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Abstract. The high dimensionality of connectivity networks necessi-
tates the development of methods identifying the connectivity building
blocks that not only characterize the patterns of brain pathology but
also reveal representative population patterns. In this paper, we present
a non-negative component analysis framework for learning localized and
sparse sub-network patterns of connectivity matrices by decomposing
them into two sets of discriminative and reconstructive bases. In order
to obtain components that are designed towards extracting population
differences, we exploit the geometry of the population by using a graph-
theoretical scheme that imposes locality-preserving properties as well as
maintaining the underlying distance between distant nodes in the origi-
nal and the projected space. The effectiveness of the proposed framework
is demonstrated by applying it to two clinical studies using connectivity
matrices derived from DTI to study a population of subjects with ASD,
as well as a developmental study of structural brain connectivity that
extracts gender differences.

Keywords: Connectivity analysis, non-negative matrix factorization,
locality-preserving dimensionality reduction, graph embedding.

1 Introduction

Computational techniques applied to neuroimaging data have helped unveil the
underlying structural or functional differences between groups of interest, e.g.
patients and healthy controls. Altered brain connectivity has recently gained
a lot of attention in investigating the origin of many brain disorders such as
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autism spectrum disorder (ASD) [1] and in developmental studies [2]. Hence,
advanced techniques of brain connectivity analysis are emerging as a powerful
tool in pathological studies of brain disorders. Such tools quantify the connectiv-
ity between two regions of interest in DTI, fMRI, EEG, or MEG by calculating
tractography [3], mutual information, or synchronization [1] measures.

A number of established analysis methods are available for studying the under-
lying brain structure via a succinct representation. A successful analysis method-
ology must possess a means of identifying relevant sub-networks providing an
interpretable representation of the brain connectivity, while also facilitating the
statistical analysis that describes how this representation is affected by disease.
The traditional approaches, i.e. principal and independent components analysis
(PCA and ICA) used for investigating brain networks [4] provide dimensionality
reduction but may lack physiological interpretability.

Recently, non-negative matrix factorization (NMF) and its alternatives have
received extensive attention and proven effective in providing an interpretable set
of bases characterizing multivariate data. After being first introduced by Lee and
Seung [5], NMF has been successfully employed in many applications such as sig-
nal processing, pattern recognition, and medical imaging [6–10]. This was later
extended to enforce higher sparseness by adding certain regularization terms
[11]. NMF’s part-based representation of image data, as well as non-negativity
constraints on both the bases and coefficients, facilitates interpretability, and
its small size of the basis set categorizes NMF among the unsupervised dimen-
sionality reduction techniques. Although the unsupervised methods are useful in
interpretation due to their positivity and sparsity, they do not necessarily provide
discriminative bases, only bases which best reconstruct the original data.

The approach taken here is a decomposition of connectivity matrices into inter-
pretable basis components while enforcing positivity of both the components and
coefficients. Such a decompositionmaintains the interpretation of each component
as a network connectivity matrix and the coefficients associated with these com-
ponents as activations of those networks, while providing a succinct low dimen-
sional representation of the population amenable to statistical analysis. We split
the components into two sets of discriminative and reconstructive bases, which
are learned during the optimization process by a graph embedding scheme.

The reconstructive basis set is modeled by minimizing the Frobenius norm of
the reconstruction error matrix. To reach our discriminatory basis components,
we create two graphs in the high dimensional space of connectivity elements
(we call them high dimensional points here): A graph of nearest neighbors to
maintain representatives of nearby high dimensional points as close as possi-
ble after dimensionality reduction, and a second graph connecting distant high
dimensional points to maintain the long distance between their representatives
in the projected space. Accounting for the geometrical information in the un-
supervised projective NMF helps us categorize the non-negative basis set into
discriminative (i.e. providing group differences) and reconstructive (i.e. providing
low reconstruction error) components.
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The two capabilities of low reconstruction error and good discrimination are
unified into minimizing one objectives function by using a gradient descent ap-
proach with guaranteeing the positivity of bases and their coefficients.

While the method is generalizable to any type of non-negative connectivity
matrix, in this work we apply it to structural connectivity networks computed
from Diffusion Tensor Imaging (DTI) data from two different populations of sub-
jects with autism spectrum disorder (ASD) and a developmental study. When
NMF is combined with the geometrical information, we show that the discrimi-
native bases are grouped in the discriminative set and dominant bases gather in
the reconstructive set.

2 Methods

We hypothesize that each connectivity matrix obtained from the brain con-
nectivity network of a subject, is a linear combination of several fundamental
connectivity matrices called connectivity components. Due to the symmetry of
connectivity matrices, a vector of all elements of the upper triangular part of
any connectivity matrix is considered as the representative of that matrix, and is
used as an observation vector xi for the corresponding subject i. To compute the
connectivity components whose mixture approximately constructs the observed
connectivity matrices, a matrix factorization model is used as X = WΦ + ε,
where ε represents the residual error matrix, columns of X = [x1,x2, . . . ,xn] ∈
R

m×n, i.e. xi (1 ≤ i ≤ n), are the connectivity matrix representatives, and
columns of W = [w1,w2, . . . ,wp] ∈ R

m×p, i.e. wj (1 ≤ j ≤ p), are represen-
tative of the normalized basis connectivity components, i.e. the upper triangu-
lar elements of the matrix of the corresponding connectivity component. These
components (wj) are then mixed by the elements of each column of the loading
matrix Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ R

p×n to approximate the corresponding column
of X [7, 10], i.e. xi ≈

∑p
j=1 Φjiwj ; 1 ≤ i ≤ n.

2.1 Unsupervised Learning of Projective Non-negative Bases

Inspired by [12], we assume that Φ is the projection of X onto W , i.e. Φ =
W TX, the non-negativity constraint on the elements of W and Φ makes our
non-negative component analysis an optimization problem of minimizing the cost
function F (W ) = ‖X −WW TX‖2 with respect to W , where ‖.‖ represents
the matrix norm. Considering the Frobenius norm, the minimization problem
can be denoted by

min
W≥0

F1(W ) = min
W≥0

trace
{(

X −WW TX
) (

X −WW TX
)T}

. (1)

2.2 Locality Preserving Bases with Graph Embedding

In order to impose locality preserving properties, we split the set of projective
bases into two sets of W = [Ŵ , W̃ ] in which Ŵ = [w1, . . . ,wq] ∈ R

m×q (q < p)
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captures the discriminative basis components while W̃ = [wq+1, . . . ,wp] ∈
R

m×(p−q) is the complimentary space containing the reconstructive basis com-
ponents which minimizes the reconstruction error together with Ŵ . Thus, the

coefficient matrix is also split into Φ =

[
Φ̂

Φ̃

]

=

[
Ŵ T

W̃ T

]

X. A proper modeling of

such intent would provide at most q of those bases which are likeliest to provide
discrimination to belong to Ŵ .

Assuming that the two-group multivariate m-dimensional points, e.g. connec-
tivity elements of patients and controls, lie on a manifold, we would like the ba-
sis components captured in Ŵ to be discriminative, meaning that they should
group the p-dimensional coefficients corresponding to the similar (i.e. nearby)
m-dimensional points close to each other while keeping the p-dimensional co-
efficients corresponding to dissimilar (i.e. far) m-dimensional points as far as
possible after dimensionality reduction. In this section, we propose a model to
satisfy such goals.

To clarify the general idea behind our mathematical modeling given later in
this section, suppose that the m-dimensional points of two groups lie on a man-
ifold, as illustrated in Fig. 1(a), and are to be projected into a p=2 dimensional
space with q = 1 discriminative and p − q = 1 reconstructive basis. Therefore,
between the two orthogonal bases −→x and −→y , it is desirable for Ŵ to include −→y
(which is the most discriminative), while W̃ is to include −→x (which would have

the best reconstruction together with Ŵ ). Since Ŵ defines our discriminatory
space, it is supposed to provide clustering of coefficients. In order to get the
1-dimensional projections (i.e. coefficients) of m-dimensional points clustered in
the 1-dimensional space, we need to keep projections of nearby m-dimensional
points as close as possible. This can be obtained by taking advantage of an in-
trinsic k-nearest-neighbor graph [6]. However, due to the unsupervised nature of

our approach, Ŵ may pick up −→x which keeps points closer to each other than−→y , and therefore unfavorably merge the two present groups together. To inhibit
this, we incorporate a second graph to keep the projections of the distant m-
dimensional points as far as possible. Then, we impose the reconstructive basis
W̃ to keep the projections of the distant m-dimensional points close to each
other, i.e. imposing W̃ to pick up −→x . This will prevent the discriminatory basis
from picking up −→x because it is already picked by W̃ and also because there is
some degrees of inherent orthogonality [12] in the bases for the best reconstruc-
tion. As a result, the discriminatory basis picks up hyperplanes which maintain
coefficients of nearby m-dimensional points together but keeps coefficients of
distant points as far as possible, i.e. in this example Ŵ will be −→y .

There are a variety of approaches that can characterize separability of mul-
tivariate data-points. Most of such techniques can be unified in the framework
of graph embedding [6]. Let G = {X,S} be an undirected weighted graph of n
vertices, i.e. data points xi, with a symmetric similarity matrix S ∈ R

n×n with
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Fig. 1. Illustration of a two-group multivariate point distribution on a manifold in
the m-dimensional space. (a) The point distribution when projected into the direction−→x or −→y . (b) The 3-nearest-neighbor graph of two selected magnified points. (c) The
3-farthest-point graph of the same two selected points as in b.

non-negative elements corresponding to the edge weight of the graph (S has zero
diagonal elements). The Laplacian matrix L of the graph is then defined by

L = D − S, Dii =

n∑

j=1

Sij , ∀i. (2)

In order for the bases in Ŵ to provide discriminatory information, we would like
the resulting coefficients of nearby xi points to stay close to each other when
projected into Ŵ . To satisfy such intent, we first construct a k-nearest-neighbor
graph Ĝ = {X, Ŝ} of the m-dimensional points xi, as illustrated in Fig. 1(b),
in which the edge weight of neighbor points xi and xj is defined by

Ŝij = e−
‖xi−xj‖2

σ̂2 , (3)

where σ̂ is a scaling parameter. In this scheme, Ŝij is non-zero, if and only if xi is

among the k-nearest-neighbors of xj or vice versa, i.e. Ŝ is sparse and symmetric.
Hence, minimizing the following cost function will preserve coefficients (ϕ̂i) of
the nearby points as close as possible.

min
W≥0

F2(W ) = min
Ŵ≥0

n∑

i=1

n∑

j=1

‖ϕ̂i − ϕ̂j‖2Ŝij = min
Ŵ≥0

trace
{
Φ̂L̂Φ̂T

}
. (4)

According to the equation (4), if data-points xi and xj are close, their graph edge

weight Sij will be large, and therefore, the cost function F2(Ŵ ) gets minimized
only if the corresponding coefficients ϕ̂i and ϕ̂j remain close.

As explained earlier, to avoid the issue of merging the two groups by Ŵ , we
introduce the graph of k-farthest points G̃ = {X, S̃} where, as illustrated in
Fig. 1(c), each point xi is connected by a non-zero weighted edge to its k most
distant points in the m-dimensional space by

S̃ij = e−
‖xi−xj‖2

σ̃2 , (5)
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where σ̃ is a scaling parameter. S̃ij is non-zero, if and only if xi is among the k-

farthest points of xj or vice versa, i.e. S̃ is sparse and symmetric. With a similar

rationale as in the nearest-neighbor graph Ĝ, we exploit this graph G̃ to impose
W̃ to keep the representative coefficients (ϕ̃i) of the the farthest points as close
as possible in the lower dimensional space. This is performed by minimizing

min
W≥0

F3(W ) = min
W̃≥0

n∑

i=1

n∑

j=1

‖ϕ̃i − ϕ̃j‖2S̃ij = min
W̃≥0

trace
{
Φ̃L̃Φ̃T

}
. (6)

This will lead to resolve the aforementioned issue, and thereby Ŵ will gain
discriminatory properties by picking up the projection direction than maintains
the original nearby points as close as possible while keeping the distant points
as far as possible.

2.3 Objective Function

To achieve the above three objectives of (1), (4), and (6), the final objective
function is to minimize F (W ) = F1(W ) + λ (F2(W ) + F3(W )), and according
to the projective properties of the model, i.e. Φ = W TX, the final objective
function can be rewritten as follows

F (W ) = trace
{(

X −WW TX
) (

X −WW TX
)T}

+

λ
(
trace

{
Ŵ TXL̂XTŴ

}
+ trace

{
W̃ TXL̃XTW̃

})
, (7)

where λ is a tunable parameter to balance the two terms of reconstruction error
norm and graph embedding.

2.4 Optimization Solution

Minimizing the objective function of the equation (7) with non-negativity con-
straints of W yields the optimal projective bases among which q likeliest dis-
criminative ones are obtained in Ŵ . To minimize our objective function, we use
a gradient descent approach, i.e. updating Wij = Wij − ηij

∂F
∂Wij

with a positive

step-size ηij , where

∂F

∂W
= −4

(
XXTW

)
+ 2

(
WW TXXTW

)
+ 2

(
XXTWW TW

)

+
[
2λXL̂XTŴ , 2λXL̃XT W̃

]
. (8)

Regarding that L̂ = D̂ − Ŝ and L̃ = D̃ − S̃, and the fact that both D and S
matrices have non-negative elements, our non-negativity constraint is guaranteed
by positive initialization of W and applying the step-size as follows:
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ηi,j =
1
2Wij

(WW TXXTW )ij + (XXTWW TW )ij +
[
λXD̂XT Ŵ , λXD̃XT W̃

]
ij

.

(9)
This results in the a multiplicative updating solution as

Wij = Wij

(
2XXTW + λ

[
XŜXT Ŵ , XS̃XT W̃

])
ij(

WW TXXTW +XXTWW TW + λ
[
XD̂XT Ŵ , XD̃XT W̃

])
ij

.

(10)
For stability of the convergence, at each iteration, each column of W is normal-
ized by wi =

wi

‖wi‖2
. Starting with initial random positive elements on W , the

iterative procedure will converge to the desired W ≥ 0, whose first q columns
are likeliest discriminative bases and the rest are the reconstructive ones.

2.5 Scaling Parameter of Graph Edge Weights

The parameters σ̂ and σ̃ in equations (3) and (5) are a scaling measure of sim-
ilarity between two points. Such scaling parameters are commonly set by trial
and error, but this approach requires manual intervention and is time-consuming
[13]. We propose to set the scaling parameter of the graph Ĝ by

σ̂ =
1

n

n∑

i=1

δ̂i ; δ̂i = ‖xi − ˆ̂xi,k‖2 , (11)

where ˆ̂xi,k is the most distant point among the k-nearest neighbors of xi.

This results in a suitable scaling measure because δ̂i becomes large for the
outliers and small for the points near the center of each distribution in the
high dimensional space. The average of the δ̂is is dominated by the edges of
the points around the center of population distributions, because the number of
points around the distribution center exceeds the number of outliers. With the
same rationale, the scaling parameter of the graph G̃ is set by

σ̃ =
1

n

n∑

i=1

δ̃i ; δ̃i = ‖xi − ˜̃xi,k‖2 , (12)

where ˜̃xi,k is the least distant point among the k-farthest points to xi.

2.6 Group Analysis Model

As stated by equation X ≈ WΦ, the n connectivity observations, i.e. xi : 1 ≤
i ≤ n, in the matrix X are approximated by

[x1,x2, . . . ,xn] ≈ [w1,w2, . . . ,wp]

⎡

⎢
⎣

Φ11 Φ12 . . . Φ1n

...
...

...
Φp1 Φp2 . . . Φpn

⎤

⎥
⎦ . (13)
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Each observation vector per subject i is thus, approximately reconstructed by

xi ≈
p∑

j=1

Φjiwj =

p∑

j=1

(
wT

j xi

)
wj ; 1 ≤ i ≤ n. (14)

Thereby, the presence of each component wj in the corresponding connectivity
vector of a subject xi, is characterized by the corresponding coefficients Φji.
Let us suppose, with no loss of generality, that the first n1 elements are from
the first group (e.g. population of patients) and the remaining n2 = n − n1

from the second group (e.g. controls). Therefore, the statistical significance be-
tween the set of {Φji : 1 ≤ i ≤ n1} and {Φji : n1 + 1 ≤ i ≤ n} describes the
importance of the corresponding connectivity basis wj in differentiating the two
groups, which can be verified by a two-sample t-test.

3 Results

The proposed method above provides a linear framework of dimensionality reduc-
tion yielding two sets of discriminative and reconstructive network components.
The reconstructive basis set is expected to show the primary sub-networks of the
overall connectivity which are dominant based on their magnitude of coefficients
representing their average activation within the population.

The discriminatory set of basis components are expected to show localized
sparse sub-networks which represent population clustering and differentiate the
two groups but do not contribute considerably in reconstruction of the origi-
nal connectivity matrices. These two basis sets help us understand the primary
global dominant networks as well as pattern-based discriminatory sub-networks
characterizing population differences.

In order to show the effectiveness of our method, we examine it over two
separate datasets of DTI connectivity matrices. We will obtain the reconstructive
bases as well as pattern-based discriminative bases, and examine the differences
between the two groups pooled. Similar to the feature extraction problem, the
number of bases (i.e. p and q) is population dependent; however, we show that
with relatively small numbers for p and q, we obtain stable group differences.

Dataset Demographics. Our first dataset consisted of 83 children, 24 ASD
and 59 typically developing (TD), all male, aged 6-18 years (mean=12.9, SD=3.0
in ASD, and mean=11.6, SD=3.2 in TD). A standard t-test showed that the age
difference between the two groups was not statistically significant. Our second
dataset is a developmental study consisting of 595 subjects with 262 males and
333 females. Subjects are aged 8-22 years (mean=14.9, SD=3.2 in males, and
mean=15.4, SD=3.3 in females). A standard t-test showed that there was no
significant age difference between the genders.

Establishing Structural Connectivity. DTI data was acquired for each sub-
ject and brain extraction was performed on each diffusion-weighted volume and
used in computing a fractional anisotropy (FA) volume. Cortical parcellation
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and sub-cortical segmentation was carried out for each subject using Freesurfer.
For the developmental study, a total of 95 ROIs from the Desikan atlas [14]
were extracted to represent the nodes of the structural network, comprising 68
cortical regions and 27 sub-cortical structures. In the ASD study, 79 ROIs were
extracted comprising 68 cortical regions and 11 sub-cortical structures.

The seed region was limited to the GM-WM boundary of each ROI for reli-
able tracking. The seed regions were then transferred to the diffusion space via
intra-subject affine coregistration between T1 and FA volumes, to act as node
labels. Probabilistic tractography [3] was performed on all the subjects with 5000
streamline fibers sampled per voxel. The result was a 79×79 (in ASD) or 95×95
(in developmental) matrix of weighted connectivity values, where each (i, j) ele-
ment represents the conditional probability of a pathway between regions i and
j, normalized by the active surface area of the ROI i. This matrix was treated
as a weighted, undirected symmetric network of each subject.

3.1 Connectivity Analysis in ASD

The 79×79 connectivity matrix of each subject was vectorized to their m = 3081
upper triangular elements. In order to compute the bases and their linearly
projected coefficients, we used a three-nearest-neighbor graph for Ĝ as well as
a 3-farthest-point graph for G̃ (i.e. k = 3) and correspondingly calculated their
graph edge weights and node strengths, i.e. S andD. Also, the tuning parameter
was set to λ = 1. We used p = 5 for the number of bases with q = 2. The iterative
procedure of equation (10) was performed and the two discriminative as well as
three reconstructive bases learned are shown in Fig. 2.

A statistical group analysis, as described in Sect. 2.6, was performed over the
resulting projective coefficients of each wi basis, i.e. Φji. The two-sample t-test
is applied to the coefficients of each basis from the pooled population of AST–
TD subjects and the p−values and t−values are given in Table 1, as well as the
average of the coefficients in the entire population as a ranking criterion of their
activation magnitude in the population. The average values here are scaled down
similarly for all bases due to their large values.

It is observed that the discriminatory bases are quite sparse with localized
patterns, as expected. The large average of the reconstructive coefficients shows
that those bases are playing the main role in reconstructing the overall connec-
tivity while the small coefficients in the discriminative bases confirm that they do
not play a significant role in the reconstruction but are important in distinguish-
ing the two groups. The statistical significance of the discriminative basis (a) in
Fig. 2 shows distinct connectivity deficiencies in inter-hemisphere subcortical
and parietal connections in children with ASD, as well as in short-range frontal
connections with other nearby cortical and subcortical regions. The significance
of the reconstructive basis (c) also shows that the brain is slightly deficient in
children with autism in the overall short-range intra-hemisphere connectivity.
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Fig. 2. The p = 5 connectivity bases (ASD study) learned by the proposed method.
(a)–(b) are the q = 2 discriminatory, and (c)–(e) are the three reconstructive bases.

3.2 Connectivity Analysis in the Developmental Study

The m = 4465-length vectors of the upper triangular part of the 95 × 95 con-
nectivity matrices were used for basis learning. Similar to the ASD dataset, we
used a three-nearest-neighbor graph for Ĝ, as well as a 3-farthest-point graph
for G̃ (i.e. k = 3) and correspondingly calculated their graph matrices, S and D.
Also, the tuning parameter was similarly set to λ = 1. We applied our method
with p = 10 basis components with the first q = 6 bases forming the set of
discriminatory ones. The resulting bases are shown in Fig. 3.

The statistical group analysis results of the resulting coefficients of each basis
are given in Table 2, as well as the average of the coefficients in the entire
population. The average values here are scaled down similarly for all bases.

According to the statistics of the coefficients, it is seen from the discriminative
set of bases in the top row of Fig. 3 that the discriminative bases are sub-networks
of connectivity which mostly show strong group differences in both males and
females. Males show stronger intra-hemisphere inter-cortical connectivity struc-
ture (see Fig. 3(a), (b), (d)) whereas women are distinguished by their stronger

Table 1. Statistical group analysis of the coefficients of the ASD-TD bases

Component Pooled ASD-TD ASD-TD ASD-TD
label average coefficients group p−value group t−value

a 0.6 0.002 -3.3
b 0.4 0.96 -0.1
c 5.5 0.02 -2.5
d 5.8 0.44 -0.8
e 5.7 0.16 -1.4
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Fig. 3. The p = 10 connectivity bases (developmental study) learned by the proposed
method. (a)–(f) are the q = 6 discriminatory, and (g)–(j) are the 4 reconstructive bases.

Table 2. Statistical group analysis of the developmental basis coefficients

Component Pooled Male-Female Male-Female Male-Female
label average coefficients group p−value group t−value

a 0.15 9.8e-12 +7.0
b 0.17 1.5e-6 +4.9
c 0.10 1.6e-3 -3.2
d 0.13 1.2e-2 +2.5
e 0.17 0.56 -0.59
f 0.21 0.69 +0.39
g 4.1 6.1e-14 +7.7
h 4.2 2.5e-9 +6.1
i 4.4 4.2e-15 +8.1
j 3.6 3.0e-12 +7.1

inter-hemisphere connectivity specially in the frontal regions (e.g. see Fig. 3(c)).
Also, the four reconstructive bases at the bottom row of this figure show that
the overall dominant brain connectivity is a collection of short-range connections
which are stronger towards the male.

4 Conclusion

We have presented a novel technique for extracting the discriminative sub-
networks of a population via graph embedding. This maps the connectivity
patterns of the population onto a lower dimensional space to ease subsequent
population statistics. Our method consists of basis learning which simultane-
ously minimizes the reconstruction error, as well as provides discriminative bases
which identify group differences in the presence of non-negativity constraints
over both bases and coefficients. The method was evaluated on two datasets of
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connectivity analysis, one in a study of ASD which revealed significant inter-
hemisphere connectivity deficiencies in a set of interpretable connections as part
of a discriminatory basis. The second developmental dataset also showed dom-
inant intra-hemisphere connectivity in males while the inter-hemisphere frontal
connectivity appeared stronger in females. The presented technique represents a
framework, that is in principle capable of handling other types of non-negative
functional or structural connectivity networks from any modality for statistical
group analysis. Its linearity makes our technique attractive for the unsupervised
feature selection applications as well.
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