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Abstract. Contrast-enhanced ultrasound (CEUS) allows a visualization
of the vascularization and complements the anatomical information pro-
vided by conventional ultrasound (US). However, these images are inher-
ently subject to noise and shadows, which hinders standard segmentation
algorithms. In this paper, we propose to use simultaneously the differ-
ent information coming from 3D US and CEUS images to address the
problem of kidney segmentation. To that end, we introduce a generic
framework for joint co-segmentation and registration that seeks objects
having the same shape in several images. From this framework, we de-
rive both an ellipsoid co-detection and a model-based co-segmentation
algorithm. These methods rely on voxel-classification maps that we es-
timate using random forests in a structured way. This yields a fast and
fully automated pipeline, in which an ellipsoid is first estimated to lo-
cate the kidney in both US and CEUS volumes and then deformed to
segment it accurately. The proposed method outperforms state-of-the-
art results (by dividing the kidney volume error by two) on a clinically
representative database of 64 images.

Keywords: co-segmentation, registration, kidney, random forests, ul-
trasound, contrast-enhanced ultrasound.

1 Introduction

1.1 Clinical Setting

Contrast-enhanced ultrasound (CEUS) consists in acquiring a ultrasound im-
age after injecting in the patient’s blood a contrast agent made of gas-filled
microbubbles. Since those bubbles have a different acoustic response from the
tissues, they can be isolated and images showing only the blood flow can be
generated [1]. This modality is particularly valuable for visual assessment of
the functioning of highly vascularized organs like kidneys. Yet, analysis of such
images can be very challenging and literature on their segmentation is limited.

In [13], we proposed a method to detect and segment kidneys in 3D CEUS
images. While we provided an automated pipeline, failures were reported in sev-
eral cases and user interactions were needed to obtain a satisfying result. Yet,
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Fig. 1. Joint co-segmentation and registration. Given two different non-aligned images
of the same object, the proposed method aims at segmenting this object in both images
as well as estimating a rigid transformation between them.

because of shadowing effects, pathologies and restricted field of view, parts of
the kidney may be hardly visible in the image. In such cases even expert users
may have difficulty delineating the true boundary of the organ by solely relying
on the CEUS images. In clinical routine every CEUS acquisition is preceded by
a conventional US acquisition to locate the kidney. Hence, the latter could be
used to complement the CEUS image and thus cope with missing and corrupted
information. However, automated kidney segmentation in 3D US images is also
an open issue. Martin-Fernandez and Alberola-Lopez [8] tackled this problem
but their method requires a manual initialization. For both US and CEUS seg-
mentation are equally challenging, we propose to address them simultaneously
by performing kidney co-segmentation in the two images.

1.2 Related Work on Co-segmentation and Registration

Co-segmentation often denotes the task of finding an object in each image that
shares the same appearance but not necessarily the same shape [16]. Here we
look for the exactly same organ in two images but with a different appearance.
As simultaneous acquisition of US and CEUS is not possible on current 3D
imaging systems, the two images are in arbitrary referentials and need to be
aligned. However, standard iconic registration methods are not adapted since
visible structures, apart from the kidney itself, are completely different in US
and CEUS. Co-segmentation shall therefore help registration, just as registration
helps co-segmentation. This calls for a method that jointly performs these two
tasks (see Figure 1).

Although segmentation and registration are often seen as two separate prob-
lems, several approaches have already been proposed to perform them
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simultaneously. Most of them rely on an iconic registration guiding the segmen-
tation (e.g. [17,12,7]). Yet they assume that the segmentation is known in one of
the images, which is not the case in our application of co-segmentation. More-
over, as stated before, CEUS/US intensity-based registration is bound to fail
since visible structures does not correspond to each other. Instead of registering
the images themselves, Wyatt et al. [18] developped a MAP formulation to per-
form registration on label maps resulting from a segmentation step. However no
shape model is enforced and noise can degrade the results. In [19], Yezzi et al.
introduced a variational framework that consists in a feature-based registration
in which the features are actually the segmenting active contours.

In this paper, we aim at extending both the kidney detection and segmentation
in a 3D CEUS image presented in [13] to a pair of 3D CEUS and US images. To
that end, we develop a generic joint co-segmentation and registration framework
inspired by [19]. This results in a fully automated pipeline to obtain both an
improved kidney segmentation in CEUS and US images and a registration of
them.

The article is structured as follows. Section 2 describes the generic framework
and its application to two consecutive algorithms. Both rely on an appearance
characterization of the kidney in ultrasound images that is learnt using random
forest in an original structured way (Section 3). Results of the proposed co-
segmentation method on a challenging clinical database are presented in Section
4. Finally, Section 5 provides some discussion and concludes the paper.

2 Joint Co-segmentation and Registration

2.1 Generic Implicit Variational Framework

Segmentation consists in finding an optimal two-phase (inside and outside) par-
titioning of a given image I : Ω → R

+. In implicit methods, this partitioning is
defined using the sign of an implicit function φ : Ω → R. In [13], two variational
methods are developped to respectively detect and segment the kidney. They
both consist in seeking φ as the minimum of functional of the following generic
form

EI(φ) =

∫
Ω

f(φ(x)) rI(x) dx+R(φ) (1)

where f is a real-valued function and rI(x) denotes a pointwise score on whether
x looks like an interior or exterior voxel in the image I. This is a standard setting
in which the optimal implicit function φ must achieve a trade-off between an
image-based term and a regularization termR. For example, the seminal method
of Chan and Vese [3] falls in this framework with f = H the Heaviside function
and rI(x) = (I(x) − cint)

2 − (I(x) − cext)
2 with cint and cext denoting mean

intensities inside and outside the target object.
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We are interested in the case where a pair of images I1 : Ω1 → R and
I2 : Ω2 → R of the same object are available. If those images were perfectly
aligned, the energy in Eq (1) can be straightforwardly generalized to perform
co-segmentation:

EI1,I2(φ) =

∫
Ω1

f(φ(x)) (rI1 (x) + rI2 (x)) dx+R(φ) . (2)

Unfortunately, such an assumption rarely holds in medical applications unless
the two images are acquired simultaneously. A more realistic hypothesis is to
assume that the target object, segmented by φ, is not deformed between the
two acquisitions, but only undergoes an unknown rigid transformation Gr. The
co-segmentation energy thus reads

EI1,I2(φ,Gr) =

∫
Ω1

f(φ(x)) rI1(x) dx+

∫
Ω2

f(φ◦Gr(x)) rI2(x) dx+R(φ) . (3)

Note that, after a variable substitution, it can be equivalently written

EI1,I2(φ,Gr) =

∫
Ω1

f(φ(x)) (rI1(x) + rI2 ◦ G−1
r (x)) dx+R(φ) . (4)

Minimizing EI1,I2 with respect to φ and Gr simultaneously can be therefore
interpreted as performing jointly segmentation (via φ) and rigid registration (via
Gr) . This generalizes a more common co-segmentation approach (e.g. [5]) where
the images are first aligned in a preprocessing step. Note that for clarity, we only
consider two images but all equations can be generalized straightforwardly to an
arbitrary number of images.

In the following, we apply this framework to (i) a robust ellipsoid detection [13]
and (ii) implicit template deformation [10] to build a completely automated
workflow for kidney segmentation in CEUS and US images. Note that the kidney,
which is surrounded by a tough fibrous renal capsule, is a rigid organ. The
hypothesis of non-deformation is therefore justified.

2.2 Robust Ellipsoid Co-detection

In [13], we proposed to detect the kidney in CEUS images as an ellipsoid. For
that purpose, we developed a variational framework to achieve fast and robust
ellipsoid detection. Any ellipsoid can be implictly represented by a function
φc,M : Ω → R such that φc,M(x) = 1 − (x− c)

T
M (x− c), where c ∈ R

3

denotes the ellipsoid center and M is a symmetric positive-definite matrix. The
ellipsoid interior is then the zero superlevel set of φc,M. Given a probability map
p : Ω → [0, 1] of the target object, defined at each pixel, the detection is sought
as the smallest ellipsoid that includes most of the pixels x with high probability
p(x). To limit the influence of possible false positives pixels, a weighting function
w : Ω → [0, 1] acting on p is also estimated. We thus proposed to solve the
following problem
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min
c,M,w

Edet(c,M, w) =−
∫
Ω

φc,M(x) p(x) w(x) dx (5)

+ μ.

(∫
Ω

p(x) w(x) dx

)
. log

(Vol(M)

|Ω|
)

with Vol(M) =
4π

3

√
detM−1 the ellipsoid volume.

Such a setting falls into the framework described in Eq (1) :

– with f = Id and rI = −pw in the image-based term. rI is then highly
negative at voxels that have a high probability and are not outliers. To
minimize the energy, such pixels must be inside the ellipsoid i.e. where φ is
positive.

– with R(φc,M) = R(M) = μ.
∫
Ω
pw. log

(
Vol(M)

|Ω|
)

as a regularization term

that penalizes the volume of the ellipsoid. The rationale behind the log-
arithm is statistical: the energy in Eq (5) is closely related to maximum
likelihood estimation of a Gaussian distribution. Factor

∫
Ω pw normalizes

the contribution of such a term, while μ denotes a trade-off parameter set
to 1

2 in 2D and 2
5 in 3D (see [13]).

Expanding this algorithm to another image with a given probability p2 requires
the introduction of another weighting function w2. Following Eq (3), we can now
define the co-detection energy as

Eco−det(c,M, wi,Gr) =−
∫
Ω

φc,M p1 w1 −
∫
Ω

φc,M ◦ Gr p2 w2

+ μ

(∫
Ω

p1w1 + p2w2

)
log

(Vol(M)

|Ω|
)

with Vol(M) =
4π

3

√
detM−1 the ellipsoid volume. (6)

To facilitate the resolution of such a problem, Gr - as a rigid transformation - can
be decomposed into a rotation and a translation. We can therefore equivalently
write the energy as a function of the ellipsoid center c2 in the second image and
the rotation matrix R :

Eco−det(ci, wi,R,M) =−
∫
Ω

φc1,M(x) p1(x) w1(x) dx (7)

−
∫
Ω

φc2,RTMR(x) p2(x) w2(x) dx

+ μ

(∫
Ω

p1w1 + p2w2

)
log

(Vol(M)

|Ω|
)

Minimization of such functional is done in an alternate three-step process:

1. The statistical interpretation still holds for the ellipsoids centers and matrix:
minimizers c∗1 and c∗2 are weighted centroids while minimizer M∗ is related
to the weighted covariance matrix of pixels coming from both images.
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2. The unknown matrix R accounts for the possible rotation between the two
images and can be parametrized by a vector of angles Θ ∈ R

3. A gradient
descent is peformed at each iteration to minimize the energy with respect
to Θ.

3. The weights w1 and w2 are finally updated as indicator functions (up to a
slight dilation) of the current ellipsoid estimates.

The complete minimization strategy is summarized in Algorithm 1. This algo-
rithm is computationally efficient : closed-form solutions are available (except
for R) and the process, though iterative, usually converges in very few iterations.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Ellipse detection on two synthetic images with p1 (a) and p2 (d). Detected
ellipses with their center and main axes are shown in (b) and (e) for independent
ellipse detection (red) and proposed method for co-detection (blue) compared to the
ground truth (green). (c) Second image registered with the estimated transform G−1

r .
(f) Combination of image terms w1p1 + (w2p2) ◦ G−1

r used for ellipse estimation at
convergence.

Figure 2 shows an example of ellipse co-detection in synthetic images, where
the probability of belonging to the target object is the image intensity. Despite
the noise, the simulated shadow and the reduced field-of-view effect, the co-
detection algorithm provides a good estimate on the ellipse position, size and
orientation in both images.

2.3 Co-segmentation via Implicit Template Deformation

The previously detected ellipsoid is not a precise segmentation of the kidney,
but can be used as an initialization for a more elaborate segmentation method,
namely template deformation [14,10].
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Algorithm 1. Robust ellipsoid co-detection algorithm

initialization ∀ x ∈ Ω, w1(x)← 1, w2(x)← 1
repeat

// Estimation of centers c1 and c2 and matrix M
c1 ← 1∫

Ω p1w1

∫
Ω
p1(x) w1(x) x dx

c2 ← 1∫
Ω p2w2

∫
Ω
p2(x) w2(x) x dx

M−1 ← 2

μ
∫
Ω
p1w1 + p2w2

(∫

Ω

p1(x) w1(x) (x− c1) (x− c1)
T dx

+

∫

Ω

p2(x) w2(x) R (x− c2) (x− c2)
T RT dx

)

// Update of the rotation matrix R by gradient descent with time step Δt
repeat

R(Θ)← R (Θ −Δt ∇ΘEco−det(Θ))
until convergence;
// Update of the weighting functions w1 and w2 for each x ∈ Ω

if (x− c)T M (x− c) ≤ 1− μ log
(

Vol(M)
|Ω|

)
then

w1(x)← 1 else w1(x)← 0

if (x− c2)
T RTMR (x− c2) ≤ 1− μ log

(
Vol(M)

|Ω|

)
then

w2(x)← 1 else w2(x)← 0

until convergence;

Template deformation is a model-based segmentation framework that repre-
sents the segmented object as a deformed initial function (called template). In
an implicit setting [10], this segmentation is represented by the zero-level set of
a function φ : Ω → R defined as φ = φ0 ◦ ψ, where φ0 is the implicit template
and the transformation ψ : Ω → Ω becomes the unknown of the problem. ψ is
sought as a minimum of the following energy

Eseg(ψ) =

∫
Ω

H(φ0 ◦ ψ) rI(x) dx+R(ψ) . (8)

where H is the Heaviside function (i.e. H(x) = 1 if x > 0, otherwise 0) and
rI an image-based term negative (resp. positive) at pixels likely to be inside
(resp. outside) the target object. The template φ0 acts as a shape prior and the
transformation ψ that φ0 undergoes is penalized via R. In order to define this
regularization term, this transformation is decomposed as ψ = L ◦ G where

– G is a global transformation that accounts for the pose and scale of the
segmentation. It is defined through a vector of parameters (typically in R

7

for a 3D similarity);
– L is a non-rigid local deformation, expressed using a displacement field u

such that L(x) = x + (u ∗ Kσ)(x). Kσ is a Gaussian kernel that provides
built-in smoothness.

This decomposition allows R to be pose-invariant and constrains only the non-
rigid deformation : R(ψ) = R(L) =

∫
Ω ‖L − Id‖2 =

∫
Ω ‖u ∗ Kσ‖2. Penalizing
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the magnitude of the displacement field allows to control the deviation of the
segmentation from the initial shape prior.

Implicit template deformation, as previously described, is part of the framework
defined in Eq. (1) with f = H .We can therefore extend it to co-segmentationusing
Eq. (3) by considering the following functional:

Eco−seg(L,G,Gr) =

∫
Ω

H(φ0 ◦ L ◦ G) rI1(x) dx

+

∫
Ω

H(φ0 ◦ L ◦ G ◦ Gr) rI2 (x) dx+
λ

2
‖L − Id‖22 . (9)

In our application, the template φ0 is defined as the implicit representation of the
detected ellipsoid φc1,M. G and L are initially set to the identity while Gr is initial-
ized with the previously estimated registering transformation: Gr(x) = R (x +
c1 − c2). As in [13], the image-terms are defined as rIi = Δpi whereΔ denotes the
Laplacian operator and pi the kidney probability in image i. The energy Eco−seg

is then minimized with respect to the parameters of G, Gr and each component of
the vector field u, through a gradient descent.

3 Learning Kidney Appearance Using Random Forests

The previously described algorithms rely on functions pI that associate to each
voxel x of the image I a probability to belong to the kidney. In CEUS images,
bright areas indicate the presence of contrast agent which is mainly localized in
the kidney. Therefore we can directly use the normalized intensity of the image
as a probability term, i.e. pCEUS = ICEUS

max ICEUS
.

However, the kidney appearance has a much higher variability in US images,
although their structure is consistent: kidneys are always composed of a bright
sinus surrounded by a darker parenchyma (see Figure 3). As intensity itself is
not reliable enough, we chose to combine multiple image features using deci-
sion forests [2] to obtain a class posterior map pUS . Recent work [11,9,6,4,20]
demonstrated that adding contextual information allows to improve spatial con-
sistency and thus classification performance. Here we propose to exploit the
kidney structure in a simple yet efficient way. Similarly to the auto-context
framework introduced by Tu et al. [15], contextual information is included by
using two classifiers in cascade. A first classification (kidney vs background) is
performed in each voxel using a decision forest. Then we use these class posterior
probabilities as additional input of a second random forest that will give the final
kidney probability pUS .

The features used for the first decision forest were the intensity of the image
and its Laplacian at the considered voxel as well as at its neighbors’ within
a 7 × 7 × 7 local patch, at three different scales (σ = 2, 4, 6 mm). Intensities
were normalized in each patch. For the second forest, we added the estimated
class posterior as additional channels. Each forest was composed of 10 trees with
maximum depth 15.
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Fig. 3. Kidney appearance in US images (denoted in red). Left: original images show-
ing the high variability of the database. Middle: kidney probability given by the first
classifier. Right: final kidney probablity pUS .

4 Experiments and Validation

4.1 Material

Our database is composed of 64 couples of CEUS and US volumes acquired from
35 different patients. This set is clinically representative as different ultrasound
probes were used, with different fields of view, on both diseased and healthy
kidneys. The volumes size was 512× 510× 256 voxels with varying spatial res-
olutions (0.25× 0.25× 0.55 mm in average). The CEUS acquisitions have been
performed a few seconds after injection of 2.4 mL of Sonovue (Bracco, Italy)
contrast agent. Kidney segmentation made by an expert was available for each
image as a ground truth. The proposed method was implemented in C++ and
the average overall computational time was around 20 seconds on a standard
computer (Intel Core i5 2.67 Ghz, 4GB RAM).

4.2 Validation on the Learnt Kidney Appearance in US Images

The patient database was split into two groups. Results on the whole dataset
were then obtained using a two-fold cross-validation. Figure 4 shows the ROC
and Precision-Recall curves, as well as a boxplot of the Dice coefficients obtained
by thresholding the kidney probabilities computed (i) by the first decision forest
and (ii) using the auto-context approach with another forest in cascade. The
latter provides better kidney probabilities with respect to all reported statistics.
In particular, Dice coefficients are significantly improved, with a p-value < 10−4

(in this paper, all p-values were obtained for the Wilcoxon signed-rank test
after Bonferroni correction). Indeed, taking into account structural information
helps for example in distinguishing the kidney sinus from the background or the
parenchyma from shadows, and allows a more spatially coherent classification
(see Figure 3).

4.3 Validation on the Kidney Co-segmentation

In all CEUS/US couples, kidneys were co-detected using Section 2.2 as an ini-
tialization for the co-segmentation algorithm of Section 2.3. For comparison, we
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Fig. 4. Comparison of classification results for the single decision forest and the auto-
context approach. (Left) ROC Curve. (Middle) Precision-Recall curve. (Right) Boxplot
of the Dice coefficients (p-value < 10−4).
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Fig. 5. Boxplots of segmentation results for kidney segmentation in US and CEUS
images, in terms of Dice coefficients (a-b) and relative volume error (c-d). The proposed
co-segmentation compares favorably to independent segmentation following [13], with
a p-value < 10−4.

also segmented the kidney following [13] independently in each modality, which
is state-of-the-art for CEUS segmentation. Validation was performed by compar-
ing the segmentation result and the ground truth in both US and CEUS images.
Dice coefficients and relative error on the measured kidney volume are reported
in Figure 5. Using simultaneously the complementary information from US and
CEUS images significantly improves the segmentation accuracy in both modali-
ties. More specifically, the median Dice coefficient is increased from 0.74 to 0.81
in CEUS (p-value < 10−4) and 0.73 to 0.78 in US (p-value < 10−4). Further-
more, the proposed approach provides more reliable clinical information as the
median error on the kidney volume is almost divided by two in CEUS (29% ver-
sus 15%) and in US (25% versus 13%). Figure 6 shows the joint co-segmentation
and registration results for one case. Independent segmentation fails in both US
and CEUS images because of the kidney lesion (indicated by the yellow arrow),
that looks like the background in CEUS but like the kidney in US. Conversely,
the proposed co-segmentation manages to overcome this difficulty by combining
information from the two modalities. Furthermore, for this example, one can
assess the estimated registration by comparing the location of the lesion in the
two modalities. Results on another case were also displayed in Figure 1.
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Fig. 6. Example of joint co-segmentation and registration for a CEUS (top) and a
US (bottom) images. (Left) Comparison of independent segmentations (red) and the
proposed co-segmentation (blue) with respect to the ground truths (green). (Middle,
Right) Two views of the registered volumes that can be assessed by considering the
position of the lesion (yellow arrow).

5 Conclusion

In this paper, we introduced a novel framework to jointly perform co-
segmentation and registration by seeking the same object in different images.
This allowed to significantly improve state-of-the-art results of kidney segmen-
tation in CEUS images by simultaneously taking into account complementary
information coming from the available US image. A global CEUS/US registra-
tion is also available as a side outcome. The full pipeline is automated and
computationally efficient for 3D images.

The genericity of our joint co-segmentation and registration framework is three-
fold. First, it can be applied to a large class of variational problems, as shown here
with ellipsoid detection andmodel-based segmentationmethods. Second, it can be
used for any kind of image: in this paper, we used dedicated classifiers for kidney in
US/CEUS images but our approach can be plugged on top of any pixelwise classi-
fier. Finally, we presented co-segmentation in two images but generalization to an
arbitrary number of images is straightforward. This paves the way for organ track-
ing application in 3D+T sequences, which we are currently investigating. We also
plan to extend the current framework by considering a non global transformation
between images in order to cope with deformable organs.
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6. Kontschieder, P., Bulò, S.R., Criminisi, A., Kohli, P., Pelillo, M., Bischof, H.:
Context-sensitive decision forests for object detection. In: Proceedings of NIPS,
pp. 440–448 (2012)

7. Lu, C., Duncan, J.S.: A coupled segmentation and registration framework for med-
ical image analysis using robust point matching and active shape model. In: IEEE
Workshop on MMBIA, pp. 129–136 (2012)

8. Martin-Fernandez, M., Alberola-Lopez, C.: An approach for contour detection of
human kidneys from ultrasound images using Markov random fields and active
contours. MedIA 9(1), 1–23 (2005)

9. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: En-
tangled decision forests and their application for semantic segmentation of CT
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