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Abstract. We propose a new approach for statistical shape analysis of
3D anatomical objects based on features extracted from skeletons. Like
prior work on medial representations [7,15,9], the approach involves de-
forming a template to target shapes in a way that preserves the branching
structure of the skeleton and provides intersubject correspondence. How-
ever, unlike medial representations, which parameterize the skeleton sur-
faces explicitly, our representation is boundary-centric, and the skeleton
is implicit. Similar to prior constrained modeling methods developed 2D
objects [8] or tube-like 3D objects [13], we impose symmetry constraints
on tuples of boundary points in a way that guarantees the preservation of
the skeleton’s topology under deformation. Once discretized, the problem
of deforming a template to a target shape is formulated as a quadrat-
ically constrained quadratic programming problem. The new technique
is evaluated in terms of its ability to capture the shape of the corpus
callosum tract extracted from diffusion-weighted MRI.

1 Introduction

The Blum skeleton [2] is a geometrical construct that provides a powerful set of
features for quantifying the symmetric properties of geometric objects, particu-
larly those derived from biomedical imaging. Although the skeleton, or medial
axis, was originally described by Blum [2] in the plane (defined as the set of con-
nected curves formed by the centers of maximal inscribed disks a 2D object), the
concept and the definition of the skeleton naturally extend to 3D. The skeleton
of a 3D object, also called the medial scaffold, consists of surfaces, which are
formed by the centers of all maximal inscribed balls (MIBs) in the object. We
give a more formal definition in Sec. 2.1, and Fig. 1 provides an illustration.

The Blum skeleton is used frequently in image and shape analysis because
it captures important salient properties of natural objects [9]. For instance, the
curvature of the skeleton can be used to characterize how an object bends locally,
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particularly for tube-like or sheet-like objects. Each point on the skeleton is
associated with the radius of the corresponding MIB, and the radius function
provides a way to measure the local thickness of tube and sheet-like objects.
Since many of the commonly studied organs in the human body are sheet-like or
tube-like (cerebral cortex, many white matter tracts, myocardium, heart valves,
etc.), such measures of thickness and bending are commonly sought in biomedical
applications, e.g., to characterize the effects of disease on organs and tissues.
Even objects that are not sheet-like (e.g., the hippocampus) have been analyzed
using features derived from skeletons [10,3].

The use of skeleton-derived geometric features in statistical shape analysis is
complicated by the fact that the composition of the medial axis/scaffold into
curves and surfaces, known as branching structure, is almost always different for
multiple instances of a given class of geometric objects (e.g., the hippocampi of
different individuals). A very small deformation to the boundary of an object,
such as adding a bump on the surface, can change the medial branching struc-
ture. This variability in branching makes it challenging to find correspondences
between medial axes/scaffolds of different instances and to apply the standard
tools of statistical shape analysis. In some cases, this challenge can be overcome
by pruning smaller branches heuristically until, for each instance, the medial
axis/scaffold is reduced to a common branching structure [3]. An alternative
approach that allows features derived from skeletons to be used for statistical
shape analysis is based on the deformable modeling framework. A template is
deformed to optimally match each instance in a class of objects, with defor-
mations constrained to preserve the medial branching structure of the template.
The match between each deformed template and the instance it is approximating
is not perfect, but in many problems, the mismatch is on the order of the other
errors involved in imaging-based morphometry, and thus an acceptable price to
pay for preserving homology between skeleton-derived features. Such medially-
constrained deformable modeling methods can be divided into two rough groups:
(1) methods that model the medial axis/scaffold of the deformable template ex-
plicitly, and (2) methods that impose geometric constraints on the boundary of
the deformable template. In the first class are the the Pizer et al. m-rep method
[7], and derivative techniques such as continuous m-rep [15,12]. These methods
explicitly describe the medial scaffold of the deformable template, and derive
the boundary of the model algorithmically. Examples from the second class of
methods include symmetry-seeking tubular models by Terzopoulos et al. [13],
skeleton-constrained 2D level set methods [8], and linked-surface deformable
modeling techniques (e.g., [16]).

Among these medially-constrained deformable modeling methods, few have
sought to adhere strictly to “true” 3D Blum medial geometry, which, we would
argue, takes away from the interpretability of the skeleton-derived features in
shape analysis applications. For instance, the original m-rep approach does not
model medial scaffolds with multiple branches as such; instead, it models com-
plex objects using subfigures attached to the boundaries of parent figures [7].
Coupled surface methods frequently model surfaces as parallel or constrained to
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be a certain minimal distance apart [16], constraints that are not directly related
to how skeletons are defined. Continuous m-rep methods [15,12], which describe
the medial scaffold parametrically and derive the boundary by inverting the
skeletonization process, have been successful at creating 3D deformable models
that adhere to Blum geometry. However, they suffer from the inherent challenges
that arise from trying to explicitly parameterize medial scaffolds, which are, es-
sentially, singularities. For instance, near the free edges of the medial scaffold
(see Fig. 1), inverse skeletonization is asymptotic: an infinitesimal step along
the medial scaffold maps to a big step on the boundary. Behavior along creases
(curves along which medial surfaces join) is also asymptotic and challenging to
model. Most difficult of all is to model endpoints of creases parametrically. In
fact, just one paper by Terriberry et al. [12] has claimed this capability, and has
only demonstrated it with a static example. To our knowledge, the ability to
deform templates adhering to 3D Blum geometry to target data has not been
demonstrated for templates with multiple branches.1

The main contribution of this paper is to propose a new paradigm for Blum-
adherent 3D deformable medial modeling, which bridges these two classes of
deformable modeling techniques. Our goals are closest to those of m-rep meth-
ods (to allow statistical analysis of skeleton-derived features across populations
of objects), but our approach is closer to symmetry-seeking models by Terzopou-
los et al. [13] and skeletally coupled level sets by Sebastian et al. [8]. It is the
boundary of the deformable template that is modeled parametrically, while the
medial scaffold is defined implicitly. Similar to [13,8], constraints are imposed
on the boundary parameterization to ensure that deformation does not change
the medial branching structure of the template. Unlike [8], which is 2D, and
[13], which imposes tubular symmetries, our approach is used to model arbi-
trary 3D shapes, including those with branching medial scaffolds. An additional
contribution of this paper is to formulate the problem deformable modeling with
medial constraints as a quadratically constrained quadratic programing (QCQP)
problem, leading to efficient, albeit non-convex, optimization.

2 Methods

2.1 3D Medial Geometry Background

We use the term object to refer to a set S ⊂ R
n that is homologous to a closed

ball and has a smooth boundary, denoted ∂S. A ball B is a maximal inscribed
ball (MIB) in S if B ⊂ S and there exists no other ball B′ ⊂ S such that
B ⊂ B′. Every point on ∂S belongs to exactly one MIB. The Blum [2] medial
axis transform (MAT) of S is the transformation that maps each point x ∈ ∂S
to the center of the MIB containing x. The terms medial scaffold, medial axis or
skeleton are used to describe the range of this mapping, i.e., the set of centers

1 Sun et al. [11] developed a myocardium model with three surfaces joining along a
crease, but they did not model the myocardium as a closed surface, which simplified
Blum geometry at crease endpoints.
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Fig. 1. Left: the medial axis of a 2D object, with examples of MIBs tangent to the
boundary at one, two and three points. Right: an illustration of a 3D object, half of
which has been cut away to reveal the medial scaffold. The medial scaffold consists of
surface patches that join along crease curves and terminate at free edge curves.

of all MIBs in S. Generically, the medial scaffold consists of one or more surface
patches. Curves that are shared by multiple surface patches in the medial scaffold
are called creases. The remaining boundaries of these surface patches are called
free edges (see Figure 1).

Each MIB in S is tangent to ∂S at one or more points. Thus, the MAT is a
many-to-one mapping. In fact, most MIBs in S are tangent to ∂S at two points.
Centers of these bitangent MIBs lie on the interiors of the surface patches that
form the medial scaffold of S. Centers of MIBs tangent to ∂S at three points
form the creases of the medial scaffold. Centers of MIBs that are tangent to ∂S
at only one point form the free edges of the medial scaffold. These MIBs have a
higher order of tangency with ∂S, i.e., the radius of such MIB is the reciprocal
the larger of the principal curvatures to ∂S at the point of tangency. As shown
by Giblin [4], two more types of MIB tangency occur generically, corresponding
to junctions of creases and free edges, and to crease-crease intersections.

2.2 Derivation of Medial Constraints on the Boundary

We begin by deriving a constraint on the boundary of a deformable template that
ensures that the branching structure of the template’s medial axis is preserved
under deformation. We say that two points x1,x2 ∈ ∂S are medially linked if
they belong to the same MIB in S, or, equivalently, MAT(x1) = MAT(x2). Our
method is based on the fact that transformations of S that preserve medial links
also preserve the branching structure of the medial scaffold. More formally,

Theorem 1. Let S be an object in R
3. Let Φ : R

3 → R
3 be a bijective and

differentiable transformation. Let S ′ = {x ∈ R
3 : Φ−1(x) ∈ S}. Suppose that Φ

“preserves medial links”, i.e., for any two points x1,x2 ∈ ∂S, the points Φ(x1)
and Φ(x2) are medially linked in S ′ if and only if x1 and x2 are medially linked
in S. Then the MAT of S ′ is homeomorphic to the MAT of S.

Proof. We outline the proof due to limited space. The proof involves constructing
a mapping Ψ between the MAT of S ′ and the MAT of S, as follows. Let m be a
point on the MAT of S, then let X ∈ ∂S be the non-empty set of points where
the MIB centered at m is tangent to ∂S. Let X ′ = {x ∈ R

3 : Φ−1(x) ∈ X}. If
X has only one element, let Ψ(m) be the center of the MIB containing the sole
point in X ′. If X has multiple elements, any two of them are medially linked,



284 P.A. Yushkevich and H.G. Zhang

and thus any two elements in X ′ are medially linked. Thus, there exists an MIB
that is tangent to ∂S ′ at all points in X ′. Let Ψ(m) be the center of that MIB.
Proof by contradiction can be used to show that Ψ is bijective and continuous.

Next, we write down the sufficient conditions for transformation Φ to preserve
medial links. It is a trivial fact that a ball with center m ∈ S and radius R is
tangent to ∂S at the point x if and only if m = x − RN, where N is the unit
outward normal to ∂S at x. It is also simple to show that such a ball is a MIB
in S if ∀y ∈ ∂S, ‖y −m‖ ≥ R. From these observations, we conclude that two
points x1,x2 ∈ ∂S are medially linked if and only if there exists R > 0 such that
x1 −RN1 = x2 −RN2 and ‖y − (x1 −RN1)‖ ≥ R for all y ∈ ∂S.

2.3 Medially-Constrained Model Fitting – Continuous Formulation

We first formulate the problem of fitting a medially-constrained template to a
target object in the continuous case. In the following section, the continuous
problem is discretized and solved numerically. Let the object S be a template,
whose MAT has the desired branching structure, and let T be a target object.
The goal is to deform S, making it as similar as possible to T , while maintaining
the branching structure of the MAT of S after deformation.

Let U be some parametric domain (e.g., the unit sphere), and x : U → ∂S
be a smooth bijective map that provides a global parameterization of ∂S. Let
L ⊂ U × U be the set of all parameter value pairs (u,v), such that u �= v
and x(u) and x(v) are medially linked in S. Let D be the set of diffeomorphic
transformations of R3 and let F+

L be the set of all bounded continuous positive
real-valued functions on L. For any Φ ∈ D, let SΦ = {x ∈ R

3 : Φ−1(x) ∈ S},
let xΦ(u) = Φ(x(u)), and let NΦ(u) be the unit outward normal vector to ∂SΦ

at xΦ(u). Let μ be some measure of dissimilarity between two objects in R
3

(e.g., mean closest-point distance) and let ρ be some measure of irregularity
of a transformation (e.g., bending energy). The continuous medially-constrained
deformable modeling problem seeks to find a transformation Φ∗ ∈ D that satisfies

Φ∗ = argmin
Φ∈D,R∈FL

μ(T ,SΦ) + ρ(Φ) , (1)

subject to the following two conditions:

xΦ(u)−R(u,v)NΦ(u) = xΦ(v)− R(u,v)NΦ(v) ∀(u,v) ∈ L , (2)

‖xΦ(w)− [xΦ(u)−R(u,v)NΦ(u)] ‖ ≥ R(u,v) ∀(u,v) ∈ L,w ∈ U. (3)

The constraints (2,3) guarantee that xΦ(u) and xΦ(v) are medially linked, and
hence the that Φ preserves the branching structure of the MAT of S under
deformation. Conversely, any Φ ∈ D that preserves the branching structure of
the MAT of S under deformation must satisfy (2,3). Since transformations that
preserve MAT branching do exist, we conclude that the minimization problem
above is not over-constrained and solutions can be found, in theory. In practice,
however, we must discretize and simplify the problem to find solutions.



Deformable Modeling with Quadratic Skeleton Constraints 285

a. b.

Fig. 2. Illustration of the template building process. a. The boundary of a reference
object (transparent white surface), its medial scaffold (opaque cyan surfaces), and the
coarse mesh formed by points sampled from the creases and free edges of the medial
scaffold (green points and yellow tubes). b. The coarse mesh inflated onto the boundary
of the reference object (green points and yellow tubes) and a fine mesh obtained by
applying Loop subdivision [6] to the coarse mesh.

2.4 Medially-Constrained Model Fitting – Discrete Formulation

In the discrete implementation, we model the boundary of the deforming tem-
plate as a triangular mesh, i.e., a piecewise linear surface with triangular ele-
ments. We consider this mesh to be an approximation of a continuous boundary
surface, and impose medial linkage constraints (2,3) on tuples of mesh vertices,
along with additional constraints on mesh quality. We then deform the mesh to
maximize similarity with a target object as well as mesh regularity.

Encoding Medial Links. Let Nb be the number of vertices in the mesh describing
the boundary of the deforming template, and let xi denote the position of each
vertex i ∈ [1, Nb]. Medial links between vertices are encoded by assigning amedial
link index Mi ∈ N to each vertex. Any two vertices i, j such that Mi = Mj are
considered medially linked. Some of the vertices are not medially linked to any
other vertex (corresponding to free edges of medial scaffolds) and some vertices
are medially linked to more than one vertex (corresponding to creases on the
medial scaffold). Furthermore, the mesh is constructed in such a way that each
triangle on the mesh is linked to exactly one other triangle as follows: if vertices
(i, j, k) form a triangle, then there exists exactly one other triangle (i′, j′, k′) in
the mesh for which Mi = Mi′ , Mj = Mj′ and Mk = Mk′ .

How can such meshes be constructed? The approach we use is to take a
reference object whose medial scaffold has the desired branching structure. We
then define a coarse triangle mesh on the medial scaffold, with vertices sampled
along creases and free edges (Fig. 2a). Each triple of connected points is included
as a triangular face twice, facing in different directions. The result is a mesh of
spherical topology that is infinitely thin, as if shrink-wrapped around the medial
scaffold. We then “inflate” the resulting mesh onto the boundary of the reference
object (Fig. 2b). The medial link index of each vertex on the coarse inflated mesh
is just the index of the vertex on the coarse medial mesh from which it originated.
Lastly, we apply Loop subdivision [6] to the inflated coarse mesh, resulting in a
finer mesh (blue object in Fig. 2b). It is simple to adjust the Loop subdivision
scheme to generate medial link indices consistent with the encoding above.
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General Problem Formulation. Once a mesh conforming to the above require-
ments is created, the problem of deforming it to target objects is defined as a
constrained optimization problem. The general form of the problem is

ξ∗ = argmin
ξ∈RNv

f(ξ) subj. to αc ≤ gc(ξ) ≤ βc for c ∈ [1, Nc] , (4)

where f is the objective being minimized, and gc are constraint functions, Nv

is the number of variables and Nc is the number of constraints. The objective
function captures the dissimilarity between the deforming mesh and the target
object, as well as the irregularity of the deforming template. The constraints
incorporate conditions derived from (2) and (3) that ensure that vertices with the
same medial link index are medially linked, and well as additional conditions that
ensure mesh quality. The vector of variables ξ includes the vertex coordinates
xi, as well as a large number of additional “helper” variables introduced in
order to make all constraints quadratic. The terms forming the objective and
the constraints are described in the next few paragraphs.

Medial Linkage Constraints. We impose constraints to ensure that any two ver-
tices (i, j) for which Mi = Mj satisfy discrete versions of the conditions of
medial linkage (2) and (3). Let k = Mi = Mj. The first condition has the form
xi − RkNi = xj −RkNj , where Rk is included as an additional variable in the
optimization (analogous to R in the continuous case), and Ni is the approxima-
tion of the unit normal vector to the boundary at xi. The computation of Ni

requires taking a square root, which would make the constraint non-quadratic.
Instead of computing Ni directly, we add it as an additional variable in the
optimization, and impose additional constraints on Ni that are quadratic:

Nt
iNi = 1 ; Nt

i(x,1)i = 0 ; Nt
i(x,2)i = 0 ∀i ∈ [1, Nb] ,

where (x,1)i and (x,2)i are a pair of non-parallel vectors in the tangent plane
to the boundary at xi. Such a pair of vectors can be approximated as weighted
sums of vertices in the one-ring neighborhood of i using a scheme described by
Loop [6], with the weights dependent only on the valence of the vertex i.

Note that we have not yet defined any constraint on Rk for vertices that
are not medially linked to any other vertex. In the continuous case, we did not
have to deal with such points, since MIBs that have a single point of tangency
with the boundary are limit cases of MIBs with double tangency [2,4]. In the
discrete case, we need to deal with these vertices explicitly. Recall from Sec. 2.1
that the radius of a singly tangent MIB is the reciprocal of the larger principal
curvature of the boundary at the point of tangency. This leads to the constraint
Rk ·κi,2 = 1, where κi,2 is the approximation of the larger principal curvature at
xi, and k = Mi. The approximation of κi,2 is not quadratic but, as we did above
for the normal vector, we introduce additional variables and constraints to the
optimization problem to keep all constraints quadratic. The added variables are
the elements of the first fundamental form, the elements of the shape operator,
and the principal curvatures. We omit the details due to space limitations.
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The condition that mirrors (3) has the form ‖xj− (xi−RkNi)‖2 ≥ R2
k, where

k = Mi, for all pairs of vertices i and j. These constraints are quadratic in the
variables x,N and R. However, there are O(N2

b ) constraints, which does not
scale well for larger meshes. Fortunately, in practice, if often suffices to relax
this constraint just to the vertices j that are in the one-ring neighborhood of
i. Analogous relaxation of a global non self-intersection condition is used in
continuous m-reps (i.e., positive medial-boundary Jacobian condition) [15].

Mesh quality constraints. For the approximations of the unit normal and princi-
pal curvature on a triangular mesh to be accurate, the triangular elements must
not be degenerate. We introduce additional constraints on the minimal angle
of each boundary triangle, and on the minimum dihedral angle between adja-
cent triangles. As before, we introduce additional variables into the optimization
problem, such as the area of each triangle, the unit normal to each triangle, and
the length of each edge, and relate these variables to each other and the vertex
coordinates using quadratic constraints.

Similarity to Target Shape. The objective function f consists of a similarity and
regularization terms. The similarity term is based on the iterative closest point
(ICP) algorithm. At the beginning of optimization, we match each vertex in the
template mesh to the closest point on ∂T , the boundary of the target object T .
We also match points on ∂T to the closest locations on the template. We then
minimize the sum of squared distances between the matched points. Specifically,
for each vertex i, let yi be the point on T that is closest to xi at the start of
the optimization. Likewise, for a set of Ns regularly sampled points zj on ∂T ,
let z′j be the closest point on the template mesh, not necessarily a vertex. Let
{xij,1 ,xij,2 ,xij,3} be the triangle containing z′j , and let wj,1, wj,2, wj,3 be the
barycentric coordinates of z′j in it. We formulate the objective function as

f(ξ) =
1

Nb

Nb∑

i=1

‖xi − yi‖2 +
1

Ns

Ns∑

i=1

‖zj −
3∑

d=1

wj,dxij,d‖2 + ρ(ξ) , (5)

where ρ is the regularization term, discussed below. As in ICP, the matching
and optimization are alternated for several iterations until convergence.

Regularization. Regularization is implemented using Loop subdivision surfaces.
Recall that the template mesh is initially generated by Loop subdivision from a
coarse mesh. We define the regularization penalty to be the residual between the
deforming template mesh and the best approximation of the deforming mesh by
a Loop subdivision surface. Specifically, let x̂q be the vertices in the coarse mesh,
for j ∈ [1, Nq]. Applying Loop subdivision creates a new set of vertices, with the
coordinate of the i-th vertex in the subdivided surface given by

∑
q∈Q(i) Wiq x̂q,

where Q(i) is the set of vertices in the coarse mesh that contribute to the coordi-
nates of the i-th vertex, andWiq are the coefficients from the subdivision scheme,
which depend only on the structure of the coarse mesh. We add the vertices x̂q as
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additional variables to the optimization problem. We then define the regulariza-
tion penalty as the total squared residual ρ(ξ) = λρ

∑Nb

i ‖xi−
∑

j∈Q(i) Wij x̂j‖2 ,
where λρ is the weight given to the regularization term (set to 1 in our experi-
ments). Since Loop subdivision surfaces are smooth, penalizing the residual to
the closest fitting Loop subdivision surface imposes smoothness on the template.

Numerical Solution. The optimization problem for deformable modeling with
preservation ofmedial links involves a large number of variables (xi,Ni,Rk, κi,2, x̂j

and several others) and a large number of constraints.However, the constraints and
the objective function are quadratic in the variables, i.e., have the form f(ξ) =
ξtA0ξ + bt0ξ and gk(ξ) = ξtAkξ + btk, where the matrices A0 and Ak are sparse.
Although the matrices Aq are not positive definite, and thus a global solution can
not be guaranteed, the optimizationproblem canbe solved efficiently using interior
point methods. Our implementation uses the Ipopt method [14].

3 Experiments and Results

Corpus Callosum Tract Shape Analysis. The goal of this experiment is
to demonstrate that the proposed deformable model can accurately capture the
shape of the corpus callosum (CC) across a cohort of subjects. To demonstrate
this, we first automatically label the CC using atlas-based segmentation, and
then fit a deformable medial model to each segmentation, allowing subsequent
shape analysis using skeleton-derived features. We focus on the CC because its
shape in 3D is non-trivial, and because skeleton-derived features have proved
useful for joint analysis of microscopic and macroscopic properties of sheet-like
white matter tracts extracted from diffusion MRI [17]. We use diffusion tensor
imaging (DTI) data from 51 subjects (ages 29-82, mean 70.0±7.1, 30 females and
21 males) in the IXI brain MRI database (http://biomedic.doc.ic.ac.uk/brain-
development). We label the CC in each subject using atlas-based segmentation,
with the IXI aging DTI template [17] serving as the atlas. Specifically, we reg-
ister each subject to the template using the DTI-TK deformable registration
algorithm [18], then use the resulting deformation field to map the binary seg-
mentation of the CC from the atlas into the subject space.

Deformable medial modeling proceeds as follows. We manually construct an
initial CC mesh that encodes medial links between boundary vertices. We then
fit this mesh to the boundary of the CC segmentation in the IXI atlas using
our ICP algorithm, creating a template that satisfies medial linkage conditions.
Fitting this template to each subject is performed in three steps. First, the
template is initialized close to the subject’s CC by applying the deformation
computed by DTI-TK to its vertices. This deformation does not preserve medial
linkage conditions. Second, we apply the ICP algorithm to fit the deformed
template to the subject’s CC segmentation, obtaining a mesh that closely fits
the CC shape and satisfies medial linkage conditions. Finally, we refine the fitted
mesh using one level of Loop subdivision, and perform one more stage of ICP-
style fitting, obtaining a dense mesh satisfying the medial linkage conditions and
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Fig. 3. Results from CC fitting experiment. The top two rows show two examples
(third-worst and third-best fitting quality) of templates fitted to atlas-based CC seg-
mentations. The columns show the target surface, the template fitted using ICP, the
last-stage fitted subdivided template, and the medial scaffold of the latter. The bottom
row shows the Procrustes mean of the fitted models, its medial scaffold (computed by
applying ICP-style fitting to the Procrustes mean), and the t-statistic map for the
age-related thinning hypothesis. The significant cluster (p = 0.04) is outlined.

closely matching the subjects’ CC segmentations. The meshes have the same
number of vertices and triangles, which enables point-wise statistical analysis of
MAT-derived features. We use the radius values Rk at the vertices of the fitted
meshes as a thickness feature, and use a general linear model to test the cross-
sectional hypothesis that the thickness of the CC decreases as age increases. To
control for multiple comparisons, we use cluster-level permutation testing [5].

Results. The results of the fitting are illustrated in Fig. 3. The template meshes
initially fitted to subject CC segmentations have 410 vertices and 816 triangles.
The corresponding constrained optimization problem has 11320 variables, 10116
equality constraints and 3744 inequality constraints. The Jacobian of the con-
straints is 99.91% sparse, and the Hessian of the Lagrangian is 99.95% sparse.
Optimization was successful in 50 of the 51 subjects, converging to a local mini-
mum of f and satisfying all the constraints within the tolerance of 10−8. In one
subject, it failed to satisfy the constraints in the 200 steps allowed. For the rest
of the subjects, each ICP iteration required an average of 16.5 optimization steps
to converge, taking an average of 42 s on a single 2.2GHz Intel CPU core. The
number of ICP iterations was fixed at 5 for each subject. After fitting, the root
mean squared (RMS) distance from the fitted template boundary to the bound-
ary of the subject’s CC segmentation was 0.89 ± 0.04 mm on average, and the
average distance from the segmentation to the template boundary was 1.16 ±
0.05 mm. The subdivided meshes fitted at the last stage have 1634 vertices, 3264
triangles, 42712 variables, 38988/14832 equality/inequality constraints, 99.98%
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Fig. 4. Fitting a medially constrained template with a fin-like medial scaffold to a
target object. The boundary of the target object is rendered as a dark gray wireframe
in all three views. a. The template before the fitting, colored by the radius value Rk.
b. The template after fitting. c. The medial scaffold of the fitted template.

Jacobian and 99.99% Hessian sparsity. ICP required an average of 21.5 opti-
mization steps and 297 s to converge. 2 The RMS template-to-segmentation and
segmentation-to-template distances were 0.70 ± 0.04 mm and 0.92 ± 0.05 mm,
respectively. Statistical analysis using an a priori cluster T-score threshold of
t = 2.0 and 10000 permutations revealed one significant cluster (p = 0.04) where
age correlated negatively with thickness, located in the anterior of the CC (the
genu). Such a finding is consistent with the literature, e.g., [1].

Proof of Concept for Branching Medial Scaffolds. While the medial scaf-
fold in the CC template has only one surface, the strength of the method is that
it is as easily applied to scaffolds with branches. In this pilot experiment, we
fit a “fin-like” medial scaffold illustrated in Fig. 2 to a target shape. The target
shape is produced by warping the reference shape in Fig. 2 based on a landmark
transformation. The ICP algorithm is then used to fit the template to the target
shape. Fig. 4 shows the template in relation to the target object before and after
the fitting. The medial scaffold of the fitted model is also shown.

4 Discussion and Conclusions

We presented a new way to fit deformable models to surface and image data
with preservation of medial branching structure. The method shows promise
for modeling objects whose medial scaffolds have multiple branches, although
additional experiments are needed to establish its utility for modeling complex
branching shapes in medical imaging data, e.g., the myocardium. The scalability
of the method is limited by the need to solve very large sparse linear systems,
but for many anatomical structures, meshes having on the order of 1000 vertices
should be sufficient to meet modeling needs. The number of empirical parameters
in the method is small and performance on real-data is robust, making the
method practical for shape analysis applications.

2 Computation time is dominated by solving sparse systems, and in theory, time should
scale with the number of non-zero elements in the sparse matrices, which is less than
4× for the refined mesh. The 9× increase in time may be due to memory limitations.
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