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Abstract. Research in recent years has provided some evidence of tem-
poral non-stationarity of functional connectivity in resting state fMRI.
In this paper, we present a novel methodology that can decode connec-
tivity dynamics into a temporal sequence of hidden network “states” for
each subject, using a Hidden Markov Modeling (HMM) framework. Each
state is characterized by a unique covariance matrix or whole-brain net-
work. Our model generates these covariance matrices from a common but
unknown set of sparse basis networks, which capture the range of func-
tional activity co-variations of regions of interest (ROIs). Distinct hidden
states arise due to a variation in the strengths of these basis networks.
Thus, our generative model combines a HMM framework with sparse ba-
sis learning of positive definite matrices. Results on simulated fMRI data
show that our method can effectively recover underlying basis networks
as well as hidden states. We apply this method on a normative dataset
of resting state fMRI scans. Results indicate that the functional activity
of a subject at any point during the scan is composed of combinations of
overlapping task-positive/negative pairs of networks as revealed by our
basis. Distinct hidden temporal states are produced due to a different
set of basis networks dominating the covariance pattern in each state.

Keywords: resting state fMRI, functional connectivity, temporal net-
work dynamics.

1 Introduction

Resting state fMRI[1] has emerged as a powerful tool in understanding the effect
of mental illnesses on brain function[2]. Functional connectivity or strength of
synchronous activity between regions of interest is an important measure that
could reveal disease-related changes in brain physiology. Correlation values are
widely used as a measure of connectivity but estimation is restricted to a single
value obtained from the entire duration of the scan. This could lead to loss of
potentially valuable information, since recent exploratory work seems to indicate
significant temporal variation in the correlation between regions [3–5]. Using a
sliding window framework, the authors reported the presence of repetitive pat-
terns of whole-brain network activity. However sampling the correlation values

J.C. Gee et al. (Eds.): IPMI 2013, LNCS 7917, pp. 426–437, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Functional Connectivity Dynamics 427

may not be very reliable due to high estimation error from the smaller windows.
Hence, in this paper, we propose modeling the fMRI time-series directly, avoiding
explicit sampling of the correlation values.

In this paper, we present a novel method that uses a HMM framework to dis-
cretize the temporal variation into a temporal sequence of hidden states. These
hidden states could be cognitive processes like introspection, memory consolida-
tion or arising due to unknown external or internal triggers or stimuli[6]. Within
each state, the fMRI time-series data is modeled as observations sampled from a
multi-variate Gaussian. Each state is characterized by a mean vector value and a
unique covariance matrix or whole-brain network. We assume a relatively small
number of underlying regions or processes drive the variation in the fMRI signals,
introducing subtle changes in the covariance matrices, from which these hidden
states can be identified. We model these underlying co-varying regions as a set
of sparse rank-one basis matrices, such that non-negative combinations of these
basis matrices act as priors for each of the HMM covariance matrices. These
basis matrices are unknown and are learned from the data. Thus, our method is
a joint framework that solves for the basis vectors as well as the hidden states
simultaneously.

The rest of the paper is organized as follows. In section 2 we discuss our
generative model in detail. In section 3 we describe the performance of our
method on a simulated dataset. We apply our algorithm to resting state fMRI
data, and the results are described in section 4. We wrap up with our conclusions
and future work in section 5.

2 Approach

2.1 Hidden Markov Model

Webegin bydescribing the first-orderHMMframework. LetYs = [ys
1,y

s
2, . . . ,y

s
T ],

ys
t ∈ Rp be the fMRI time-series of a subject s, where p is the number of ROIs and

T is the total number of time-points per subject. The superscript s denotes subject
index, and the subscript t denotes time-index. Since resting state fMRI is acquired
without any control over the subject’s stimulus or environment, it is reasonable to
assume that the subject wanders in and out of various cognitive states during the
duration of the scan. Hence, we will assume that every time-point belongs to one
of a finite number N of states. Each state is associated with an occurrence prob-
ability δi, and every pair of states i, j is associated with a transition probability
Πij of moving from state i to state j. We are interested in describing these states
quantitatively, as well finding the optimal sequence of states for each subject. A
schematic diagram of an HMM with N = 3 states is shown in Fig 1.

We model the “emission” probabilities by a Gaussian distribution. Let Ss
t ∈

{1, 2, . . . , N} be a random variable denoting the state assignment for subject s
at time t. Then, given the state assignment Ss

t = i, we let ys
t ∼ N (μi,Σi), i.e.,
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Fig. 1. Schematic of an HMM with N = 3. Left shows the temporal sequence
Ss
1 , S

s
2 , . . . , S

s
T associated with a subject s. Each Ss

t could be one of N states (right).

p(ys
t |Ss

t = i, μi,Σi) =
1

(2π)p/2 |Σi|1/2
exp

{
−1

2
(ys

t − μi)
T (Σi)

−1(ys
t − μi)

}

(1)

where | · | denotes determinant. The log-likelihood of the data as a function of
the variables is

l1

(
{μi}N1 , {Σi}N1

)
=

N∑
i=1

Ni

{
log detΣ−1

i − tr
(
SiΣ

−1
i

)}
(2)

where Ni is the number of time-points that exist in state i, and Si is the sample
covariance matrix computed using all the time-points assigned to state i.

2.2 Sparse Dictionary Learning for Positive Definite Matrices

We hypothesize that a relatively small number of ROIs change their co-variance
pattern from state to state. Similar to the basis learning formulation proposed
in [7, 8], let B = [b1,b2, . . . ,bK ], −1 � bk � 1, bk ∈ Rp be a set of K basis
vectors such that each vector bk reflects the membership of the ROIs to the
basis network k. If |bk(i)| > 0, ROI i belongs to the basis vector k, and if
bk(i) = 0 it does not. If two ROIs in bk have the same sign, then they are
positively correlated and opposing sign reflects that they are anti-correlated.
Therefore, the rank-one matrix bkb

T
k reflects the covariance behavior of basis

k. In addition, we constrain these basis networks to be much smaller than the
whole-brain network by restricting their l1-norm to a constant value λ.

We would like to approximate the matrices {Σi}Ni=1 representing the HMM
states by a non-negative combination of a these basis networks. Thus, we want

Σi ≈
K∑

k=1

ci(k)bkb
T
k = B diag(ci) B

T � Σ̂i

||bk||1 ≤ λ, −1 � bk � 1, ci ≥ 0 (3)
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where diag(ci) denotes a diagonal matrix with values ci along the diagonal. In

practice, another term αIp is added to the Σ̂i matrix to make it positive definite.
Here Ip is the identity matrix of size p× p, and α is a small, fixed (= 0.1) value.

We quantify the approximation betweenΣi and Σ̂i using the Kullback-Liebler
divergence:

KL(Σ̂i || Σi) = tr(Σ̂iΣ
−1
i )− log det(Σ̂iΣ

−1
i ) (4)

The KL divergence described above quantifies the amount of information lost
when a Gaussian distribution with covariance matrix Σ̂i is instead modeled by
covariance matrixΣi. A low value of KL(Σ̂i||Σi) indicates a good approximation
between the two matrices. Therefore, we are interested in minimizing the KL-
divergence for all the pairs (Σ̂i,Σi). This amounts to maximizing the function

l2 (B,C) =

N∑
i=1

Ni

{
log det(Σ̂iΣ

−1
i )− tr(Σ̂iΣ

−1
i )

}
(5)

where C = [c1, c2, . . . , cN ] and Ni is defined as before in equation 2.
We are interested in finding HMM states that are distinct primarily due to

differences in their covariance matrices Σi. Clustering data solely based on co-
variances is a challenging problem. However, if we assume that the matrices are
generated from a common underlying basis B (as described above), we may be
able to separate the clusters by forcing the coefficients ci to be distinct, or equiv-
alently, requiring that the inner product 〈ci, cj〉, i 
= j be small. This constraint
can be imposed by making the term CTC resemble the identity matrix. Thus,
we would like to maximize

l3 (C) = −
(

N∑
i=1

Ni

)
KL(CTC || IN ) =

(
N∑
i=1

Ni

){
log det(CTC)− tr(CTC)

}

(6)

where IN is the identity matrix of size N ×N .

2.3 Joint Framework: HMM + Sparse Dictionary Learning

As mentioned earlier, a joint framework causes the HMM to converge to hid-
den states with distinct covariance matrices. Combining the three objectives in
equations 2, 5 and 6 amounts to imposing a prior on the covariance matrices Σi

with prior variables B and C. We would like to maximize the joint log-likelihood

l
(
{μi}N1 , {Σi}N1 ,B,C

)
= l1 ({μi} , {Σi}) + v1 l2 (B,C) + v2 l3 (C) (7)

where v1 and v2 are user-defined scalar parameters that control the amount of
coupling between the HMM and priors. The constraints on the variables are
given by

Σi � 0, ||bk||1 ≤ λ, −1 � bk � 1, ci � 0, i = 1, 2, . . . , N, k = 1, 2, . . . ,K
(8)
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Algorithm 1. Optimization strategy for maximizing log-likelihood in Eqn. 7

Input: Data Y, Parameters v1, v2, λ, K, N
Initialize: Π , δ, B, C, {μi}N1 , {Σi}N1

while Log-likelihood in Eqn. 7 is increasing do
E-step

Compute weights q1(S
s
t = i) and q2(S

s
t = i, Ss

t−1 = j) using Baum-Welch[9]
M-step:

Update {Si}N1 , {μi}N1 and {Σi}N1 using Equations 9 and 10
Solve for B and C using SPG solver, similar to [10]
Update Π and δ using standard HMM update formulae[11]

end while
Compute optimal state sequences using Viterbi algorithm [12]

2.4 Joint Optimization Strategy

We use Expectation-Maximization[11] to obtain a local maximum. In the Ex-
pectation step the posterior marginals q1(S

s
t = i) = p(Ss

t = i|Y) and q2(S
s
t =

i, Ss
t−1 = j) = p(Ss

t = i, Ss
t−1 = j|Y) are efficiently computed using the Baum-

Welch[9] algorithm. These values are used as weights for the log-likelihood func-
tion. In the Maximization step the weighted log-likelihood function maximized
with respect to each of the variables.

The joint log-likelihood is jointly non-concave, but individually concave w.r.t

the variables
{
Σ−1

i

}N

1
, B and C. Hence we will adopt a block optimization

strategy that repeatedly solves for one variable (e.g. B) while holding the others

fixed (e.g. C and
{
Σ−1

i

}N

1
) until a local optimum is reached.

The optimal values for {μi}N1 and {Σi}N1 have closed form expressions given
by

μi =

∑
s,t q1(S

s
t = i) ys

t

Ni
, Σi =

1

v1 + 1
Si +

v1
v1 + 1

Σ̂i (9)

where

Ni =
∑
s,t

q1(S
s
t = i), Si =

1

Ni

∑
s,t

q1(S
s
t = i)(ys

t − μi)(y
s
t − μi)

T , i = 1, . . . , N

(10)

The optimization w.r.t the variables B and C is a constrained maximization
problem without closed form solutions. We use the spectral projected gradient
(SPG) solver with an efficient projection method, similar to the algorithm pro-
posed in [10] to solve for B and C separately.

Matrices B and C are initialized randomly. The state transition matrix Π and
occurrence probabilities δ are initialized as Πii = 0.5, Πij = 0.5 ∗ (N − 1), i 
= j,
δi = 1/N for i, j = 1, 2, . . . , N . Mean vectors μi and covariance matrices Σi are
initialized by using random selection of data points. After the local optima for
the unknowns are found using EM, the optimal state sequence for each subject
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Fig. 2. Simulated data: Ground truth correlation matrices (left) and 50 randomly
generated temporal state sequences was input to NetSim [13]. The resulting time-series
form the input to our method.

can be found using the Viterbi algorithm [12]. The overall strategy is summarized
in Algorithm 1.

2.5 Choice of Free Parameters

Parameters v1 and v2 control the effect of the prior variables B and C on the
model. v1 = v2 = 0 reduces the model to a standard HMM. Observe from
Equation 9 that the optimal value of Σi at every M-step is a weighted average
of the sample covariance matrix Si and the approximation Σ̂i. The weight is
controlled by the free parameter v1. The v2 parameter controls the orthogonality
constraint on the coefficient vectors ci. For all our experiments in this paper, we
set v1 = v2 = 1. Parameter λ controls the amount of sparsity in the basis vectors
and can be set based on known clinical information, for e.g., the average size
of a sub-network, like the default mode network(DMN) or the fronto-parietal
network.

The number of basis vectors K and the number of HMM states N can be
chosen based on how the estimated values for Σi, B and C generalize. To assess
generalizability, we will resort to Monte-Carlo split-sample cross-validation. All
the other parameters being held fixed, for every value of K and N , the dataset is
split into two halves. The model is trained on one half, and using the parameters
Σi, B, C computed from this half, the weights qst (i) are computed for the second
half. This procedure is repeated multiple times and the average cross-validated
log-likelihood is computed. The optimal choice of the parameters is considered
to be the value at which the average log-likelihood does not significantly change.
In this paper we will only examine the case when K = N .

3 Validation Using Simulated Data

3.1 Data

We used NetSim [13] to generate time-series data in order to evaluate our
method. This software takes as input the underlying network configuration(s)
and temporal state sequences. It returns realistic BOLD time series while in-
corporating neural lag (50 ms), variability in Hemodynamic Response Function
(0.5 s) and thermal noise(1% of signal power).
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Fig. 3. (a) Monte-Carlo cross-validation log-likelihood for simulated data (b) Basis
vectors for K ∈ {1, 2, 3, 4, 5}. Each row corresponds to a fixed value for K.

At any point in time and in any subject, the data is generated from one of the
three network configurations, characterized by the covariance matrices shown in
Figure 2. Our simulation consists of 15 nodes arranged in three subnetworks,
which are positively correlated within each other (color scale red shown in Fig-
ure 2). The between-network connections vary with time - they are either zero
(green), or negative (blue). Fifty temporal state sequences are used as input -
the mean duration for each state was 40s (∼13 TRs). The data was generated
by applying Gaussian noise with mean zero as the stimulus at nodes 1,6 and
11. This ensures that the resulting data has mean value close to zero for all
the nodes. The basis networks and the temporal state sequences was input to
NetSim. This resulted in BOLD time series data for 50 “subjects”, with TR=3
s and 120 time-points each.

3.2 Results on Simulated Data

Figure 3a shows the results of the Monte-Carlo cross-validation procedure on the
simulated data as N is varied. The average cross-validated log-likelihood with
increases with increasing K = N , showing that the HMM clusters generalize
well. The other parameters are fixed at v1 = v2 = 1 and λ = 0.2. The gain in
generalizability is reduced after K ∼ 3 or 4.

The rank-one basis matrices bkb
T
k , k = 1, 2, . . . ,K computed for K ∈

{1, 2, 3, 4, 5} are shown in Figure 3b. Each row corresponds to a fixed value
for K. The values of the other parameters were fixed at v1 = v2 = 1 and
λ = 0.2. It is evident that our algorithm effectively recovers the network basis.
Our basis clearly identifies the clustering of the nodes into sub-networks and
the anti-correlated relationship between them. Also, observe that each time K is
increased by one, the method incrementally adds to the previous basis.
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Fig. 4. (a) Covariance matrices Σi for HMM only (top) and our method (bottom) (b)
Cross-validated Rand Index vs. N for both cases

The comparison between the performance of our method with the HMM alone
is shown in Figure 4 . Figure 4a shows the estimated covariance matrices {Σi}Ni=1

for N = K = 3, when only the HMM is used (top) and with the priors (bottom).
Clearly, our method accurately estimates the underlying covariance matrices for
all three states. Due to the lack of a significant difference in the mean vectors, the
HMM alone performs poorly, with little or no difference between the three states.
The optimal state-paths output by the Viterbi algorithm are also compared with
the ground truth for both cases using the Rand Index (Figure 4b). Our method
is able to achieve close to 90% clustering accuracy, while the HMM alone fails.

4 Application to Resting State fMRI Data

4.1 Data

BOLD fMRI was acquired with a Siemens 3 Tesla system using a whole-brain,
gradient-echo echo planar sequence with TR/TE = 3000/32 ms, voxel resolution
= 3x3x3 mm and number of time-points = 120. We used data from 420 normal
participants, with age range 15.9 ± 3 years.

Pre-processing. Functional images were motion corrected, spatially smoothed
(6mm FWHM) and temporally altered to retain frequencies 0.01-0.1 Hz. Several
sources of confounding variance, including sixmotion parameters andmeanwhole-
brain,WM,CSF time-courseswere regressedout. The residual time course for each
subject was transformed to standard MNI anatomical space. We used 160 regions
of interest (ROIs) described by Dosenbach et al. [14], which were derived from a
meta-analysis of a large sample of task-based fMRI studies. Each ROI was a non-
overlapping 10mmdiameter sphere, andwas categorizedbyDosenbach et al. as be-
longing to one of six networks, including: default-mode, cingulo-opercular, fronto-
parietal, sensorimotor, occipital or cerebellar. The mean time-series of each ROI is
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extracted from the registered fMRI image. The time-series is demeaned and scaled
to have an average variance value of unity.

4.2 Results on fMRI Data

Fig. 5. Monte-Carlo cross-validation log-
likelihood for fMRI data. The log-
likelihood is greatest for K = N ∈
{2, 3, 4, 5}. The generalizability is variable
for N ∈ {6, 7} and begins to fall after
N = 7, showing that our model begins
to over-fit the data after this value. Thus,
from the given data, we are able to obtain
N = 6 distinct HMM states.
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Figure 6 shows the six rank-one basis matrices obtained from our method. The
ROIs are sorted according to their Dosenbach[14] network labels. It is easy to
observe that our method is fairly accurate in identifying the general clustering

Basis 1

Cer
COP

DMN

FPN
Occ

SM

Basis 2 Basis 3

Basis 4

Cer
COP

DMN

FPN
Occ

SM

Basis 5 Basis 6

Fig. 6. Rank-one basis matrices for fMRI data. The Dosenbach [14] labels are given
on the left. Abbreviations Cer: Cerebellum, COP: Cingulo-opercular network, DMN:
Default-mode network, FPN: Fronto-Parietal network, Occ: Occipital network, SM:
Sensori-motor network.
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of the ROIs, since most ROIs belonging to a basis network are assigned the
same Dosenbach labels. For example, all the ROIs belonging to the cerebellum
are clustered in basis 1. Same is the case with occipital cortex (basis 3), default
mode (basis 4), sensori-motor (basis 5) and fronto-parietal (basis 6).

We looked at two sub-networks in particular - the fronto-parietal network
(“dorsal attentional network”) and the cingulo-opercular network (“ventral at-
tentional network”). Both are task-positive networks that activate when the
subject is in an “extrospective” state, and it is well-established that activation
of either of these networks causes the default mode network (DMN) to deactivate
[1]. This behavior is captured in basis 6, which shows the anti-correlated nature
of the fronto-parietal network and default mode. The anti-correlation between
the cingulo-opercular network (COP) and the DMN is captured across multiple
basis networks (1, 4 and 6).

We also note that the most amount of overlap between the basis networks
occurs at the COP, with different aspects of it positively correlating with the
cerebellum, sensori-motor and fronto-parietal networks( in basis 1, 5 and 6
respectively) and negatively correlating with the default mode and occipital

HMM State 1

Cer

COP

DMN

FPN

Occ

SM

HMM State 2

HMM State 3

Cer

COP

DMN

FPN

Occ

SM

HMM State 4

Fig. 7. Four HMM States obtained from resting state fMRI data. Abbreviations Cer:
Cerebellum, COP: Cingulo-opercular network, DMN: Default-mode network, FPN:
Fronto-Parietal network, Occ: Occipital network, SM: Sensori-motor network.
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networks (in basis 1 and 3). The fact that these correlation/anti-correlation
relationships are split amongst the basis networks suggests that they have dif-
ferent temporal behavior.

The covariance matrices Σi are shown in Figure 7. Due to the page limit
only the four of the six covariance matrices are shown. It is clear that the states
are separated based on the dominant basis networks. The cingulo-opercular net-
work is most active in states 1 and 2, positively correlating with the cerebellum
and negatively correlating with the DMN. State 2 shows greater activity in the
occipital network. The sensori-motor network is active in state 3. State 4 is dom-
inated by the anti-correlated pair of the fronto-parietal network and the DMN.
The average duration the subjects existed in each of these states was between
12 and 20 time-points.

5 Conclusion

To our knowledge, this is the first attempt at resolving functional connectivity
in resting state fMRI data into discrete temporal states, each associated with
a distinct connectivity pattern. Each subject is assigned a sequence of states,
which can then be used for group comparisons.

Our basis learning formulation provides sparse and possibly overlapping
components without having to use strong constraints like orthogonality or in-
dependence of the basis. Further more, our basis decomposition only allows
non-negative combinations of basis vectors, making the resulting basis more
interpretable. These properties make our method better suited than spatial or
temporal ICA [15] for decomposing brain activity into interpretable components.

Hidden Markov Models have been used in the context of fMRI, but primarily
for task-based experiments [16][17]. In our method the emphasis is on finding
hidden brain-states when an external stimulus is not provided to the subject.
The HMM is strongly driven by the differences in the covariance matrices of
these hidden brain states.

As a part of our future work, we hope to analyze the effect of model selection
on our method is greater detail. A thorough examination of the functional in-
terpretability of the basis vectors and HMM states is needed. As an additional
validation step, this method can be applied to task-fMRI to recover the stimulus
sequence.
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