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Abstract. Efficient segmentation of the left atrium (LA) wall from de-
layed enhancement MRI is challenging due to inconsistent contrast, com-
bined with noise, and high variation in atrial shape and size. We present
a surface-detection method that is capable of extracting the atrial wall by
computing an optimal a-posteriori estimate. This estimation is done on a
set of nested meshes, constructed from an ensemble of segmented training
images, and graph cuts on an associated multi-column, proper-ordered
graph. The graph/mesh is a part of a template/model that has an asso-
ciated set of learned intensity features. When this mesh is overlaid onto
a test image, it produces a set of costs which lead to an optimal segmen-
tation. The 3D mesh has an associated weighted, directed multi-column
graph with edges that encode smoothness and inter-surface penalties.
Unlike previous graph-cut methods that impose hard constraints on the
surface properties, the proposed method follows from a Bayesian formula-
tion resulting in soft penalties on spatial variation of the cuts through the
mesh. The novelty of this method also lies in the construction of proper-
ordered graphs on complex shapes for choosing among distinct classes of
base shapes for automatic LA segmentation. We evaluate the proposed
segmentation framework on simulated and clinical cardiac MRI.

Keywords: Atrial Fibrillation, Bayesian segmentation, Minimum s-t
cut, Mesh Generation, Geometric Graph.

1 Introduction

Segmentation of the heart’s left atrium (LA) is a highly relevant problem in the
clinical domain. In the context of medical imaging, delayed enhancement MRI
(DE-MRI) has been shown to produce contrast in myocardium (heart wall) and
in regions subjected to fibrosis and scarring [1]. So, these regions are associated
with risk factors and treatment of atrial fibrillation (AF). Imaging with DE-MRI
is therefore useful for the evaluation of potential effectiveness of radio-ablation
therapy and for studying recovery. This AF recovery includes analysis of scar-
ring as well as atrial shape and structural remodeling (SRM) after treatment.
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Fig. 1. Slices of left atrium DE-MRI images showing the challenges in segmentation

Automatic segmentation of the heart wall in this context is quite important; in
a single clinic, hundreds of man hours are spent per month in manual segmenta-
tion. In DE-MRI images, this becomes a challenging task, because of relatively
low and inconsistent contrast, high level of unwanted texture and noise, and high
variability of atrial shape. Moreover, this problem gets aggravated by inaccura-
cies in cardiac gating and the SRM in chronic AF. Thus, this is a difficult image
analysis problem, which also represents an ubiquitous challenge in a 3D medical
segmentation: segmenting in the presence of relatively poor signal, high noise,
and large variations in shape.

Several papers address the problem of segmenting the blood pool in MRI an-
giography (MRI-A) images [2, 3]. These methods make use of the relatively homo-
geneous brightness of the blood pool inMRI-A, which is well suited for deformable
models or registration-based approaches. However, high-quality properly-aligned
blood-pool images are often not readily available from DE-MRI protocols. Fur-
thermore, due to thinness of the atrium wall, algorithms based on template regis-
tration fail as they often rely on coarse anatomical features. Figure 1 shows
examples of DE-MRI images of the LA that depict its varying, low-contrastbound-
aries, high level of correlated noise, and high shape variability.

A variety of conventional segmentation methods have proven to be ineffective.
One strategy to address these challenges is to introduce a prior on the segmen-
tation problem, either in the form of probability on specific kinds of shapes
or more generally on shape properties, such as smoothness. These priors are
combined with image matching terms or simply feature detection to find some
ideal compromise between the prior and the data. Level-set methods [4] rely on
gradient-descent optimizations, which are sensitive to initializations and local
minima. We have found such local optimizations to be particularly ill suited
to this problem. Statistical models, such as active shape models [5] have been
proven to be effective, but are also limited in their ability to deal with the small
and large-scale shape variability. Generally, coarse-to-fine optimization strategies
can help avoid local minima, but have proven inadequate for this segmentation
problem, mostly because the features of interest (thin, brighter regions and small
dark gaps between the atrium and nearby tissues) do not hold up under blurring.
While recent developments addressing this problem [6] are promising, they rely
on deformable models and/or image registration approaches that tend to also
get caught in local minima.

The difficulty of segmentation in this context suggests that this problem would
benefit from a global optimization strategy. Recently, Wu and Chen [7] described
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a scheme by which the problem of finding an optimal function value on a discrete
grid (a surface net problem) is represented as a minimums-t cut on a proper-
ordered graph. Optimal solutions to the s-t cut are given by relatively efficient,
polynomial-time algorithms. Li et al. [8] applied a version of this surface-net
formulation to simultaneously segment multiple coupled surfaces in noisy im-
ages by including image-based costs and geometric constraints of the underlying
graph. That approach has demonstrated some success in several challenging im-
age segmentation problems [8–10]. This surface-net relies on the construction of a
properly-ordered graph, which also defines the topology of the resulting segmen-
tation. The construction of such graphs is challenging for complex and irregular
anatomical structures, such as LA. Using naive offsets from a base mesh results
in “tangling” between columns, and resulting cuts are not guaranteed to be
valid surfaces or regions. Thus, these proper ordered graph-cut methods require
a careful construction of the underlying graph.

The contributions of this paper are as follows. We show that a Bayesian for-
mulation with a Markov random field prior can give rise to a certain type of
surface-net problem, namely, a VCE-Net, which is solvable by the algorithm
of Wu and Chen [7]. This formulation gives rise to soft penalties on surface
smoothing and surface coupling, which, as we will show, is superior to the hard
contraints described by Li et al.. The Bayesian formulation also gives rise to a
set of learned feature detectors, so that the method does not rely on user-defined
methods for characterizing edges or regions. We also propose a new method for
the graph construction on irregular surfaces that avoids tangling. To address the
variability in shapes, we process training examples into clusters to form multiple
shape templates, that compete in our optimization scheme for the best segmen-
tation. We evaluate the method on a set of synthetic examples and LA DE-MRI
images with hand segmentations as the ground truth.

2 Methods

2.1 A Bayesian Formulation of Graph-Cut Segmentation

We treat the problem of segmentation as a maximum a-posteriori estimation.
The proposed work differs from many previous Bayesian methods in two impor-
tant aspects. First, we formulate the segmentation as estimation problem on a
graph structure, rather than the image directly. Secondly, we obtain a global
optimum to this problem by means of a graph-cut algorithm. The data for this
formulation is the image data sampled at locations that are associated with the
model. The prior is expressed as a Markov random field (MRF) on the loca-
tion of the cut in the graph which is related to the formulation introduced by
Ishikawa [11]. The graph, which forms a 3D mesh, must approximately adhere
the shape to be segmented. It introduces a topological structure on the problem
over which the Markov property is introduced.

We begin with a description of the graph structure and associated notation.
The graph G is a proper-ordered graph with a set of columns, a neighborhood
structure on those columns, and a consistent topological structure as one moves
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up and down the columns. We define the base graph G0 = (V 0, E0), as a set
of vertices {v0i ∈ V 0}, and edges, {e0i,j = (v0i , v

0
j ) ∈ E0}. For a proper-ordered

graph, the vertices are arranged logically as a collection of (conceptually) parallel
columns that have the same number of vertices. The entire graph G consists of
an ordered set of copies of the base graph, and each vertex can be referenced
by its column i and the position within that column l, e.g. vli. The collection
Gl = (V l, El) of vertices and edges at the same position l across all columns is
called a layer. For ease of notation, an edge or vertex without a superscript, vi
or eij , is considered with respect to the base layer, which defines the topology
of all columns. We let N be the number of columns and L be the number of
vertices in each column (number of layers). The neighboring columns of the ith
column are denoted as the set Ni.

Above is the topological structure of the graph; here we describe its geometry.
Each node in the graph has an associated position in the 3D volume/image,
which we denote as xl

i = x(vli) ∈ IR3. Associated with each xl
i, there is a set of

image coordinates, which form an image patch for that vertex, which we call P l
i .

Associated with each patch is a probabilistic model of the intensity patterns one
would find in the image at those locations, which is like the formulation of [5].

We now model a set of image measurements associated with a segmenta-
tion on the graph. We introduce a probabilistic model with respect to a single
segmentation and extend that to coupled surfaces subsequently. We define the
surface segmentation as a subset of nodes in the graph S ⊂ V . Because we re-
strict the optimal cut to have only one vertex per column, we can parametrize
the cut with respect to the base mesh, thus S can be represented as the func-
tion S : V 0 �→ [0, . . . L − 1]. Furthermore, S(i), combined with the topology
introduced by the base mesh and the 3D coordinates of the vertices describes a
surface in 3D. Thus, we are describing a surface estimation problem.

For any given vertex in the graph, vli, we can sample the image I as prescribed
by the patch P l

i . We call the set of image patches for all vertices in the graph as
IV and the set of patches associated with segmentation to be IS . For a particular
segmentation, there is an associated patch ISi for each column i.

Now we introduce the probabilistic model, the posterior probability of a seg-
mentation conditioned on image data as follows. Using Bayes rule and consider-
ing only terms in the optimization we have:

P (S|IV ) ∝ P (IV |S)P (S) (1)

Next we introduce specific models. For the image intensity model we assume
independence of image patches and use an isotropic Gaussian, with a mean for
each column that is learned from a set of training examples. That is,

P (IV |S) ∝ ΠN
i=1P (ISi ) = ΠN

i=1 exp

(
− 1

2σ2
‖ ISi − μi ‖2

)
(2)

where μi is an average patch template learned for surface with physical loca-
tions of column i in training examples, and σ is a standard-deviation parameter
associated with this data.
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For the surface prior, we use a MRF on the function S(i). Let C ⊂ V 0 × V 0

be the set of cliques in the base graph, defined by the neighborhood structure,
and C(S(j), S(k)) is the pairwise clique potential. We use a Gibbs potential on
these cliques for the MRF prior, which gives:

P (S) = exp

(
−

∑
(vj ,vk)∈C

C(S(j), S(k))

)
, (3)

where the clique potential C(·) typically takes the form f(|S(j)−S(k)|). Here f
is monotonic and convex (for optimization to be feasible). In this paper, we use
f(d) = αd1+γ ; γ > 0.

We minimize the negative log posterior to get the optimal segmentation as:

argminS

[
λ

N∑
i=1

‖ ISi − μi ‖2 +
∑

(vj,vk)∈C
C(S(j), S(k))

]
, where λ = 1/(2σ2). (4)

Segmentation of LA wall requires extraction of epicardial and endocardial sur-
faces. So, we extend the model to two surfaces/segmentations, S1,S2:

P (S1,S2|IV ) ∝ P (IV |S1,S2)P (S1,S2) (5)

We use the same independence assumption with different mean patches for the
different surfaces. As we use the MRF for intra-surface smoothness, we propose
an inter-surface probability to model interactions between surfaces.

P (S1,S2) = exp

(
−

∑
(vj ,vk)∈C

C(S1
j , S

1
k)

)
exp

(
−

∑
(vj ,vk)∈C

C(S2
j , S

2
k)

)

exp

(
−

N∑
j=1

g(S1
j − S2

j −Δj)

)
, (6)

where Δj is the ideal inter-surface distance, which may vary with column and
learned from training examples, and g(S1

j −S2
j −Δj) must meet the same condi-

tions of f() in the clique penalty, but must also enforce S1
j < S2

j . For this work
we use

g(d) =

{
α′d1+γ′

d > −Δj

∞ d ≤ −Δj
(7)

The optimization problem for coupled surfaces is therefore:

argminS1,S2

[
λ

N∑
i=1

(
‖ IS

1

i − μ1
i ‖2 + ‖ IS

2

i − μ2
i ‖2

)

+
∑

(vj ,vk)∈C

(
C(S1(j), S1(k)) + C(S2(j), S2(k))

)
+

N∑
j=1

g(S1
j − S2

j −Δj)

]
(8)
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2.2 Graph Cut Formulation

From the objective functions in the previous section, we now construct a revised
graph and define an optimal graph cut that is equivalent to the above opti-
mization. The construction of the derived graph follows, generally, the method
proposed by [7] for converting this optimization into an s-t cut. Wu et al. [7] de-
tail general strategies for solving surface-net problems of the type described by
Eq. 8. They describe both the Vnet problem, which imposes hard constraints on
inter-column behavior and the VCEnet problem, which allows for soft penalties.
Previous work including [9, 10] shows the use of the Vnet solution for image seg-
mentation. The Bayesian formulation in the previous section leads to a VCEnet
problem, which we also extend to coupled surfaces.

We now briefly review the conversion to the graph-cut problem. The weights
on vertices and edges on the extended graph are denoted by w(v) and c(e),
respectively. Every vertex in the base layer is connected by a directed edge with
a cost +∞ to every other base vertex in its adjacent (neighboring) columns. This
makes the base layer strongly connected. For each vertex in layer l ∈ [1, L− 1],

a weight of wl
i = cli − cl−1

i is assigned. A directed edge el,l−1
i,j with a cost +∞ is

let from that vertex to the one below it.
The MRF property is incorporated as follows. For every pair of adjacent

columns in G, a sequence of directed edges, el,l−d
i , d = {l, ..., 0} go from a vertex

vli in i-column to vertices vl−d
j for all j ∈ Ni, as shown in Figure 2(a). For

notational convenience we first define an intermediate function to edge weights

q(el,l−d
i,j ) = f(d), d = 0, . . . , l, (9)

where f(d) is the penalty, which derives from the clique potential, on the dif-
ference in the “height” of adjacent cuts. The weights on these edges are defined
through a finite-difference scheme for second derivatives (along columns) of q:

w(el,0ij ) = q(el,1ij )− q(el,0ij ) (10)

w(el,mij ) = q(el,m+1
ij ) + q(el,m+1

ij )− 2q(el,mij ), m = 1, . . . l − 1. (11)

For the penalty on inter-surface distance, we extend the method of [8] to the
VCEnet construction We construct two identical disjoint subgraphs, using the
procedure above, one for each surface. In addition, a set of directed arcs are added
between a pair of subgraphs such that the consistency is maintained between a
pair of mutually interacting surfaces. To achieve this interaction, we include a
set of arcs between corresponding columns of two subgraphs which are penalized
by soft constraints. The formulation resembles the one above; however, all edges
are between corresponding columns in the two subgraphs. For ease of notation,
all references to vertices associated with the second/inner surface will have a
hat (i.e., ·̂). So, vli and v̂li are corresponding vertices on the two subgraphs. We
denote edges between the two surface graphs with a ·̃.

Part of our design for this segmentation problem is that one surface should
always lie inside the other surface (or “below”, if we imagine all columns standing
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(a) (b)

Fig. 2. (a) Inter-column arcs. (b) Inter-surface arcs. Blue arrows from column i1 to i2
represent arcs subjected to ideal inter-surface distance, Δi.

vertically). To achieve this, we include a directed edge between graphs, ẽl,l+1
i,i =

(v̂li, v
l+1
i ) with weight w(el,l+1

i,i ) = +∞. Similarly, we construct a set of weighted
edges that capture the second derivative of the inter-surface penalty when the
inner/outer constraint is met as shown in Figure 2b.

ẽl,l+Δi+d
i,i = (vli, v̂

l+Δi+d
i ), d = −Δi + 1, . . . (12)

and w(ẽl,l+Δi+d
i,i ) = g(d+ 1)− 2g(d) + g(d− 1). (13)

Subsequently, we obtain optimal segmentation of coupled surfaces by finding
a minimum s-excess set in the derived graph, as described in Wu et al. [7].
This minimum s-excess set is computed by applying a minimum s-t cut in the
transformed graph, Gst.

2.3 Building a Valid 3D Mesh

In the previous section, we described topology of the underlying graph based
on a triangle structure per each layer. Here we describe the assignment of 3D
positions to mesh vertices and triangulation of each layer so that these layers
form a nested set of watertight meshes in 3D. This complete collection including
a set of vertices, their 3D positions, and the prismatic topology of the nested
meshes form a proper-ordered (PO) mesh.

For constructing the PO-mesh, we use an extension of the dynamic-particle-
system method proposed by Meyer et al. [12]. This method computes thin-layers
of triangular prisms that conform to shapes. A mesh is built using a template
shape (described in the next section), which approximates the LA that we intend
to segment. This template shape is represented as the zero level-set of a signed
distance transform in the volume. So the following paragraph describes how to
generate layers of high-quality meshes on top of this template.

The meshing strategy uses a cluster of points called particles. These particles
are distributed on an implicit surface by interactively minimizing a potential
function. The potential function based on pairwise distances defines a repulsive
interaction between particles as, U l,l

i,j = Φ(|xl
i − xl

j |). We denote the sum of this
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collection of repulsive potentials within each layer as R. These particle systems
have been shown to form consistent, nearly regular packings on complex surface
[12]. Once points have been distributed on an implicit surface (with sufficient
density), a Delaunay tetrahedralization scheme can be used to build a water-tight
triangle mesh of the surface [13].

To build a nested set of surface meshes, we require a collection of offset sur-
faces, both inside and out, that not only inherit the topology of the base sur-
face, but also represent valid, watertight 3D triangle meshes. This is crucial,
because the cuts, which pass through vertices from different layers, must also
form watertight triangle meshes. Thus, it results to bend the columns in order
to avoid tangling of columns/triangles as the layers extend outward from the
mean shape. For this, we introduce a collection of particle systems, one for each
layer in the graph/mesh, and we couple these particles by an attractive force
(Hooks law) between layers. Thus, there is an additional set of potentials of the

form U l,l+1
i,i = |xl

i − xl+1
i |2, and we denote the sum of the attractive forces of

neighboring particles between layers as A.
To optimize an ensemble of particle systems for L layers, we perform gradient

descent, using asynchronous updates, as in [12], on the total potential R +
βA. Figure 3a illustrates a nested 3-layered mesh for one of the LA templates.
The parameter β controls the relationship between attraction across layers and
repulsion within layers and is tuned to prevent tangling. For this paper, we have
used β = 10. The optimization requires an initial collection of particles. So, we
place a particle at each point where the adjacent voxels have values on either side
of the level set. This gives an average density of approximately one particle per
unit surface area (in voxel units). The physical distance between layers must be
inversely proportional to the particle density within layers. This is a compromise
between the tangling that results from large offsets and the extra computation
associated with many thin layers. Since a good mesh constraints the topology
and the set of possible segmentations, we try different meshes based on the
assumption that all good segmentations can be represented as spatially varying
offsets of a mean. This corresponds to around 14,000 particles per each mesh
layer for heart images and 2000 particles for simulated images. We have used a
total of 30 layers, spaced at 0.5 pixels each, which gives each template a capture
range of approximately 15 pixels.

2.4 Learning Template Meshes and Feature Detectors

Here we describe the construction of template shapes and the mechanism for
computing costs on nodes from input images. The shapes of LA in the context
of AF are highly variable. To address this, we rely on a training set of preseg-
mented images. For this paper, the training set consisted of 32 segmented DE-
MRI images of the LA. The work in this paper represents a prototype, and we
anticipate a production-scale system that relies on hundreds of training images.
These training images enable two things. First, training images give us a way of
constructing a collection of PO-graphs, so that new images can be segmented as
cuts through one of these graphs. Second, training images give us examples of
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(a) (b) (c)

Fig. 3. (a) An example of several layers of PO-meshes for the LA.(b) Examples of
average shapes, derived from k-means clustering on distance transforms of training
images, around which the PO-meshes are constructed. (c) A mock up of a simplified
PO-mesh in 2D with examples of feature detectors learned from the training data—
actually P0-meshes for the LA have over 400,000 vertices.

patch profiles for the features that define epi- and endocardial surfaces, which
leads to the costs at each node in the PO-graph.

We begin by clustering the examples based on their shapes. For this, we
compute distance transforms of each endocardial surface. Training images are
aligned via translation to ensure common center of mass for the blood pool
(region bounded by the endocardium). This demands careful manual initializa-
tion of a template which will be handled in our future work by inducing other
transformations. We then compute clusters using k-means using mean-squared
distance metric between volumes. Based on the cluster residual curve, 5 clusters
are chosen. However, one of the clusters has been removed from the test, because
it contained only two (high distorted) examples. Surface meshes associated with
the distance-transform means of these four clusters are shown in Figure 3b.

The cost associated with each vertex reflects the degree to which that vertex
is a good candidate for a boundary, which will be found via a graph cut. At each
vertex, the training data is used to derive a patch profile along a line segment,
or stick perpendicular to the surface. We sample the stick at a spacing of one
voxel. In our case, a patch size of 11 is considered along the normal direction
of the surface. The intensity along each stick on each vertex of each template
is computed by a weighted average of intensities of sticks for each feature point
in each training image. Thus, for a particular vertex in a particular cluster, the
intensities along a stick would correspond to an average of several hundreds of
neighboring sticks from different images (that share the same blood-pool center).
Thus the average stick at a vertex would be an isotropic Gaussian weighted
average of all the nearby sticks (within the cluster) with standard deviation of
2 pixels. Figure 3c shows a diagram of the stick configuration and several stick
intensity profiles for parts of a particular template.

3 Experiments and Results

For validation, we apply Bayesian framework based graph cut method on 100
simulated images of size 64× 64× 96 voxels, and 30 DE-MRI images of the left
atrium of size 400×400×107 voxels. In all of our experiments, 30 mesh layers were
generated, spaced at 0.5 voxels each, which gives each template a capture range
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Fig. 4. Segmentation boundaries for outer and inner surfaces on synthetic data corre-
sponding to ground truth, graph cuts with hard constraints and the proposed algorithm

of approximately 15 voxels. The scaling and exponential parameters, α and γ, for
the convex function f of the graph’s smoothness penalties are fixed as 300 and
2, respectively. The corresponding values for the function g of the graph’s inter-
surface penalties are set to 2 and 2, respectively. The values of these parameters
reflect the complexity of surfaces and the inter-surface coupling between them.

To segment a given test image, we depend on the user input to position
the template. The algorithm is robust to this position, as long as the nested
mesh, corresponding to the template, does not lie outside or inside the desired
surface (e.g. ±5 voxels). We sample the input image along all of the sticks at
all nodes. Then, we compute a posterior probability on each test stick with the
corresponding template stick. This results in the assignment of costs, weights,
edge capacities, and then an optimal cut. Likewise, we employ all of the learned
templates to the input image, choosing the segmentation that produces the best
average probability with the local intensity models for the optimal cut. A pair of
optimal mesh surfaces are then recovered from the computed minimum s-t cut.
Based on the extracted topological mesh structure, defined by the cut, it is scan
converted to reproduce segmented volume(s).

In case of the simulated data, 30 training datasets and 100 test sets were
considered for analysis. All these images include two oblong non-crossing surfaces
with the inner surface translated randomly (Gaussian distribution) in 3D to
mimic variations in heart-wall thickness; each image was corrupted with Rician
noise (σ = 30 for the underlying Gaussian model) and a smoothly-varying bias
field. Figure 4 illustrates the effectiveness of the proposed method in extracting
smoother boundaries for outer and inner surfaces as compared to hard penalties.

We evaluated the segmentation accuracy for LA based on leave-one out strat-
egy for a test dataset, against templates from the training data. We compared the
segmented boundaries of epicardial and endocardial surfaces using our method
to that of hard constraints. Since the geometric constraints and soft penalties
in the proposed graph cut formulation are analogous to the energy based for-
mulation in deformable models [4], we compared our results with level set based
methods. Figure 5a presents segmentation boundaries for epicardial and endo-
cardial surfaces obtained by the proposed algorithm along with others. The cost
function image, derived from a-posterior probability, creates a platform on which
graph cuts work. Figure 5b illustrates our segmentation result on cost function
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(a) (b)

Fig. 5. (a) Surface boundaries of epi and endocardial surfaces corresponding to ground
truth, level sets, graph cuts with hard constraints and proposed method. (b) Segmen-
tation result of epicardial surface using the proposed algorithm (red) and ground truth
boundary (green) overlaid on corresponding cost function image.

image corresponding to the epicardial surface. The rationale behind presenting
this result is to show how the algorithm is able to extract smoother and accurate
boundaries in some areas of the image where even the costs, which are derived
from the sophisticated feature detector, could not be defined properly.

The qualitative comparison between the proposed method with others clearly
indicates that our method surmounts other techniques in not only extracting
correct surfaces, but also in maintaining smoothness along the surfaces and con-
sistency in between them. The irregularity in the surfaces that we notice due to
the hard constraints were greatly eliminated.

To evaluate the segmentation accuracy quantitatively, we used distance met-
ric. The distance metric is based on the aggregate of pairwise distances between
corresponding points on the ground truth and our segmentation. For each point
on our segmented surface, we measure the distance to the nearest point on the
ground truth; and vice-versa. For a perfect delineation of the boundary, all these
distances would be zero. In the case of simulated examples, this distance met-
ric which was computed over all the images came out to be 0.1879 voxels for
the outer surface and 0.2639 voxels for the inner surface. For LA data, we ob-
tained this metric value of 2.5068 voxels for epicardium and 2.6321 voxels for the
endocardium. This indicates that the segmentations acquired by the proposed
method lie very close to the ground truth.

For quantitative comparison, we studied Dice measures on heart wall using
soft against hard constraints. The Dice metric provides the percent overlap be-
tween the ground truth and segmented regions. Figure 6 shows the histogram
of Dice measures. In both simulated as well as LA cases, the metric values by
inducing soft penalties on geometric constraints overpowered hard penalties. For
synthetic data, the Dice values indicate excellent matches. However, in the case
of myocardium, the dice values are little lower due to its varying thinness (2-6
mm) and undefined ground truth. The ground truth is a single hand segmen-
tation from an expert. Therefore, much of the observed error is near the veins,
which are subject to inter-rater variability, as the cutoff between atrium and ves-
sel is not well defined. Also the ground truths for the wall do not form a complete
boundary around the blood pool (even ignoring the vessels). Furthermore, we
expect the improvement in results by increasing the number of training images
so that more templates are formed in order to better match a given input image.
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Fig. 6. Histogram of dice coefficients for the (a) middle region, graph cuts with hard
constraints, (b) middle region, soft constraints, (c) heart wall, graph cuts with hard
constraints, (d) heart wall, soft constraints
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