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Abstract. Respiratory motion is a complicating factor for many appli-
cations in medical imaging and there is significant interest in dynamic
imaging that can be used to estimate such motion. Magnetic resonance
imaging (MRI) is an attractive modality for motion estimation but cur-
rent techniques cannot achieve good image contrast inside the lungs.
Manifold learning is a powerful tool to discover the underlying structure
of high-dimensional data. Aligning the manifolds of multiple datasets
can be useful to establish relationships between different types of data.
However, the current state-of-the-art in manifold alignment is not ro-
bust to the wide variations in manifold structure that may occur in
clinical datasets. In this work we propose a novel, fully automatic tech-
nique for the simultaneous alignment of large numbers of manifolds with
varying manifold structure. We apply the technique to reconstruct high-
resolution and high-contrast dynamic 3D MRI images from multiple 2D
datasets for the purpose of respiratory motion estimation. The proposed
method is validated on synthetic data with known ground truth and real
data. We demonstrate that our approach can be applied to reconstruct
significantly more accurate and consistent dynamic images of the lungs
compared to the current state-of-the-art in manifold alignment.

Keywords: Manifold learning, manifold alignment, MRI of the lungs,
respiratory motion.

1 Introduction

Respiration is a complicating factor for many imaging techniques and image-
guided interventions [10]. Motion caused by breathing is very complex with sig-
nificant variations between respiratory cycles (inter-cycle variation), and also
between inspiration and expiration (intra-cycle variation) [15,11].

Magnetic resonance imaging (MRI) offers an attractive means to image this
complex motion because of its non-ionizing nature and high soft tissue contrast.
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Many attempts have been made to estimate and model respiratory motion from
MRI [9,6], but the state-of-the-art is limited by current MRI technology. Dy-
namic 3D scans suffer from poor contrast in the lungs, low image resolution, and
relatively long acquisition times, which can lead to motion blurring. Dynamic
2D scans, on the other hand, can be acquired in a shorter time frame, have
excellent in-plane resolution and high contrast in the lungs due to the in-flow
of unpolarised blood, but lack the coverage of 3D scans. This is illustrated in
Fig. 1. In this paper we propose a novel technique, based on manifold alignment,
for combining the excellent contrast of dynamic 2D scans with the full thorax
coverage of dynamic 3D scans.

(a) 3D volume (b) 2D slice

Fig. 1. Comparison of (a) a coronal slice through a dynamic 3D MRI volume; (b) a
coronal dynamic 2D MRI slice. The 2D slice has much improved contrast inside the
lungs due to the in-flow of unpolarised blood.

Manifold learning is a powerful tool for non-linear dimensionality reduction of
complex high-dimensional data and various manifold learning algorithms such
as locally linear embedding (LLE) [12] or Laplacian eigenmaps (LEM) [1] have
been proposed. In recent years manifold learning was shown to be useful in the
analysis of motion in medical images. Recent applications include the region-wise
separation of cardiac and respiratory motion [2], retrospective reconstruction
of respiratory-gated lung computed tomography volumes [4] and extraction of
respiratory gating navigators from MRI and ultrasound images [16].

Manifold alignment can be used to establish correspondences between multiple
related datasets, which are not directly comparable in high-dimensional space,
but have a similar low-dimensional manifold structure. There are two general
approaches to manifold alignment: 1) The datasets are embedded in a common
low-dimensional space in a single simultaneous embedding, either with prior
knowledge of corresponding points [5,18], or without such knowledge, e.g. Joint
Manifold Representation (JMR) [13]; 2) The datasets are embedded separately,
and are then transformed to the same coordinate system in a subsequent align-
ment step either with known correspondences using a shape matching technique
like Procrustes analysis [17], or without known correspondences using simple
normalisation [4].

Although manifold alignment has proved effective at solving synthetic prob-
lems in computer vision, such as aligning the manifolds of video images of rotat-
ing 3D objects [5,13], there have been very few applications of these techniques to
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real-world problems in medical imaging. To the best of our knowledge, the only
such example is that by Bhatia et al. [2] who simultaneously aligned manifolds
arising from different image patches in a hierarchical framework.

In this paper we show that the current state-of-the-art in manifold align-
ment is not robust to the wide variations in manifold structure which occur in
real clinical images. We propose a novel method based on simultaneous group-
wise embedding of datasets for the robust alignment of underlying manifolds
without prior knowledge of correspondences. The method is demonstrated by
retrospectively reconstructing dynamic high-resolution 3D MRI volumes from
slice-by-slice 2D acquisitions. Such volumes can be used to estimate motion in
the lungs, and have potential application in any scheme for which retrospective
MRI-based respiratory motion estimates are required. One such application is
the use of MRI data to motion-correct simultaneously acquired positron emission
tomography (PET) data [14].

2 Theory

In the following we develop notation and theory for aligning the manifolds of
large numbers of datasets by simultaneously embedding them in a groupwise
framework.

2.1 Simultaneous Embedding of Two Datasets

In this section notation is established based on the example of simultaneously
embedding two datasets. The derivations are conceptually similar to [5].

Given two high-dimensional datasets X1,X2, for each element X
(1)
i ,X

(2)
j ∈

R
D, we want to obtain the aligned embeddingsY1,Y2 with elementsY

(1)
i ,Y

(2)
j ∈

R
d : d � D. The total embedding error can be expressed as:

φtot(Y1,Y2) = φ1(Y1) + φ2(Y2) + μ · φ12(Y1,Y2), (1)

where φ1, φ2, are the intra-dataset embedding errors and φ12 is the inter-dataset
embedding error. The weighting parameter μ regulates the influence of the inter-
dataset error term. Increasing μ forces the embeddings to be closer together, but
setting it too high may alter the natural manifold structure of the data.

In contrast to most related manifold alignment works, which extend LEM
[2,13], here we chose a LLE-based intra-dataset error term. As will be discussed
in Section 4, a LEM type cost function was also investigated, but extending LLE
proved advantageous.

LLE tries to preserve locally linear relations of the high-dimensional data
in the low-dimensional embeddings. It is assumed that each high-dimensional
point can be reasonably well reconstructed as a linear combination of its k near-
est neighbours. The optimal reconstruction weights Wij for each point i from
its respective neighbours j can be calculated in closed form as described in [12].
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The intra-dataset embedding errors, φ1, and φ2, which preserve the local rela-
tions of the high-dimensional data can then be expressed as

φm(Ym) =
∑

i

⎛

⎝Y
(m)
i −

∑

j∈η(i)

W
(m)
ij Y

(m)
j

⎞

⎠
2

, m ∈ {1, 2}, (2)

where, for each dataset respectively, η(i) is the neighbourhood of data point i.
For the inter-dataset error a different cost function is used. The embedding

error of Y1, and Y2 is defined as

φ12(Y1,Y2) =
∑

i,j

(
Y

(1)
i − Y

(2)
j

)2
Uij , (3)

where Uij = K(X
(1)
i ,X

(2)
j ) is a (non-symmetric) similarity kernel. For high

similarity values Uij the error can only be minimised if Y
(1)
i , and Y

(2)
j are close

in the simultaneous embedding. The similarity kernel is application specific and
may consist of a priori known labels [5,18], or image similarities [13].

With these choices of embedding error functions the minimisation of the whole
cost function φtot can be rewritten in a single matrix expression,

argmin
Y1,Y2

Tr

([
Y1

Y2

]T [
M1 + μD1 −μU
−μUT M2 + μD2

] [
Y1

Y2

])
, (4)

where D1 and D2 are the row and column sums of U as diagonal matrices,

i.e. D
(1)
ii =

∑
j Uij and D

(2)
jj =

∑
i Uij , and M1 and M2, are the recentred

reconstruction weight matrices Mm = (I−Wm)T (I−Wm). This problem now
has the same form as the standard LLE embedding [12], that is,

argmin
V

Tr(VTLV), (5)

where L is the augmented matrix from Eq. (4) and V are the augmented embed-
dings. Under the constraint that VTV = I, the simultaneous aligned embedding
is given by the second smallest to the (d+ 1)-th smallest eigenvectors of L.

2.2 Groupwise Simultaneous Embedding of Multiple Datasets

Eq. (4) can be easily extended to three or more manifolds by further augmenting
V and L, as was described e.g. in [13]. However, this approach is not optimal for
multiple reasons, in particular: 1) The problem becomes increasingly unstable
when increasing the number of datasets Xi; 2) The manifold structure may not
be similar enough across all datasets to justify a simultaneous embedding of all
of them.

To overcome these limitations, we propose a novel scheme to embed the
datasets simultaneously in overlapping groups of two, producing a much more
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stable problem. For N high-dimensional inputs X1, . . . ,XN, the datasets are
embedded in N − 1 groups G(p). Each group contains the simultaneous embed-

dings of two datasets Xp, and Xp+1, i.e. G(p)
1 = Yp, and G(p)

2 = Yp+1. The

groups are interleaved such that G(p)
2 = G(p+1)

1 . Fig. 2 shows an example of a
groupwise embedding in d = 2 dimensions and the relations between the groups.

Fig. 2. Schematic illustration of groupwise manifold alignment. The curved lines illus-
trate the manifold connections through the group overlap (solid), or through aligned
embedding (dotted).

By embedding the datasets in overlapping groups the manifolds are all aligned.
The two members of each group are aligned due to the simultaneous embedding,
and the connections to the next group are deterministically known through the
group overlap. For example, consider an arbitrary embedded point i in manifold

p, i.e.Y
(p)
i (labelled with a square in Fig. 2), which is embedded in the firstmember

manifold of group G(p), i.e. G(p)
1 = Yp. Since within the group the manifolds are

aligned, the closest neighbour on Yp+1 = G(p)
2 can be found directly (see dotted

lines in Fig. 2). The two points (Yp, andYp+1) can be looked up in the neighbour-

ing groups since G(p)
1 = G(p−1)

2 and G(p)
2 = G(p+1)

1 (see solid lines in Fig. 2). In this
manner the corresponding embeddings on all manifolds can be found iteratively.

2.3 Inter-dataset Similarity Kernel Sparsification

Typically techniques that do not assume any a priori known correspondences

evaluate the inter-dataset similarity kernel Uij = K(X
(r)
i ,X

(q)
j ) (see Eq. 3)

on all possible bipartite connections between two datasets. However, not all
connections are desirable, and typically the graph is sparsified. The standard
approach for sparsification is to keep only the k nearest neighbours for each data
point. This may lead to unevenly distributed connectivities, which will distort
the embedding. The JMR technique [13] instead performs an orthogonalisation
step of the matrix representation of the full graph.

In this paper, we propose a sparsification technique based on a global bipartite
maximum edge similarity (MES) matching. We calculate the matching in which
every data point in Xr is connected to exactly one data point in Xq, and the sum
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of similarities over the corresponding edges Uij is maximised. Fig. 3 illustrates
this process. The bipartite matching that maximises the similarity is highlighted
in red. This is equivalent to a combinatorial optimisation problem and can be
solved using the Hungarian method [8].

Fig. 3. Graph sparsification of similarity kernel. The left figure shows the fully con-
nected graph, and the right figure shows the optimal one-to-one mapping.

The resulting graph can be written as a sparse matrix U, which in every
row and every column has exactly one non-zero entry, 0 < Uij ≤ 1. The values

represent the likelihood that the connection between X
(r)
i and X

(q)
j is correct.

3 Materials and Methods

In this section we show how our method can be used to reconstruct high-
resolution 3D MRI volumes from sequentially acquired 2D MRI slices.

3.1 Application of Groupwise Manifold Alignment

We image the volume of interest by sequentially acquiring coronal slices at shift-
ing slice positions. In order to sufficiently sample all respiratory states the volume
is covered several times. The specific acquisition details will be given in Sec. 4.2.

The 2D MRI slices from different body positions are not directly comparable
in high-dimensional image space. However, our hypothesis is that, because the
underlying mechanics of respiratory motion are the same, the respiratory states
at different slice positions lie on similar low-dimensional manifolds.

The low-dimensional representations are not intrinsically aligned. To overcome
this we apply our novel groupwise manifold alignment algorithm. We define the
2D image data acquired at a slice position p as the high-dimensional input Xp,

and the i-th slice acquired at this position as X
(p)
i . The groups are chosen such

that neighbouring slices belong to the same group. Applying the algorithm we
arrive at the aligned d-dimensional embeddings Yp for each slice position, where

the coordinates of the i-th acquired slice are given by Y
(p)
i . Note that by virtue

of the alignment the respiratory correspondences of Y
(p)
i to data from any other

slice position are known. Since every Y
(p)
i is related to its original data sliceX

(p)
i

a volume can be reconstructed by looking up and combining the corresponding
slices from other slice positions.

By reconstructing volumes from the corresponding embedded coordinates in
the original acquisition order of the slices, a sequence of high-resolution 3D
volumes, one for each time point of the acquisition, can be obtained.
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3.2 Choice of Kernel

2D slices which represent different anatomical structures are not directly com-
parable in image space. However, neighbouring slices are similar to some degree.
Since by design the similarity kernel K is only evaluated on neighbouring slices
the L2-distance between images will serve as a reasonable measure. To obtain a
similarity measure we define a Gaussian Kernel [1]

K(X
(r)
i ,X

(q)
j ) = exp

(
−L̃2(X

(r)
i ,X

(q)
j )2

2σ2

)
, (6)

where L̃2 denotes the normalised L2-distance, such that the maximum distance
is 1 and the minimum distance is 0. The parameter σ governs the kernel shape.

The L2-distance might be misleading even for neighbouring slices because
a shift in space also causes a shift in the diaphragm, which might suggest a
misleading change in respiratory position. By using the proposed MES sparsifi-
cation (Section 2.3) this problem can be avoided. The sum over all the edges of
the graph can only be maximised if those misleading connections are avoided.

4 Results

We evaluated our technique on two types of data: 2D MRI slices synthetically
generated by extracting slices from warped high resolution 3D MRI volumes
(7 volunteers), and real dynamic 2D MRI data (5 volunteers). The first made
it possible to test our technique on realistic data with a known ground truth,
whereas the second enabled us to test our technique on real data.

For both experiments we aligned the datasets originating from different slice
positions using the simultaneous groupwise alignment method (SGA) proposed
in this work, and also the JMR technique proposed in [13]. In addition, we
performed the experiments on three variations of our technique, in order to eval-
uate each of the novelties of our proposed approach individually: SGA without
groupwise embedding, i.e. with fully augmented matrices V and L (see Eq. 4)
(SGA.FULL); SGA with a simple nearest neighbour sparsification instead of the
proposed MES sparsification (SGA.NN); and SGA with a LEM-type cost func-
tion instead of the LLE cost function in Eq. 2 (SGA.LEM). For all examined
techniques we empirically determined a good set of parameters before running
the experiments. In particular, for all examined techniques we embedded the
high-dimensional inputs into d = 4 dimensions, which proved to be sufficient to
capture most intra- and inter-cycle breathing variations.

4.1 Experiments on Synthetic 2D Data

Fig. 4 illustrates the process of the synthetic data generation, from which we
obtained realistic high-resolution coronal slices at different respiratory positions
similar to those obtained by real slice-by-slice acquisitions from volunteers.
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Fig. 4. Generation of synthetic data. A high-resolution breath-hold image such as
that shown in (a) was warped to different respiratory states by generating motion
fields (d) from 35 dynamic low-resolution volumes (b) [3]. A larger cross-section of a
low-resolution volume is shown in Fig. 1a. Groups of slices from the synthetic high-
resolution dynamics (c) obtained in this manner were combined to generate synthetic
coronal slices with a realistic 2D dynamic slice thickness of 8 mm (e). A close-up of
such a slice is shown in (f).

The high-resolution breath-hold volumes such as the one shown in Fig. 4a
were acquired with a non-cardiac-triggered T1-weighted gradient echo sequence
with an acquired image resolution of 1.5 × 1.6 × 1.5 mm3. The low-resolution
dynamic volumes such as the ones shown in Fig. 4b were acquired with a cardiac-
triggered T1-weighted gradient echo sequence with an acquired image resolution
of 1.5 × 4.1 × 5 mm3, and typical acquisition time of 600 ms. Both scans were
performed on a Philips Achieva 1.5T MRI scanner.

In order to estimate the performance of each of the manifold alignment ap-
proaches mentioned above we used a leave-out-one (LOO) cross validation frame-
work. For each synthetic slice such as the one highlighted in red in Fig. 4e we left
out the whole volume it belonged to (labelled by Xout in the same Figure), but
not the highlighted slice itself. For the remaining volumes plus the highlighted
slice we calculated the aligned embedding using each of the approaches, and
reconstructed a volume around the highlighted slice as described in Section 3.1.
This resulted in an approximation X̂out of the left-out volume Xout. The recon-
struction error was estimated by calculating the L2-distance, L2(X̂out,Xout),
between the two volumes. This procedure was repeated for each of the slices
originating from each of the warped volumes, and the mean and standard devi-
ation of the L2-distance were computed as overall measures of accuracy. As the
magnitudes of these errors varied widely between volunteers, before combining
them we normalised the maximum error to 1 for each subject.

Fig. 5a shows the reconstruction errors for each of the tested techniques over
all 7 volunteers. We grouped the reconstruction errors by region of origin of
the input slice, i.e. anterior, medial, or posterior. The distribution of the error
was symmetric but not normal. Therefore, we used a 1-tailed Wilcoxon signed
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(a) LOO experiment (b) MIP for sample case

Fig. 5. (a) Mean L2 distances of synthetic data reconstruction for the tested approaches
for anterior (black), medial (grey), posterior (white) input slice regions, and (b) MIP
of reconstructed volumes in sagittal direction (top), and their difference to the same
MIP of the left out volume (bottom).

rank test and found a statistically significant improvement for SGA versus all
compared techniques (p < 0.001). In the top row of Fig. 5b maximum intensity
projections (MIP) over the right lung of reconstructed volumes for a sample
volunteer at an arbitrary respiratory position are shown. The rightmost column
contains the MIP of the ground truth (GT). The bottom row contains the dif-
ferences between the top row and the GT MIP.

4.2 Experiments on Real Data

We validated our method on real dynamic MRI data acquired using the slice-by-
slice acquisition protocol described in Sec. 3.1. To maximise vessel contrast, and
to minimise cardiac motion, only one slice was acquired per heartbeat at systole.
The acquisition time for each slice was 160 ms. The slice position was shifted for
each acquisition and to cover the whole thorax typically 15-19 slice positions were
needed. Each position was acquired 50 times resulting in an overall acquisition
time of 13-16 minutes. The scans were carried out on a Phillips Achieva 3T MRI
scanner using a T1-weighted gradient echo sequence with an acquired in-plane
image resolution of 1.4× 1.4 mm2 and a slice thickness of 8 mm.

We used the manifold alignment techniques to embed the data from all slice
positions and based on the respective embeddings reconstructed a volume for
each slice. Thus, we obtained dynamic high-resolution volumes for each time
point of the acquisition. We examined the same set of techniques as in the
previous section, i.e. JMR, SGA.FULL, SGA.LEM, SGA.NN, and SGA.

Fig. 6a shows MIPs of reconstructed volumes through the right lung of a
sample volunteer at a typical end-exhale position (top-row), and a typical end-
inhale position (bottom-row).

In addition to reconstructing high-resolution dynamic volumes we evaluated
the reconstruction consistency. For each acquired slice we reconstructed a
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(a) MIP for sample case (b) Reconstruction consistency errors

Fig. 6. (a) Sagittal MIP through reconstructed volumes from an input slice close to
end-expiration (top row), end-inspiration (bottom row), and (b) consistency of recon-
struction over different input slice positions for anterior (black), medial (grey), posterior
(white) input slice regions for the five tested approaches.

volume X, and for each slice in X we reconstructed a new volume X̂s. Ideally,
X̂s should be equal to X. In practice, however, a different input slice position
will give a different reconstruction. To estimate this reconstruction consistency
we calculated the L2-distance, L2(X̂s,X), for each slice of each reconstructed
volume. The mean consistency errors for all the tested approaches are shown
in Fig. 6b. In order to combine the mean errors of different subjects we nor-
malised the errors for each subject as before. Again, we grouped the errors by
body region of the input slice. Using a 1-tailed Wilcoxon signed rank test SGA’s
improvements over all other techniques were found to be statistically significant
(p < 0.001).

5 Discussion and Conclusions

We have presented a novel, fully automatic approach for the simultaneous align-
ment of large numbers of related datasets based on an extension of LLE to
groupwise simultaneous embeddings and a global, MES based optimisation of
the inter-dataset kernel.

Applying the technique to the reconstruction of high-resolution dynamic MRI
volumes from a slice-by-slice acquisition protocol gave better and more consistent
results than the current state-of-the-art for manifold alignment with no known
correspondences [13]. On synthetic data with a known GT our method yielded
the most accurate reconstructions from all of the tested approaches. On real
data our technique gave the most plausible and most consistent reconstructions.
For all experiments the proposed method gave good reconstructions from input
slices from anterior, medial and posterior body regions, which is important in
forming a coherent dynamic sequence, as input slice positions will vary over time.
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The experiments showed that each of the elements of the proposed technique,
i.e. the MES sparsification, groupwise embedding, and extension of LLE in-
stead of LEM were necessary for robust reconstructions. Generally, we noticed
that LLE was better able to capture the subtle intra-, and inter-cycle breathing
motion variations that occur in some subjects, than the commonly used LEM
technique.

In this paper we investigated simultaneous manifold alignment approaches.
Separate alignment without prior knowledge can be performed by simple nor-
malisation [4]. However, this is only reliable for 1-dimensional embeddings, which
may not be sufficient to capture all variations in the data.

A different approach to retrospective reconstruction of high-resolution vol-
umes from a slice-by-slice acquisition protocol was proposed by von Siebenthal
et al. [15]. The authors used an interleaved slice acquisition protocol where a
navigator slice at a constant slice position was acquired before and after each
data slice. Manually selected image features derived from the navigator slices
were then matched retrospectively to reconstruct a volume. However, in this
method only half of the data is actually used for reconstruction, which doubles
the already long acquisition times. In contrast our method is fully automatic,
doesn’t require additional navigator slices and makes use of all the acquired data.

Slice-by-slice 2D acquisitions allow excellent image contrast and make it pos-
sible to image vessel structures inside the lungs which cannot be visualised using
a dynamic 3D MRI acquisition protocol. These additional structures could be
used to extract very detailed and reliable motion fields of the whole thorax,
which would have potential application for motion correction of simultaneously
acquired PET-MRI data. This could be achieved with minimal scanning over-
heads, since one slice per cardiac cycle is sufficient to retrospectively obtain high
contrast volumes for the entire duration of a PET imaging session. Currently, the
volumes only have a high in-plane resolution. Reducing the slice thickness is a
natural extension of our work, but will increase acquisition times. PET imaging
of the thorax typically takes 15-30 minutes which is sufficient time to acquire
enough data for reconstructions which also have a high through-plane resolution.

The proposed technique also has potential application in MRI-guided treat-
ments such as MRI-guided high-intensity focused ultrasound (HIFU) [7]. The
aligned embeddings contain information about different respiratorymotion states
and can thus be seen as a motion model [10]. A volume can be generated from
previously unseen data by acquiring a new slice at a convenient slice position
and embedding it into its appropriate manifold. In MR-guided HIFU this could
be applied for online updating of guidance information.
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