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Abstract. In this paper, we present a novel three dimensional interac-
tive medical image segmentation method based on high level knowledge
of training set. Since the interactive system should provide intermediate
results to an user quickly, insufficient low level models are used for most
of previous methods. To exploit the high level knowledge within a short
time, we construct a structured patch model that consists of multiple cor-
responding patch sets. The structured patch model includes the spatial
relationships between neighboring patch sets and the prior knowledge of
the corresponding patch set on each local region. The spatial relation-
ships accelerate the search of corresponding patch in test time, while
the prior knowledge improves the segmentation accuracy. The proposed
framework provides not only fast editing tool, but the incremental learn-
ing system through adding the segmentation result to the training set.
Experiments demonstrate that the proposed method is useful for fast
and accurate segmentation of target objects from the multiple medical
images.

Keywords: interactive segmentation, 3D medical image, structured
patch model, localized classifier.

1 Introduction

As creating an amount of medical images with the same modalities and prop-
erties, segmentation of desired objects from the multiple images becomes an
important task for clinical studies and diagnosis of disease progression. Since
the shapes and structures of an object in the medical images are generally main-
tained, many automatic methods [1–3] using prior knowledge of small number of
training data have been proposed. However, most of them have struggled to ob-
tain accurate segmentation for various clinical applications, because the medical
images usually contain many vague boundaries and local variations of the same
object. Therefore, an intelligent interactive segmentation method is inevitably
preferable in the medical community [4].

� Corresponding author. This research was supported by the NRF of Korea funded by
the Ministry of Education, Science and Technology (2010-0012006).

J.C. Gee et al. (Eds.): IPMI 2013, LNCS 7917, pp. 196–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Data-Driven Interactive 3D Medical Image Segmentation 197

The intelligent interactive method should satisfy two conditions: first, the
method has to be fast enough to provide intermediate result to user. Second, the
method has to provide flexible and accurate result even though small numbers of
user interaction are given. The most interactive methods [5–8] have not satisfied
the second condition due to the insufficient low level models depending on user
inputs. On the other hand, the methods based on high-level knowledge require
heavy computation, making harder to satisfy the first condition, to make and
infer the model. Recently, Barnes et al. proposed the high level image editing
method named PatchMatch [9] for image completion and reshuffling. Although
the method satisfies the both conditions by finding dense patch correspondences,
it is not applicable to the interactive segmentation because structural spatial re-
lations, important for fast search and accurate segmentation, are not considered.

In this paper, we propose a novel 3D interactive segmentation method satis-
fying the both conditions by transferring the prior knowledge of similar patches
from training sets to a target image with an assumption that the objects in
medical images have common structure. Unlike the PatchMatch [9, 10], we con-
struct a structured patch model which includes structural spatial relationships
of adjacent patches within an image as well as multiple corresponding patch
sets representing properties of local regions across images. The spatial relation-
ships accelerate the patch search speed by constraining the positions of adjacent
patches, while the prior knowledge of corresponding patch sets improves the
segmentation accuracy by reflecting the properties of each local region. The pro-
posed framework based on the structured patch model provides not only fast
editing tool, but the incremental learning system through adding the segmenta-
tion result to the training set.

1.1 Related Work

Interactive Segmentation: There have been many interactive segmentation
methods such as graph cut [5, 6, 11], random walk [7] and region growing [8].
The efficiency of methods has been further improved by constructing the fine
models [12, 13], or incorporating the active learning scheme [4, 14]. However,
high-quality user interactions are still required because the segmentation only
depends on the low level cues which are insufficient to reflect various properties
of the medical image. That is, most existing methods have focused on the single
image segmentation based on the user input without prior knowledge. In this
paper, we discuss how to incorporate the high level prior knowledge into inter-
active segmentation framework within a short time when training sets are given.
Unlike the previous methods, the efficiency of proposed method is increased for
multiple images segmentation.

Patch Matching: The strategy, finding out and using matches of similar
patches, is relatively fast and flexible compared with the voxel level matching
methods, e.g. non-rigid registration [15, 16]. Therefore, the strategy have been
applied to various vision applications [9, 10, 17–19]. Especially, since the corre-
sponding patches are likely to have the same labels, the method is applied to
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(a) test (b) 26 sec. (c) 3 sec. (d) 0.01 sec.

Fig. 1. Transfer a label of training image to a test image (2D). (a) The test image and
its ground truth boundary (white), (b) the transferred label (green) by the non-rigid
registration method [15], (c) that by the PatchMatch [9], (d) that by the proposed
method with few user input (red dot). The computational times are presented below
the results.

semantic segmentation by constructing a graph of corresponding patches across a
large image set [19]. In this paper, we expand the strategy to the interactive seg-
mentation. In the proposed model, the corresponding patches are not only found
across the training set, but the connection of the patch sets is also considered.
Furthermore, multiple cues of each patch are learned for accurate segmentation
unlike the previous methods which only transfer the label. Fig. 1 shows the
difference of performance between the non-rigid registration method [15], the
PatchMatch method [9] and the proposed method for the label transfer.

Patch Based Segmentation: There have been many patch based methods
such as label fusion [1, 2] and localized classifier [20, 3]. Since the localized
classifier can consider local variations by adaptively integrating the multiple
cues, we adopt the method with some modifications to enforce the knowledge of
user interactions and training patches. Unlike the previous methods which are
only focused on automatic manner, effective 3D editing tool is provided in our
framework by updating the patch correspondences of local regions. Furthermore,
the computational time is accelerated because the search space is limited by an
implicit patch structure without complicated alignment steps and all priors of
patches are learned in training step.

2 Structured Patch Model

Unlike the PatchMatch-based methods which find the similar patches over an
whole image without the structure information [18, 19], we find the exact nearest
patch correspondence with the assumption that the medical images contain the
same structural object. For example, if patches P (vij) and P (vij′), centered at

voxels vij and vij′ , are neighbor in a volume V i, the corresponding patches P (vi
′
j )

and P (vi
′
j′ ) of P (vij) and P (vij′ ) should be neighbor in another volume V i′ . Even

though a patch more similar to P (vij′ ) than P (vi
′
j′ ) exists elsewhere in V i′ , P (vi

′
j′)

next to P (vi
′
j ) is determined as the most informative patch in our model.
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2.1 Building Structured Patch Model

The structured patch model includes the connection of adjacent patches within
an image and patch correspondences across images. To model this, the connec-
tion of neighboring patches are firstly constructed from a training set, then the
corresponding patches are found from the other training sets. From m training
sets T = {T i = (V i, Li)|i = 1, ...,m} including the volume V i and their manual
label Li, an initial set T i′ = (V i′ , Li′) is randomly selected. From the surface
ξ(Li′) of Li′ , n voxels vi′ = {vi′j |j = 1, ..., n} are sampled with even distribu-

tion and the patches Pi′ = {P (vi
′
j )|j = 1, ..., n} are constructed. Here, vi′ are

sampled enough to overlap the adjacent patches (Details are listed in Sec. 5).
Each patch has indices of the adjacent patches Nj = {Nj(k)|k = 1, ..., l} and

their relative positions ri
′
j = {ri′j (k) = p(vi

′
Nj(k)

)− p(vi
′
j )|k = 1, ..., l}, where p(v)

denotes the position of voxel v and l is the number of adjacent patches.
The corresponding patches from another training set T i are found by prop-

agating Pi′ to the relative positions of V i. The propagation is started on the
patch centered at the left-top point of Li. First, we find the most similar patch

with the starting patch among Pi′ . If the index of the most similar patch is j,
the voxel vij , the center of corresponding patch of P (vi

′
j ), is searched near the

left-top point within local search space Υ i
j in V i as:

vij = argmax
v⊂Υ i

j

(S(P (v), P (vi
′
j ))), (1)

where S(·, ·) denotes the similarity cost. After P (vij) is determined as the corre-

sponding patch of P (vi
′
j ), the adjacent patches of P (vi

′
j ) are propagated to V i.

kth adjacent patch P (vi
′
Nj(k)

) is searched near the relative position p(vij)+ ri
′
j (k)

by (1). The propagation and the search are repetitively conducted until the

all corresponding patches Pi of Pi′ are determined. Since the search space is
constrained by ri

′
j , the propagation speed is accelerated even if the position of

corresponding patch is exhaustively searched. The procedure is shown the upper
row in Fig. 2.

The structured patch model P = {Pi|i = 1, ...,m} is constructed by repeating
the patch matching procedure to m−1 training sets. Note that Pi represents the
intra patch set from T i, while Pj represents the corresponding inter patch set
of jth local region across the training sets. The corresponding patch set reflects
characteristics of the same local region of the training sets.

2.2 Adaptive Patch Propagation

Unlike the propagation of Pi′ to V i in the training step, that of the multiple
patch sets P to a target volume V has to be conducted in the test step. Since
the appropriate prior according to the local regions is different, we adaptively
select the good corresponding patch on jth local region from Pj . The algorithm
is started on few user input, e.g. a point near the object boundary. Although
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Fig. 2. Propagation and local search of the structured patch model. Upper row shows
the propagation of P i′ to V i in the training step, while bottom row shows the propa-
gation of P to V in the test step. The blue regions in upper row show labels and the
points represent the center of patches. The neighboring point is searched from the local
search space (black windows) near the relative positions (arrows).

the initial input can be automatically estimated by detection methods, we focus
on the interactive system in this paper. We construct initial patch including the
user input and find the most similar patch from P and its corresponding position
by (1). Then, the adjacent patches are propagated. If the index of adjacent patch
is j, the index iopt of the best matching patch among Pj as well as the voxel vj
which is the center of corresponding patch of P (v

iopt
j ) in V is searched as:

(iopt, vj) = argmax
v⊂Υj ,i

(S(P (v), P (vij))). (2)

That is, the patch P (vj) centered at vj is localized in V and P (v
iopt
j ) is deter-

mined as the corresponding patch of P (vj). The adjacent patches are repetitively
propagated to V by searching the best correspondences and the positions of ad-
jacent patches near p(vj) + r

iopt
j (k) within Υj as (2). The procedure is shown in

the bottom row in Fig. 2. Finally, the positions of all patches are localized in V
and its corresponding reference patch set P̃ is obtained from P. Note that the
each element of P̃ is referred by the difference training set.

2.3 Similarity Cost Function

The similarity cost S(·, ·) between patches can be computed by various func-
tions. Among them, the normalized cross correlation (NCC) Sncc(·, ·) and the

overlapping cost, computed as Sovl(P (vij), P (vi
′
j′ )) =

|Li
j∩Li′

j′ |
|Li

j∪Li′
j′ |
, are used in the

proposed method. Since the labels of two patches are required for computing
Sovl(·, ·), the overlapping cost is used for the training and editing steps. On the
other hand, Sncc(·, ·) is used for the test step.
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2.4 Learning Multiple Cues

The patch provides informative cues of the local region. For each patch P (vij)

including sub-volume V i
j and sub-label Li

j , we extract mean and variance of

intensities of voxels inside V i
j for computing NCC and the spatial information

of neighboring patches for constraining the search space. Furthermore, we learn
additional cues to construct a segmentation framework which is based on the
conditional random field (CRF) model consisting of likelihood and smoothness
terms. Details are as follow:

Multiple Cues Based on Localized Classifier. Inspired by the methods
based on the localized classifier [20, 3], the likelihood of a voxel is determined
by weighted sum of the probabilities regarding shape and appearance models.
We use Li

j and histograms Hf
j , H

b
j of voxel intensities of foreground (FG) and

background (BG) labeled region as the shape model and the appearance model,
respectively. The weight wj(v) between the shape and appearance probabilities
is computed by the appearance confidence σj and the distance dj(v) from ξ(Li

j)
as:

wj(v) = 1− exp(−d2j(v)/σj). (3)

When the voxel position is close to the surface and the appearances of FG and
BG are distinguishable, wj(v) is decreased (the appearance cue is emphasized)
and vice versa. σj is computed by sum of the difference between Li

j and the FG

probability regarding Hf
j and Hb

j . The detailed descriptions of σj and wj(v) are
referred to [20].

Ratio between Likelihood and Smoothness. Since the CRF energy of small
patch is sensitive to the ratio λi

j between the likelihood and smoothness terms,

we estimate λi
j by using the shape of Li

j . With observation that the result is likely
to be over-smoothed when the surface is too large compared to the volume, e.g.
thin parts, λi

j is computed by the ratio of FG volume |Li
j | and surface area

|ξ(Li
j)| of Li

j as: λi
j = λ′ ·

( |Li
j|

|ξ(Li
j)|

)
, where λ′ is a parameter.

3 Segmentation Based on the Learned Priors

The voxel-labeling problem based on probabilistic models have been formulated
as a pairwise CRF. We introduce two kinds of segmentation strategy based on the
CRF model according to the learned priors Θ̃ = {θ̃j ⊃ {L̃j, H̃

f
j , H̃

b
j , w̃j(v), λ̃j}|j =

1, ..., n} of P̃: one is based on patch-wise manner, while the other one is global
manner.

For the patch-wise manner, the voxel-wise segmentation is conducted on each
patch by using the learned prior θ̃j and the user scribble U . The CRF energy on
jth patch is formulated as:

E(xj |θ̃j , U) =
∑
v∈Vj

φ(xv |θ̃j , U) + λ̃j

∑
u,v∈Γj

|xu − xv| · exp |I(u)− I(v)|
2β

, (4)
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where xv is a random variable representing the label of voxel v in voxel set Vj

and xj is the label variable set of jth patch. φ(xv |θ̃j , U) represents the likeli-

hood term of single variables xv when θ̃j and U is given, while the exponential
function represents the smoothness term between neighboring nodes (u, v) in
neighbor set Γj . β is the average square-distance of intensities between adjacent

voxels in Vj [5]. φ(xv |θ̃j , U) is defined by the negative log of likelihood proba-

bility Pr(v|θ̃j , U) as: φ
(
xv|θ̃j , U

)
= − log(Pr(v|θ̃j , U)). If U(v) = FG or BG,

Pr(v|θ̃j , U) is set as 1 or 0, respectively. If U(v) is unknown,

Pr(v|θ̃j , U) = w̃j(v)Pr(v|L̃j) + (1− w̃j(v))Pr(v|H̃f
j , H̃

b
j ). (5)

The probability Pr(v|L̃j) based on the reference label is computed as:

Pr(v|L̃j) =

{
1, if L̃j(v) = FG

0, if L̃j(v) = BG
(6)

while Pr(v|H̃f
j , H̃

b
j ) based on the appearance model is computed as:

Pr(v|H̃f
j , H̃

b
j ) =

P (I(v)|H̃f
j )

P (I(v)|H̃f
j ) + P (I(v)|H̃b

j )
, (7)

where I(v) denotes the intensity of v. Since the sub-modularity condition of (4)
is satisfied, the optimal solution is obtained by the graph cut [5]. The patch-wise
segmentations are aggregated on overlapping regions by averaging. Then, the
voxels which have the higher averaging values than 0.5 are set as the foreground.

The procedure of global manner is similar with that of patch-wise segmen-
tation. However, the likelihood probabilities of all patches are aggregated to a
global likelihood by averaging the probabilities on overlapping regions before
the patch-wise segmentation. The CRF energy model on the whole volume V is
constructed by the global likelihood term and the smoothness term as:

E(x|Θ̃) =
∑
v∈V

φ(xv|Θ̃) + λ
∑

u,v∈Γ

|xu − xv| · exp |I(u)− I(v)|
2β

, (8)

where x is label variable set in whole volume. Similarly, (8) is optimized by the
graph cut [5]. The global method is faster than the patch-wise method because
the max-flow algorithm of graph cut is conducted once. On the other hand, the
result can be over-smoothed on vague regions or thin parts because λi

j according
to the local shape is not considered.

4 Interactive Framework

Although most automatic methods have reduced the user effort, laborious slice-
by-slice manual editing or post processing in a whole volume is required; the
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Algorithm 1. Proposed framework based on the structured patch model

Input: the structured patch model P and a target volume V .
1: Adaptive patch propagation with few user input. (Sec. 2.2)
2: Segmentation by optimizing Eq. (8). (Sec. 3)
3: Iterate 4 ∼ 6 steps,
4: Input the user scribbles U on false regions.
5: Update the reference patches by Eq. (2) on local regions where the user

scribbles are included.
6: Segmentation on the local regions by optimizing Eq. (4). (Sec. 3)
7: Until the segmentation is satisfied.
8: (Optional) Add V and the result to P by the patch propagation (Sec. 2.1, 2.4)

intelligent editing process is not provided. On the other hand, the structured
patch model provides the effective local editing framework by using the con-
structed corresponding patch sets.

The proposed framework is shown in Algorithm 1. Specifically, the framework
is divided into the initial segmentation step and the editing step. The initial step
is started from few user input near the boundary of a target object. P is set to
the corresponding positions of the target volume by the adaptive propagation.
Then, the initial result is obtained by the global segmentation. The editing step
is started from the initial result. FG or BG scribbles are input on false parts
by the user and the local regions (patches) including the scribbles are found.
On those local regions, the corresponding reference patches and the positions
are updated by (2) with the overlapping similarity cost between the labels and
the user scribbles. The modified result is obtained by optimizing (4) which is
computed by the updated reference patch and the user scribbles. The editing
step is repeated until the segmentation is satisfied. After the segmentation is
done, the test volume and its segmentation can be incrementally added to the
training set by the propagation mentioned in Sec. 2.1 and 2.4.

In the proposed framework, the editing time takes less than few seconds be-
cause the editing is conducted on the small number of local regions. In addition,
the updated reference patch guides the segmentation to true boundaries even
though the user scribbles are roughly input.

5 Experiments

The structured patch model (SPM) was evaluated on various organs. First, we
present quantitative validation for segmentation of femur and femoral cartilage
from five knee MR images1 with 384 × 384 × 160 voxel dimensions and 0.36 ×
0.36×0.70 mm3 resolutions. Two organs have very different properties: the femur
is thick and cylindrical, while the femoral cartilage is thin and deformable. In

1 The data were acquired from the Osteoarthritis Initiative
(http://www.oai.ucsf.edu).
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Fig. 3. Comparisons of femur and femoral cartilage segmentation between the graph
cut [5] (GC), the method based on active learning [4] (TurtleSeg), the automatic
method based on localized classifier [3] (LC), and the proposed method (SPM+the
number of training set). The graph shows the average DSC values versus the cumulative
processing time (interaction time+computational time) of five test images. The interval
of the points represents the processing time between iterations. In the case of cartilage,
the result of TurtleSeg is not presented because the method does not work well within
the several numbers of user delineations.

the proposed framework, the patch size was varied according to the object size
to include the meaningful local region. We empirically set the patch size as
51 × 51 × 25 for the femur and 31 × 31 × 15 for the cartilage. The interval
between the sampled points (center of the patches) was set to make the adjacent
patches with 60 ∼ 70 percents overlap. Υ i

j and Υj were set to one-third of the
patch size. All experiments were conducted by the single core program on a PC
with 2.93 GHz Intel Core i7 CPU, and 16GB of RAM.

The performance of SPM was compared with two interactive methods and an
automatic method: the method based on 3D graph cut [11, 6] (GC), the method
based on active learning [4] (TurtleSeg), and the automatic method based on
localized classifier [3] (LC). The GC was conducted on cropping region near the
target object because there were many BG regions having the similar appear-
ance of the target object. The SPM was experimented regarding the different
size of training set and the LC used nine images as the training sets. The seg-
mentation accuracy was measured by Dice similarity coefficient (DSC) between

the segmentation result S and ground truth R as: dsc(S,R) = 2·|S∩R|
|S|+|R| .

Fig. 3 presents the comparisons of the accuracy versus the cumulative pro-
cessing time including interaction time and computational time. Fig. 4 shows the
difference of user inputs between the methods. The result of GC was converged
to accurate result within few iterations. However, the interaction time between
the iterations took long time because lots of scribbles should be input to pre-
vent the result passing over true boundaries on vague regions or over-smoothing
on thin parts. The TurtleSeg reduced the interaction time by providing the
user with uncertain 2D planes. However, the improvement according to the user
delineations was converged on rough segmentation. Furthermore, the method
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(a) TurtleSeg (b) GC (c) SPM

Fig. 4. Comparison of the user inputs between TurtleSeg [4], graph cut [5], and the
proposed method. Green shows the segmentation result obtained by the user inputs,
yellow lines represent the user delineations, and red and blue represent FG and BG
scribbles, repectively.
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Fig. 5. Comparisons between SPM with one training set (green triangles) and Turtle-
Seg (brown rectangles) for tibia, tibial cartilage, hippocampus, and ventricle. Figures
inside the graphs show segmentation results and user scribbles of the proposed method.
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required lots of delineations for the cartilage segmentation because its shape is
very thin and deformable (Fig 4 (a)). On the other hand, the SPM obtained the
accurate result, outperforming that of the LC method, within few processing
time on both cases. For most cases, the SPM obtained better DSC than the LC
method during the same processing time. As increasing the size of training set,
the computational time of the initial step was increased while the performance
of initial segmentation was enhanced.

For general purpose, the SPM with one training set was applied to the segmen-
tation of other organs: tibia and tibial cartilage in the knee MRI, hippocampus
and ventricle in the brain MRI2. The DSC versus the cumulative processing
time was compared with TurtleSeg (Fig 5). The results imply that the SPM
is applicable to various problems without many training sets and useful to the
segmentation of multiple volumes more than two.

6 Discussion

Most previous methods usually focus on the automatic or interactive manners.
The main contribution of the proposed framework is to provide the connection
between the automatic and interactive strategies by using the SPM. The method
largely reduces the laborious user efforts by automatically segmenting the most
parts, which relatively easy to be inferred by the prior knowledge, in the initial
step. The propagated patch structure provides the intelligent editing system by
updating the patch models according to the user interaction.

Since the corresponding patch set represents the properties of the same local
region, we expect that the SPM will be expanded more effective ways. First,
the proposed framework can be combined with the active learning scheme to
provide an user with the slices including uncertain local regions. It is useful for
our framework because most errors on the editing step occur on small numbers
of vague local regions. The uncertainty can be measured through the comparison
between the priors such as Lj, σj of the reference patch and the segmentation.
Second, local statistics and variations according to the pathological change can
be modeled as increasing the size of training data. We have plan to cluster the
similar patches and separately model the status of the cluster in each local region
for managing the training patches. Third, the method can be expanded to the
multi-object segmentation by using the optimization methods dealing with the
multi-label problem. Finally, the algorithm can be parallelized because the same
processes are repeated for multiple patches. The presented expansions are left
to the future work.
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