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Abstract. We present a novel cortical correspondence method employ-
ing group-wise registration in a spherical parametrization space for the
use in local cortical thickness analysis in human and non-human primate
neuroimaging studies. The proposed method is unbiased registration that
estimates a continuous smooth deformation field into an unbiased average
space via sulcal curve-constrained entropy minimization using spherical
harmonic decomposition of the spherical deformation field. We initialize
a correspondence by our pair-wise method that establishes a surface cor-
respondence with a prior template. Since this pair-wise correspondence
is biased to the choice of a template, we further improve the correspon-
dence by employing unbiased ensemble entropy minimization across all
surfaces, which yields a deformation field onto the iteratively updated
unbiased average. The specific entropy metric incorporates two terms:
the first focused on optimizing the correspondence of automatically ex-
tracted sulcal landmarks and the second on that of sulcal depth maps.
We also propose an encoding scheme for spherical deformation via spher-
ical harmonics as well as a novel method to choose an optimal spherical
polar coordinate system for the most efficient deformation field estima-
tion. The experimental results show evidence that the proposed method
improves the correspondence quality in non-human primate and human
subjects as compared to the pair-wise method.

Keywords: Group-wise correspondence, Sulcal curves, Spherical har-
monics, Entropy minimization, Cortical thickness.

1 Introduction

Group analysis of cortical properties such as cortical thickness is an important
task for monitoring brain growth, investigating anatomic connectivity, and dis-
covering cortical disease patterns. A prerequisite to such tasks is to establish a
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consistent cortical correspondence across a population of subject cortices. How-
ever, the high variability of the cortical folding patterns provides a significant
challenge to the computation of such an inter-subject cortical correspondence
over the entire cortical surface.

There have been two main approaches to the cortical correspondence compu-
tation, based either on volume images or on cortical surface models. A cortical
correspondence is more likely to be enhanced via surface registration on a corti-
cal surface model due to its geometric property preservation of the cortex, while
volume-based approaches using only image intensities are hard to sufficiently
characterize the cortical regions for a localized vertex or voxel-wise analysis.
Moreover, since the choice of invariant features across a population is essen-
tial for a consistent correspondence, folding patterns along central sulcal fundic
regions can be used as features due to their relatively reduced variability. Stud-
ies on sulcal fundic region recognition and sulcal folding pattern analysis were
presented in [6,11,5].

Several researchers proposed cortical registration via a spherical mapping to
the template space in a pair-wise registration manner [14,13,8]. In [3], an itera-
tive registration scheme was introduced, which updates the initial template for
better correspondence establishment. The study presented by Van Essen [12]
even applied to non-human primate subjects. Lyu et al. [4] also proposed a
spherical mapping that uses spherical harmonic decomposition for correspon-
dence interpolation by taking advantage of its convenient, global representation
of the deformation field. In general, however, these pair-wise registration meth-
ods are inherently biased to the template surface, which is undesirable for the
group analysis purpose.

To take account of variance of the cortical properties over pair-wise methods,
Cates et al. [1] proposed particle-based registration on cortical surface mod-
els without using a template model or prior information. Later, Oguz et al. [7]
further enhanced the particle-based registration by incorporating curvature fea-
tures, showing the improved correspondence via the analysis of cortical thickness
over the entire cortical surface. However, these methods did not incorporate gy-
ral/sulcal patterns nor did they provide explicit estimation of a deformation
field between subjects, rather with a particle-based correspondence that implic-
itly defines a deformation model without guarantee of topology preservation.

In this paper, we propose a fully automatic group-wise cortical correspondence
method evaluated on both macaque and human cortical surfaces. We initially
compute a pair-wise correspondence to the given template surface and further
improve the correspondence across a population via ensemble entropy minimiza-
tion without employing any template surface. In particular, we use spherical
harmonic decomposition to continuously represent the correspondence over the
entire cortical surface by using a metric that incorporates errors over sulcal
landmarks and sulcal depth maps. We also propose a novel spherical polar co-
ordinate system to avoid a distorted representation of the deformation field. In
summary, the main novelties presented here are: 1) group-wise cortical correspon-
dence using an explicit deformation field, 2) optimal pole selection for a smooth
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Fig. 1. Schematic overview of the proposed method

deformation field representation, and 3) application in both non-human primate
and human data. Figure 1 illustrates an overview of our pipeline.

2 Method

2.1 Preprocessing

Surface Reconstruction. Raw MR images are registered into the standard-
ized stereotaxic space using a rigid transformation. The registered images are
corrected for intensity nonuniformity resulting from inhomogeneities in the mag-
netic field. The inner- and outer-surfaces are automatically extracted by the Con-
strained Laplacian-based Automated Segmentation with Proximities (CLASP)
algorithm [2]. We use the middle cortical surface models with a triangulated
mesh of 40,962 vertices in the native space. Each vertex of the surface models
is then homeomorphically transformed onto the common unit sphere using a
deformable surface model [2]. After surface reconstruction, we compute sulcal
depth maps via geodesic distances from the gyral crowns as proposed in [10].

Landmark Correspondence. We use automatic sulcal curve extraction [11]
and automatic sulcal curve labeling [5] to extract a set of labeled sulcal curves.
In particular, the unlabeled sulcal curves (consisting of ordered sets of points)
are extracted from the triangulated surface, and then pre-labeled sulcal curves in
the template are employed to label matched (corresponding) sulcal curves in the
subject, while discarding minor and extraneous curves. This labeling method
further establishes a point-by-point correspondence across these sulcal curves
called sulcal landmarks in the remainder of this paper.
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2.2 Sulcal Curve-Constrained Pair-Wise Correspondence

Problem Definition. For two given triangulated cortical surfaces (template
and subject), we denote Ωtemp and Ωsubj as the template and subject surfaces.
Our goal is to estimate a continuous mapping function of the cortical correspon-
dence M : IR3 → IR3 such that

u =M(v) , (1)

where u ∈ Ωtemp and v ∈ Ωsubj are the corresponding points.

Consistent Displacement Encoding Scheme. To take advantage of the well-
known spherical parametrization, we map all vertices of the cortical surfaces onto
the common unit sphere by using an invertible spherical mapping ψ : IR3 → S2

established in the preprocessing stage. Note that this spherical mapping gener-
ally does not establish an appropriate correspondence. We then locally encode
the deformation as change in local spherical polar angles of elevation Δθ and
azimuth Δφ. It can be easily observed that the same length of geodesic distances
provides different angular differences close to the equator as compared to closer
to the pole. To avoid such inconsistency and thus to provide a consistent ar-
clength encoding, we propose a locally normalized coordinate system. For this
local normalization, let ψtemp(p) and ψsubj(q) be the mapped corresponding sul-
cal landmarks from the template and the subject, respectively. First, we find
a rotation matrix Rq with an angle (≤ 90◦) along the longitude circle passing
through ψsubj(q) and the two poles, such that ψsubj(q) is exactly located on the
equator. By applying Rq to ψtemp(p) and ψsubj(q), we then compute normalized
angular displacements Δθ and Δφ. As sulcal landmarks are described by spher-
ical polar coordinates, we denote an operator � that rotates these landmarks
with a rotation matrix defined in a Cartesian coordinate system. Thus, the local
landmark displacement at a point i (θi, φi) on the unit sphere is represented as
a vector di = Rqi � ψtemp(pi)−Rqi � ψsubj(qi) = [Δθi, Δφi]

T (see Fig. 2a).

Initial Deformation Field. To find an initial deformation field of the entire
surface, we compute least squares fitting of spherical harmonics to displacements
of the sulcal landmarks established in the sulcal labeling step. This fitting is
standard spherical harmonic decomposition of the spherical signals (Δθ and
Δφ). At a point (θ, φ) on the sphere, the spherical harmonic basis function of
degree l and order m (−l ≤ m ≤ l) is given by

Y m
l (θ, φ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ , (2)

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ) , (3)

where Y m∗
l denotes the complex conjugate of Y m

l and Pm
l is the associated

Legendre polynomial

Pm
l (x) =

(−1)m

2ll!
(1 − x2)

m
2
d(l+m)

dx(l+m)
(x2 − 1)l . (4)
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di = [Δθi,Δφi]
T

(a) (b)

Fig. 2. Displacement encoding (a) and estimated deformation field (sampling of a con-
tinuous representation) with sulcal depth maps (b). A spherical displacement is encoded
as change in spherical angles after rotation onto the equator for consistent arclength
encoding, which avoids a distorted displacement representation. The deformation field
is estimated by interpolation using spherical harmonic decomposition.

Since the spherical harmonic basis functions are defined in the complex domain,
we use a real form of the functions defined by

Yl,m =

⎧⎪⎨
⎪⎩

1√
2
(Y m

l + (−1)mY −m
l ) m > 0 ,

Y 0
l m = 0 ,
1√
2i
(Y −m

l − (−1)mY m
l ) m < 0 .

(5)

Given spherical harmonic decomposition of degree k, we have (k+1)2 spherical
harmonic basis functions at a given point on the sphere. To avoid a rank deficient
problem, we assume that the number n of the landmarks is larger than (k+1)2.
The coefficients can then be estimated by standard least squares fitting:

C =
(
YYT

)−1
YDT , (6)

where D = [d1,d2, · · · ,dn] and Y is a (k + 1)2-by-n matrix that incorporates
the spherical harmonic basis functions. Once the coefficients of the spherical
harmonic decomposition are determined, for ∀v ∈ Ωsubj, its deformed position

in the template space is easily reconstructed by the mapping function M̂ :

û = M̂(v) = ψ−1
temp(R

T
v � (Rv � ψsubj(v) +CT ·Yv)) , (7)

whereYv is a column vector of the spherical harmonic basis functions at ψsubj(v)
and Rv is a rotation matrix that puts ψsubj(v) on the equator. Figure 2b shows
an example of the estimated deformation field.

This spherical harmonic decomposition of the deformation field is hierarchical
and orthonormal. We employ the hierarchy in that the initial deformation field
is computed via low degree (k = 5) fitting of sulcal landmarks and higher degree
representations are used in the optimization stage.
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Optimization. Since the initial coefficients are determined only by sulcal land-
marks, the cortical correspondence is potentially biased to the specific sulcal
fundic regions selected in the sulcal labeling step as well as affected by minor
mislabeling errors. For improved correspondence establishment, we further for-
mulate a metric that incorporates sulcal landmark errors and differences between
sulcal depth maps via normalized cross correlation over the entire cortical sur-
face. To regularize the impact of sulcal landmark errors, we define a weighting
function f under the Gaussian assumption. Specifically, incorporating dmin as
voxel size, sulcal landmark errors below dmin are ignored and have the maximum
at distance dmax, chosen 10–20 times larger than dmin, as follows.

f(d) = 2

∫ d

dmin

I(d)

σ
√
2π

exp

{
−1

2

(
x− dmin

σ

)2
}
dx , (8)

I(d) =

{
1 d ≥ dmin ,
0 otherwise ,

(9)

where 6·σ = dmax−dmin. Now, we define L(·, ·) = f(η·arclen(·, ·)) as a regularized
arclength, where η is a ratio of the geodesic distance between two points on the
unit sphere and on the template surface. In practice, it can be approximated by a
ratio of the triangle size under the assumption that the template surface consists
of uniform triangles. The resulting overall cost function like an M-estimator is
thus formulated with a regularization factor w by letting an operator ⊗ denote
the normalized cross correlation between two sulcal depth maps:

Ĉ = argmin
C

[
w

{
1

n

n∑
i=1

L(pi, p̂i)

}
+ (1− w)

{
1

2
(1− SD({u})⊗ SD({û}))

}]
,

(10)
where SD(·) is a sulcal depth map reconstructed from a set of vertices. The
optimization procedure employs the NEWUOA optimizer [9] for minimizing C.
In our experiment, we empirically set w = 0.5.

Optimal Pole Selection. The proposed spherical polar coordinate system does
not force the direction of displacements to be invariant to locations. Depending
on rotation to the equator, two identical displacements are likely to have a
different sign in polar angles if they are computed on opposite sites with respect
to the pole. This can yield a deformation field with abrupt sign changes close
to the pole. A proper choice of the pole e can significantly minimize this issue
and yield smooth deformation fields. The presence of non-smooth deformation
will generally lead to high magnitude coefficients in the high-frequency harmonic
basis functions. Based on this observation, we employ a coefficient sum-based
metric that weighs higher frequency coefficients stronger:

ê = argmin
e

k∑
l=0

l∑
m=−l

(l + 1) · (|cθl,m |+ |cφl,m
|) , (11)
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where cθ and cφ are coefficients for elevation and azimuth displacements. As this
metric possibly has local minima, we initialize the optimization with multiple
initial guesses spread across the sphere and select the minimum as the final pole.

2.3 Extension to Group-Wise Correspondence

While our pair-wise method provides adequate registration results (see Sect. 3),
we propose here the use of group-wise registration to further improve these
results as well as to remove the template selection bias inherent to pair-wise
registration. A group-wise correspondence is computed independently from the
template and thus is expected to perform more stably across a population of
surfaces. We propose to use entropy minimization to establish a group-wise cor-
respondence. Our group-wise correspondence method incorporates entropy terms
computed over the landmark distribution and sulcal depth maps.

Problem Definition. For N given triangulated cortical surfaces mapped onto
the unit sphere, each of which has the same number n of the common corre-
sponding points, we let Ωi denote the ith subject surface, i = 1, · · · , N . The
goal is to estimate continuous mapping functions of the cortical correspondence
Mi : S

2 → S2 across subjects such that

M1(v
1) =M2(v

2) = · · · =MN(vN ) , (12)

where vi ∈ Ωi are the corresponding points across subjects. Let x(Mi(v
i)) be

a column vector of the corresponding points of the ith subject deformed by
Mi, i.e., x(Mi(v

i)) = [Mi(v
i
1), · · · ,Mi(v

i
n)]

T . As described in [7], we assume
that x(Mi(v

i)) is an instance of a random variable X, drawn from a probability
density function. The amount of the information of X is denoted by entropy
H [X], and the minimization problem is then formulated as follows.

{M̂1, · · · , M̂N} = argmin
{M1,··· ,MN}

H [X] , (13)

which drives mapped/deformed corresponding points closer to each other.

Entropy of Landmark Errors. We employ the pair-wise correspondence
(Sect. 2.2) as initialization for the proposed group-wise method. As the sulcal la-
beling procedure yields varying parts of sulcal curves being labeled, we constrain
the set of sulcal landmarks only those that have a full correspondence across all
cortical surfaces. A key step for entropy computation is the density estimation
of corresponding sulcal landmarks. However, appropriate density estimation on
the sphere can be computationally demanding since it involves geodesic distance
computation. Similar to [7] for efficiency, we assume that the initial mapping
well centralizes corresponding sulcal landmarks, which allows a mapping from
the spherical space to the Euclidean space S2 → IR3 under the assumption of the
proximity of the landmarks. We compute the average over corresponding sulcal
landmarks, which is rescaled to the sphere, and the landmarks are projected onto
the tangential plane at that approximated mean to enable Euclidean statistics.
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Entropy of Sulcal Depth. Since sulcal landmarks are sparsely distributed
over the sphere and also likely possess minor mislabeling, we employ additional
entropy computation over sulcal depth maps densely sampled across the sur-
face. For a given point u on the sphere, we find a point vi ∈ Ωi such that
u = Mi(v

i). Once Mi is given, vi forms a correspondence with its deformed
corresponding points that are located at u on the sphere. Let sd(·) denote the
sulcal depth at a query point. Ideally, there will be little difference in sulcal
depth across the corresponding points if the mapping is well established, that
is, sd(v1) ∼= · · · ∼= sd(vN ). By uniform icosahedron subdivision-based spherical
sampling of u, the sulcal depth agreement is straightforwardly plugged into the
entropy minimization problem.

Entropy Minimization. We model x(Mi(v
i)) as an instance of X such that

x(Mi(v
i)) =

[
Tv̄1(Mi(v

i
1)), · · · , Tv̄n(Mi(v

i
n)), SD({Mi(v

i)})]T , (14)

where Tv̄(·) denotes the projection of a point onto the tangential plane at the
approximated mean v̄ over the corresponding sulcal landmarks. For the density
estimation, we assume a multivariate Gaussian distribution with covariance Σ
and therefore, the entropy is obtained by

H [X] ≈ 1

2
ln |Σ| = 1

2

∑
lnλ , (15)

where λ are the eigenvalues of Σ. By letting x̄ be the sample mean and Z =
[x(M1(v

1))−x̄, · · · ,x(MN (vN ))−x̄], the sample covariance is given by 1
N−1ZZ

T .
In practice, however, the eigendecomposition of the sample covariance is an
intractable task for the large dimension of X (� N). As stated in [7], we instead
compute the eigenvalues of 1

N−1Z
TZ in the dual space. The optimization uses

the NEWUOA optimizer [9] for solving the entropy cost function.

3 Experimental Results

We applied the proposed method on both non-human primate and human sub-
jects to evaluate the established correspondence quality. Since there exists no
ground-truth of the cortical correspondence, we made comparisons with the ini-
tial spherical mapping and the pair-wise method via analysis on cortical thickness
as well as the agreement with manually labeled sulcal curves.

3.1 Macaque Cortical Surfaces

We used the same data set as that in [4]. 18-month-old macaques were im-
aged under anesthesia at the Yerkes Imaging Center (Emory University, GA) on
a 3T Siemens Trio scanner with an 8-channel phase array trans-receiving vol-
ume coil. T1-weighted scans were acquired using a 3D MP-RAGE sequence with
GRAPPA at a high resolution of 0.6mm× 0.6mm× 0.6mm (TR=3,000ms,
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Fig. 3. Visual comparison of correspondence results. The colored template surface (first
column) is propagated to a selected, representative example surface via initial spherical
mapping (second), pair-wise correspondence (third), and group-wise correspondence
(fourth). The arrows indicate areas of visual differences across the correspondence
methods.

TE=3.33ms, flip angle=8◦, matrix=192× 192). In the experiment, we ran-
domly selected a single subject as a template with its 11 manually labeled sulcal
curves: central sulcus, arcuate sulcus, principal sulcus, superior temporal sulcus,
intraparietal sulcus, lunate sulcus, inferior occipital sulcus, occipitotemporal sul-
cus, cingulate sulcus, parieto-occipital fissure, and sylvian fissure.

We further established a sulcal curve-based color mapping across the cortical
surfaces to provide a visual quality assessment of the established correspondence
by propagation of the colorized template surface to other subjects. To generate
the reference colorized surface, a unique RGB color was assigned to each sulcal
curve, and then each RGB channel was interpolated to the entire surface via
spherical harmonic decomposition. In Fig. 3, the proposed group-wise method
shows qualitative improvement over the pair-wise correspondence.

3.2 Human Cortical Surfaces

Pediatric 2-year-old subjects were acquired on a 3T Siemens Trio scanner at
a resolution of 1.0mm× 1.0mm× 1.0mm with T1-(160 slices, TR=2400ms,
TE=3.16ms, flip angle= 8◦, matrix=256× 256) and T2-weighted (160 slices,
TR = 3200ms, TE=499ms, flip angle=120◦, matrix= 256× 256) scans. We
used 10 subjects chosen at random from the scans acquired as part of the Infant
Brain Imaging Study (IBIS) network1 at four different sites (University of North
Carolina, University of Washington, Washington University in Saint Louis, and
The Children’s Hospital of Philadelphia). We randomly selected a single subject
as a template, and an expert manually labeled 13 major curves on the template
surface: superior temporal sulcus (STS), inferior temporal sulcus (ITS), collateral
sulcus (ColS), central sulcus (CS), precentral sulcus (PrCS), postcentral sulcus

1 http://www.ibis-network.org

http://www.ibis-network.org
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Initial mapping Pair-wise correspondence Group-wise correspondence

STS ITS ColS CS PrCS PoCS IFS SFS IPS CingS POF CalcF SylF

Fig. 4. Sulcal curve agreement by initial spherical mapping (left), pair-wise correspon-
dence (middle), and group-wise correspondence (right). The arrows indicate improved
agreement in the group-wise as compared to the pair-wise correspondence.

(PoCS), inferior frontal sulcus (IFS), superior frontal sulcus (SFS), intraparietal
sulcus (IPS), cingulate sulcus (CingS), parieto-occipital fissure (POF), calcarine
fissure (CalcF), and sylvian fissure (SylF) (see Fig. 4). Only left hemispheres
were used in the experiment. For a visual assessment, all major curves were also
manually labeled on the 9 remaining subjects.

We applied a leave-one-out cross-validation technique for evaluation of the
optimal pole selection. We removed a single sulcus from each individual subject
during registration and measured landmark (reconstruction) errors between the
removed sulcus reconstructed by the deformation field and its corresponding one
in the template. Figure 5 shows the smaller average reconstruction errors for the
optimal pole and the reduced coefficient load of the azimuth displacement for
the high-frequency harmonic basis functions by the proposed pole selection.

For quantitative evaluation of the correspondence quality, we first measured
cross-subject variance estimates of sulcal depth over all vertices of the entire
surface across subjects. However, such an evaluation is biased, as sulcal depth
is employed in the cost function. We further used variance estimates of corti-
cal thickness as well as a visual assessment of manually labeled sulcal curves
for unbiased evaluation. Note that the manually labeled sulcal curves were not
used during processing in our pipeline, which implies that the evaluation is in-
dependent of the automatically labeled curves. In Table 1 the statistical anal-
ysis indicates superior performance of our method for variance of sulcal depth
and cortical thickness measures, with significant differences to both the initial
mapping and the pair-wise method, revealed by Student’s t-test (p < 0.0001).
Visually, the mapped major sulcal curves shows improved agreement in several
regions as compared to the pair-wise correspondence as shown in Fig. 4.
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Fig. 5. Reconstruction errors (a) and cumulative coefficient load for elevation (b) and
azimuth (c) displacements. No major differences are observed for the elevation dis-
placements, whereas for the azimuth displacements, the total amount of the coefficient
load significantly decreases for the optimal pole selection.

Table 1. Statistical analysis of variance of cortical properties. The proposed method
shows better variance estimates of sulcal depth and of cortical thickness with significant
differences to both the initial mapping and the pair-wise method (p < 0.0001).

Sulcal Depth (mm2) Cortical Thickness (mm2)
Method Mean SD Mean SD

Initial 1.9234 1.1300 0.5003 0.3925
Pair-wise 1.5014 0.9759 0.4948 0.3799
Group-wise 1.3181 0.9446 0.4741 0.3616

4 Conclusion

We presented an automatic group-wise cortical correspondence method that esti-
mates a smooth continuous deformation field using entropy minimization of sul-
cal landmarks and sulcal depth maps. In our experiment, the proposed method
outperformed the pair-wise method in non-human subjects via a visual assess-
ment and in human subjects via quantitative analysis and visual comparisons.
To enable enhanced spherical harmonic decomposition of the deformation field,
we also proposed a consistent displacement encoding scheme and an optimal pole
selection strategy. In the experiment, the optimal pole selection showed smaller
reconstruction errors and more efficient encoding of the deformation field.

The proposed method allows the inclusion of additional information such as
DTI-based connectivity akin to [7]. Furthermore, any prior information such
as lobar labeling, surface colorization, etc. can be straightforwardly propagated
from the template. In this way, inter-subject variability of cortical properties de-
fined in the template space could be incorporated into the entropy minimization.

It is noteworthy that our proposed method is sensitive to the quality of the
automatic labeling of sulcal curves, as mislabeled sulcal curve will negatively in-
fluence the established correspondence. In our experiment, the proposed method
has (qualitatively) shown to be quite resilient to errors in sulcal labeling if the
large majority of sulcal curves within the same class are correctly identified.
In our future work, we will extend this method to include robust estimators of
entropy for the sulcal curves to reduce the influence of such errors.
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