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Abstract. In this paper we propose a novel algorithm which leverages
models of white matter fibre dispersion to improve tractography. Tractog-
raphy methods exploit directional information from diffusion weighted
magnetic resonance (DW-MR) imaging to infer connectivity between
different brain regions. Most tractography methods use a single direc-
tion (e.g. the principal eigenvector of the diffusion tensor) or a small set
of discrete directions (e.g. from the peaks of an orientation distribution
function) to guide streamline propagation. This strategy ignores the ef-
fects of within-bundle orientation dispersion, which arises from fanning
or bending at the sub-voxel scale, and can lead to missing connections.
Various recent DW-MR imaging techniques estimate the fibre dispersion
in each bundle directly and model it as a continuous distribution. Here
we introduce an algorithm to exploit this information to improve tractog-
raphy. The algorithm further uses a particle filter to probe local neigh-
bourhood structure during streamline propagation. Using information
gathered from neighbourhood structure enables the algorithm to resolve
ambiguities between converging and diverging fanning structures, which
cannot be distinguished from isolated orientation distribution functions.
We demonstrate the advantages of the new approach in synthetic exper-
iments and in vivo data. Synthetic experiments demonstrate the effec-
tiveness of the particle filter in gathering and exploiting neighbourhood
information in recovering various canonical fibre configurations and ex-
periments with in vivo brain data demonstrate the advantages of utilising
dispersion in tractography, providing benefits in practical situations.

1 Introduction

Tractography is a powerful tool to probe the geometric structure of white matter
in vivo from non-invasive DW-MR imaging, allowing us to infer the anatomical
connectivity of the separate functional regions of the brain. Information gained
from tractography has great potential to advance our understanding of neuro-
logical function and disease.

Tractography algorithms infer connectivity by propagating streamlines be-
tween locations in the brain using directional information derived from DW-MR
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images. Early techniques were deterministic and followed a single direction per
voxel, taken from the principal eigenvector of the diffusion tensor. The simplest
method involves nearest neighbour interpolation FACT (Fiber Assignment by
Continuous Tracking) [1], others involve trilinear interpolation [2, 3]. As the lo-
cal fibre orientation estimates are prone to errors and uncertainty, probabilistic
techniques were developed which assume a variance on the dominant fibre ori-
entation and propagate a large collection of streamlines from each seed location
using monte-carlo sampling of each fibre orientation estimate, thus inferring an
index of connection probability between separate locations related to the num-
ber of streamlines which connect them [4, 5]. Multi-fibre techniques addressed
the potential existence of multiple fibre populations traversing a voxel [6–9].
The majority of these techniques make use of a discrete set of fibre orientation
estimates in each voxel (e.g. from the peaks of a fibre orientation distribution
function). They assume that the uncertainty in the peak directions captures
orientation dispersion due to noise and underlying fibre dispersion [10], while
some [11] sample a fibre orientation distribution function (fODF) directly via
a rejection sampling scheme for streamline propagation. While these methods
provide good solutions to the crossing fibre problem, they do not account for
other sub-voxel fibre configurations such as fanning and bending. This can lead
to false negative connections in regions where such fibre architecture exists such
as the corona radiata.

Global tractography methods [12–14] pose a potential solution to these limi-
tations of local tractography. These methods search for the set of all streamlines
which best explain the entire DW-MR data set. In theory, this approach handles
complex sub-voxel fibre architectures such as fanning and crossing since the dis-
tribution of orientations formed by the candidate streamlines passing through
each voxel is required to support the DW-MR signal in each voxel. Also local am-
biguities such as fanning vs. crossing and fanning polarity could also be resolved
in theory, since the streamlines are continuous and must reflect the diffusion
weighted data globally, hence data from multiple voxels supports or opposes the
existence of any particular candidate streamline. Sherbondy [15] demonstrates
that by combining such a global technique with microstructure modelling can
resolve classic confounding fibre architectures such as kissing vs. crossing. How-
ever, the major drawback of global tractography is the computational cost. The
search space is very high-dimensional so globally optimal solutions are impos-
sible to find in practical timescales with current technology. Recent work [16]
has questioned whether these suboptimal solutions offer any real advantage over
local tractography in real brain data.

Recent DW-MR modelling and imaging techniques [17–20] use parametric
models of the fODF to recover estimates of within-voxel dispersion. These tech-
niques avoid the instability with non-parametric fODFs such as those from stan-
dard spherical deconvolution and have been shown to match well fODFs mea-
sured from histology [21]. Preliminary investigations have demonstrated that
tractography techniques sampling these fODFs in full for streamline propagation
can reduce false negatives in regions of high anatomical fibre dispersion such as
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the the corona radiata [22]. However, Jeurissen et al. [10] show that making use
of the full fODF for sampling propagation directions renders tractography more
susceptible to false positives due to ambiguities about the underlying anatomical
basis of the orientation dispersion.

To resolve ambiguities in the local voxel model of fibre orientation, we can
make use of information from local neighbourhood voxels in the vicinity of the
region which a streamline is traversing in addition to the local model. Savadjiev
et al. [23] demonstrate that information from a voxels neighbourhood can be used
to disambiguate sub-voxel fibre architectures such as curving and fanning. Using
helical curves projected into the neighbourhood of a voxel, Savadjiev derives
markers distinguishing and quantifying fanning and crossing fibres and fanning
polarity within each voxel and parameterises the set of streamline selections
enabling evaluation of those which are most consistent with forthcoming local
structure. These methods demonstrate nicely the potential of leveraging voxel
neighbourhood information for disambiguating fibre architecture at the subvoxel
level. These methods however do not make use of a parameterised local model
of dispersion and carry a computational expense due to the complexity of the
helical model of streamlines, which would be costly to apply in a probabilistic
tractography framework.

In this paper we present a new tractography method which combines local
models of sub-voxel fibre dispersion with voxel neighbourhood exploration via
a particle filter. Particle filter methods have been used previously in tractogra-
phy [24–26] to estimate global connectivity in DW-MR images. In contrast to
these methods we use the particle filter over a short range at each step of the
streamline propagation to sample the set of possible future trajectories suggested
by the local dispersion model and probe their compatibility with the neighbour-
ing image structure. The particle filter informs the next single step selected from
the local model, after which we repeat the whole procedure. Each step is stochas-
tic and so, therefore, is the final resulting streamline. Thus the full algorithm
repeats the whole process, as in traditional probabilistic tractography, to estab-
lish a collection of candidate streamlines from which we can derive probabilistic
indices of connectivity in the usual way [4, 5]. We demonstrate the behaviour
of the particle filter in gathering information on neighbourhood geometry in
common fibre configurations on synthetic data and demonstrate the advantages
of using dispersion in tractography on in vivo brain data tracking through the
corona radiata.

2 Methods

In this section we describe our tracking algorithm that exploits local fibre dis-
persion and neighbourhood structure via a particle filter. Section 2.1 explains
the details of the local model and Section 2.2 presents the technique to create a
directional distribution informed by both local and neighbourhood information.
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2.1 Locally-Estimated Dispersion ODF

To capture dispersion at each voxel locally, we model the fODF as a Bingham
distribution. The Bingham distribution is a function on the sphere with a mean
direction µ and two concentration parameters κ1 and κ2 which control the degree
of dispersion along the two axes orthogonal to the mean direction µ1 and µ2

respectively:

f(n) = F1

(
1

2
,
3

2
, κ1, κ2

)−1

exp [κ1(µ1 · n)2 + κ2(µ2 · n)2] , (1)

where F1 is the hypergeometric function (note: F1(1/2, 3/2, κ1, κ2) is a number,
not a function).

The Bingham distribution has been used to model fibre dispersion in [17, 19].
For this work, we make use of the NODDI technique for fitting fibre dispersion
models. The NODDI technique fits the cylindrically symmetric Watson distribu-
tion and introduces an imaging protocol better able to support the estimation
of fibre dispersion. Here we use an extension of the NODDI technique to fit
a Bingham distribution to the DW data. The Bingham distribution captures
cylindrically asymmetric dispersion, which can better represent planar disper-
sion, representative of fanning white matter fibre structure [19].

Although such a local model of dispersion can improve exploration of sub-
voxel fibre trajectories, it exhibits a number of ambiguities which cannot be
resolved by examining each voxel in isolation. Due to the symmetrical nature
of DW-MR measurements, the resulting distributions are symmetric, meaning
there is an ambiguity between sub-voxel curving and fanning, and also fanning
polarity. To address these ambiguities, it is necessary to gather information from
voxels in the neighbourhood of the subject voxel to inform on the treatment of
the local model for streamline propagation. For this purpose we use a particle
filter framework explained in Section 2.2.

2.2 Voxel Neighbourhood-Informed Dispersion ODF

In this section, we describe a technique that creates a neighbourhood-informed
fODF from the local dispersion estimates by fusing the information from the
neighbourhood structure of the dominant fibre orientation. We draw candidate
directions from the local dispersion fODF and propagate these directions into
the local neighbourhood. By examining the coherence of each projected stream-
line with neighbourhood structure we can then weight each of these candidate
directions according to the coherence of the respective projected streamline with
the neighbourhood structure. This process is illustrated in Figure 1 for various
canonical neighbourhood structures. The streamlines which are misaligned with
neighbourhood structure are downweighted (coloured in blue) and the stream-
lines which align with the neighbourhood structure have their weights increased
(coloured in red). This shows that fanning polarity and curvature can be dis-
tinguished. In the case of a diverging neighbourhood structure, the streamlines
propagated from the dispersed candidate directions drawn from the fODF in
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the subject voxel find good alignment with the neighbourhood structure and are
therefore evenly weighted. In contrast, in the presence of a convergent neigh-
bourhood structure, the streamlines propagated from the peripheral candidate
directions drawn from the local fODF misalign with neighbourhood structure
and are downweighted. In the case of a curving structure, the candidate direc-
tions propagating against the curve are downweighted.

(a) Diverging (b) Converging

(c) Coherent (d) Curving

Fig. 1. Illustration of neighbourhood exploration in the case of of diverging (a), con-
verging (b), coherent (c) and curving (d) neighbourhood structure in the tracking
direction. Red streamlines are highly weighted, blue are low weighted.

This neighbourhood exploration scheme falls naturally into a particle filter
framework. The particle filter is a simulation based model estimation technique
used in non-linear, non-Gaussian dynamical systems. Through a process of pre-
diction and update, the particle filter provides a discrete approximation of a
posterior disribution p(xk|y0:k) on a time-varying parameter xk at timestep k
given the observations y0:k for timesteps 0, 1, 2, ..., k and the initial state distribu-
tion p(x0). At each timestep k, N particles are propagated by sampling from an

importance density π(x
(i)
k |x(i)

0:k−1, y0:k), then assigned importance weights w
∗(i)
k

which depend on a likelihood model p(yk|x(i)
k ). Subsequently the discrete approx-

imation to the posterior distribution p(xk|y0:k), denoted by w̃
(i)
k , is computed by
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normalising w
∗(i)
k . This operation of a particle filter is summarised in Algorithm

1. Futher details on particle filtering can be found in [27].

State initialization, sample x0 from p(x0);
Initialise importance weights
for i = 1, ..., N, do

w
∗(i)
0 = 1

N
end
for times k = 1, 2, ...,K do

for i = 1, ..., N, do

sample x
(i)
k from π(xk|x(i)

0:k−1, y0:k)

end
calculate weight up to normalisation factor:
for i = 1, ..., N, do

w
∗(i)
k = w

∗(i)
k−1p(yk|x(i)

k )

end
normalise the importance weights:
for i = 1, ..., N, do

w̃
(i)
k =

w
∗(i)
k∑

N
j=1 w

∗(i)
k

end

end
Algorithm 1. Sequential importance sampling

In this implementation, the importance density π(x
(i)
k |x(i)

0:k−1, y0:k) is chosen
as a Watson distribution and the initial state distribution p(x0) is the Bingham
distribution (described in Section 2.1) from the current voxel. A cloud of N par-
ticles defines a set of N streamlines defined by a string of vectors of fixed length
connected end to end. At each timestep k each streamline is propagated one step

from its previous location u
(i)
k−1 with a direction vector v

(i)
k sampled from the im-

portance density by a step length d such that u
(i)
k = u

(i)
k−1 + dv

(i)
k . The state of a

particle at timestep k x
(i)
k is defined by its location u

(i)
k and direction vector v

(i)
k .

At each step the particle weights w
∗(i)
k = w

∗(i)
k−1p(yk|x(i)

k ) are calculated to reflect
their alignment with neighbourhood structure and the process is repeated for K

steps. The likelihood p(yk|x(i)
k ) = (vk ·D(uk))

γ where D(uk) is the interpolated
direction of the vector field D, defined by the mean directions of the Bingham
distributions in each voxel, at the point location uk. The stages of the particle
filter scheme from streamline propagation to the selection of tract propagation
direction is illustrated in Figure 2.

3 Experiments and Results

3.1 Synthetic Experiments

We use simulated data to examine the behaviour of the neighbourhood explo-
ration by the particle filter. We simulate vector fields to mimic neighbourhood
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(a) x0 ∼ p(x0) (b) x0:k

(c) x
(i)
k ∼ p(xk|y0:k) (d) tract propagation

direction = x
(i)
0

Fig. 2. Illustration of the stages of neighbourhood exploration: initialisation from the
local Bingham distribution (a), particle update and weighting (b), particle selection
(c) and tract propagation direction selection (d).

structures which can arise in conjunction with dispersive local fODFs which are
not distinguishable from the information from an isolated voxel. Figure 3 shows
the behaviour of the particle filter in regions of diverging 3(a), converging 3(b),
coherent 3(c), and curving 3(d) neighbourhood structure. The figure shows the
particle weights at their final iteration step K.

Figure 4 shows a demonstration of the proposed tracking algorithm over 100
repetitions in diverging and converging local structure.

3.2 in vivo Experiments

We apply the algorithm on in vivo brain data. DW-MR images of a healthy
male were acquired on a clinical 3T Philips system with isotropic voxels of 2mm,
TE=78ms, TR=12.5ms, with one 30 direction shell and one 60 direction shell
with b-values of 1000 s/mm2 and 2000 s/mm2, respectively. This dataset is the
same as that used in [20]. Tracking experiments were performed from a single
seed in the midbody of the corpus callosum (CC) at the mid-sagittal position, us-
ing the proposed algorithm and diffusion tensor (DT) PICo [4]. 5000 repetitions
were used and results are shown in Figure 5. Tractography is also performed
on 4 major white matter pathways: the inferior longitudinal fasciculus, the su-
perior longitudinal fasciculus, the cingulum and the occipito-frontal fasciculus,
for validation of expected performance in standard tracts. All in vivo results are
displayed as maximum connection probability maps with a threshold of 1%.
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Fig. 3. Demonstration of particle filter behaviour in regions of diverging (a), converging
(b), coherent (c) and curving (d) neighbourhood structure in the tracking direction.
Colour denotes particle weight, blue is low through to red, which is high, yellow is
intermediate.

4 Discussion and Conclusions

We have presented a tractography algorithm that combines information from
both a local model of fibre orientation, which captures sub-voxel fibre dispersion
with information drawn from the structural information available in the voxels
in the immediate neighbourhood of the current tracking location. The simula-
tions in Figure 3 demonstrate that the neighbourhood exploration particle filter
behaves in practice like the conceptual illustration in Figure 1. In the case of
divergent structure in the tracking direction (Figure 3(a)), the particles have an
evenly spread distribution of weights, allowing full exploration of the orientations
from the local model. In the case of convergent neighbourhood structure in the
tracking direction (Figure 3(b)), the high particle weights are concentrated in the
middle, limiting the selection of directions to align with forthcoming structure.
Figure 4 shows the result of multiple iterations of the tractography algorithm
in converging and diverging structure. In Figures 4(a) and 4(c) neighbourhood
exploration is used, while in 4(b) and 4(d) neighbourhood exploration is not
used, a curvature prior is used instead. The dispersion of streamline trajecto-
ries is exploited in the diverging case while the dispersion is restrained in the
converging case over multiple repetitions. These simulations show that com-
bining information from the voxel neighbourhood with information from the
local fODF, we can resolve some of the remaining structural ambiguities of the
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Fig. 4. 100 repetitions of the tracking algorithm in regions of diverging (a), (b) and
converging (c) and (d) neighbourhood structure in the tracking direction. In (a) and (c),
particle filter neighbourhood exploration is used, while in (b) and (d) only a curvature
prior is used.

Fig. 5. Tracking from a single seed in the corpus callosum
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Fig. 6. Tracking of major white matter structures using proposed algorithm. a) inferior
longitudinal fasciculus, b) superior longitudinal fasciculus, c) cingulum, d) cccipito-
frontal fasciculus.

local model such as fanning polarity, which cannot be resolved from the voxel
information in isolation.

Figure 5(a) shows the advantages of using dispersion in tractography in in
vivo data. Tracking from a single seed in the corpus callosum, we can recover
a wide range of connectivity to areas of the peripheral cortex. Both lateral and
vertical connections are covered evenly with the oblique connections between.
These streamlines traverse the corona radiata, which is a brain region known
from anatomy to exhibit dispersing white matter structure. Figure 5(b) shows
tracking from the same seed with PICo tractography based on the diffusion
tensor (DT), which only uses a single discrete direction per voxel. DT PICo only
recovers the vertical connections from the CC to the cortex as it does not exploit
the dispersion in the corona radiata.

Figure 6 shows validation of the algorithm in tracking major white matter
pathways, for which standard tractography algorithms work well, showing that
the algorithm performs as expected in these structures.

Using a hybrid method utilising local fODFs modelling dispersion and neigh-
bourhood exploration, we can capture complex dispersing subvoxel fibre archi-
tectures and include information from multiple voxels to resolve ambiguities of
the local model and improve connectivity estimation. The synthetic experiments
demonstrate the ability of the neighbourhood exploration to resolve ambiguities
of local dispersive fODF such as fanning polarity and curvature, while the in vivo
experiments show the advantages of exploiting fibre dispersion in tractography.

This technique represents a middle ground between local and global
tractography, making use of the global tractography paradigm of pooling in-
formation from multiple voxels to overcome the limitations of condisering each
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voxel individually, while not inflating the problem to computationally intractible
proportions. In future work we can explore other areas of this middle ground with
larger neighbourhood exploration regions and using alternative fODFs such as
those derived from spherical deconvolution.
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