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Abstract. In this paper we develop a novel approach for computing
conformal maps between anatomical surfaces with the ability of align-
ing anatomical features and achieving greatly reduced metric distortion.
In contrast to conventional approaches that focused on conformal maps
to the sphere or plane, our method computes the conformal map be-
tween surfaces in the embedding space formed the intrinsically defined
Laplace-Beltrami (LB) eigenfunctions. Utilizing the power of LB eigen-
functions as informative descriptors of global geometry, the conformal
maps computed by our method can effectively align anatomical features
on cortical surfaces. By computing such feature-aware conformal maps to
a group-wisely optimal atlas surface, which is also computed with metric
optimization in the LB embedding space, we develop a fully automated
system for cortical labeling with the fusion of labels on a large num-
ber of atlas surfaces. In our experiments, we build our system with 40
labeled surfaces and demonstrate its excellent performance with leave-
one-out cross validation. We also applied the automated labeling system
to cortical surfaces reconstructed from MR scans of 50 patients with
Alzheimer’s disease (AD) and 50 normal controls (NC) to illustrate its
robustness and effectiveness in clinical data analysis.

1 Introduction

Automated analysis of neuro-anatomical surfaces such as the cortex plays an
important role in brain mapping research where the ultimate goal is to accurately
align corresponding anatomical regions and detect changes across population and
time. In this work, we develop a novel approach for computing conformal maps
between anatomical surfaces via metric optimization in the Laplace-Beltrami
(LB) embedding space of surfaces [1, 2]. Guided by the LB eigenfunctions, the
conformal maps from our method have the nice property of being able to align
anatomical features and having significantly reduced metric distortion. As a
demonstration of these properties, we apply the conformal maps to develop an
automated labeling system of gyral regions on cortical surfaces by fusing labels
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Fig. 1. Spherical conformal parameterization. (a) Cortical surface. (b) Projection of the
cortical surface mesh onto the sphere with the conformal map to the sphere. (c) After
surface area normalization, the distribution of the ratio of the length of corresponding
edges in the mesh of (b) and (a).

from a large number of atlas surfaces. Cross-validation and application to clinical
data analysis show that our method can achieve excellent performance.

Conformal maps were used successfully for medical shape analysis problems
[3, 4], but the focus has typically been the mapping of surfaces to a canonical do-
main such as the sphere or plane. Because the canonical domains lack geometric
similarity to anatomical surfaces, the conformal maps do not align anatomical
features, but rather serve as a parameterization for downstream tasks such as
registration [5]. While angles are preserved in conformal maps to canonical do-
mains, large metric distortions are quite common. For example, we show in Fig.
1 the conformal map of a cortical surface to the unit sphere computed with the
method in [4], where large variations of metric distortion can be seen clearly
because of the geometric differences between the cortical surface and the sphere.

The eigen-system of the LB operator emerges recently as a novel way of
studying anatomical shapes. It has been used for many surface classification and
analysis works [6–8]. One important development is the embedding of a surface
to a high dimensional space with eigenfunctions and the definition of rigorous
distance measures[1, 2]. In particular, a surface mapping technique was pro-
posed in the embedding domain with the optimization of conformal metrics[9].
In this work, we extend the method in [9] by establishing the connection be-
tween LB embedding and conformal maps, and thus developing a new way of
computing conformal maps with metric optimization. As demonstrated in pre-
vious works [6–9], LB eigenfunctions are effective global descriptors of surface
geometry. Minimizing distances in the embedding space is in effect the match-
ing of these global descriptors, thus the conformal maps derived from metric
optimization are feature-aware and can align geometric features on anatomical
surfaces. Because of this property, there is no need of large metric distortion to
match surfaces and the conformal maps generated by our method have greatly
reduced metric distortions compared with maps to canonical domains.

Using the proposed metric optimization approach for computing conformal
maps, we develop a new system to solve the challenging problem of automated
cortical labeling [10–12]. Our cortical labeling system is based on the popular
multi-atlas fusion approach in image segmentation [13–15]. Given a group of
manually labeled surfaces, we first compute a group-wise atlas in the embedding
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space and align all individual atlas surfaces to it with metric optimization. To
obtain the cortical labels of a new surface, we also perform metric optimiza-
tion and align it with the group-wise atlas such that multi-atlas fusion can be
performed using conformal maps between the subject surface and all individual
atlas surfaces with labels. Note that we only need to compute one metric op-
timization to the group-wise atlas to obtain its conformal maps to all labeled
surfaces. This allows the use of a large number of labeled surfaces in our system
without significantly increasing the computational cost of the fusion process. In
our experiment, we use cortical labels derived from the LPBA40 data set [16] to
build the cortical labeling system. Leave-one-out cross-validation shows that our
method can achieve accurate labeling of gyral regions. Application to 100 sub-
jects from the Alzheimer’s Neuro Imaging Initiative (ADNI) [17] demonstrates
its effectiveness in population studies.

The rest of the paper is organized as follows. We first develop the metric
optimization approach for conformal mapping in section 2. After that, the multi-
atlas fusion system for cortical labeling is developed in section 3. Experimental
results will be presented in section 4 to demonstrate the effectiveness of our
method. Finally, conclusions are made in section 5.

2 Conformal Mapping via Metric Optimization

Let (M, g) be a genus-zero Riemannian surface where the metric g is the stan-
dard metric induced from R

3. For a function f : M → R, the LB operator on
M with the metric g is defined as:

Δg
Mf =

1√
G

2∑

i=1

∂

∂xi
(
√
G

2∑

j=1

gij
∂f

∂xj
) (1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij). Because the
spectrum of Δg

M is discrete, its eigen-system is defined as

Δg
Mfn = −λnfn (n = 0, 1, 2, · · · ) (2)

where λn and fn are the n-th eigenvalue and eigenfunction, respectively. The
set of eigenfunctions Φ = {f0, f1, f2, · · · , } form an orthonormal basis on the
surface. Using the LB eigen-system, an embedding IΦM : M → l2 was proposed
in [1]:

IΦM(x) = (
f1(x)√

λ1

,
f2(x)√

λ2

· · · , fn(x)√
λn

, · · · ) ∀x ∈ M. (3)

This embedding has the nice property of being isometry invariant. Given two
surfaces and their LB embeddings, a rigorous distance measure called spectral l2

distance was proposed in [2].

Definition 1 (spectral l2-distance). Let (M1, g1) and (M2, g2) be two sur-
faces. For any given LB orthonormal basis Φ1 of M1 and Φ2 of M2, let

dΦ2
Φ1

(x,M2) = inf
y∈M2

||IΦ1
M1

(x)− IΦ2
M2

(y)||2 , ∀ x ∈ M1

dΦ2
Φ1

(M1, y) = inf
x∈M1

||IΦ1
M1

(x)− IΦ2
M2

(y)||2 , ∀ y ∈ M2. (4)
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The spectral l2-distance d(M1,M2) between M1 and M2 independent of the
choice of eigen-systems is defined as:

d(M1,M2)

= inf
Φ1∈B(M1),Φ2∈B(M2)

max
{∫

M1

dΦ2
Φ1

(x,M2)dM1(x) ,

∫

M2

dΦ2
Φ1

(M1, y)dM2(y)
}

where B(M1) and B(M2) denote the set of all possible LB basis on M1 and
M2, and dM1(x), dM2 (y) are normalized area elements, i.e.,

∫
M1

dM1(x) = 1

and
∫
M2

dM2(y) = 1.

Because all genus zero surfaces are conformally equivalent, we propose here to
minimize the spectral l2 distance as a new way to find conformal maps between
surfaces. Given two surfaces (M1, g1) and (M2, g2), there exists a conformal
metric wg1, where w : M1 → R

+ is a positive function defined on M1, such

that the LB embedding I
Φ∗

1

M1
of (M1, wg1) under this new metric will be the

same as the LB embedding I
Φ∗

2

M2
of M2 because the LB embedding is completely

determined by the metric, where Φ∗
1 and Φ∗

2 are the optimal basis that minimize
the spectral l2 distance. Because (M1, g1) and (M1, wg1) are conformal, and
the two manifolds (M1, wg1) and (M2, g2) are isometric when the metric w is
chosen so that the spectral l2 distance is zero [2], we have a conformal map from
(M1, g1) to (M2, g2) when we combine these maps. Let Id denote the identity

map from I
Φ∗

1

M1
to I

Φ∗
2

M2
, the conformal map μ : M1 → M2 from M1 to M2 is

thus

μ(x) = [I
Φ∗

2

M2
]−1 ◦ Id ◦ IΦ

∗
1

M1
(x) ∀x ∈ M1 (5)

where [I
Φ∗

2

M2
]−1 is the inverse map of the embedding I

Φ∗
2

M2
.

To find the conformal map, the critical question is the selection of the metric w
such that we can minimize d(M1,M2). As a first step, we develop the numerical
scheme to compute the LB eigen-system given the weighted metric. After that,
an energy minimization scheme will be developed to find the optimal weight. Let
(M, wg) denote a manifold M with the weight metric ĝ = wg. The LB operator
with the new metric is then Δĝ = 1

wΔg and its eigen-system is :

Δĝf = −λf. (6)

For numerical computation, we represent M = (V , T ) as a triangular mesh with
K vertices, where V and T are the set of vertices and triangles. At each vertex
vi, we denote its barycentric coordinate function as φi, and represent the weight
function as w =

∑N
j=1 αjφj , and f =

∑N
k=1 βkφk. By choosing η = φi as the

test function, the weak form of (6) is:

K∑

k=1

βk

∫

M
< ∇φi,∇φk > dM = λ

K∑

j=1

K∑

k=1

αjβk

∫

M
φiφjφkdM (7)

To find the eigen-system under the weighted metric, we only need to solve a
generalized matrix eigen problem:
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Qβ = λU(α)β (8)

where the matrix Q and U are defined as:

Qik =

∫

M
< ∇φi,∇φk > dM =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∑
vj∈N (vi)

∑
Tl∈N (vi,vj)

cot θi,jl , if i = k;

− 1
2

∑
Tl∈N (vi,vk)

cot θi,kl , if vk ∈ N (vi);

0, otherwise.

Uik(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi

∑
Tl∈N (vi)

|Tl|
10

+
∑

j∈N (vi)

αj

∑
Tl∈N (vi,vj)

|Tl|
30

if i = k

(αi + αk)
∑

Tl∈N (vi,vk)

|Tl|
30

+
∑

vj∈N (vi)∩N (vk)

αj |Ti,j,k|
60

if vk ∈ N (vi)

0 otherwise.

(9)

where |·| denotes the area of a triangle,N (·) andN (·, ·) denote the neighborhood
of vertices, and Ti,j,k denotes the triangle formed by three vertices: vi, vj , vk.

Because the definition of the spectral l2 distance includes the max and inf
operations, it is non-differentiable with respect to the weight w. To find the op-
timal weight w that minimizes the spectral l2 distance of two surfaces (M1, wg1)
and (M2, g2), we instead minimize a more tractable energy function. By solving
the matrix eigenvalue problem in (8), we compute the eigenvalues and eigen-
functions of Mm(m = 1, 2) and denote them as λm,n and fm,n. Assuming no
multiplicity in the eigenvalues, the eigenfunctions are determined up to sign. For
numerical approximation, we choose up to the N -th eigenfunctions to define the
embedding space, thus the set B(Mm) can have 2N different basis. To match
these two surfaces in the embedding space, we minimize the following energy
function with respect to the conformal metric w:

E(ω,Φ1, Φ2) =

∫

M1

[
dΦ2
Φ1

(x,M2)
]2
dM1(x) +

∫

M2

[
dΦ2
Φ1

(M1,y)
]2
dM2(y) (10)

When the energy equals zero, we can see that both distances have to be zero, thus
the minimizer of the energy also minimizes the spectral l2 distance. For numerical
solution, we represent the surfaces as triangular meshes Mm = (Vm, Tm)(m =
1, 2). For the target surface, we fix its embedding by picking Φ2 randomly from
B(M2). For the surface M1, we start with uniform weight w = 1 and iteratively
update Φ1 and w to minimize E. At each iteration, we first compute the eigen-
system and search Φ1 from B(M1) to minimize E. With the current basis Φ1

and Φ2 for embedding, we denote Id1(V1) = AV2 and Id2(V2) = BV1 as the
nearest point maps from IΦ1

M1
to IΦ2

M2
, and vice versa. Given these two maps, we

write the energy in discrete form as:

E(ω) =

N∑
n=1

(
1

S(M1)

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)T

U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)
(11)

+
1

S(M2)

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)T

U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

))
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where S(M1) and S(M2) are the surface area of M1 and M2, the matrices U1

and U2 are defined in (9) with uniform weight, i.e., the standard metric induced
from R

3. Using the eigen-derivatives with respect to the weight functions, we
can update the weight function w in the gradient descent direction as:

dw

dt
= −2

N∑
n=1

[
1

S1

(
1√
λ1,n

∂f1,n
∂w

− ∂λ1,n

∂w

(f1,n)
T

2 3/2
√

λ1,n

)
U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)

− 1

S2

(
∂f1,n
∂w

BT

√
λ1,n

− ∂λ1,n

∂w

(Bf1,n)
T

2 3/2
√

λ1,n

)
U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)]
(12)

where
∂λ1,n

∂w and
∂f1,n
∂w are the derivatives of the eigen-system with respect to the

conformal metric. By repeating the above steps for searching Φ1 and updating
w, we minimize the energy function until convergence. The final conformal map
is then obtained by the composition of the embedding IΦ1

M1
, the nearest point

map Id1 and the inverse map [IΦ2

M2
]−1 as defined in (5).

3 Application for Multi-atlas Cortical Labeling

In this section, we develop an automated cortical labeling system using conformal
maps computed from metric optimization. Given a set of P individual atlas
surfaces M1,M2, · · · ,MP with manually delineated labels, we first compute a
group-wise atlas surface that minimizes its distance to all surfaces. After that, a
multi-atlas fusion scheme is developed to automatically assign labels to unknown
cortical surfaces.

3.1 Group-Wise Atlas Construction

The group-wise atlas (M∗, w∗g) we want to compute has the smallest average
distance to all individual atlas surfaces. Theoretically we can choose M∗ as any
genus zero surface because they are conformally equivalent. In practice, we pick
M∗ as the individual atlas surface that has the smallest distance to all other
surfaces to speed up convergence. Our goal is to find the optimized metric w∗g
that minimizes the following energy function:

E(w∗) =

P∑
p=1

∫

M∗

[
d
Φp

Φ∗(x,Mp)
]2
dM∗(x) +

P∑
p=1

∫

Mp

[
d
Φp

Φ∗(M∗, x)
]2
dMi(x) (13)

where Φ∗ and Φp are the LB basis for M∗ and Mp(p = 1, · · · , P ).
To numerically compute the group-wise atlas, we follow a similar approach

as in section 2 for metric optimization. For each surface Mp, we compute its
eigen-system and obtain the set B(Mp) for LB basis. At each iteration, we
compute the eigen-system of (M∗, w∗g) and denote them as (λn, fn). The basis
for each surface is then updated to minimize the energy and we denote them as
(λp,n, fp,n) for Mp. The gradient descent flow for the metric is then
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dw∗

dt
= −2

P∑
p=1

N∑
n=1

[
1

S(M)

(
1√
λn

∂fn
∂w∗ − ∂λn

∂w∗
(fn)

T

2
3/2√

λn

)
U

(
fn√
λn

− Apfp,n√
λp,n

)
(14)

− 1

S(Mp)

(
∂fn
∂w∗

BT
p√
λn

− ∂λn

∂w∗
(Bpfn)

T

2
3/2√

λn

)
Up

(
fp,n√
λp,n

− Bpfn√
λn

)]

where S(·) denote the area of surface, U and Up are defined as in (9) for M∗ and
Mp, respectively. The interpolation matrix Ap, and Bp are used to represent the
nearest point map between M∗ and Mp in the embedding space. By repeating
the above steps until convergence, we obtain the group-wise atlas (M∗, w∗g).

3.2 Fusion of Cortical Labels

Let Lp : Mp → Z denote the labels defined on the individual atlas surface, where
Z is a set of discrete labels. Let IΦ

∗
M∗ denote the LB embedding of the group-

wise atlas (M∗, w∗g). Using the metric optimization approach, we compute the

optimized embedding I
Φp

Mp
for each surface Mp that minimizes the distance to

IΦ
∗

M∗ . For a new surface MS , we also compute its optimal metric wS such that
the distance between its LB embedding IΦS

MS
and IΦ

∗
M∗ is minimized. As a result,

the LB embeddings of the subject surface and individual atlas surfaces are all
aligned and the conformal maps μp : MS → Mp can be defined easily:

μp = [I
Φp

Mp
]−1 ◦ Idp ◦ IΦS

MS
(15)

where Idp denote the nearest point map from IΦS

MS
to I

Φp

Mp
.

Using these maps, we fuse the labels from Mp(p = 1, · · · , P ) with weighted
voting to generate gyral labels on MS . Let vi ∈ MS be the i-th vertices, and
NΓ (vi) be the Γ -ring neighborhood of vi. The correlation coefficient between the
mean curvature κ(NΓ (vi)) of NΓ (vi) and the mean curvature κ(μp(NΓ (vi))) of
its map on Mp is computed as:

Cp = corr(κ(NΓ (vi)), κ(μp(NΓ (vi)))) (16)

For each label Zq ∈ Z, its weight is calculated as Wq =
∑

Lp(μp(Vi))==Zq
Cp and

the label of vi is

L(vi) = Zq∗ where q∗ = argmax
q

Wq. (17)

By applying the label fusion approach to all vertices on MS, we obtain the label
map for the whole cortical surface.

4 Experimental Results

In this section, we present experimental results in cortical surface analysis to
demonstrate our conformal mapping method with metric optimization. For all
experiments, we choose the first N = 6 eigenfunctions, and use Γ = 4 as the size
of vertex neighborhood for weight computation in label fusion.
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4.1 Conformal Maps between Cortical Surfaces
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Fig. 2. The computation of the feature-
aware conformal map from the source sur-
face M1 (a) to the target surface M2 (b).
Both surfaces are color coded with their
mean curvature. (c) The energy function
decreases with the iterative metric opti-
mization process. (d) The optimized metric
w on the source surface M1.

In the first experiment, we apply our
metric optimization approach to com-
pute the conformal map between two
cortical surfaces. The source surface
M1 and the target surface M2 are
plotted in Fig. 2(a) and (b). With
the iterative algorithm developed in
section 2, the energy is minimized as
plotted in Fig. 2(c). The final metric
w for M1 is plotted in Fig. 2(d). We
can see that it intuitively captures the
geometric differences between the two
surfaces. For example, the metric w is
less than one in the inferior temporal
gyral region and shows that M1 needs
to shrink here to match corresponding
region on M2. To illustrate the effect
of the metric optimization process on
matching geometric features, we plot-
ted the 3rd and 6th eigenfunction of
M1 and M2 in Fig. 3. As highlighted
in regions enclosed by the dashed el-
lipses, the metric optimization process
lead to much better match of eigen-
functions in corresponding areas of the cortical surfaces.

In Fig. 4(a), we plotted the projection of the mesh structure of M1 onto M2

using the conformal map, i.e., μ(M1), where the mean curvature of M1 is also
carried over to color code the surface μ(M1). By examining the mean curvature
map with the sulcal and gyral pattern of M2, we can see the conformal map
very well matches the folding patterns of the surface. Comparing the regular
mesh structure in Fig. 4(a) with that of Fig. 1(b), we can see metric distortion
is greatly reduced as compared with the spherical map. More quantitatively, we
plotted the distribution of angle difference and edge length ratio between μ(M1)
and M1. Compared with the plot in Fig. 1(c), we can see the distribution of
the edge length ratio here is centered around one. This clearly shows that the
conformal map computed from our method only very well preserves the angle,
but also greatly reduces metric distortion.

4.2 Multi-atlas Fusion with LPBA40 Data

In the second experiment, we build the multi-atlas cortical labeling system using
the publicly available LPBA40 data [16], which is a set of 40MR images with man-
ually labeled regions. We first applied a reconstruction method [18] to extract the
triangular mesh representation of the cortical surfaces. In this work, we only use
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Fig. 3. Metric optimization results in better match of eigen-functions between M1

and M2. (a)f1,3 on M1. (b) f2,3 on M2. (c) f1,3 after metric optimization. (d)f1,6
on M1. (e) f2,6 on M2. (c) f1,6 after metric optimization. Here fm,n denote the n-th
eigenfunction on Mm.
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Fig. 4. Angle and metric distortion in the conformal map. (a) Projection of the trian-
gular mesh of M1 onto M2 with the conformal map. (b) Angle distortion distribution.
(c) Edge length distortion ratio distribution.

the left hemisphere of each image because the two hemispheres are intrinsically
similar. A set of 24 gyral labels are projected onto the cortical surfaces to generate
the 40 labeled individual atlas surfaces as plotted in Fig. 5 (a). A group-wise atlas
is computed with the algorithm in section 3.1 using the 40 cortical surfaces and the
result is plotted in the center of Fig. 5 (a), where the surface is color coded with
the optimized metric. We also applied multi-dimensional scaling (MDS) analysis
to the individual atlas surfaces and the group-wise atlas and projected them onto
a 2D plane shown in Fig. 5(b), where the spectral l2 distance between surfaces are
used in MDS analysis. From this plot we can see that the group-wise atlas moves
the initial surface, which provides the geometric representation for the atlas, to-
ward a more centralized location in this population.

Using the 40 labeled surfaces, we validated our multi-atlas fusion algorithm
in section 3.2 with leave-one-out cross-validation. Note that the group-wise atlas
serves only as a geometric target for aligning LB embeddings and does not
contain label information, thus it is fixed during the cross-validation. For each
surface, we obtain its label by fusing the labels from the other 39 surfaces, and
the Dice coefficient is computed for each gyral region by comparing with the
manual labels. By repeating this process 40 times, we obtain the mean and
standard deviation of Dice coefficients for each of the 24 gyral regions and show
them collectively as bar plots in Fig. 5(c). The average Dice coefficient is 0.82
across all regions and surfaces. In an extensive validation study [19], for both
state-of-the-art surface-based and volume-based registration methods, the mean
Dice is below 0.8 on the same data. This shows that our method is able to achieve
excellent performance in automated cortical labeling.
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Fig. 5. Multi-atlas fusion for cortical labeling. (a) All labeled surfaces are mapped to
the embedding space with metric optimization to match the group-wise atlas shown
in the center. (b) A multi-dimensional scaling (MDS) illustration of the surfaces and
their group-wise atlas surface. (c) Bar plots of Dice coefficients of the 24 gyral regions
in leave-one-out cross-validation.

4.3 Results from ADNI Data

In the third experiment, we applied the cortical labeling system in the second ex-
periment to MR scans from 50 AD patients and 50 NCs of the ADNI study[17].
Both the left and right hemispherical cortical surfaces are reconstructed with
the method in [18]. The labeling system is fully automated and there is no need
of any special handling for the left and right hemisphere because the metric op-
timization process is based on intrinsic geometry. For all 100 scans, our system
successfully generated the gyral labels. As a demonstration, we plotted the re-
sults on three subjects in Fig. 6. We can see that excellent labeling performances
were achieved on both hemispheres.

Using the average gray matter thickness in each gyral region as the statistical
variable, we applied t-tests to all gyral regions to locate group differences be-
tween AD and NC. For both hemispheres, the map of p-values from the t-test on
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(a) (b) (c)

Fig. 6. Three examples of labeling from the ADNI data are shown in (a), (b) and (c).
The superior and inferior view of each case are plotted.

(a) LH. (b) RH.

Fig. 7.Gyrus-based map of p-values from the testing of NC versus AD group differences
on left hemisphere (LH) and right hemisphere (RH). The lateral and medial views are
plotted in each hemisphere.

each gyrus are plotted in Fig. 7. We can see highly significant group differences
were detected in regions that are consistent with previous findings in the liter-
ature such as gyri in the temporal lobe and precuneus. This demonstrates the
effectiveness of our method in detecting population differences, and its potential
in large scale studies.

5 Conclusions

In this paper, we developed a novel approach for computing conformal maps
between anatomical surfaces and successfully demonstrated its application in
automated cortical labeling. Our method is based on the optimization of con-
formal metrics in the LB embedding space and is able to align global geometric
features as guided by the LB eigen-functions. The proposed method is general
and we will investigate its application in mapping high-genus surfaces in fu-
ture work. We will also apply it to study other anatomical structures such as
hippocampus and perform more extensive validations on the cortical labeling
algorithm.
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