that the last two Reidemeister moves are compatible
with the Skein relations.

– Exercise 2: Demonstrate that the Jones polynomials are invariant under the
first Reidemeister move. For that you might need to first check how the Skein
relations reduce a single twist.
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– Exercise 3: Demonstrate that the trace of a braiding corresponds uniquely
to the Markov trace.

– Exercise 4: Demonstrate that the Kauffman bracket of the trefoil is given by
A5 +A3 −A−7.

4 Outlook

4.1 Topological Entropy

In order to perform topological quantum computation one first needs to identify
if a certain medium has topological properties. As topological properties are
non-local in nature we cannot expect a local order parameter to be adequate.
Hamma, Ionicioiu and Zanardi [45] revealed entropic properties of the toric code
ground states that are unique, due to their topological character. Subsequently,
Kitaev and Preskill [46] and simultaneously Levin and Wen [47] introduced the
concept of topological entropy that distinguishes if a system is topologically
ordered or not. We shall briefly review these constructions.

Consider a pure system prepared in its ground state and a bipartition in
R and its complement R̄ that are separated by the boundary ∂R. Denote by
ρR the reduced density matrix of R. Assume that its von Neumann entropy
SR = −tr(ρR ln ρR) satisfies

SR = α|∂R| − γ + ε(|∂R|), (32)

where ε(|∂R|) tends to zero as the size of the boundary, |∂R|, tends to infinity.
The von Neumann entropy does not have a ‘volume’ term as it corresponds to
a pure state, while the area law is generically expected for a gapped system. As
discussed in [45–47], systems with non-zero γ are topologically ordered. Indeed,
γ is related to the total topological dimension D of the model, i.e.

γ = lnD = ln

√∑
q

d2q (33)

where dq is the quantum dimension associated with anyon q. When the system
does not posses anyons, then D = 1 as it gets contributions only from the
vacuum, giving γ = 0.

One can isolate the constant term from the von Neumann entropy in two
different ways. Consider a system defined on a closed surface Σ, e.g. a sphere,
admitting the partition in four areas, A, B, C and D, as seen in Figure 16. Then
γ can be obtained from the following linear combination of entropies [46]

γ = SA + SB + SC − SAB − SAC − SBC + SABC . (34)

This can be demonstrated from a direct substitution of (32). The entropy SAB

is evaluated for the composite area of A and B.
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Fig. 16. The surface Σ partitioned in the areas A, B, C and D

Fig. 17. The surface Σ partitioned in four different ways, A, B, C and D with corre-
sponding von Neumann entropies SA, SB, SC and SD respectively

Alternatively, one can evaluate the entropy for the areas depicted in Figure
17. The constant part can be isolated by the following combination

γ = −1

2
[(SA − SB)− (SC − SD)] (35)

Note that these are different partitions of the same system rather than parts
of the same partition as employed in (34). Both relations are exact in the limit
where all the involved areas R are large enough so that ε(|∂R|)→ 0. The latter
method gives an intuitive picture for the topological character of γ. As the
system is gapped the von Neumann entropies obtain in general contributions
from short range correlations. The difference SA − SB has contributions that
come from the upper horizontal part of the area A. Similarly, the contributions
from SC−SD come from the a similar upper part. Hence, their difference should
go to zero when the respective areas become sufficiently large. The only possible
contribution could arise from a non-local operator, like a loop that wraps non-
trivially around the area A. This contribution can not be cancelled from the
entropies of SB, SC or SD; hence it results in a non-zero value of γ. Such a
contribution is indeed possible if the system is topologically ordered.
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4.2 Topological Memories

As topological systems can store information in an efficient way, they have been
considered as quantum memories. Indeed, it has been discussed how virtual
local excitations are suppressed due to the finite energy gap that protects non-
locally encoded information. If errors happen in a probabilistic way, e.g. in the
presence of a non-zero temperature, then topological models seem to be weak
in fighting decoherence. By studying the behaviour of the topological entropy
against probabilistic errors it has been shown that finite temperature destroys
the topological order of a system in general [48–50]. In other words, a finite
probability of anyon generation in a system will generally alter the encoded
quantum information.

Lately, several models have been presented to combat temperature errors.
Their goal is to slightly alter topological models in order to recover a decoher-
ence time that increases with the size of the system (the system is hence stable
in the thermodynamic limit), or at least remains finite, but large. General lim-
its on the passive protection of quantum information by Hamiltonians is given
in [51]. Recently, Hamma, Castelnovo and Chamon [52] demonstrated that if
one couples the toric code appropriately with phonon fields then at- tractive
interactions between anyons are created that increase logarithmically with their
distance. This will eventually suppress the generation of unwanted anyons and
their propagation around the system that destroys the encoded information.
An alternative method was presented by Chesi, Roethlisberger and Loss [53].
They demonstrated that polynomially repulsive interactions between the toric
code anyons suppress thermal errors efficiently. Both of these models need either
detailed engineering or long range interactions to become effective so they are
rather hard to implement physically. It is a fascinating current topic of research
to establish whether or not it is possible to engineer a quantum memory that
can protect against errors in an efficient way.

In parallel a number of algorithms have been developed that aim to combat
thermal errors that are inspired from topological models. For example, one could
employ error correction in order to combat the loss of physical qubits from the
topological system [54]. Alternative methods, that do not rely on a Hamiltonian
are given by Raussendorf and Harrington [55]. They proposed a one-way quan-
tum computation scheme integrated with topological quantum computation and
magic state distillation [56] that manages to achieve an error threshold of 0.75%.
This is a very successful scheme that significantly narrows the gap between the-
oretical constraints and experimental abilities for the performance of quantum
computation.

4.3 Anyons: Where Are They?

One can easily recognise the significance of topological systems for performing
fault-tolerant quantum computation. There are two main categories of physical
proposals for the realisation of two dimensional topological systems. Systems
that are defined on the continuum and discrete systems. It is natural to ask,
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which are the most promising architectures for realising them in the laboratory.
Undoubtable the Fractional Quantum Hall Effect is so far the most developed
area. It is concerned with a two dimensional cloud of electrons in the presence of
a strong perpendicular magnetic field. There is a big variety of topological phases
that arise as a function of the magnetic field and the density of electrons [57].
The most striking characteristic is that the system behaves as if it is composed of
fractions of the electron charge. This was first demonstrated experimentally by
Tsui, Stormer and Gossard [58] and it was theoretically explained by Laughlin
[4]. Alternative systems are the px + ipy superconductors that can support frac-
tional vortices with anyonic statistics [59, 60]. Recently, topological insulators
came into play where they present similar properties as the fractional quan-
tum Hall effect without the presence of a magnetic field [61]. Alternative to the
continuum cloud of electrons one can consider two dimensional lattice systems.
The quantum double models presented here have been proposed to be realised
with Josephson junctions [62]. First experimental results for the toric code have
already appeared [63] where the four spin interaction terms are realised. The
demonstration of the anyonic statistics in the toric code has performed with
four photons [64] and six photons [65]. A drawback of these models is the need
for many body interactions. A non-Abelian anyonic model that requires only
two body interactions has been presented by Kitaev [24]. A Proposal for its re-
alisation with cold atoms was given by Duan, Demler and Lukin [66] and with
polar molecules by Micheli, Brennen and Zoller [67].

4.4 Exercises

– Exercise 1: Demonstrate relation (4.2).
– Exercise 2: Demonstrate relation (4.3).
– Exercise 3: Demonstrate relation (4.4).
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